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Abstract

This thesis represents an in-depth empirical study of the dependence structures
within the term structure of interest rates. Firstly, a comprehensive overview
of term structure modelling literature and methods is provided together with
a summary of theoretical notions regarding the use of high-frequency data and
spectral analysis. Contrary to most studies, the frequency-domain approach is
employed, with a special focus on dependency across various quantiles of the
joint distribution of the term structure. The main results are obtained using
the quantile cross-spectral analysis, a new robust and non-parametric method
allowing to uncover dependence structures in quantiles of the joint distribution
of multivariate time series. The results are estimated using a dataset consisting
of 15 years worth of high-frequency tick-by-tick time series of US Treasury
futures. Complex dependence structures are revealed showing signs of both
cyclicity and dependence in various parts of the joint distribution of the term

structure in the frequency domain.
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Abstrakt

Tato diplomova prace predstavuje podrobnou empirickou studii zavislostnich
struktur obsazenych v ¢asové strukture urokovych sazeb. Nejdiive je predstaven
prehled literatury a metod tykajicich se modelovani ¢asové struktury irokovych
sazeb. Teoretické aspekty pouziti vysokofrekvenénich dat a spektralni analyzy
jsou predstaveny posléze. Narozdil od vétsiny obdobnych studii je tato prace
postavena na analyze ve frekvenéni doméné se zvysenou pozornosti vénovanou
zavislostem mezi kvantily spole¢ného rozdéleni v ruznych ¢astech ¢asové struk-
tury urokovych sazeb. Hlavni zavéry jsou ziskany aplikaci kvantilové kiizové
spektralni analyzy, nové robustni neparametrické metody, kterd umoznuje od-

haleni zavislostnich struktur v kvantilech spole¢ného rozdéleni casovych tad
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o vice proménnych. Vysledky jsou odhadnuty na datech, ktera se skladaji z
15 let vysokofrekvenénich ¢asovych rad americkych futurit zaznamenanych po
jednotlivych transakcich. Komplexni zavislostni struktury vykazujici zndmky
cykli¢nosti i propojenosti v riuznych ¢astech spole¢ného rozdéleni casové struk-

tury turokovych sazeb jsou odhaleny ve frekvenéni doméné.
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cycle, proving to be an especially reliable tool for predicting economic recessions.
The method of quantile cross-spectral analysis could shed more light on the nature
of the connectedness of the term structures and the real business cycles, especially
with regard to the relationship between low and high quantiles of their respective
distributions. The nature of the method makes it suitable notably for the asymmetric
nature of the business cycle dynamics.

Lastly, a significant portion of the research of the term structures has been de-
voted to finding determinants of the factors of the term structures. More specifically,
the term structure of US Treasury bonds has been found to be sensitive to changes
of monetary policy. By means of the quantile cross-spectral coherency, this thesis
would like to add to the existing research by analysing the degree of connectedness

of the term structures with regard to the employed monetary policy.

Hypotheses

Hypothesis #1: Term structures exhibit common cyclical behaviour across

different quantiles

Hypothesis #2: Volatility of term structures is connected with stock markets

volatility

Hypothesis #3: Connectedness of term structures depends on the employed

monetary policy
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mance of classical models. Unlike the classical covariance-based approaches, quantile
cross-spectral analysis does take into account quantiles of the entire distribution of
the analysed time series, revealing dependencies that remain hidden when employing

just the averaged information.

Expected Contribution This thesis aims to contribute to the research of the term
structures by employing a new methodology of quantile cross-spectral analysis. The
goal of the study is to analyse the term structure and its volatility within the fre-

quency domain with focus on the quantiles of its distribution. This novel approach
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In the first part, the thesis aims to describe the nature of the dependencies in the
term structure across the frequency spectrum, quantiles of its distribution and its
differing volatilities. New findings in this part could benefit the theory of the bond
portfolio risk management. In the second part of the thesis, the asymmetric nature
of the business cycles dynamics and its relationship with the term structure will be
assessed with possible new findings regarding the varying nature of connectedness
of term structures and business cycles, especially in the “good times” and the “bad
times”. In its last part, the thesis will analyse the nature of connectedness of the
monetary policy and term structures with possible implications on the efficiency of
the monetary policy.

The analysis of the term structures will also benefit from the availability of the
novel dataset of tick-by-tick high frequency data of US Treasury bonds that further
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Outline
1. Introduction
2. Literature Review
3. Term Structure Overview
4. Data, Descriptive Statistics and Methodology
5. Analysis of Connectedness of Term Structures in High Frequencies
6. Analysis of Connectedness of Term Structures and Market Activity

7. Conclusion

Core bibliography

Barunik, J., & Kley, T. (2015). Quantile Cross-Spectral Measures of Depen-
dence between Economic Variables (October 23, 2015).

Cieslak, A., & Povala, P. (2016). Information in the Term Structure of Yield
Curve Volatility. The Journal of Finance, 71(3), 1393-1436.

Deibold, F. X., Rudebusch, G. D.; & Aruoba, S. B. (2006). The macroeconomy
and the yield curve: a dynamic latent factor approach Francis. Journal of
Econometrics, 131, 309-338.



Master's Thesis Proposal XVi

Estrella, A., & Hardouvelis, G. A. (1991). The Term Structure as a Predictor
of Real Economic Activity. Journal of Finance, 46(2), 555-576.

Fama, E. F. (1990). Term-structure forecasts of interest rates, inflation and

real returns. Journal of Monetary Economics, 25(1), 59-76.

Junker, M., Szimayer, A., & Wagner, N. (2006). Nonlinear term structure
dependence: Copula functions, empirics, and risk implications. Journal of
Banking and Finance, 30(4), 1171-1199.

Philip, Dennis, Estimation of Factors for Term Structures with Dependence
Clusters (May 14, 2010).

Righi, M. B., Schlender, S. G., & Ceretta, P. S. (2015). Pair copula construc-
tions to determine the dependence structure of Treasury bond yields. IIMB
Management Review, 27(4), 216-227.

Author Supervisor



Chapter 1
Introduction

Term structure of interest rates has been a focal point of economic research
for decades. The relatively simple representation of the relationship between
interest rates and terms to maturity contains information crucial to a wide
variety of economic agents. At each point in time, the term structure reveals
how economic agents aggregately value cash flows with respect to different
time horizons. This information is carefully analysed by central bankers when
adjusting monetary policy, governments as term structures can predict future
path of the economy and other institutions that are simply trying to hedge
against adverse interest rate movements. It is no wonder that both researchers
and practitioners find the understanding of the complex dynamics within the
term structure to be key for their work. However, analyses of term structures
often rely on low-frequency quote data and techniques that disregard impor-
tant properties of financial time series such as their heavy-tailed non-Gaussian
distributions.

This thesis represents an in-depth empirical study of the dependence struc-
tures contained within the term structure. Its contribution relies on a com-
bination of several novelty approaches. Firstly, we compute a high-frequency
representation of the term structure using a unique dataset of 15 years worth
of tick-by-tick interest rate futures trade data. Not only are the trade data
often more accurate than traditionally used quote data, but the dataset also
allows us to analyse intraday volatility within the term structure. Secondly, the
analysis is carried out in the frequency-domain contrary to the more traditional
time-domain approaches. This allow us to interpret variation and dependence
in different parts of the term structure in terms of cycles of various frequen-

cies. Finally, we use a novel method of quantile cross-spectral analysis in order
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to study dependence structures between quantiles of the joint distribution of
the term structure in the frequency domain. Using this robust and model-
free technique, we test whether is the dependence between various parts of the
term structure constant or whether it differs across different parts of the joint
distribution.

The chapters of this thesis are organised as follows. Chapter 2 represents
a review of the most important contributions to the term structure modelling
literature as well as a review of spectral analysis, interest rate futures and high-
frequency estimation literature with a focus on term structures. Theoretical
foundations behind the methods used in this thesis are laid in Chapter 3. This
chapter provides a comprehensive overview of the term structure modelling
approaches, methods using high-frequency data and (cross-)spectral analysis
methods. Chapter 4 is dedicated to the description of the raw interest rate
futures dataset and all subsequent transformations applied to it in order to
achieve dataset suitable for subsequent analyses. Chapter 5 offers a detailed
discussion of the results of spectral analysis of the term structure in three parts:
first part focuses on univariate spectral representations of various parts of the
term structure, second part deals with cross-spectral dependence in the term
structure using common techniques and the third part uncovers the depen-
dence structure in detail using the quantile cross-spectral analysis. Chapter 6

concludes.



Chapter 2
Literature Review

This chapter provides an overview of the relevant literature concerning term
structure modelling with a special attention paid to spectral analysis and high-
frequency estimation. Overviews of contemporary nonparametric modelling
approaches and interest rate futures are also covered in respective sections.
For a complete and in-depth overview of the term structure modelling liter-
ature see Gibson et al. (2010) and Filipovic (2009) or Bjork (2009) for a more

rigorous approach.

2.1 Models of Term Structure

Much of the interest in term structures revolves around the central question:
Why do we observe a mismatch between the equilibrium forward rates and the
future spot rates? With no uncertainty involved, we’d expect the two rates to
coincide but observations of various shapes of yield curves hint at a prominent
role of term premia. Naturally, multiple modelling approaches have emerged
as a result of attempts to solve the puzzle.

First term structure models were heavily inspired by the derivative pricing
models succeeding the famous stock option pricing model by Black & Scholes
(1973). For example Merton (1973) uses government bonds as the underlying
assets instead of stocks. But despite solving a related problem, the term struc-
ture estimation literature evolved separately from the rest of the derivative
pricing literature due to peculiarities specific to the bonds.

The Merton (1973) model is one of the first models that used one-factor
approach with a time invariant process. Models by Vasicek (1977) and Cox
et al. (1985) were developed on the same basis while Hull & White (1990)
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introduced time-variability of the short rate process driving the term structure.
Although a majority of total variance in a term structure can be explained by
a single dependent variable, we often observe humped-shaped yield curves with
dynamics that are not attainable by means of any single factor. Naturally,
the extension of models into multivariate settings allowed for a significantly
better fit at a cost of losing analytical tractability. Models by Cox et al. (1985)
and Duffie & Kan (1996) are notable examples of the multivariate approach.
Finally, Ho & Lee (1986) and Heath et al. (1992) proposed models with only
one state variable of infinite dimension - the term structure itself.

Empirical studies of the aforementioned models confirm that analytical
tractability of term structure models usually comes at a cost of sub-par good-
ness of fit. Chan et al. (1992) compare eight models using a generalised method
of moments and conclude that popular models like Vasicek (1977) and Cox et al.
(1985) perform poorly and hint at an important role of relationship between
volatility of interest rate and the risk-less rate. Survey by Boero & Torri-
celli (1996) concludes with similar results adding that no model clearly outper-
forms no other. Ait-Sahalia (1996) rejects specifications of most popular models
by comparing implied parametric densities with the estimated non-parametric
counterparts.

Employing purely statistical methods to estimate the term structure rep-
resents a completely different and mostly successful approach. Litterman &
Scheinkman (1991) find that over 90% of total variance of excess returns over
risk-free rate can be explained by the first three principal components. The
effectiveness of statistical methods like principal component analysis has been
well documented Barber & Copper (2012). A great success has been achieved
by means of curve fitting. McCulluch (1971) used cubic splines and Vasicek
& Fong (1982) later proposed using exponential splines to easily reproduce
empirically-sound yield curve shapes. The parametric model proposed by Nel-
son & Siegel (1987) and its derivatives are very simple yet efficient when fitting
the entire range of observable yield curves. For this reason, the Nelson-Siegel
family of models remains favourite among practitioners as documented in the

survey among central bankers Bank for International Settlements (2005).

2.2 Spectral Analysis of Term Structure

Following the famous description of the spectral representation of a typical

economic time series Granger (1966), a term structure of interest rates has
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been covered in a similar fashion in Granger & Rees (1968). Presenting the
spectra of yields on securities of British Government between 1924 and 1962,
the conclusion is that the term structure adheres to the ”typical shape of eco-
nomic variable” and that observed interest rates follow a random walk model.
With largely inconclusive results, Sargent (1971) uses the spectral approach
to study phase shifts among yields of different maturities in order to test the
expectation hypothesis. Similarly, Assenmacher-Wesche & Gerlach (2008) test
the expectation hypothesis using the spectral decomposition and conclude that
the expectation hypothesis cannot be rejected for maturities ranging from 6
months to 4 years.

Among the more recent publications, Hallett & Richter (2004) analyse pa-
rameter changes of a term structure model before, during and after structural
shocks using data from the USA, UK and Germany. As a result, the authors
were able to distinguish parameter responses relative to a given frequency range.
Using Japanese yield curve data, Tsuji (2006) finds almost no cyclical compo-
nents in the yield curve slope, which could provide an explanation for the
limited predictive power that Japanese slope curve has with respect to the real
GDP.

2.3 Modern Term Structure Analysis

The long-history of research aimed at the term structure makes it an attractive
subject to test new estimation techniques on. With each new technique, there
is a chance to uncover new dependence structure that has so far remained
hidden. The contribution of the new approaches is usually based on the ability
to loosen assumptions such as normality of distributions, symmetry or linearity
of the dependence structures.

Kiermeier (2014) uses the wavelet analysis to test significance of the five-
factor Nelson-Siegel model on various time scales using European zero-coupon
curves estimated by ICAP. Copula based estimation techniques represent an-
other popular contemporary approach to term structure estimation. Junker
et al. (2006) study nonlinear dependence structures of US Treasury yields us-
ing copulas and reveal an upper tail dependence in yield innovations. Similarly,
the dependence structure in US Treasury yields is estimated using pair copula
in the article by Righi et al. (2015). The authors find a strong dependence
of yields and their past values together with decreasing yield variability with

increasing time to maturity of a bond. Noureldin (2014) uses copulas to study
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time-varying dependence structures among the factors in the Dynamic Nelson-
Siegel model. Finally, Kuriyama (2016) uses quantile regression to find evidence
of cointegration in the US term structure data with a mixed evidence of con-
tintegration across all quantiles but a strong evidence in the central part of

respective distributions.

2.4 Interest Rate Futures

A large portion of the term structure of interest rates research employs either
quote or trade data of government bonds with varying maturities. However,
these datasets can be vulnerable to errors, especially when using quote data
that are scarcely precise for ”off-the-run” bonds. One way to avoid this problem
is to use interest rate derivatives transaction data.

Bjork & Landén (2000) present a detailed general framework to interest
rate futures and forward pricing. Similarly, Jegadeesh & Pennacchi (1996)
use Furodollar futures data in construction of a two-factor term structure of
interest rates model. Futures data are commonly used in studies of commodity
markets. Bessembinder et al. (1995) test investors’ expectations about mean
reversion in spot asset prices using futures prices from eleven different markets
and conclude that there is a significant evidence of mean reversion in commodity
futures markets but a very weak evidence in the US Treasure futures market.

Another branch of literature focuses on the pricing specifics of futures con-
tracts. Using the Eurodollar futures data, Sandaresan (1991) suggests that the
differences between implied forward prices and the futures prices are only in
minor part caused by the marking-to-market mechanism, contrary to what Cox
et al. (1980) suggest.

2.5 Term Structure in High Frequencies

Even though computing power is increasingly more affordable and high-frequency
datasets more available, the high-frequency term structure literature remains
relatively scarce. A recent study by Cieslak & Povala (2016) explores informa-
tion content in high-frequency US Treasury market data. The authors estimate
a no-arbitrage term structure model with stochastic covariance and as a result,
they propose a decomposition of conditional interest rate volatility into compo-

nents of term premia, short-term expectations and their conditional covariance.
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The study by Shin & Zhong (2017) concludes that augmenting the Dynamic
Nelson-Siegel model with realised volatility serving as a volatility measure can
improve bond yield density forecasts.

One popular way to utilise high-frequency data is to analyse the impact
of policy announcements. Fleming & Remolona (1999) document significant
shocks resulting from macroeconomic policy announcements on medium term
interest rates while the effect on short rates being comparatively modest. Sim-
ilarly, the model introduced by Piazzesi (2005) utilises a high-frequency policy
rule based on the decisions by the Federal Reserve and improves the fit of the
latent three-factor term structure model at its short end. Among other results,

the author documents a snake shape of a volatility curve.



Chapter 3
Theoretical Review

The most important theoretical notions employed in this thesis are covered in
the subsequent sections. Firstly, economic theories of term structure and zero
coupon bonds are introduced followed by a comprehensive summary of the most
important modelling approaches. Secondly, concepts surrounding the analysis
and use of high-frequency data are introduced. Following is an introduction
into spectral, cross-spectral and quantile cross-spectral methods. And finally,

the chapter is concluded with a brief overview of the interest rate futures.

3.1 Zero Coupon Bonds

A zero coupon bond constitutes a claim with no coupon payments during the
entire holding period that pays its full face value at the time of the maturity.
A real world government bonds usually pay its holders fixed coupons with a
known frequency until the date of the bond’s maturity. But to vastly simplify
the analytical tractability of the problem, we will make use of the fact that
any coupon-bearing bond can be equivalently reproduced with a portfolio of
zero coupon bonds with maturities and face values mimicking the coupon pay-
ments at their respective due dates. The following sections introduce the basic
concepts associated with the term structure following the text by Gibson et al.
(2010).

Let us consider a zero coupon bond with a face value equal to 1. The log-
holding period return hpr(t,t + n,T) of a zero coupon bond with a time of
maturity T that is bought at the time ¢ and which is being held until the time
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t + n is denoted by:
hpr(t,t+n,T) = p(t +n,T) — p(t,T)

where p(t,T') is the natural logarithm of the price of the zero coupon bond at
the time ¢ with time of maturity 7" and t +n < T'. In the case whent+n =T,
the return of the bond is equal to the face value and the per-period holding
period return is equal to the yield to maturity R(t,T):

hpr(t,T.T) _ p(t,T)

t,T) = =—

The short rate r(t) (or instantaneous risk-free interest rate) is a yield on the

currently maturing bond, i.e.,

r(t) = lim R(t,T).

T—tt

The forward rate f(t,T1,T5) is the rate of a risk-free loan beginning at the time
T which is ending at the time 715, therefore:

p(tv Tl) - p<t7 T2)
T, -1 ’

ft, T, Ty) =

Finally the rate at the time ¢ for which one can obtain a loan for an instan-
taneous period of time f(¢,T) = (f,T,T) is called the instantaneous forward
rate.

Zero coupon bonds with identical time to maturity and face values may in
practice offer different yields due to the presence of default, credit, liquidity or
other risks. When modelling the term structure of interest rates, we will be
interested in the varying levels of bond yields resulting from variations in their
respective time to maturity. Other associated risks will be considered fixed
throughout the thesis.

3.2 Term Structure

Market participants usually value future cash flows with respect to the length
of investment horizon. If we obtained, at any given time, yields of identical
bonds differing solely in their maturities while holding all other factors fixed,

we could observe the current market’s valuation of money with respect to the
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investment horizon. We construct the term structure of interest rates as a
function R(t,T) that for a fixed time ¢t maps a continuous time parameter T
to real values of the bond yields. The graphical representation of this function
is called the yield curve.

The vast body of research devoted to the drivers of the term structure has
been inspired by the fact that the today’s term structure contains information
about the market participants’ views about the future path of the economy.
After accounting for related risks, expected values of the average future short
yields constitute the yields of long maturity bonds. An accurate interpretation
of the shape of the term structure is therefore highly useful when making an
investment or policy decisions.

The theory explaining variability in shapes of term structure has branched
into three main directions: the expectation hypothesis, the liquidity preference

and the preferred habitat theory.

3.2.1 The Expectation Hypothesis

The most straight-forward explanation is given be the expectation hypothesis
which puts the emphasis on the investor’s expectations of the future spot rates.
The forward rate is therefore an unbiased estimator of future spot rates and

the term structure is given by:
1 T

t

E; (r(s))ds
where R(t,T) is the yield to maturity, ¢ denotes the current time, 7" denotes

the time of maturity of the bond and r(t) is the short term rate.

3.2.2 The Liquidity Preference Theory

If we assumed that the investors are risk-averse and that they prefer receiving
the same nominal payments sooner rather than later, keeping other factors
fixed, then the investors demand a premium L(s,T") for buying a security with
a longer maturity to compensate for the additional risk. Borrowers are willing
to pay this premium as they prefer borrowing long term over short term. Under

the liquidity preference theory, the term structure is given by:

R(t,T) = %(/tT]Et(r(s))der/tTL(s,T)ds>
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where L(t,T) > 0 denotes the term premium at time ¢ for a bond with time of

maturity 7.

3.2.3 The Preferred Habitat Theory

Empirically, the slope of the term structure is not always positive as the ex-
pectation hypothesis and the liquidity preference theories would suggest. Since
the lenders and the borrowers might have different preferences relative to the
investment horizon, the resulting premium L(¢,7") might be any real number
depending on the intersection of the supply and demand at the time t. The

term structure is given by:

R(,T) = %(/tT]Et(r(s))der/tTL(s,T)ds>

where L(t,T) € R.

3.3 Models of the Zero Coupon Term Structure

The term structure of interest rates is a continuous function and as such consists
of an infinite number of individual zero coupon yields. As demonstrated in the
previous sections, zero coupon yields can also be derived from the short-term
rates r(t) for t € [t,T]. However a collection of the entire range of short rates
is usually not readily available for analysis and therefore the shape of the term
structure or its features have to be estimated from the available data.

Several techniques have been proposed in order to model and forecast the
term structure accurately while keeping the model complexity reasonably low.
The most common approaches to modelling of the term structure are sum-
marised below following a detailed overview of the term structure modelling
literature by Gibson et al. (2010).

3.3.1 General Equilibrium Maodels

The early models of term structure are based on the assumption that exoge-
nously specified markets are efficient in reaching of their equilibria. The term
structure of interest rates is modelled using utility functions of the investors
on the market that has reached its equilibrium. These models are usually

affine-class, single-factor and time-invariant.
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Single-factor models assume that term structures can be completely speci-
fied using a single explaining factor, usually the short rate r(¢). The use of a
single factor implies that changes in the interest rates are perfectly correlated
along the term structure which contradicts the real world observations. The
specification of these models usually starts with a definition of a stochastic
process driving the short rates from which the form of the term structure is
derived.

Time-invariant models imply that the short-rate dynamics govern an en-
dogenous term-structure. In practice this means that we cannot use the model
to fit time-varying shapes of the term structure. On the other hand, specifying
the term structure models using only time-varying parameters usually leads to
an undesired over-parametrisation and over-fitting of the term structure.

Finally, in the affine-class models, the term structure is an affine function

of the short rate, ie.:

—a(t,T) b(t, T)
O

R(t,T) =

where a(t,T) and b(t,T') are deterministic functions. These models are usually
derived from the specification of the stochastic process driving the spot rates.

A famous example of such models is the model proposed by Vasicek (1977).
The author defines the short-term rate process as a mean-reverting random

walk process with a drift, ie.:
dr(t) = k(0 — r(t))dt + odW(t)

where k, 6 and ¢ are all positive and constant and W () is a standard Wiener
process. The # is a long-term value of r(¢) while x governs the adjustment
speed of the mean-reverting process.

The explicit solution for the short-term rate is:

r(t) =0+ (r(s) — O)exp(—r(t — s)) + ar/ exp(—k(t — 8))dW (u)

where r(t) follows a normal distribution which can result in negative interest
rates. This undesirable property was addressed in later models like the one by
Cox et al. (1985).
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Their term structure is given by:

1 —exp(—(T —t)k)

R(t,T) = R(t,0) + T = n

(r(t) — R(t, 00))

0.2

+ m(l —exp(—(T — t)r))
which allows for both positively and negatively sloped as well as for humped-
shaped yield curves.

Large amount of general equilibrium models have since been proposed.
Some authors propose improvements to specifications of the short-term rate
process, utility functions or other market characteristics (Cox et al. 1985), some
allow for a time variation of model parameters (Hull & White 1993) and others
introduce additional exogenous factors to drive the term structure (Jamshidian
1995).

Despite being popular for their analytical tractability, the general equi-
librium models have not been widely adopted by practitioners. It has been
well documented that the forecasting performance of such models is rather
poor (Chan et al. 1992) and that under certain conditions it can perform even
poorer than random walk models (Duffee 2002). Moreover these models have
no mechanism allowing for calibration of the fit using the contemporaneously

observable cross-sections of data.

3.3.2 No Arbitrage Models

A different approach to the term structure modelling is represented by an idea
that the entire term structure is in fact given exogenously by a cross-section
of zero coupon yields at a given point in time ¢y,. Subsequently, the dynamics
of the entire term structure for t > t; are modelled based on the assumption
that no arbitrage opportunities are present on the market. Compared to the
general equilibrium models, the no arbitrage models employ cross-sectional
characteristics of interest rates rather than relying on the time series dynamics
of the interest rates.

The first such model was introduced by Ho & Lee (1986) in a form of a
discrete recombining binomial tree. In their model, the time is divided into
equidistant periods where the term structure at ¢, is set according to the ob-
served data. In each subsequent time period t > ¢, the previous term structure

is multiplied by a period-dependent perturbation function h(7) with probability
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7 or by a function h*(7) with probability (1 — 7) where
wh(t) + (1 —m)h*(t) =1

Given the probability measure m and a parameter 9, the perturbation functions

can be expressed as

1 . 5
M) = i MO T e

and the corresponding bond prices as

B@ﬂ:h@—ﬂ%%}%g
B@n:mauo%%}¥g.

Following the derivations in Gibson et al. (2010), we arrive at the following

functional form of the interest rate

T+ (1—m)o™
T4+ (1 —m)o71!

r(t) =r(t—1)+ (f(0,t) — f(0,t — 1)) + log(

— (1= 7)log(6) + &

)

where ¢, is an i.i.d. random noise term with E(e;) = 0.

Besides the previous-period interest rate, the slope of the term structure
and a time-dependent constant also influence the contemporaneous interest
rate. The parameters m and d have to be estimated from the data.

Similarly to the Vasicek model, Ho and Lee model also allows for negative
interest rates which implies that it is not a necessarily arbitrage-free model.
Also, the lack of built-in mean reversion mechanism means that in extreme
cases, the interest rates can drift to infinity. Finally, the single-factor approach
implies that bonds across all maturities are perfectly correlated which does not
correspond to observed data. However, arbitrage free models generally fit the
data better than general equilibrium models since they use cross-sectional data
to make an initial fit of the term structure. Like general equilibrium models,
no arbitrage models are popular for their analytical tractability.

Many extensions of the Ho and Lee model were proposed including the
famous Heath, Jarrow and Morton model Heath et al. (1992) model which ex-

tends the original discrete single factor model into multiple factor continuous
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time model. Moreover, the Heath, Jarrow and Morton model imposes exoge-
nous stochastic structure upon forward rates instead of the zero coupon bond
prices. The resulting model is not only dealing with some drawbacks of the
previous arbitrage fee models, but it also represents a general framework that

is fully compatible with general equilibrium class models.

3.3.3 Smoothing Splines

Spline methods are based on fitting of the term structure with a piecewise
polynomial called a spline function. For a closed maturity interval, we can
estimate the term structure (or any continuously differentiable function) with
a suitable polynomial function to a predefined degree of precision. The precision
of the fit increases with the increasing order of the polynomial used to fit the
term structure over some interval. Higher order polynomials however produce
curves that are not smooth enough to resemble empirical yield curves. One
solution is to use a sequence of lower order polynomials to create a piecewise
polynomial joined smoothly at so called knot points. The spline functions used
to fit term structures usually rely on quadratic or cubic polynomials.

The approach using splines was first introduced by McCulluch (1971) who
parametrised the function of present value of future coupon payments using a

cubic splines:
k
S(m) =1+ aifi(m)
i=1

where §(m) is a continuous discount k-parameter spline function and f/s are
polynomial functions. The linearity of the model allows for estimation of the
term structure using the ordinary least squares. Important shortcoming of this
method is that its results are largely sensitive to the value of k£ and the precise
placement of the knot points (Fernandez-Rodriguez 2006).

As a reaction to the poor fit of equilibrium models to the observed data,
Vasicek & Fong (1982) proposed a method of exponential splines fitting. Expo-
nential splines deal with some shortcomings of polynomial splines including the
fact that polynomials are not strictly decay functions. Shea (1984) shows that
spline methods can provide local flexibility to approximate very complex shapes
of term structure. At the same time, these methods are sensitive to anoma-
lies in data and parameter selection that can result in completely unrealistic

estimates.
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3.3.4 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical method based on a decom-
position of the covariance matrix that allows for a reduction of dimensionality
of multidimensional datasets while retaining as much of their original variance
as possible. By applying the PCA on the covariance matrix of zero-coupon rate
changes, we obtain a set of orthogonal eigenvectors (factors) accounting for
most variability in the zero-coupon rate.

Following Filipovic (2009), the principal components analysis relies on the

spectral decomposition theorem, ie.:
Q= ALAT

where L = diag(Aq,...,A,) is the diagonal matrix of eigenvalues of () and A
is an orthogonal matrix with columns aq,...,a, are the normalised eigenvec-
tors of (). Each eigenvector is associated with an eigenvalue whose magnitude
represents the amount of variation of the original data explained by the corre-
sponding eigenvector.

Litterman & Scheinkman (1991) used the principal component analysis on
term structure data to find that the three factors with the highest eigenvalues
explain a minimum of 96% of variance in the data. Moreover, the resulting
factors are easily interpretable as the first factor is associated with parallel
changes in the yields, the second factor is generally associated to the steepness
of the curve and the third factor represents its curvature. Interestingly, the
interpretation of the factors obtained through the PCA along with their loadings
are very similar to the factors and loadings obtained using the Dynamic Nelson-

Siegel model described in Section 3.3.5.

3.3.5 Parametric Methods

Parametric estimation of the term structure of interest rates relies on a speci-
fication of a class of continuous real functions defined over the entire maturity
domain, usually consisting of exponential components. Contrary to the gen-
eral equilibrium and no arbitrage models, parametric models do not assume
any functional relationships arising from the underlying economic theory. But
unlike purely statistical methods like PCA, parametric methods impose a pre-

defined structure on the term structure. The proposed functional specification
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must be flexible enough to replicate empirically observable shapes of the term

structure while remaining parsimonious.

Nelson-Siegel Model Arguably, the most popular parametric method was
introduced by Nelson & Siegel (1987) who, adhering to the expectation hy-
pothesis, expressed as a condition

1 T—t

RT)=7— | fls)ds

assumed the following instantaneous forward rate function:

f(7)250+51exp<—%> +52(56XP<—£>)

where 7 = T — t is the time to maturity, 5y, 31 and [y are factors to be
estimated and wu is a time constant. The suggested term structure is obtained
by integrating f(-) from zero to 7 and rearranging:

R(t,T) = R(r) :BO+(51+52)1_6X2(_5) —52€Xp<_£).

u

Even though the estimated factors are highly related to the factors obtained
using PCA, the Nelson-Siegel approach is different because it imposes a pre-

defined structure on the factors.

Dynamic Nelson-Siegel Model (DNSM) An alternative factorisation of the
Nelson-Siegel model was introduced by Diebold & Li (2006) who interpret the

Nelson-Siegel model parameters Sy, 51 and S5 as three latent dynamic factors:

1 —exp(—=N\7)
AtT

— exp(—NT)
)\tT

R(t,T) = Bot + Pt ! + Bar( —exp(—=N7)),

where [y represents a long-term factor which can also be viewed as a factor
governing the level of the yield curve. [3;; represents a short-term factor which is
related to the general slope of yield curve. and (35, governs the middle section of
the yield curve and is closely related to its curvature. The dynamic parameter
A¢ represents the exponential decay rate of the curve. Large values of \; result
in fast decay and generally better fit at short maturities. Analogically, small

values of )\; lead to a slow decay and a better fit at long maturities.
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Svensson Model The Nelson-Siegel model was later extended by Svensson
(1994) who proposed the following functional form of the forward rate:

f(T)Iﬁo—FﬁleXp(_%)+52<£exp(_£>> +53<£exp<_%>>

which introduces a fourth term with a new factor 83 which allows for a double
humped shape of the term structure and a second constant v. After integration
and rearrangement, we obtain the following term structure curve:

RT) = R(r) = o+ (6 + ) 228 e (- T)

u

+63(1—e)q;(—%) —exp(—%))

v

The parametric methods of modelling of the term structure gained substantial
popularity due to their flexibility and ease of estimation. A survey among cen-
tral banks by Bank for International Settlements (2005) has revealed that 9 out
of 13 participating banks used Nelson-Siegel or Svensson model for estimation

of the term structure of interest rates.

3.4 High-Frequency Data

The ever-increasing computing power and data storage capacities combined
with ever-decreasing storing and computing costs have allowed for recording
of financial time series at tick-by-tick basis with highly granular timestamps.
The resulting information-rich datasets provide new opportunities for the re-
searchers while posing new challenges related to the data-handling, modelling
and correct estimation. Some of these challenges are related to an irregular
spacing of time between observations, bid-ask bounce or serial dependence. A
more in-depth discussion of such issues can be found in Goodhart & O’Hara
(1997).

3.4.1 Data Synchronisation

Tick-by-tick datasets are obtained through sampling of individual transactions
on the markets. Each tick observation includes a highly granular timestamp
recording the transaction time as well as other variables of interest such as

price or type of the contract. Tick datasets are rich in information but do not
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allow for a direct multivariate analysis due to inherent asynchronicity of the
observations.

More formally, we observe prices P;(t) for each bond i € 1,...,I sampled
at transaction times t;1,...,t;,, during a given time period [t,7] such that
tix > tand t;,, <T. However, we usually observe different transaction times
for different bonds so t;,, # t;, for some bond j € 1,...,1,5 # i and some
m € {1,...,min{n;,n;}}. In fact, we cannot even guarantee that n, = n; so we
might encounter different number of observations for each bond. To obtain an
I x N matrix required for a multivariate analysis, we first need to synchronise
the time series to obtain IV observations in the given time period [t,T] sampled

at identical times for each bond.

Previous Tick One of the easiest approaches to data synchronisation is to use
a previous tick estimator Zhang (2011). First, the sampling frequency has to
be defined as a number N of equally spaced times ¢4, ..., ¢ty within the period
[t, T] such that ¢t; >t and ty = T. Then for each bond i, we pick the previous

tick times:
t), =max{ty <t,l=1,...,n}, r=1,...,N.

The synchronised dataset is simply obtained by selecting the bond prices at
the previous pick times Fi(t,) = Fi(t;,),r = 1,...,m. An obvious drawback
of this method is that we ignore all but one observation between our equally
spaced sampling times which decreases the efficiency. Moreover, the method

creates new data points where observations are missing which produces a bias.

Refresh Time An alternative synchronisation scheme proposed by Barndorff-
Nielsen et al. (2011) is different in construction from the previous tick in that
each sampling period includes at least one tick of each bond and that the
resulting sampling times don’t have to be equally spaced. Formally, let us
write the number of transactions of a bond ¢ up to the time t as a counting
process NV;(t) and the respective transaction times as t;1,...,%;,,. The first

refresh time is defined as:

tll = max(tm, Ce ,t[7]_)
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and each subsequent refresh time is defined recursively as:

/
trr = max(by,n )41 - - LNy (2)+1)-

Once we have the new sampling times #},...,%,. ., we obtain the synchronised
dataset by resampling prices of each bond P;(t)) for all r = 1,...,7pnax. The
problem of this approach is that the most illiquid asset is the one responsible

for the selection of the highest number of the sampling times.

Generalised Sampling Time The method proposed by Ait-Sahalia et al.
(2010) is more general than previous tick and refresh time. The generalised
sampling time is defined as a sequence of points {tq,...,tx} for a collec-
tion of I assets satisfying the following conditions. Firstly, t = ¢; < --- <
ty_1 < ty = T. Secondly, at least one observation for each bond i must ex-
ist between the consecutive points in time ¢,,t,,;. Finally, the time intervals
{AT =ty —t.,r € {1,...,N — 1}} converge in probability to zero. The
synchronised dataset is obtained as P;(t;.) = F;(t,;) by selecting an arbitrary
observation at the time ¢, ; € (¢,,7,41] for each asset 7 and each time interval
r=1,...,N —1.

It can be seen that both previous tick and refresh time are in fact special
cases of the generalised sampling time scheme. If we select #.; to be the time
of the last transaction in each time interval, then we replicate the previous tick
scheme. Similarly, we will arrive at refresh time scheme if we follow the scheme’s
recursive definition of ¢/.. The advantage stemming from random drawing of the
points from the time intervals is the robustness against the data misplacement

error.

3.4.2 Realised Variance

Realised variance (RV) is a nonparametric volatility estimator capable of utilis-
ing the information contained in the high-frequency data. This ex-post measure
is useful in contexts that require modelling of volatility dynamics. It allows for
estimation of the cumulative price variation over a given period using the tick
data.

Let us consider a continuous stochastic process of logarithm of asset prices
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p(t) given by the diffusion process:

)= [ wtoris+ [ otsamis

where u(t) is a continuous drift process with finite variance, o(t) is a strictly
positive volatility process, W is a standard Brownian motion and time ¢t €
[0, T7].

We are interested in estimation of the integrated variance:

which gives us the amount of variance accumulated over the time period of
[t — A t].
Now suppose that we observe n+1 prices p(0), ..., p(n) on an equally spaced

interval [0, 7. The sum of squared returns:

n
2
RV(n) = > (p()) = pli - 1))
i=1
is an estimator of the integrated variance IV called realised variance. In fact
realised variance converges almost surely to the integrated variance as n — oo

(or equivalently A — 0) as shown in Andersen et al. (2003).

3.5 Spectral Analysis of Economic Time Series

(Classical time series analysis is concerned with uncovering information hidden
in the autocovariance structure of the data in the time domain. Alternatively,
we can move away from the time domain to the frequency domain and study
the information hidden in the ”frequency content” of the data. Under such
transformation, the information content remains exactly the same (Nerlove
1964), but the new point of view allows for uncovering relationships that are
otherwise difficult to reveal.

We can think of economic time series as of a combination of trends, noise
and cycles. Since there are usually multiple cyclical components of various
lengths present in the data generating process, the classical time series analysis
mainly concerned with autocovariance structures becomes largely ineffective

when analysing the influence of cyclical patterns hidden in the data.
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The basic idea behind the spectral analysis is that any stochastic time series
can be decomposed into an infinite number of sine and cosine waves (Nerlove
1964). This allow us to view an economic time series as a sum of cyclical
components with various amplitudes, frequencies and phases (i.e., the origin in
time of the time series). Subsequently, this will allow us analyse the spectrum
of the time series, which can be thought of as a decomposition of the variance
of the series attributed to different frequencies.

This section represents a brief summary of some of the most important
notions in theory of spectral analysis following a brilliant textbook by Granger
& Hatanaka (1964). Throughout, we will be considering a stationary, complex
data generating process { X;}. This process has first and second moments that
are not functions of time ¢ and autocovariance p that is dependent on the

distance between time periods ¢ and s, i.e.,

E(X,) =0
E(XtXt) = O'2
B(X,X,) =pt—s)=p., T=t—s

for all ¢, s where X is the complex conjugate of X.

3.5.1 Power Spectrum

Let us consider the following generating process X;:
k
X, = Z a; exp(itw;)
j=1

where (wj,j = 1,...,k) is a set of real numbers with |w;| < 7 and (a;,j =
1,...,k) is a set of independent, complex random variables where for all j
E(a;) = 0, E(a;a;) = oF and E(a;ax) = 0, j # k. Each term of X; is a periodic
function:

ajexp(iw;t) = a;(cos(tw;) + isin(tw;))

with period ;—; and angular frequency w;.

The sequence of autocovariances y; of (any) stationary process X; satisfies:

= /_7T exp(itw)dF(w)
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where F'(w) is a step function with steps of size 0]2 at w = wj,j = 1,... k.
F(w) is thus monotonically increasing function with extremes at F(—m) = 0
and F(m) = Zle 03, where F() is the variance of the generating process X;.
This equation is called the spectral representation of the covariance function
and F'(w) is called the power spectral distribution function.

Moreover (any) stationary process X; can be written in the form called

Cramér representation of a stationary process:

X, = / " explitw)dz(w)

—T

where z(w) is a complex, random function termed a process of non-correlated

increments such that:

E(dz(wy)dz(w2)) =0, wy # wa,

=dF(w), w;=uwy=uw.

Since F'(w) is a monotonically increasing function, it can be decomposed

into three components:
F(w) = Fi(w) + Fy(w) + F5(w)

where Fj(w) is a non-decreasing, absolutely continuous function, Fy(w) is a
non-decreasing, step-function and F3(w) is a non-decreasing singular function
which is assumed to be zero in economic applications. Any stationary process

X; can be thus decomposed into two uncorrelated components X; and X5:
X = Xq(t) + Xo(t).

Xi(t) is a member of the class of non-deterministic processes with an abso-
lutely continuous power spectral distribution function and thus its sequence of

autocovariances follows:
i

e =EXi(0)X1(t—1)) = / exp(itw) f (w)dw.

—Tr

Xo(t) represents a deterministic component corresponding to a linear cyclic
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process in a form of:
Xo(t) = ajexpitw;), |w;| < for all j
j=1

Finally, let us consider a real generating process X; producing infinitely

long, discrete and trend-free time series and its Cramér’s representation:

X, = /O " cos(tw)du(w) + /O " sin(tw)dv(w).

If we take one sample series x; of a finite length generated by such process,

then we can fit it exactly by a finite Fourier series:

n

x(n) = Z a;j cos(tw;) + Z b; sin(tw;),
j=1

J=0

where w; = 22 and a;’s and b;’s are such that 24(n) = z; at t = 1,...,n.

Allowing for increasing sample lengths n — oo, the interval between adjacent
frequencies shrinks w;y; —w; — 0 and the above representation turns into an

addition of integrals:

X = /07T a(w) cos(tw)dw + /07r b(w) sin(tw)dw.

This means that an infinitely long sample series (z;,t = 1,...,00) can be fitted
exactly if we choose a(w) and b(w) properly. If {z;} contains a periodic element
of frequency w; = 2¢, then both a(w) and b(w) will have sharp spikes at w = w;
but if the series {z;} contains no periodic elements, both functions will be
smooth.

We are interested in the periodic regularities that are characteristic to the
generating process X;. These regularities are associated with the relative im-
portance of particular periodic terms that generate observable cycles in the
sample series. The relative importance of a particular periodic term can be
thought of as a resulting decrease of variance of the series when this particular

term is removed. If we define the function F(w) as:
Pw) = Fluz) = Flen) = [ (@) + F@)do,

w1

then F'(w) corresponds to the amount of total variance that is attributable to
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the frequency band (wi,ws). This function is called the power spectral dis-
tribution function which appears as z(w) in the Cramér’s representation of a

stationary process.

3.5.2 Cross-Spectral Analysis

Apart from being able to analyse the power spectrum of one stationary process,
it is often useful to extend the spectral approach to be able to explore rela-
tionships between two stationary processes and their respective components.
In order to achieve this, we generalise the univariate case into a bivariate set-
ting with a stationary random generating process {X;, Y;} with a Cramér’s

representation:

X, = / " explitw)dz (@)

—T

Vim [ etz w)

satisfying

E(dzy(w1)dzy(ws)) =0,  wy # we

=Cr(w), w =ws=w,

where Cr(w) is known as the power cross-spectrum between {X;} and {Y;}

which can be further decomposed following:
Cr(w) = c(w) +1iq(w),

where ¢(w) is an odd function known as the co-spectrum and ¢(w) is an even
function known as the quadrature spectrum. Both functions are subject to the

coherence-inequality:
(W) + ¢°w < folw) fy(w).

When {X;} and {Y;} are both real, stationary processes, we can use the

Crameér’s representation:

X, = /0 Wcos(tw)dux(w)—l— /0 Wsin(tw)dvx(w)

and

Y, = /07r cos(tw)duy,(w) + /07r sin(tw)dvy (w).
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It is possible to interpret the co-spectrum and the quadrature spectrum in a
way that each of the processes {X;} and {Y;} can be represented by an integral
over all frequencies w in [0, 7] and that each frequency w can be decomposed
into two separate components that are 7 out of phase with each other. Each
of the components having a random amplitude du,(w), dv,(w) and du,(w),
dv,(w) and for each process, the amplitudes are uncorrelated both between the
components for any frequency as well as with the random amplitudes of the
components for other frequencies. This means that we are interested only in

the relationships between identical frequencies in both processes, i.e. between:
cos(tw)dug (w) + sin(tw)dv, (w)

and
cos(tw)du, (w) + sin(tw)dv, (w).

Moreover, the following relationships hold:
E(du,(w)du,(w)) = E(dv,(w)dvy(w)) = 2¢(w)dw,

meaning that twice the co-spectral density gives the covariance between the

in-phase components. And furthermore, we have:

E(du,(w)dvy(w)) = 2¢(w)dw
E(duy(w)dv,y(w)) = —2¢(w)dw,

meaning that twice the quadrature spectral density gives the covariance be-
tween the components 7 out of phase.

Finally, we will introduce crucial quantities allowing us to analyse relation-
ship between corresponding components of two stationary processes. Coherence
at w, C'(w) provides us with a measure of correlation between the corresponding

frequency components of two processes:

(w) + ¢*(w)

O = "5,

€ [0,1]

and its plot against the frequency w € [0, 7] is called the coherence diagram.
Coherence is in fact analogous in both definition and interpretation to the
square of the correlation coefficient between two samples.

A measure of phase difference between the corresponding frequency com-
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ponents of two processes is given by

— tan~! q(w)
@Z)(C{)) =1 C(W)

and its plot against the frequency w € (0,7) is called the phase diagram.

3.6 Quantile Cross-Spectral Analysis

The classical cross-spectral analysis introduced quantities like coherence that
allow us to analyse the joint-distribution of two processes in frequency domain.
But like covariance-based measures, coherency is quantifying dependence by
averaging with respect to the joint distribution of the two processes. The
process of averaging leads to a potential loss of information that is contained
in specific parts of the joint distribution. Since the information within the tails
of distributions of economic time series is often of a special interest, a new
class of cross-spectral densities that characterises the dependence in quantiles
of joint-distribution of processes across frequencies was proposed by Barunik
& Kley (2015) whose text we will follow to introduce the concept.

Let us consider a d-variate, strictly stationary process (X;)i ez with com-
ponents X;;,j = 1,...,d, a marginal distribution function of X;; denoted by
Fj and ¢;(7) == F;'(7) == inf{g € R : 7 < F(q)},7 € [0,1] denotes the cor-
responding quantile function. The matrixz of quantile cross-covariance kernels

[k (71, 7o) represents a measure for the serial and cross-dependency structure of

(Xt)tezi
71,72 (

Ly(m1,72) = (33" (11, 72))

J1,J2=1,....d

where

B (1, 7) = Cov (M Xk, < 43 ()}, Ko, < (7)),

J1,J2 €{1,...,d},k € Z, 71,72 € [0,1] and I(A) denotes the indicator function
of the event A. Note that these functions are dependent on two quantiles 71, 7
which makes them richer in information than their traditional counterparts.
Moving to the frequency domain, we obtain the matriz of quantile cross-spectral
density kernels §(w; T, T2):

Flw; 1, m2) = (fjhh(w?Tl?T?))jl,jQ:l ..... d’
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where
192 (w1, 1) = ( Z Y2 (11, 1) exp(ikw),
k=—o00
Ji,j2 €{l,...,d},w e R, 7,75 € [0,1].

For fixed values of 71,7, the quantile cross-spectral density kernel f(w)
is exactly the classical cross-spectral density of the bivariate, binary process
(H{ X < g(m)}, HXes < g (T2)})teZ which indicates whether the values
of the components j; and js of (X;)iez are below the respective marginal dis-
tribution’s 7; and 7, quantile.

Following this setting, there exists a right continuous orthogonal increment
process {Z] (w) : =7 <w < 7} forall j € {1,...,d} and 7 € [0,1], such that

the following Cramér representation:
X, <q¢(n)}= / exp(itw)de(w)

and the following relation
w9 . )
/ 172 (w; 11, To)dw = Cov(Z]) (wa) — Z5) (wh), Z17 (w2) — Z77 (w1))

where —m < w; < ws < 7 hold.

Analogously to the classical spectral quantities, we can decompose the
complex-valued quantity §172(w; 1, 7s) into its real part called the quantile
co-spectrum and its imaginary part called the quantile quadrature spectrum.

Furthermore, we consider the correlation between dZ7! (w) and dZ7?(w):

fjl,jQ (w; T, 7.2)

(fjm'l (w; 71, 717202 (W5 o, TZ))

Y

mjl»]é (w’ 7'17 7_2) = COl”l“(dZJTll (CU), dZ;-QQ (w)) -

(S

(11,72) € (0,1)? termed the quantile coherency, with values R172(w; 7y, 1) €
{zeC:|z| <1}

3.7 Interest Rate Futures

Futures contracts are legal agreements between two parties about a delivery
of an underlying asset at certain pre-specified time in the future for a pre-
specified price fixed at the time of the contract’s inception (Kolb & Overdahl

2003). Financial futures are standardised contracts traded at centralised finan-



3. Theoretical Review 29

cial exchanges that allow for a wide range of financial instruments or indices
to serve as its underlying assets. Futures contracts are usually very liquid,
partly as a result of contract standardisation which allows market participants
to safely trade otherwise illiquid assets. Moreover, the party who holds a short
position is not obliged to physically deliver the underlying asset as the contract
can be sold any time before it’s maturity (Filipovic 2009).

One distinct feature of futures contracts is that the holder of the contract
continuously pays or receives payments that result from an immediate depre-
ciation or appreciation of the contract’s value. This mechanism is called the
marking to market. Fach party is obliged to maintain a certain minimum
balance on their account called safety margin to mitigate the possibility of a
default on obligations.

Futures that use debt instruments like US Treasury Bills and US Treasury
Bonds as an underlying asset are called interest rate futures. A specification of
such contract either permits cash settlement or requires a certain class of debt
instrument to be delivered at the contract’s maturity. Because interest rate
futures usually specify a broad range of contracts deliverable upon maturity,
a conversion factor invoicing system is employed to make deliverable contract
prices comparable. The conversion factor is computed so that the principle
invoice amount paid from long to short is adjusted to reflect a reference yield-
to-maturity.

There are two trading regimes associated with financial futures. When
trading through open outcry, the traders are physically present in the ”"trading
pit” where they "cry out” their bids. This auction-like process mitigates ineffi-
ciency and information asymmetry between the traders. The opening hours for
physical futures exchanges are usually limited to several hours every weekday.

In the recent years, the trading pits have been mostly replaced by electronic
trading systems which offer nearly 24-hour opening hours and greatly reduced
transaction costs as opposed to the physical trading. Since each electronic
trade is processed through a centralised trading system, the electronic trading
systems offer a great opportunity for collection of high frequency tick-by-tick

trading data with very granular time measurements.



Chapter 4

Data and Methodology

This chapter describes the raw dataset, discusses transformations made to the
data in order to obtain a dataset suitable for estimation and comments on the
methodology behind computational steps. An overview of the most important
features of the estimated term structure of interest rates futures is presented
and compared to five stylised facts about term structures of interest rates in
the time domain.

Following sections focus on the estimation methodology and results. The

explanation of employed theoretical concepts can be found in Chapter 3.

4.1 US Treasury Futures Data

The dataset used for construction of the term structure consist of four distinct
high frequency tick-by-tick time series of interest rate futures trade data. The
underlying contracts are US Treasury Notes and US Treasury Bonds with times
to maturity ranging from 1 year and 9 months to 25 years.

All the recorded transactions were traded at the Chicago Mercantile Ex-
change and Chicago Board of Trade (CBOT/CME Group) futures exchange. The
trading hours for the listed futures have been evolving over the time, starting
with limited hours during weekdays to a nearly non-stop operation of electronic
trading platform Globex. The covered futures contracts are traded quarterly
with settlement dates in March, June, September and December. For more
details about interest rate futures contracts traded at CBOT/CME see Johnson
et al. (2017).

A wide range of underlying US Treasury bond contracts are eligible for

delivery upon settlement. In order to make all eligible contracts directly com-
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parable, CBOT/CME Group uses a conversion factor invoicing system. The

invoice price I P at the settlement is calculated in the following way:
IP=PxCF x CtF + Al

The daily futures settlement price P is the price of the futures contract at the
settlement date expressed in points and fractions of points with a par on the
basis of 100 points. C'F is the conversion factor; that is the price at which a $1
par of an underlying security would trade if it had a 6% yield-to-maturity. The
conversion factor thus takes into account different coupons and remaining time
to maturity of the wide range of Treasuries eligible for delivery. The CtF is
the contract factor, in this case a 1/100 fraction of the underlying’s face value
at maturity. Finally, the seller of the contract is compensated for the interest
accrued between the semi-annual coupon payment dates Al.

The parameters of each of the futures contract included in the dataset are

described below.

Short-Term US Treasury Note Futures (2-Year) The deliverable securities
are fixed-principal US Treasury Notes with fixed semi-annual coupon payments
and the original term to maturity shorter than five years and three months
(CBOT/CME Group 2018d). The remaining time to maturity of a delivered
contract must be longer than one year and nine months from the first day of
the delivery month and shorter than two years from the last day of the delivery
month. The trading unit is represented by a multiple of US Treasury Notes
with a $200,000 face value at maturity. The minimum price fluctuation is 1/4th
of 1/32nd of one point, that is $15.625 per contract. This futures contract is
traded under ticker symbol TU (Bloomberg) or ZT (Globex).

Medium-Term US Treasury Note Futures (5-Year) The deliverable secu-
rities are fixed-principal US Treasury Notes with fixed semi-annual coupon
payments and the original term to maturity shorter than five years and three
months (CBOT/CME Group 2018c). The remaining time to maturity of a
delivered contract must be longer than four years and two months from the
first day of the delivery. The trading unit is represented by a multiple of US
Treasury Notes with a $100,000 face value at maturity. The minimum price
fluctuation is 1/4th of 1/32nd of one point, that is $7.8125 per contract. This
futures contract is traded under ticker symbol FV (Bloomberg) or ZF (Globex).
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Long-Term US Treasury Futures (6 and half to 10-Year) The deliverable
securities are fixed-principal US Treasury Notes with fixed semi-annual coupon
payments and the original term to maturity shorter than 10 years (CBOT/CME
Group 2018b). The remaining time to maturity of a delivered contract must
be longer than six years and six months from the first day of the delivery. The
trading unit is represented by a multiple of US Treasury Notes with a $100,000
face value at maturity. The minimum price fluctuation is 1/2 of 1/32nd of one
point, that is $15.625 per contract. This futures contract is traded under ticker
symbol TY (Bloomberg) or ZN (Globex).

US Treasury Bond Futures The deliverable securities are both callable and
non-callable fixed-principal US Treasury Bonds with fixed semi-annual coupon
payments. For non-callable contracts, the remaining time to maturity of must
be longer than 15 years and shorter than 25 years. The deliverable callable
contracts must not be callable for at least 15 years and have remaining time
to maturity less than 25 years (CBOT/CME Group 2018a). The trading unit
is represented by a multiple of US Treasury Bonds with a $100,000 face value
at maturity. The minimum price fluctuation is 1/32nd of one point, that is
$31.25 per contract. This futures contract is traded under ticker symbol US
(Bloomberg) or ZB (Globex).

4.2 Data Transformations

This section provides detail on all steps of data transformation process that

resulted with the dataset used for subsequent computations®.

4.2.1 Synchronisation and Subsetting

The raw dataset consists of four tick-by-tick trade data time series of closing
prices with precise timestamps. To be able to perform most of the analysis,
equidistant observations synchronised across all time series were required. The
previous-tick synchronisation scheme was chosen as it represents the most com-

mon approach among the practitioners. In our case, all time series were syn-

LAll data transformations and computations were done using Python programming lan-
guage. Spectral and Cross-spectral estimates were obtained using R programming lan-
guage. Quantile Cross-Spectral Coherency estimates were computed using quantspec pack-
age for R (Kley 2016). All data visualisations are original and were created using gg-
plot2 package for R (Wickham 2016). All source codes are publicly available at https:
//github.com/nedvedad/mastersthesis.
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chronised at 5-minute intervals in order to be able to obtain 5-minute realised
variance estimates in subsequent steps.

Variability in trading regimes posed another issue. Trading hours for open
outcry regime have changed several times within the observed period while the
introduction of Globex platform resulted in nearly non-stop electronic trading.
The dataset combines data from both open outcry and Globex regimes. Only
observations on the intersection of all observed trading regimes were considered
to maintain a constistent dataset. As a result, all trades concluded outside
weekdays between 07:20 and 14:00 Central Time were discarded. Similarly, US
federal holidays and dates where at least one of the time series had no recorded
observation were excluded.

Finally, beginning with March 2000 contracts, the board of directors of
CBOT has decided to lower the nominal coupon used in the construction of
conversion factors from 8% to 6% for all Treasury futures. This change resulted
in a substantial shift of futures prices and dynamics around the November 1999
period. As a consequence, only a subset of observations recorded after January
1, 2000 were kept in the final dataset to mitigate estimation errors resulting

from possible inconsistencies in the data.

4.2.2 Yield to Maturity

Closing prices were used to compute yields to maturity using the following

formula:

()_W\L/ Vv .
I = NP X CF x CtF

where m is the contract’s maturity in years, F'V is the face value, P; is the
closing price observed at time ¢, C'F' is the conversion factor and CtF' is the
contract factor. Since the properties of relevant cheapest-to-deliver contracts
are unknown, the following assumptions were made to compute the yields.
Firstly, the maturities were assumed to be 2, 5, 10 and 25 years for the respec-
tive futures contracts. Secondly, the conversion factors were obtained using the
published lookup tables (CBOT/CME Group 2018e) assuming zero coupon in

each case.

4.2.3 Dynamic Nelson-Siegel Model Estimation

The entire term structure was estimated from the four time series of yields

using the Dynamic Nelson-Siegel Model. For each observation at time ¢, the
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Nelson-Sigel parameters were obtained via ordinary least squares estimation of

the following equation:

(p(2)] 1 epe o2 exp(—2)) ] [ c(2) ]
w(5) e LepR) _ gy (_5)) Bot 5)
1,(10) IR Lop(I0N) - Lmep(CI0)  oxp(—100) el T €(10)

i (25). 1 1fex;)é;\25)\) lfexgs(;%)\) — exp(—25)), Pt ,(25),

Exponential Decay Parameter Lambda The original Dynamic Nelson-Siegel
Model allows for time-varying decay parameter ;. However, the improvement
to goodness of fit allowed by time-varying \; parameter have been questioned
(Hautsch & Ou 2008). Moreover, given that only four points along the yield
curve are observed for each point in time, the increase in goodness of fit resulting
from the estimation of dynamic \; would likely come at expense of instability
and possibility of overfitting of the curve. For these reasons, a constant lambda
was used as in the original estimation of the dynamic model by Diebold & Li
(2006).

The choice of lambda is extremely important for the resulting fit. Apart
from governing the exponential decay of the yield curve, the \ parameter de-
termines where the model’s curvature term attains its maximum. In Diebold &
Li (2006), the authors set lambda constant at 0.7173% which is the value that
maximises curvature term at 2 years and 6 months.

In order to determine the lambda value to be used for estimation of the yield
curve, lambdas \; maximising the curvature term for maturities 7; between 1

and 10 years with steps of 1 month were calculated, following:

_ 1 — exp(—A7y) 12 13 120
Ai = - - i))s i ) yee e .
arg ax(——7 OP(AT)), = g g

Using each );, the Dynamic Nelson-Siegel model was fitted and mean squared
error M SFE; was computed:

1 & .
MSE; = =Y (Y; —Y;,)?,
=D (YY)

j=1

2The value presented in the article is in fact 0.0609 which corresponds to maturities
denoted in months as opposed to yearly maturities used in this thesis.
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where n is the number of observations in the dataset, Y} is an observed value
and }A/;] is a predicted value using \;. Finally, the lowest M SE; was achieved
with lambda value of 0.6329 which maximises the curvature term at 2 years
and 10 months, a value reasonably close to the one used in Diebold & Li
(2006). Loadings of each of the Nelson-Siegel factors with respect to time to
maturity are plotted in Figure A.1. Apart from showing the maximum of the
curvature factor loading, it is interesting to note that the slope factor loading
is dominating the curvature factor in short and medium-term maturities of up

to 10 years.

4.2.4 Realised Variance

In order to mitigate the amount of microstructure noise in high-frequency
datasets, intraday observations are usually integrated into daily measurements
for financial analysis. The ”daily last observation” approach was used to ob-
tain daily data on yields, closing prices and beta coefficients from the Dynamic
Nelson Siegel Model. Next, 5-minute realised variance of yields and beta coef-
ficients were computed. Many high-frequency volatility estimators have been
proposed over recent years, but 5-minute RV has gained the most recognition
by practitioners. This is demonstrated in a study by Liu et al. (2015) where
400 different estimators were compared using 31 different financial asset time
series including interest rates. The authors have concluded that the 5-minute

RV is very difficult to beat in practice.

4.3 Resulting Dataset

After carrying all transformations described above, the resulting dataset con-
sists of 3,775 daily observations of closing prices, yields, Dynamic Nelson-Siegel
Model factors and realised variances. Period covered in the dataset spans from
January 4th, 2000 to March 9th, 2015. This allows estimation of cycles two
years long as the rule of thumb proposed by Granger & Hatanaka (1964) re-
quires us to have at least seven observations of a cycle for reasonably precise
estimation. The evolution of the number of intraday observations for each time
series is plotted in Figure A.2. The increasing number of recorded transactions
is apparent with the upward trend being attributed to increasing popularity of

electronic trading platforms such as the Globex.
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4.3.1 Yields and Closing Prices

The daily closing prices of each series are plotted in Figure A.3 and presented
along with summary statistics in Table B.1. A tendency of variance of closing
prices to increase as term to maturity increases can be clearly documented. The
opposite holds for the computed yields which are plotted in Figure A.4: the
volatility of yields decreases with increasing time to maturity while the overall
level of yields increases with increasing time to maturity. This is supported by

the summary statistics disclosed in Table B.2.

4.3.2 Nelson-Siegel Factors and Goodness of Fit

Estimated Dynamic Nelson-Siegel factors are plotted in Figure A.5. The level
factor is consistently the largest and the most stable factor over the entire
period. The slope factor is more volatile than level factor but still relatively
stable with mostly slightly negative values. Curvature is the most unstable of all
factors with especially volatile period coinciding with the financial crisis. This
means that most of the yield curve dynamics can be captured by the changes
to curve’s curvature while the level of the yield remains mostly constant. Large
shifts to yield curve’s slope are not as common as shifts to curvature but in
both cases these shifts are persistent.

The goodness of fit of the Dynamic Nelson-Siegel Model can be assessed
from the residual plot for each series in Figure A.6 where the period of financial
crisis causes an apparent shift in the estimated interest rate dynamics. The
estimated yield curve fits the observed series quite well as shown in Figure A.7
where the fitted yield curve is plotted against the observed yields for a selection
of sixteen different dates from the dataset. At times, there are occurrences of
somewhat unrealistically U-shaped short ends of the estimated yield curves
visible at maturities between 0 and 2 years. This anomaly stems from the fact
that there are only 4 observations along the curve for each day and maturity
of 2 years is the shortest available one. However the missing data on the short
end of the yield curve should not significantly affect the estimation at longer

maturities.

4.3.3 Realised Variance

Realised variance of all four yield is plotted in Figure A.8. Three findings are

apparent from the plot. Firstly, the overall level of yields’ volatility decreases
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with increasing time to maturity. Secondly, the realised variance of each series
has significantly increased around the beginning of financial crisis. And lastly,
the pre-crisis period was more volatile for all four time series than the post-crisis

period.

4.4 Stylised Facts About Term Structure

Term structure of interest rate has been a central topic of economic research for
several decades. Numerous empirical studies were concluded and as a conse-
quence, several recurring empirical properties of term structures were termed as
"stylised facts”. We will consider whether the term structure constructed from
interest rate futures data confronts to these stylised facts before committing to
the spectral analysis.

The following five observations about shape, volatility and dynamics of yield

curves were originally summarised in Diebold & Li (2006).

Average Shape The average yield curve shape should be concave and in-
creasing. The plot of the estimated term structure for each date included in
the dataset is presented in Figure A.9 along with mean and median term struc-
ture. Even though individual yield curves take various shapes, most of them
are indeed concave and increasing. The estimated average and median yield

curve shapes are too concave and increasing.

Variety of Shapes Yield curves assume several different shapes over time.
There are four most commonly observed types: upward-sloping, downward
sloping, humped and inverted humped. The evolution of the estimated yield
curve over the observed period is plotted in Figure A.10. We can see that
even though the average shape is upward and concave, there are periods of
negatively sloped curves and periods of flat curves. These observations can
also be seen in the "cuts” of the term structure as shown in Figure A.7. A
hump shape is sometimes present in the short end of the yield curve but this
is to be attributed to the lack of observations with maturities shorter than 2

years as discussed in Section 4.3.2.

Yield and Spread Dynamics Dynamics of yields should be persistent and
dynamics of spread should be significantly less persistent. Diebold & Li (2006)

link strong persistence of yield dynamics to strong persistence of the model’s
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level factor. Similarly, weak persistence of spread dynamics should be linked to
weak persistence of the model’s slope factor. All factors are plotted in Figure
A.5 where persistence in factors is evident. Supplementary Augmented Dickey-
Fuller test in Table B.3 fails to reject unit-root for all factor series even at 10%
significance level. Looking at autocorrelation functions of the series of factors
in Figure A.11 however shows no significant difference between persistence in

slope and level factors.

Volatility of Short and Long Ends The short end of the term structure is
documented to be more volatile than its long end. This is easily observable
from the plot of realised variances of yields in Figure A.8 where the volatility
clearly decreases with increasing term to maturity. The Dynamic Nelson Siegel
Model factor loadings in Figure A.1 reveal that the long end of the yield curve is
predominantly governed by the level factor. If we consider the realised variance
of model factors in Figure A.12, it is clear that the level factor is the least

volatile one and thus the long end is less volatile than the short end as well.

Persistence of Short and Long Rates Long rates are expected to be more
persistent than short rates. Using argument from the previous paragraph and
looking at the autocorrelation functions of model factors in Figure A.11, the
level factor seems to be the most persistent along with the slope factor which
could hint at high persistence of long rates. The persistence of yield series A.4
is very high for each of the series and autocorrelation function shows to be

inconclusive as each of the series contains a unit-root process.

Estimated yield curves have shown to have concave and upward-sloping shape
on average while also attaining flat and downward sloping shapes during cer-
tain periods. Yields’ volatility appears to be a decreasing function of time to
maturity. Dynamics of yields are highly persistent, however so are the spread
dynamics. Similarly, both short and long rates exhibit persistence of a very

high degree.



Chapter 5

Spectral Analysis of Term

Structure

Following sections present empirical findings obtained by application of mul-
tiple spectral analysis techniques to the term structure data. Firstly, power
spectra of individual time series will be estimated and discussed. Then, the
cross-dependence in frequency domain within different parts of term struc-
ture will be analysed using cross-spectral analysis. Finally, using the quantile
cross-spectral analysis, we will carry out an in-depth analysis of dependence
structures within the joint distributions of various parts of the term structure

in frequency domain.

5.1 Spectral Analysis

Periodograms were used to obtain non-parametric estimates of spectral den-
sities. Despite their convenience, periodograms are known to produce highly
fluctuating spectral density estimates with large variances. Although peri-
odograms are asymptotically unbiased, it can be shown that their variance
does not converge to zero with increasing sample sizes. In another words, pe-
riodogram is not a consistent estimator of spectral density (Nerlove 1964). In
order to obtain a consistent estimator, local averaging of raw periodograms

using Daniell kernel was employed as proposed in Bloomfield (2004).

Yields Estimated power spectra of all yield series with 95% confidence in-
tervals are presented in Figures A.13, A.14, A.15 and A.16. In all spectral

plots, frequencies corresponding to periods of 1 week, 1 month and 1 year were
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highlighted with dashed vertical lines. All spectra follow what Granger calls ”a
typical spectral shape of economic variable” with peaks around frequencies cor-
responding to one year, which also corresponds to empirical findings by Granger
& Rees (1968). A typical spectrum of economic variable contains highly domi-
nant low frequency components that can be a consequence of a trend in mean,
unit-root, strong cyclic components with low frequencies or leakage of power
around neighbouring frequencies. Power in such spectral densities steadily de-
creases as the frequency increases. The amount of variance explained by high
frequency components generally decreases with increasing time to maturity,
meaning that short rates are better explained by high-frequency cycles than

long rates.

First-Differenced Yields Results of Dickey-Fuller test in Table B.4 hint at
presence of unit root in three out of four series of yields. To deal with the
problem of non-stationarity, which is especially crucial for estimation of quan-
tile cross-spectral coherency in later sections, all series of yields were first-
differenced. Their spectra are shown in Figures A.17, A.18, A.19 and A.20. As
expected, the first-differencing has flattened the spectra of yields. This is due
to the fact that first-differencing is equal to application of high-pass filter to a
time series.

If the first-differenced yield series followed a random walk process, we’d see
completely flat power spectra with equal contributions of each frequency to
the spectral density. However, all four spectral density plots of yields show
significant peaks at frequencies around 0.83. This finding suggests that there
might be cyclical components in yields corresponding to 2.4 days (or roughly

a half-week) long periods.

Spectograms of Yields Power spectra of non-stationary time series can also
be represented by spectograms in order to deal with non-stationarity of time
series. Firstly, the data are sliced into many overlapping windows of equal
length, moving both the beginning and the end of each window by a single
observation at a time. Spectral density is then estimated for each window
and plotted in time-frequency domain. The advantage of this approach is that
it allows us to observe the evolution of the spectral density series over time.
Spectrograms for yield series are plotted in Figures A.21, A.22, A.23 and A.24.
It is important to keep in mind that we need at least seven observations for

each cycle to get a reasonable estimate of the power spectrum. The window
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length of 125 observations that was used in construction of these spectograms
thus allows us to analyse only frequencies that are large than 0.11.

It is clear from the figures that the spectra of yields are not constant in time.
The period between 2005 and 2007 has relatively little variance explained by
high frequencies in all series. Yields with 2-year maturity have the highest
amount of variance explained by high frequencies together with the 5-year
yield series. However, during the period between 2012 and 2013, we observe
extremely low density estimates in high frequencies of the 2-year yield series.
Peaks around the frequency 0.83 observed in previous plots are not apparent

in the spectogram representations of yields.

Realised Variances of Yields Power spectra of realised variance of yield series
(shown in Figure A.8) can be found in Figures A.25, A.26, A.27 and A.28. All
series have mostly flat spectra with a large spike at frequencies corresponding
to yearly cycles, indicating strong seasonal behaviour of volatility of the yields.
Moreover, all spectra show significant peaks around weekly frequencies, sug-
gesting a weekly cyclical movements in volatility of interest rate futures yields.
There are few other supplemental peaks that present especially in the series

with maturities of 2 and 5 years which are the most volatile series.

Dynamic Nelson-Siegel Factors Spectra of first-differenced series of Dy-
namic Nelson-Siegel Model factors from Figure A.5 are shown in Figures A.29,
A.30 and A.31. We are not only using the convenience of dimension-reduction
of the Nelson-Siegel model here but we are also taking advantage of the fact
that the model factors are interpretable as level, slope and curvature of yield
curve, allowing us to focus on different aspects of the term structure.

The low-frequency bands of spectra are apparently suppressed by the use
of the first-differencing filter but there are signs of long-term cycles around fre-
quencies corresponding to 4 months in each spectrum. Moreover, the spectrum
of the level factor has a relatively low contribution of frequencies around 0.5.

Cycles longer than a month have relatively little influence in all series.

Realised Variances of Dynamic Nelson-Siegel Factors If we look at realised
variances of the factors in Figures A.32, A.33 and A.34, we find similar spectral
shapes to those of realised variances of yields with significant yearly seasonal

component and apparent peaks at frequencies corresponding to week-long cy-
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cles, meaning that both realised variances of yields and of DNSM factors are

possibly cyclical with weekly periods.

5.2 Cross-Spectral Analysis

Cross-spectral analysis allows us to measure the extent of interrelatedness be-
tween two time series and reveals information about their common lag struc-
ture. For the first part, coherence diagrams are used which, as mentioned
in Section 3.5.2, essentially translate to correlation coefficients between corre-
sponding frequencies of time series. For the second part, phase diagrams are
used to analyse possible phase shifts between the two series.

The interpretation of phase diagrams is much more peculiar. As Granger &
Hatanaka (1964) put it, we are looking for parts of the phase diagram where the
values "lie about a straight line”. If, at the same time, the coherence between
the two series is "reasonably high” within the frequency range where phase
lies about a straight line, then this can indicate a simple time-lag between
corresponding frequency components of the two series. The degree of the time-
lag is indicated by the slope of the straight line, about which the phase values

lie.

Yields Firstly, the average coherence was computed over three distinct fre-
quency ranges for series of first-differenced yields following the analysis in
Granger & Rees (1968). The long-run range is defined as frequencies corre-
sponding to periods of over three years. The medium-run spans from one year
to three years and the short-run corresponds to periods between six months
and one year. All estimates are displayed in Table B.5.

Granger and Rees found that, generally, as the frequency increased the
coherency between components decreased. Contrary to this result, we find that
coherency remains relatively stable across frequency ranges using our dataset.
The degree of dependence between series is decreasing with increasing time to
maturity. The highest degree of dependence was found between 5Y and 10Y
first-differenced yields series, which can be seen in detail in Figure A.35. The
coherency is relatively stable across all frequencies while phase is consistently
close to zero. The lowest average coherency is between 2Y and 25Y series,
which can be seen in Figure A.36. The coherency diagram is much more erratic

between 2-years and 25-years maturities. Moreover, we observe small peaks in
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phase around 1 week and 1 month periods in all yields cross-spectra, hinting

at possible lag structure between yield series for the respective periods.

Realised Variances of Yields The cross-spectra of realised variances of yields
are generally flat with dependence between series being uniformly distributed
across the entire frequency domain. Squared coherencies between all pairs of
series of realised variances of yields are plotted in Figure A.37. The degree
of dependence between realised variances of yields increases with decreasing
time to maturity with the highest values at the long-term part of the term
structure. Phase for all combinations of realised variances of yields is close to
zero, revealing no significant lag structure between any pair of series over any

frequency range.

Dynamic Nelson-Siegel Factors Squared coherencies between pairs of Dy-
namic Nelson-Siegel Model factors are plotted in Figure A.38. The dependence
between level and slope factor seems to be higher between frequencies corre-
sponding to 1 week and 1 year while dependence between level and curvature
is low across the whole spectrum with possible peak around frequencies corre-
sponding to 3 days. Dependence between slope and curvature factor is much
higher and is increasing with increasing frequency. No significant lag structure
has been found between the factor estimates of the Dynamic Nelson-Siegel
Model.

Realised Variances of Dynamic Nelson-Siegel Factors The cross-spectral
plots of realised variances between Dynamic Nelson-Siegel Model factors are
displayed in Figures A.39, A.40 and A.41. The dependence structure between
volatility of term structure slope and curvature factors is generally very high
and uniformly distributed across the entire frequency domain. However, de-
pendences between volatilities of level and slope factors and between volatilities
level and curvature factors share both positive and negative peaks. Squared
coherency is significantly lower for these series for frequencies between 1 week
and 1 year range. Moreover, realised volatilities between level and slope and
between level and curvature of the term structure are seemingly positively con-
nected in 1-week long cycles. Finally, we document peaks in squared coherency
around half-week long cycles between these series. This frequency corresponds

to a frequency at which yield series showed significant cyclical components as
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documented in Section 5.1. No significant lag structure was found between

realised variances of DNSM factors.

Dynamic Nelson-Siegel Factors and Yields Finally, Figure A.42 presents
squared coherencies between series of first-differenced DNSM factors and first-
differenced yields of interest rate futures. This series of plots reveals, how
are yields with different maturities connected with level, slope and curvature
factors of the term structure across the frequency domain. The level factor has
flat dependence structure with all yield series where the overall dependence
level increases with increasing time to maturity of yield series. All series show
spikes around half-week long cycles. The dependence between slope factor and
first-differenced yields seem to be low, erratic and flat with several significant
spikes. Given the highly erratic dependence structure, the spikes are expected
to be a consequence of imperfect smoothing rather than evidence of several
highly contributing frequencies. The curvature factor is most highly connected
with all series of first-differenced yields. The dependence structure with the 2
years short-rate is highest for long cycles and steadily decreases with increasing
frequency. The dependence with both 5 and 10 year yields is relatively higher
with similar decreasing profile. Squared coherence between first-differences of
curvature factor and 25 year yields is flat and just below 0.5 level. All pairs
including the first-differenced curvature factor seem to be highly connected in
the high frequency range. Phase diagrams show no significant lag structure

any of the aforementioned pairs of time series.

5.3 Quantile Cross-Spectral Analysis

Spectral analysis allowed us to project the variance of parts of term structure
onto frequency domain and analyse contribution of cycles of various lengths to
their overall variance. Move to the cross-spectral analysis made it possible to
analyse the degree of connectedness of pairs of times series in frequency domain.
In another words, we could see how are cycles of different frequencies on average
connected with each other across different parts of the term structure.

Using the quantile cross-spectral analysis described in Section 3.6 gets us
one step further. The average degree of connectedness between cycles of time
series expressed by squared coherency will further be decomposed across quan-

tiles of the joint distribution. The degree of connectedness between quantiles
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of various parts of the term structure will be presented by means of squared

quantile coherency in frequency domain.

Yields Squared quantile cross-spectral coherency between yields with two
years maturity and the remaining yield series across five different quantile levels
is plotted in Figure A.43. Values of 71 on the vertical axis give us the quantile
of the marginal distribution of the two-years series while values of 75 on the
horizontal axis give us quantiles of the marginal distributions of complemen-
tary series that together with two-years series constitute a pair for which the
quantile coherency is computed.

There are a couple of findings standing out. Firstly, the dependence struc-
ture between yields is not uniform across the joint distribution, which is im-
possible to reveal using ordinary coherency measures. Secondly, most of the
dependency between yield series occurs at the main diagonal, that is in the
parts of the joint distribution where 71 = 75. Nevertheless, there are also
spikes in quantile coherency in other parts of the joint distribution, for exam-
ple around frequency 0.6 for 71 = 0.5, 75 = 0.95. Thirdly, the dependence in low
frequencies often occurs at tails of the joint distribution of the series. Notably,
between two-year and five-year series we can see for 7 = 0.95, 5 = 0.05 that
the dependence in frequencies between 1 month and 1 year is relatively high
despite the two series being otherwise independent in this particular part of
the joint distribution.

We find similar results looking at quantile coherency plots of the first-
differenced series of yields with 25 years maturity in Figure A.44. Notice,
that the degree of dependence, as measured by the squared quantile coherency,
is expectedly increasing with a decreasing distance between respective maturi-
ties of the analysed yields. However, the offset is not constant. For example
looking at the tail of joint distribution where 7 = 7 = 0.05, we see a clear
spike in quantile coherency between 25Y series and 10Y series, suggesting that
the dependence is strong in weekly cycles at the tail of the joint distribution
of these two series. The quantile coherency for the other two series show no

significant increase within this frequency range.

Realised Variances of Yields Dependence between realised variances of yields
of interest rate futures was already analysed in Section 5.2. Using classical
coherency measures, the results were mostly flat plots with varying degree

of overall dependence and its volatility. To analyse the relationships between
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volatility of yields within the term structure in more detail, we plot the quantile
coherency for all combinations of realised volatility series in Figures A.45, A.46,
A .47 and A .48.

Analysis of the degree of dependence within volatilities of different parts of
the term structure in various parts of the joint distribution reveals considerably
more detail. Similarly to the case of first-differenced yields, we observe that
all series are most significantly connected at main diagonals where 7 = 7o,
except for the low-frequency range between 1 month and 1 year, for which the
series are connected across almost all parts of their joint distribution. In most
cases, we observe higher quantile coherency for weekly frequencies in different
parts of the joint distribution, mainly but not exclusively where 7 = 7. We
also observe several supplementary peaks in quantile coherency. For example
in Figure A.46 for 71 = 7 = 0.25, the coherency is a notably stronger for half-
week cycles. In the same figure, there are also apparent peaks in coherency for
frequency 0.6 between volatility of 5-year and 10-year yields at the tail of the

joint distribution where 7 = 75 = 0.05.

Dynamic Nelson-Siegel Factors Quantile coherency plots for first-differenced
series of Dynamic Nelson-Siegel Model factors are available in Figures A.49,
A.50 and A.51. The level factor is generally the least connected one with all
other factors while the slope and curvature factors share more complex de-
pendence structure. Figure A.51 shows that slope and curvature of the term
structure are more connected for those parts of their joint distribution where
71 = 1—19, ie.: on the diagonal with ”"opposite quantiles” of respective marginal
distributions. Moreover, for the first-differenced slope and curvature factors,
there are multiple peaks of quantile coherency in different parts of the fre-
quency range and joint distribution. For example looking at the parts where
1 = 0.75,7%5 = 0.5 or ; = 0.75, 5 = 0.25, we document a peak of quan-
tile coherency for frequencies around 0.75. While looking at the tail of the
joint distribution, where 7 = 0.05, 5 = 0.95, we see an increase of quantile
coherency at the very end of the high-frequency range. Clearly, quantile cross-
spectral analysis reveals more detail about the general dependence structure

than ordinary cross-spectral measures.

Realised Variances of Dynamic Nelson-Siegel Factors Degree of connect-
edness across frequencies between volatility of level, slope and curvature of

the terms structure is shown in Figures A.52, A.53 and A.54. Generally, the
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volatility of term structure factors is highest on the diagonal where 7 = 7
with especially strong week-long cycles appearing at various parts of the joint

distribution of all analysed pairs of time series.

Dynamic Nelson-Siegel Factors and Yields Finally, quantile coherency be-
tween first-differenced DNSM factors and first-differenced series of yields was
computed with results available in Figures A.55, A.56 and A.57. The depen-
dence between the level of the term structure and individual yields and between
the curvature of the term structure and individual yields are the strongest with
highest coherency appearing on the diagonal where 7 = 15. The slope factor,
on the other hand shows very little coherency overall with highest value on the
opposite diagonal where 77 = 1 — 75. Most of the cross-spectra are flat, with

signs of positive peaks in the tails of the joint distribution.



Chapter 6
Conclusion

Term structures are among the most attractive topics in economic research.
They do not merely reveal market participants’ valuation of money in time,
but they also share a deep connection with monetary policy and risk man-
agement. For these reasons, decades of research have been dedicated to the
understanding of drivers and dependencies within term structures. The most
important directions and approaches to term structure modelling were sum-
marised in Section 3.2.

Advances in computing technology allow us to obtain, store and analyse
huge amount of data recorded with ever-increasing precision. A novelty dataset
of tick-by-tick trade data recorded at an interest rate futures exchange provided
us with an opportunity to construct a high-frequency term structure dataset
with an unprecedented amount of information and detail. Theory behind usage
of tick-by-tick high-frequency data was introduced in Section 3.4, overview of
interest rate futures and construction of term structures was covered in Sections
3.1, 3.2 and 3.7. Finally, the entire Chapter 4 was dedicated to the process of
construction of the dataset suitable for subsequent analyses.

While not entirely new, the (cross-)spectral analysis is not nearly as pop-
ular approach as the classical time-domain analysis of economic time series.
This also applies to empirical term structure literature, despite the advantages
that analysis of time series in frequency domain brings. We find the spectral
decomposition especially suitable for term structures as their complex dynam-
ics is susceptible to cyclical behaviour. The methods of spectral analysis were
introduced in Section 3.5.

General dependence structure within term structures are quite complex as

there are multiple exogenous and endogenous factors affecting its dynamics.
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Quantile cross-spectral analysis was employed in order to analyse information
hidden in the various parts of the joint distribution of the term structure in
frequency domain, revealing remarkable degree of insight about the dynamics
within the term structure. Moreover, combination of large and information-rich
high-frequency dataset and the robust and non-parametric estimation tech-
nique presented a great opportunity to study the term structure with unprece-
dented detail.

The results of the analysis of high-frequency term structure in frequency
domain were presented in Chapter 5. Firstly, the univariate analyses of power
spectra were carried out, introducing spectral density of various parts of the
term structure and revealing cycles in yields and weekly cyclical behaviour of
volatility. Secondly, dependence structures within the term structure were anal-
ysed using classical cross-spectral coherency measures, uncovering more detail
about how are different parts and aspects of the term structure connected in
the frequency domain. Finally, the quantile cross-spectral analysis was em-
ployed, revealing details of the dependence structure in quantiles of the joint
distribution of different parts of term structure.

We found that the dependence structure significantly varies across different
parts of the joint distribution. In some cases, we found stronger dependency
in tails of joint distributions, in other cases we documented dependency across
completely different quantiles of marginal distributions and in most cases, we
found large discrepancies between connectedness of high-frequency and low-
frequency components of the term structure. Most of these findings are sup-
ported by empirical literature about financial time series but would be impos-
sible to reveal using classical cross-spectral analysis.

We believe that the aforementioned findings have important implications
not only for the understanding of the dynamics of the term structure itself,
but also for fields like risk management and monetary policy that often rely
on various assumptions regarding the joint distribution of the term structure.
Since term structure has been found to be highly connected with real economic
activity, we believe that using quantile cross-spectral analysis to study the
dependence between the term structure and indicators of economic activity like
GDP or stock indices across quantiles of their joint distribution is the logical
next step in the frequency-domain analysis of term structures. We also believe
that using this approach could bring new valuable insights applicable in both

research and practice.
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Figure A.36: Coherency and phase between 2Y and 25Y first-
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Figure A.39: Coherency and phase between RVs of DNSM level and
slope
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Figure A.40: Coherency and phase between RVs of DNSM level and
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Appendix B

Tables

2Y Close 5Y Close 10Y Close 25Y Close
Observations  3775.00  3775.00 3775.00 3775.00
Minimum 98.23 96.55 94.00 89.22
Maximum 110.40 124.92 135.25 161.81
1. Quartile 103.38 106.33 108.31 109.11
3. Quartile 109.61 119.19 124.23 130.56
Mean 106.37 112.70 115.77 119.11
Median 107.21 112.53 114.34 115.28
Variance 11.46 53.24 93.35 214.86
Stdev 3.39 7.30 9.66 14.66
Skewness -0.53 -0.10 0.13 0.56
Kurtosis -0.91 -1.00 -0.82 -0.61

Table B.1: Summary statistics of daily closing prices

2Y Yield 5Y Yield 10Y Yield 25Y Yield

Observations 3775.000000 3775.000000 3775.000000 3775.000000
Minimum 0.009694 0.014720 0.029340 0.040674
Maximum 0.070384 0.068381 0.067480 0.065753
1. Quartile 0.013322 0.024301 0.038122 0.049645
3. Quartile 0.043407 0.047959 0.052458 0.057208
Mean 0.029048 0.036350 0.045872 0.053826
Median 0.024586 0.036142 0.046770 0.054884
Variance 0.000276 0.000183 0.000076 0.000026
Stdev 0.016604 0.013525 0.008735 0.005071
Skewness 0.592734 0.218717 0.036747 -0.352482
Kurtosis -0.803402 -0.897020 -0.726642 -0.701966

Table B.2: Summary statistics of yields
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Table B.3: Augmented Dickey-Fuller Test of Dynamic Nelson-Siegel

Table B.4: Augmented Dickey-Fuller Test of yields (alternative: sta-

Series ADF Stat P-Value
1 Beta2 (curvature) -2.71 0.28
2 Betal (slope) -2.09 0.54
3 Betal (level) -3.04 0.14

Model factors (alternative: stationary)

Series ADF Stat P-Value
1 25Y Yield -3.95 0.01
2 10Y Yield -3.32 0.07
3 5Y Yield -2.42 0.40
4 2Y Yield -1.83 0.65

tionary)

= = =
a - =
pe
> 2 o
LO — (@]
Short-run 2Y Yield Diff 0.8260742 0.6389234 0.3794293
5Y Yield Diff - 0.9338904 0.7342682
10Y Yield Diff - - 0.8811431
Medium-run 2Y Yield Diff 0.8182944 0.6186933 0.3519748
5Y Yield Diff - 0.9233498 0.7119285
10Y Yield Diff - - 0.8746801
Long-run 2Y Yield Diff 0.8243349 0.6317544 0.4055362
5Y Yield Diff - 0.9173409 0.7402397
10Y Yield Diff - - 0.8944193

Table B.5: Average coherency of first-differences of yields by fre-

quency range
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