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Abstract

This thesis represents an in-depth empirical study of the dependence structures

within the term structure of interest rates. Firstly, a comprehensive overview

of term structure modelling literature and methods is provided together with

a summary of theoretical notions regarding the use of high-frequency data and

spectral analysis. Contrary to most studies, the frequency-domain approach is

employed, with a special focus on dependency across various quantiles of the

joint distribution of the term structure. The main results are obtained using

the quantile cross-spectral analysis, a new robust and non-parametric method

allowing to uncover dependence structures in quantiles of the joint distribution

of multivariate time series. The results are estimated using a dataset consisting

of 15 years worth of high-frequency tick-by-tick time series of US Treasury

futures. Complex dependence structures are revealed showing signs of both

cyclicity and dependence in various parts of the joint distribution of the term

structure in the frequency domain.
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Abstrakt

Tato diplomová práce představuje podrobnou empirickou studii závislostńıch

struktur obsažených v časové struktuře úrokových sazeb. Nejdř́ıve je představen

přehled literatury a metod týkaj́ıćıch se modelováńı časové struktury úrokových

sazeb. Teoretické aspekty použit́ı vysokofrekvenčńıch dat a spektrálńı analýzy

jsou představeny posléze. Narozd́ıl od většiny obdobných studíı je tato práce

postavena na analýze ve frekvenčńı doméně se zvýšenou pozornost́ı věnovanou

závislostem mezi kvantily společného rozděleńı v r̊uzných částech časové struk-

tury úrokových sazeb. Hlavńı závěry jsou źıskány aplikaćı kvantilové kř́ıžové

spektrálńı analýzy, nové robustńı neparametrické metody, která umožňuje od-

haleńı závislostńıch struktur v kvantilech společného rozděleńı časových řad
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o v́ıce proměnných. Výsledky jsou odhadnuty na datech, která se skládaj́ı z

15 let vysokofrekvenčńıch časových řad amerických futurit zaznamenaných po

jednotlivých transakćıch. Komplexńı závislostńı struktury vykazuj́ıćı známky

cykličnosti i propojenosti v r̊uzných částech společného rozděleńı časové struk-

tury úrokových sazeb jsou odhaleny ve frekvenčńı doméně.

Klasifikace JEL C49, C55, C58, E43, G12, G13
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cross-spectral analysis does take into account quantiles of the entire distribution of

the analysed time series, revealing dependencies that remain hidden when employing

just the averaged information.

Expected Contribution This thesis aims to contribute to the research of the term

structures by employing a new methodology of quantile cross-spectral analysis. The

goal of the study is to analyse the term structure and its volatility within the fre-

quency domain with focus on the quantiles of its distribution. This novel approach



Master’s Thesis Proposal xv

is robust to the shortcomings of the classical approach mentioned in the recent lit-

erature. Moreover, it has a potential to uncover dependencies that remained hidden

to this day.

In the first part, the thesis aims to describe the nature of the dependencies in the

term structure across the frequency spectrum, quantiles of its distribution and its

differing volatilities. New findings in this part could benefit the theory of the bond

portfolio risk management. In the second part of the thesis, the asymmetric nature

of the business cycles dynamics and its relationship with the term structure will be

assessed with possible new findings regarding the varying nature of connectedness

of term structures and business cycles, especially in the “good times” and the “bad

times”. In its last part, the thesis will analyse the nature of connectedness of the

monetary policy and term structures with possible implications on the efficiency of

the monetary policy.

The analysis of the term structures will also benefit from the availability of the

novel dataset of tick-by-tick high frequency data of US Treasury bonds that further

increase the relevancy of the expected outcomes.

Outline

1. Introduction

2. Literature Review

3. Term Structure Overview

4. Data, Descriptive Statistics and Methodology

5. Analysis of Connectedness of Term Structures in High Frequencies

6. Analysis of Connectedness of Term Structures and Market Activity

7. Conclusion

Core bibliography
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Chapter 1

Introduction

Term structure of interest rates has been a focal point of economic research

for decades. The relatively simple representation of the relationship between

interest rates and terms to maturity contains information crucial to a wide

variety of economic agents. At each point in time, the term structure reveals

how economic agents aggregately value cash flows with respect to different

time horizons. This information is carefully analysed by central bankers when

adjusting monetary policy, governments as term structures can predict future

path of the economy and other institutions that are simply trying to hedge

against adverse interest rate movements. It is no wonder that both researchers

and practitioners find the understanding of the complex dynamics within the

term structure to be key for their work. However, analyses of term structures

often rely on low-frequency quote data and techniques that disregard impor-

tant properties of financial time series such as their heavy-tailed non-Gaussian

distributions.

This thesis represents an in-depth empirical study of the dependence struc-

tures contained within the term structure. Its contribution relies on a com-

bination of several novelty approaches. Firstly, we compute a high-frequency

representation of the term structure using a unique dataset of 15 years worth

of tick-by-tick interest rate futures trade data. Not only are the trade data

often more accurate than traditionally used quote data, but the dataset also

allows us to analyse intraday volatility within the term structure. Secondly, the

analysis is carried out in the frequency-domain contrary to the more traditional

time-domain approaches. This allow us to interpret variation and dependence

in different parts of the term structure in terms of cycles of various frequen-

cies. Finally, we use a novel method of quantile cross-spectral analysis in order
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to study dependence structures between quantiles of the joint distribution of

the term structure in the frequency domain. Using this robust and model-

free technique, we test whether is the dependence between various parts of the

term structure constant or whether it differs across different parts of the joint

distribution.

The chapters of this thesis are organised as follows. Chapter 2 represents

a review of the most important contributions to the term structure modelling

literature as well as a review of spectral analysis, interest rate futures and high-

frequency estimation literature with a focus on term structures. Theoretical

foundations behind the methods used in this thesis are laid in Chapter 3. This

chapter provides a comprehensive overview of the term structure modelling

approaches, methods using high-frequency data and (cross-)spectral analysis

methods. Chapter 4 is dedicated to the description of the raw interest rate

futures dataset and all subsequent transformations applied to it in order to

achieve dataset suitable for subsequent analyses. Chapter 5 offers a detailed

discussion of the results of spectral analysis of the term structure in three parts:

first part focuses on univariate spectral representations of various parts of the

term structure, second part deals with cross-spectral dependence in the term

structure using common techniques and the third part uncovers the depen-

dence structure in detail using the quantile cross-spectral analysis. Chapter 6

concludes.



Chapter 2

Literature Review

This chapter provides an overview of the relevant literature concerning term

structure modelling with a special attention paid to spectral analysis and high-

frequency estimation. Overviews of contemporary nonparametric modelling

approaches and interest rate futures are also covered in respective sections.

For a complete and in-depth overview of the term structure modelling liter-

ature see Gibson et al. (2010) and Filipovic (2009) or Bjork (2009) for a more

rigorous approach.

2.1 Models of Term Structure

Much of the interest in term structures revolves around the central question:

Why do we observe a mismatch between the equilibrium forward rates and the

future spot rates? With no uncertainty involved, we’d expect the two rates to

coincide but observations of various shapes of yield curves hint at a prominent

role of term premia. Naturally, multiple modelling approaches have emerged

as a result of attempts to solve the puzzle.

First term structure models were heavily inspired by the derivative pricing

models succeeding the famous stock option pricing model by Black & Scholes

(1973). For example Merton (1973) uses government bonds as the underlying

assets instead of stocks. But despite solving a related problem, the term struc-

ture estimation literature evolved separately from the rest of the derivative

pricing literature due to peculiarities specific to the bonds.

The Merton (1973) model is one of the first models that used one-factor

approach with a time invariant process. Models by Vasicek (1977) and Cox

et al. (1985) were developed on the same basis while Hull & White (1990)
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introduced time-variability of the short rate process driving the term structure.

Although a majority of total variance in a term structure can be explained by

a single dependent variable, we often observe humped-shaped yield curves with

dynamics that are not attainable by means of any single factor. Naturally,

the extension of models into multivariate settings allowed for a significantly

better fit at a cost of losing analytical tractability. Models by Cox et al. (1985)

and Duffie & Kan (1996) are notable examples of the multivariate approach.

Finally, Ho & Lee (1986) and Heath et al. (1992) proposed models with only

one state variable of infinite dimension - the term structure itself.

Empirical studies of the aforementioned models confirm that analytical

tractability of term structure models usually comes at a cost of sub-par good-

ness of fit. Chan et al. (1992) compare eight models using a generalised method

of moments and conclude that popular models like Vasicek (1977) and Cox et al.

(1985) perform poorly and hint at an important role of relationship between

volatility of interest rate and the risk-less rate. Survey by Boero & Torri-

celli (1996) concludes with similar results adding that no model clearly outper-

forms no other. Ait-Sahalia (1996) rejects specifications of most popular models

by comparing implied parametric densities with the estimated non-parametric

counterparts.

Employing purely statistical methods to estimate the term structure rep-

resents a completely different and mostly successful approach. Litterman &

Scheinkman (1991) find that over 90% of total variance of excess returns over

risk-free rate can be explained by the first three principal components. The

effectiveness of statistical methods like principal component analysis has been

well documented Barber & Copper (2012). A great success has been achieved

by means of curve fitting. McCulluch (1971) used cubic splines and Vasicek

& Fong (1982) later proposed using exponential splines to easily reproduce

empirically-sound yield curve shapes. The parametric model proposed by Nel-

son & Siegel (1987) and its derivatives are very simple yet efficient when fitting

the entire range of observable yield curves. For this reason, the Nelson-Siegel

family of models remains favourite among practitioners as documented in the

survey among central bankers Bank for International Settlements (2005).

2.2 Spectral Analysis of Term Structure

Following the famous description of the spectral representation of a typical

economic time series Granger (1966), a term structure of interest rates has
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been covered in a similar fashion in Granger & Rees (1968). Presenting the

spectra of yields on securities of British Government between 1924 and 1962,

the conclusion is that the term structure adheres to the ”typical shape of eco-

nomic variable” and that observed interest rates follow a random walk model.

With largely inconclusive results, Sargent (1971) uses the spectral approach

to study phase shifts among yields of different maturities in order to test the

expectation hypothesis. Similarly, Assenmacher-Wesche & Gerlach (2008) test

the expectation hypothesis using the spectral decomposition and conclude that

the expectation hypothesis cannot be rejected for maturities ranging from 6

months to 4 years.

Among the more recent publications, Hallett & Richter (2004) analyse pa-

rameter changes of a term structure model before, during and after structural

shocks using data from the USA, UK and Germany. As a result, the authors

were able to distinguish parameter responses relative to a given frequency range.

Using Japanese yield curve data, Tsuji (2006) finds almost no cyclical compo-

nents in the yield curve slope, which could provide an explanation for the

limited predictive power that Japanese slope curve has with respect to the real

GDP.

2.3 Modern Term Structure Analysis

The long-history of research aimed at the term structure makes it an attractive

subject to test new estimation techniques on. With each new technique, there

is a chance to uncover new dependence structure that has so far remained

hidden. The contribution of the new approaches is usually based on the ability

to loosen assumptions such as normality of distributions, symmetry or linearity

of the dependence structures.

Kiermeier (2014) uses the wavelet analysis to test significance of the five-

factor Nelson-Siegel model on various time scales using European zero-coupon

curves estimated by ICAP. Copula based estimation techniques represent an-

other popular contemporary approach to term structure estimation. Junker

et al. (2006) study nonlinear dependence structures of US Treasury yields us-

ing copulas and reveal an upper tail dependence in yield innovations. Similarly,

the dependence structure in US Treasury yields is estimated using pair copula

in the article by Righi et al. (2015). The authors find a strong dependence

of yields and their past values together with decreasing yield variability with

increasing time to maturity of a bond. Noureldin (2014) uses copulas to study
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time-varying dependence structures among the factors in the Dynamic Nelson-

Siegel model. Finally, Kuriyama (2016) uses quantile regression to find evidence

of cointegration in the US term structure data with a mixed evidence of con-

tintegration across all quantiles but a strong evidence in the central part of

respective distributions.

2.4 Interest Rate Futures

A large portion of the term structure of interest rates research employs either

quote or trade data of government bonds with varying maturities. However,

these datasets can be vulnerable to errors, especially when using quote data

that are scarcely precise for ”off-the-run” bonds. One way to avoid this problem

is to use interest rate derivatives transaction data.

Björk & Landén (2000) present a detailed general framework to interest

rate futures and forward pricing. Similarly, Jegadeesh & Pennacchi (1996)

use Eurodollar futures data in construction of a two-factor term structure of

interest rates model. Futures data are commonly used in studies of commodity

markets. Bessembinder et al. (1995) test investors’ expectations about mean

reversion in spot asset prices using futures prices from eleven different markets

and conclude that there is a significant evidence of mean reversion in commodity

futures markets but a very weak evidence in the US Treasure futures market.

Another branch of literature focuses on the pricing specifics of futures con-

tracts. Using the Eurodollar futures data, Sandaresan (1991) suggests that the

differences between implied forward prices and the futures prices are only in

minor part caused by the marking-to-market mechanism, contrary to what Cox

et al. (1980) suggest.

2.5 Term Structure in High Frequencies

Even though computing power is increasingly more affordable and high-frequency

datasets more available, the high-frequency term structure literature remains

relatively scarce. A recent study by Cieslak & Povala (2016) explores informa-

tion content in high-frequency US Treasury market data. The authors estimate

a no-arbitrage term structure model with stochastic covariance and as a result,

they propose a decomposition of conditional interest rate volatility into compo-

nents of term premia, short-term expectations and their conditional covariance.
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The study by Shin & Zhong (2017) concludes that augmenting the Dynamic

Nelson-Siegel model with realised volatility serving as a volatility measure can

improve bond yield density forecasts.

One popular way to utilise high-frequency data is to analyse the impact

of policy announcements. Fleming & Remolona (1999) document significant

shocks resulting from macroeconomic policy announcements on medium term

interest rates while the effect on short rates being comparatively modest. Sim-

ilarly, the model introduced by Piazzesi (2005) utilises a high-frequency policy

rule based on the decisions by the Federal Reserve and improves the fit of the

latent three-factor term structure model at its short end. Among other results,

the author documents a snake shape of a volatility curve.



Chapter 3

Theoretical Review

The most important theoretical notions employed in this thesis are covered in

the subsequent sections. Firstly, economic theories of term structure and zero

coupon bonds are introduced followed by a comprehensive summary of the most

important modelling approaches. Secondly, concepts surrounding the analysis

and use of high-frequency data are introduced. Following is an introduction

into spectral, cross-spectral and quantile cross-spectral methods. And finally,

the chapter is concluded with a brief overview of the interest rate futures.

3.1 Zero Coupon Bonds

A zero coupon bond constitutes a claim with no coupon payments during the

entire holding period that pays its full face value at the time of the maturity.

A real world government bonds usually pay its holders fixed coupons with a

known frequency until the date of the bond’s maturity. But to vastly simplify

the analytical tractability of the problem, we will make use of the fact that

any coupon-bearing bond can be equivalently reproduced with a portfolio of

zero coupon bonds with maturities and face values mimicking the coupon pay-

ments at their respective due dates. The following sections introduce the basic

concepts associated with the term structure following the text by Gibson et al.

(2010).

Let us consider a zero coupon bond with a face value equal to 1. The log-

holding period return hpr(t, t + n, T ) of a zero coupon bond with a time of

maturity T that is bought at the time t and which is being held until the time
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t+ n is denoted by:

hpr(t, t+ n, T ) = p(t+ n, T )− p(t, T )

where p(t, T ) is the natural logarithm of the price of the zero coupon bond at

the time t with time of maturity T and t+n ≤ T . In the case when t+n = T ,

the return of the bond is equal to the face value and the per-period holding

period return is equal to the yield to maturity R(t, T ):

R(t, T ) =
hpr(t, T, T )

T
= −p(t, T )

T
.

The short rate r(t) (or instantaneous risk-free interest rate) is a yield on the

currently maturing bond, i.e.,

r(t) = lim
T→t+

R(t, T ).

The forward rate f(t, T1, T2) is the rate of a risk-free loan beginning at the time

T1 which is ending at the time T2, therefore:

f(t, T1, T2) =
p(t, T1)− p(t, T2)

T2 − T1
.

Finally the rate at the time t for which one can obtain a loan for an instan-

taneous period of time f(t, T ) := (f, T, T ) is called the instantaneous forward

rate.

Zero coupon bonds with identical time to maturity and face values may in

practice offer different yields due to the presence of default, credit, liquidity or

other risks. When modelling the term structure of interest rates, we will be

interested in the varying levels of bond yields resulting from variations in their

respective time to maturity. Other associated risks will be considered fixed

throughout the thesis.

3.2 Term Structure

Market participants usually value future cash flows with respect to the length

of investment horizon. If we obtained, at any given time, yields of identical

bonds differing solely in their maturities while holding all other factors fixed,

we could observe the current market’s valuation of money with respect to the
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investment horizon. We construct the term structure of interest rates as a

function R(t, T ) that for a fixed time t maps a continuous time parameter T

to real values of the bond yields. The graphical representation of this function

is called the yield curve.

The vast body of research devoted to the drivers of the term structure has

been inspired by the fact that the today’s term structure contains information

about the market participants’ views about the future path of the economy.

After accounting for related risks, expected values of the average future short

yields constitute the yields of long maturity bonds. An accurate interpretation

of the shape of the term structure is therefore highly useful when making an

investment or policy decisions.

The theory explaining variability in shapes of term structure has branched

into three main directions: the expectation hypothesis, the liquidity preference

and the preferred habitat theory.

3.2.1 The Expectation Hypothesis

The most straight-forward explanation is given be the expectation hypothesis

which puts the emphasis on the investor’s expectations of the future spot rates.

The forward rate is therefore an unbiased estimator of future spot rates and

the term structure is given by:

R(t, T ) =
1

T − t

∫ T

t

Et

(
r(s)

)
ds

where R(t, T ) is the yield to maturity, t denotes the current time, T denotes

the time of maturity of the bond and r(t) is the short term rate.

3.2.2 The Liquidity Preference Theory

If we assumed that the investors are risk-averse and that they prefer receiving

the same nominal payments sooner rather than later, keeping other factors

fixed, then the investors demand a premium L(s, T ) for buying a security with

a longer maturity to compensate for the additional risk. Borrowers are willing

to pay this premium as they prefer borrowing long term over short term. Under

the liquidity preference theory, the term structure is given by:

R(t, T ) =
1

T − t

(∫ T

t

Et

(
r(s)

)
ds+

∫ T

t

L(s, T )ds
)
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where L(t, T ) > 0 denotes the term premium at time t for a bond with time of

maturity T .

3.2.3 The Preferred Habitat Theory

Empirically, the slope of the term structure is not always positive as the ex-

pectation hypothesis and the liquidity preference theories would suggest. Since

the lenders and the borrowers might have different preferences relative to the

investment horizon, the resulting premium L(t, T ) might be any real number

depending on the intersection of the supply and demand at the time t. The

term structure is given by:

R(t, T ) =
1

T − t

(∫ T

t

Et

(
r(s)

)
ds+

∫ T

t

L(s, T )ds
)

where L(t, T ) ∈ R.

3.3 Models of the Zero Coupon Term Structure

The term structure of interest rates is a continuous function and as such consists

of an infinite number of individual zero coupon yields. As demonstrated in the

previous sections, zero coupon yields can also be derived from the short-term

rates r(t) for t ∈ [t, T ]. However a collection of the entire range of short rates

is usually not readily available for analysis and therefore the shape of the term

structure or its features have to be estimated from the available data.

Several techniques have been proposed in order to model and forecast the

term structure accurately while keeping the model complexity reasonably low.

The most common approaches to modelling of the term structure are sum-

marised below following a detailed overview of the term structure modelling

literature by Gibson et al. (2010).

3.3.1 General Equilibrium Models

The early models of term structure are based on the assumption that exoge-

nously specified markets are efficient in reaching of their equilibria. The term

structure of interest rates is modelled using utility functions of the investors

on the market that has reached its equilibrium. These models are usually

affine-class, single-factor and time-invariant.
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Single-factor models assume that term structures can be completely speci-

fied using a single explaining factor, usually the short rate r(t). The use of a

single factor implies that changes in the interest rates are perfectly correlated

along the term structure which contradicts the real world observations. The

specification of these models usually starts with a definition of a stochastic

process driving the short rates from which the form of the term structure is

derived.

Time-invariant models imply that the short-rate dynamics govern an en-

dogenous term-structure. In practice this means that we cannot use the model

to fit time-varying shapes of the term structure. On the other hand, specifying

the term structure models using only time-varying parameters usually leads to

an undesired over-parametrisation and over-fitting of the term structure.

Finally, in the affine-class models, the term structure is an affine function

of the short rate, ie.:

R(t, T ) =
−a(t, T )
T − t

r(t) +
b(t, T )

T − t

where a(t, T ) and b(t, T ) are deterministic functions. These models are usually

derived from the specification of the stochastic process driving the spot rates.

A famous example of such models is the model proposed by Vasicek (1977).

The author defines the short-term rate process as a mean-reverting random

walk process with a drift, ie.:

dr(t) = κ(θ − r(t))dt+ σdW (t)

where κ, θ and σ are all positive and constant and W (t) is a standard Wiener

process. The θ is a long-term value of r(t) while κ governs the adjustment

speed of the mean-reverting process.

The explicit solution for the short-term rate is:

r(t) = θ + (r(s)− θ)exp(−κ(t− s)) + σr

∫ t

s

exp(−κ(t− s))dW (u)

where r(t) follows a normal distribution which can result in negative interest

rates. This undesirable property was addressed in later models like the one by

Cox et al. (1985).
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Their term structure is given by:

R(t, T ) = R(t,∞) +
1− exp(−(T − t)κ)

(T − t)κ
(r(t)−R(t,∞))

+
σ2
r

4(T − t)κ3
(1− exp(−(T − t)κ))

which allows for both positively and negatively sloped as well as for humped-

shaped yield curves.

Large amount of general equilibrium models have since been proposed.

Some authors propose improvements to specifications of the short-term rate

process, utility functions or other market characteristics (Cox et al. 1985), some

allow for a time variation of model parameters (Hull & White 1993) and others

introduce additional exogenous factors to drive the term structure (Jamshidian

1995).

Despite being popular for their analytical tractability, the general equi-

librium models have not been widely adopted by practitioners. It has been

well documented that the forecasting performance of such models is rather

poor (Chan et al. 1992) and that under certain conditions it can perform even

poorer than random walk models (Duffee 2002). Moreover these models have

no mechanism allowing for calibration of the fit using the contemporaneously

observable cross-sections of data.

3.3.2 No Arbitrage Models

A different approach to the term structure modelling is represented by an idea

that the entire term structure is in fact given exogenously by a cross-section

of zero coupon yields at a given point in time t0. Subsequently, the dynamics

of the entire term structure for t > t0 are modelled based on the assumption

that no arbitrage opportunities are present on the market. Compared to the

general equilibrium models, the no arbitrage models employ cross-sectional

characteristics of interest rates rather than relying on the time series dynamics

of the interest rates.

The first such model was introduced by Ho & Lee (1986) in a form of a

discrete recombining binomial tree. In their model, the time is divided into

equidistant periods where the term structure at t0 is set according to the ob-

served data. In each subsequent time period t > t0, the previous term structure

is multiplied by a period-dependent perturbation function h(τ) with probability
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π or by a function h∗(τ) with probability (1− π) where

πh(t) + (1− π)h∗(t) = 1.

Given the probability measure π and a parameter δ, the perturbation functions

can be expressed as

h(τ) =
1

π + (1− π)δτ
, h∗(τ) =

δτ

π + (1− π)δτ

and the corresponding bond prices as

B(t, T ) = h(T − t)
B(t− 1, T )

B(t− 1, t)

or

B(t, T ) = h∗(T − t)
B(t− 1, T )

B(t− 1, t)
.

Following the derivations in Gibson et al. (2010), we arrive at the following

functional form of the interest rate

r(t) = r(t− 1) + (f(0, t)− f(0, t− 1)) + log(
π + (1− π)δτ

π + (1− π)δτ−1
)

− (1− π) log(δ) + ϵt

where ϵt is an i.i.d. random noise term with E(ϵt) = 0.

Besides the previous-period interest rate, the slope of the term structure

and a time-dependent constant also influence the contemporaneous interest

rate. The parameters π and δ have to be estimated from the data.

Similarly to the Vasicek model, Ho and Lee model also allows for negative

interest rates which implies that it is not a necessarily arbitrage-free model.

Also, the lack of built-in mean reversion mechanism means that in extreme

cases, the interest rates can drift to infinity. Finally, the single-factor approach

implies that bonds across all maturities are perfectly correlated which does not

correspond to observed data. However, arbitrage free models generally fit the

data better than general equilibrium models since they use cross-sectional data

to make an initial fit of the term structure. Like general equilibrium models,

no arbitrage models are popular for their analytical tractability.

Many extensions of the Ho and Lee model were proposed including the

famous Heath, Jarrow and Morton model Heath et al. (1992) model which ex-

tends the original discrete single factor model into multiple factor continuous
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time model. Moreover, the Heath, Jarrow and Morton model imposes exoge-

nous stochastic structure upon forward rates instead of the zero coupon bond

prices. The resulting model is not only dealing with some drawbacks of the

previous arbitrage fee models, but it also represents a general framework that

is fully compatible with general equilibrium class models.

3.3.3 Smoothing Splines

Spline methods are based on fitting of the term structure with a piecewise

polynomial called a spline function. For a closed maturity interval, we can

estimate the term structure (or any continuously differentiable function) with

a suitable polynomial function to a predefined degree of precision. The precision

of the fit increases with the increasing order of the polynomial used to fit the

term structure over some interval. Higher order polynomials however produce

curves that are not smooth enough to resemble empirical yield curves. One

solution is to use a sequence of lower order polynomials to create a piecewise

polynomial joined smoothly at so called knot points. The spline functions used

to fit term structures usually rely on quadratic or cubic polynomials.

The approach using splines was first introduced by McCulluch (1971) who

parametrised the function of present value of future coupon payments using a

cubic splines:

δ(m) = 1 +
k∑

i=1

aifi(m)

where δ(m) is a continuous discount k-parameter spline function and f ′
is are

polynomial functions. The linearity of the model allows for estimation of the

term structure using the ordinary least squares. Important shortcoming of this

method is that its results are largely sensitive to the value of k and the precise

placement of the knot points (Fernandez-Rodriguez 2006).

As a reaction to the poor fit of equilibrium models to the observed data,

Vasicek & Fong (1982) proposed a method of exponential splines fitting. Expo-

nential splines deal with some shortcomings of polynomial splines including the

fact that polynomials are not strictly decay functions. Shea (1984) shows that

spline methods can provide local flexibility to approximate very complex shapes

of term structure. At the same time, these methods are sensitive to anoma-

lies in data and parameter selection that can result in completely unrealistic

estimates.
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3.3.4 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical method based on a decom-

position of the covariance matrix that allows for a reduction of dimensionality

of multidimensional datasets while retaining as much of their original variance

as possible. By applying the PCA on the covariance matrix of zero-coupon rate

changes, we obtain a set of orthogonal eigenvectors (factors) accounting for

most variability in the zero-coupon rate.

Following Filipovic (2009), the principal components analysis relies on the

spectral decomposition theorem, ie.:

Q = ALAT

where L = diag(λ1, . . . , λn) is the diagonal matrix of eigenvalues of Q and A

is an orthogonal matrix with columns a1, . . . , an are the normalised eigenvec-

tors of Q. Each eigenvector is associated with an eigenvalue whose magnitude

represents the amount of variation of the original data explained by the corre-

sponding eigenvector.

Litterman & Scheinkman (1991) used the principal component analysis on

term structure data to find that the three factors with the highest eigenvalues

explain a minimum of 96% of variance in the data. Moreover, the resulting

factors are easily interpretable as the first factor is associated with parallel

changes in the yields, the second factor is generally associated to the steepness

of the curve and the third factor represents its curvature. Interestingly, the

interpretation of the factors obtained through the PCA along with their loadings

are very similar to the factors and loadings obtained using the Dynamic Nelson-

Siegel model described in Section 3.3.5.

3.3.5 Parametric Methods

Parametric estimation of the term structure of interest rates relies on a speci-

fication of a class of continuous real functions defined over the entire maturity

domain, usually consisting of exponential components. Contrary to the gen-

eral equilibrium and no arbitrage models, parametric models do not assume

any functional relationships arising from the underlying economic theory. But

unlike purely statistical methods like PCA, parametric methods impose a pre-

defined structure on the term structure. The proposed functional specification
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must be flexible enough to replicate empirically observable shapes of the term

structure while remaining parsimonious.

Nelson-Siegel Model Arguably, the most popular parametric method was

introduced by Nelson & Siegel (1987) who, adhering to the expectation hy-

pothesis, expressed as a condition

R(t, T ) =
1

T − t

∫ T−t

0

f(s)ds,

assumed the following instantaneous forward rate function:

f(τ) = β0 + β1 exp
(
− τ

u

)
+ β2

(
τ

u
exp

(
− τ

u

))

where τ := T − t is the time to maturity, β0, β1 and β2 are factors to be

estimated and u is a time constant. The suggested term structure is obtained

by integrating f(· ) from zero to τ and rearranging:

R(t, T ) = R(τ) = β0 + (β1 + β2)
1− exp

(
− τ

u

)
τ
u

− β2 exp
(
− τ

u

)
.

Even though the estimated factors are highly related to the factors obtained

using PCA, the Nelson-Siegel approach is different because it imposes a pre-

defined structure on the factors.

Dynamic Nelson-Siegel Model (DNSM) An alternative factorisation of the

Nelson-Siegel model was introduced by Diebold & Li (2006) who interpret the

Nelson-Siegel model parameters β0, β1 and β2 as three latent dynamic factors:

R(t, τ) = β0t + β1t
1− exp(−λtτ)

λtτ
+ β2t(

1− exp(−λtτ)
λtτ

− exp(−λtτ)),

where β0t represents a long-term factor which can also be viewed as a factor

governing the level of the yield curve. β1t represents a short-term factor which is

related to the general slope of yield curve. and β2t governs the middle section of

the yield curve and is closely related to its curvature. The dynamic parameter

λt represents the exponential decay rate of the curve. Large values of λt result

in fast decay and generally better fit at short maturities. Analogically, small

values of λt lead to a slow decay and a better fit at long maturities.
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Svensson Model The Nelson-Siegel model was later extended by Svensson

(1994) who proposed the following functional form of the forward rate:

f(τ) = β0 + β1 exp
(
− τ

u

)
+ β2

(
τ

u
exp

(
− τ

u

))
+ β3

(
τ

v
exp

(
− τ

v

))

which introduces a fourth term with a new factor β3 which allows for a double

humped shape of the term structure and a second constant v. After integration

and rearrangement, we obtain the following term structure curve:

R(t, T ) = R(τ) = β0 + (β1 + β2)
1− exp

(
− τ

u

)
τ
u

− β2 exp
(
− τ

u

)
+

+ β3

(1− exp
(
− τ

v

)
τ
v

− exp
(
− τ

v

))
The parametric methods of modelling of the term structure gained substantial

popularity due to their flexibility and ease of estimation. A survey among cen-

tral banks by Bank for International Settlements (2005) has revealed that 9 out

of 13 participating banks used Nelson-Siegel or Svensson model for estimation

of the term structure of interest rates.

3.4 High-Frequency Data

The ever-increasing computing power and data storage capacities combined

with ever-decreasing storing and computing costs have allowed for recording

of financial time series at tick-by-tick basis with highly granular timestamps.

The resulting information-rich datasets provide new opportunities for the re-

searchers while posing new challenges related to the data-handling, modelling

and correct estimation. Some of these challenges are related to an irregular

spacing of time between observations, bid-ask bounce or serial dependence. A

more in-depth discussion of such issues can be found in Goodhart & O’Hara

(1997).

3.4.1 Data Synchronisation

Tick-by-tick datasets are obtained through sampling of individual transactions

on the markets. Each tick observation includes a highly granular timestamp

recording the transaction time as well as other variables of interest such as

price or type of the contract. Tick datasets are rich in information but do not
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allow for a direct multivariate analysis due to inherent asynchronicity of the

observations.

More formally, we observe prices Pi(t) for each bond i ∈ 1, ..., I sampled

at transaction times ti,1, . . . , ti,ni
during a given time period [t, T ] such that

ti,1 ≥ t and ti,ni
≤ T . However, we usually observe different transaction times

for different bonds so ti,m ̸= tj,m for some bond j ∈ 1, ..., I, j ̸= i and some

m ∈ {1, . . . ,min{ni, nj}}. In fact, we cannot even guarantee that ni = nj so we

might encounter different number of observations for each bond. To obtain an

I ×N matrix required for a multivariate analysis, we first need to synchronise

the time series to obtain N observations in the given time period [t, T ] sampled

at identical times for each bond.

Previous Tick One of the easiest approaches to data synchronisation is to use

a previous tick estimator Zhang (2011). First, the sampling frequency has to

be defined as a number N of equally spaced times t1, . . . , tN within the period

[t, T ] such that t1 > t and tN = T . Then for each bond i, we pick the previous

tick times:

t′i,r = max{ti,l ≤ tr, l = 1, . . . , ni}, r = 1, . . . , N.

The synchronised dataset is simply obtained by selecting the bond prices at

the previous pick times Pi(tr) = Pi(t
′
i,r), r = 1, . . . ,m. An obvious drawback

of this method is that we ignore all but one observation between our equally

spaced sampling times which decreases the efficiency. Moreover, the method

creates new data points where observations are missing which produces a bias.

Refresh Time An alternative synchronisation scheme proposed by Barndorff-

Nielsen et al. (2011) is different in construction from the previous tick in that

each sampling period includes at least one tick of each bond and that the

resulting sampling times don’t have to be equally spaced. Formally, let us

write the number of transactions of a bond i up to the time t as a counting

process Ni(t) and the respective transaction times as ti,1, . . . , ti,ni
. The first

refresh time is defined as:

t′1 = max(t1,1, . . . , tI,1)
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and each subsequent refresh time is defined recursively as:

t′r+1 = max(t1,N1(t′r)+1, . . . , tI,NI(t′r)+1).

Once we have the new sampling times t′1, . . . , t
′
rmax

, we obtain the synchronised

dataset by resampling prices of each bond Pi(t
′
r) for all r = 1, . . . , rmax. The

problem of this approach is that the most illiquid asset is the one responsible

for the selection of the highest number of the sampling times.

Generalised Sampling Time The method proposed by Aı̈t-Sahalia et al.

(2010) is more general than previous tick and refresh time. The generalised

sampling time is defined as a sequence of points {t1, . . . , tN} for a collec-

tion of I assets satisfying the following conditions. Firstly, t = t1 < · · · <
tN−1 < tN = T . Secondly, at least one observation for each bond i must ex-

ist between the consecutive points in time tr, tr+1. Finally, the time intervals{
∆r = tr+1 − tr, r ∈ {1, . . . , N − 1}

}
converge in probability to zero. The

synchronised dataset is obtained as Pi(t
′
r) = Pi(t

′
r,i) by selecting an arbitrary

observation at the time t′r,i ∈ (tr, rr+1] for each asset i and each time interval

r = 1, . . . , N − 1.

It can be seen that both previous tick and refresh time are in fact special

cases of the generalised sampling time scheme. If we select t′r,i to be the time

of the last transaction in each time interval, then we replicate the previous tick

scheme. Similarly, we will arrive at refresh time scheme if we follow the scheme’s

recursive definition of t′r. The advantage stemming from random drawing of the

points from the time intervals is the robustness against the data misplacement

error.

3.4.2 Realised Variance

Realised variance (RV) is a nonparametric volatility estimator capable of utilis-

ing the information contained in the high-frequency data. This ex-post measure

is useful in contexts that require modelling of volatility dynamics. It allows for

estimation of the cumulative price variation over a given period using the tick

data.

Let us consider a continuous stochastic process of logarithm of asset prices
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p(t) given by the diffusion process:

p(t) =

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dW (s)

where µ(t) is a continuous drift process with finite variance, σ(t) is a strictly

positive volatility process, W is a standard Brownian motion and time t ∈
[0, T ].

We are interested in estimation of the integrated variance:

IV(t) =

∫ t

t−∆

σ2(s)ds

which gives us the amount of variance accumulated over the time period of

[t−∆, t].

Now suppose that we observe n+1 prices p(0), . . . , p(n) on an equally spaced

interval [0, T ]. The sum of squared returns:

RV(n) =
n∑

i=1

(
p(i)− p(i− 1)

)2
is an estimator of the integrated variance IV called realised variance. In fact

realised variance converges almost surely to the integrated variance as n→ ∞
(or equivalently ∆ → 0) as shown in Andersen et al. (2003).

3.5 Spectral Analysis of Economic Time Series

Classical time series analysis is concerned with uncovering information hidden

in the autocovariance structure of the data in the time domain. Alternatively,

we can move away from the time domain to the frequency domain and study

the information hidden in the ”frequency content” of the data. Under such

transformation, the information content remains exactly the same (Nerlove

1964), but the new point of view allows for uncovering relationships that are

otherwise difficult to reveal.

We can think of economic time series as of a combination of trends, noise

and cycles. Since there are usually multiple cyclical components of various

lengths present in the data generating process, the classical time series analysis

mainly concerned with autocovariance structures becomes largely ineffective

when analysing the influence of cyclical patterns hidden in the data.
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The basic idea behind the spectral analysis is that any stochastic time series

can be decomposed into an infinite number of sine and cosine waves (Nerlove

1964). This allow us to view an economic time series as a sum of cyclical

components with various amplitudes, frequencies and phases (i.e., the origin in

time of the time series). Subsequently, this will allow us analyse the spectrum

of the time series, which can be thought of as a decomposition of the variance

of the series attributed to different frequencies.

This section represents a brief summary of some of the most important

notions in theory of spectral analysis following a brilliant textbook by Granger

& Hatanaka (1964). Throughout, we will be considering a stationary, complex

data generating process {Xt}. This process has first and second moments that

are not functions of time t and autocovariance µ that is dependent on the

distance between time periods t and s, i.e.,

E(Xt) = 0

E(XtX̄t) = σ2

E(XtX̄s) = µ(t− s) = µτ , τ = t− s

for all t, s where X̄ is the complex conjugate of X.

3.5.1 Power Spectrum

Let us consider the following generating process Xt:

Xt =
k∑

j=1

aj exp(itωj)

where (ωj, j = 1, . . . , k) is a set of real numbers with |ωj| ≤ π and (aj, j =

1, . . . , k) is a set of independent, complex random variables where for all j

E(aj) = 0, E(aj āj) = σ2
j and E(aj āk) = 0, j ̸= k. Each term of Xt is a periodic

function:

aj exp(iωjt) = aj(cos(tωj) + i sin(tωj))

with period
ωj

2π
and angular frequency ωj.

The sequence of autocovariances µt of (any) stationary process Xt satisfies:

µt =

∫ π

−π

exp(itω)dF (ω)
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where F (ω) is a step function with steps of size σ2
j at ω = ωj, j = 1, . . . , k.

F (ω) is thus monotonically increasing function with extremes at F (−π) = 0

and F (π) =
∑k

j=1 σ
2
j , where F (π) is the variance of the generating process Xt.

This equation is called the spectral representation of the covariance function

and F (ω) is called the power spectral distribution function.

Moreover (any) stationary process Xt can be written in the form called

Cramér representation of a stationary process :

Xt =

∫ π

−π

exp(itω)dz(ω)

where z(ω) is a complex, random function termed a process of non-correlated

increments such that:

E(dz(ω1)dz(ω2)) = 0, ω1 ̸= ω2,

= dF (ω), ω1 = ω2 = ω.

Since F (ω) is a monotonically increasing function, it can be decomposed

into three components:

F (ω) = F1(ω) + F2(ω) + F3(ω)

where F1(ω) is a non-decreasing, absolutely continuous function, F2(ω) is a

non-decreasing, step-function and F3(ω) is a non-decreasing singular function

which is assumed to be zero in economic applications. Any stationary process

Xt can be thus decomposed into two uncorrelated components X1 and X2:

Xt = X1(t) +X2(t).

X1(t) is a member of the class of non-deterministic processes with an abso-

lutely continuous power spectral distribution function and thus its sequence of

autocovariances follows:

µt = E(X1(t)X1(t− τ)) =

∫ π

−π

exp(itω)f(ω)dω.

X2(t) represents a deterministic component corresponding to a linear cyclic
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process in a form of:

X2(t) =
∞∑
j=1

aj exp(itωj), |ωj| ≤ π for all j.

Finally, let us consider a real generating process Xt producing infinitely

long, discrete and trend-free time series and its Cramér’s representation:

Xt =

∫ π

0

cos(tω)du(ω) +

∫ π

0

sin(tω)dv(ω).

If we take one sample series xt of a finite length generated by such process,

then we can fit it exactly by a finite Fourier series:

xt(n) =
n∑

j=0

aj cos(tωj) +
n∑

j=1

bj sin(tωj),

where ωj = 2πj
n

and aj’s and bj’s are such that xt(n) = xt at t = 1, . . . , n.

Allowing for increasing sample lengths n → ∞, the interval between adjacent

frequencies shrinks ωj+1 − ωj → 0 and the above representation turns into an

addition of integrals:

xt =

∫ π

0

a(ω) cos(tω)dω +

∫ π

0

b(ω) sin(tω)dω.

This means that an infinitely long sample series (xt, t = 1, . . . ,∞) can be fitted

exactly if we choose a(ω) and b(ω) properly. If {xt} contains a periodic element

of frequency ω1 =
2π
m
, then both a(ω) and b(ω) will have sharp spikes at ω = ω1

but if the series {xt} contains no periodic elements, both functions will be

smooth.

We are interested in the periodic regularities that are characteristic to the

generating process Xt. These regularities are associated with the relative im-

portance of particular periodic terms that generate observable cycles in the

sample series. The relative importance of a particular periodic term can be

thought of as a resulting decrease of variance of the series when this particular

term is removed. If we define the function F (ω) as:

F (ω) = F (ω2)− F (ω1) =

∫ ω2

ω1

(a2(ω) + b2(ω))dω,

then F (ω) corresponds to the amount of total variance that is attributable to
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the frequency band (ω1, ω2). This function is called the power spectral dis-

tribution function which appears as z(ω) in the Cramér’s representation of a

stationary process.

3.5.2 Cross-Spectral Analysis

Apart from being able to analyse the power spectrum of one stationary process,

it is often useful to extend the spectral approach to be able to explore rela-

tionships between two stationary processes and their respective components.

In order to achieve this, we generalise the univariate case into a bivariate set-

ting with a stationary random generating process {Xt, Yt} with a Cramér’s

representation:

Xt =

∫ π

−π

exp(itω)dzx(ω)

Yt =

∫ π

−π

exp(itω)dzy(ω),

satisfying

E(dzx(ω1)dzy(ω2)) = 0, ω1 ̸= ω2

= Cr(ω), ω1 = ω2 = ω,

where Cr(ω) is known as the power cross-spectrum between {Xt} and {Yt}
which can be further decomposed following:

Cr(ω) = c(ω) + iq(ω),

where c(ω) is an odd function known as the co-spectrum and q(ω) is an even

function known as the quadrature spectrum. Both functions are subject to the

coherence-inequality :

c2(ω) + q2ω ≤ fx(ω)fy(ω).

When {Xt} and {Yt} are both real, stationary processes, we can use the

Cramér’s representation:

Xt =

∫ π

0

cos(tω)dux(ω) +

∫ π

0

sin(tω)dvx(ω)

and

Yt =

∫ π

0

cos(tω)duy(ω) +

∫ π

0

sin(tω)dvy(ω).
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It is possible to interpret the co-spectrum and the quadrature spectrum in a

way that each of the processes {Xt} and {Yt} can be represented by an integral

over all frequencies ω in [0, π] and that each frequency ω can be decomposed

into two separate components that are π
2
out of phase with each other. Each

of the components having a random amplitude dux(ω), dvx(ω) and duy(ω),

dvy(ω) and for each process, the amplitudes are uncorrelated both between the

components for any frequency as well as with the random amplitudes of the

components for other frequencies. This means that we are interested only in

the relationships between identical frequencies in both processes, i.e. between:

cos(tω)dux(ω) + sin(tω)dvx(ω)

and

cos(tω)duy(ω) + sin(tω)dvy(ω).

Moreover, the following relationships hold:

E(dux(ω)duy(ω)) = E(dvx(ω)dvy(ω)) = 2c(ω)dω,

meaning that twice the co-spectral density gives the covariance between the

in-phase components. And furthermore, we have:

E(dux(ω)dvy(ω)) = 2q(ω)dω

E(duy(ω)dvx(ω)) = −2q(ω)dω,

meaning that twice the quadrature spectral density gives the covariance be-

tween the components π
2
out of phase.

Finally, we will introduce crucial quantities allowing us to analyse relation-

ship between corresponding components of two stationary processes. Coherence

at ω, C(ω) provides us with a measure of correlation between the corresponding

frequency components of two processes:

C(ω) =
c2(ω) + q2(ω)

fx(ω)fy(ω)
∈ [0, 1]

and its plot against the frequency ω ∈ [0, π] is called the coherence diagram.

Coherence is in fact analogous in both definition and interpretation to the

square of the correlation coefficient between two samples.

A measure of phase difference between the corresponding frequency com-
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ponents of two processes is given by

ψ(ω) = tan−1 q(ω)

c(ω)

and its plot against the frequency ω ∈ (0, π) is called the phase diagram.

3.6 Quantile Cross-Spectral Analysis

The classical cross-spectral analysis introduced quantities like coherence that

allow us to analyse the joint-distribution of two processes in frequency domain.

But like covariance-based measures, coherency is quantifying dependence by

averaging with respect to the joint distribution of the two processes. The

process of averaging leads to a potential loss of information that is contained

in specific parts of the joint distribution. Since the information within the tails

of distributions of economic time series is often of a special interest, a new

class of cross-spectral densities that characterises the dependence in quantiles

of joint-distribution of processes across frequencies was proposed by Baruńık

& Kley (2015) whose text we will follow to introduce the concept.

Let us consider a d-variate, strictly stationary process (Xt)t∈Z with com-

ponents Xt,j, j = 1, . . . , d, a marginal distribution function of Xt,j denoted by

Fj and qj(τ) := F−1
j (τ) := inf{q ∈ R : τ ≤ Fj(q)}, τ ∈ [0, 1] denotes the cor-

responding quantile function. The matrix of quantile cross-covariance kernels

Γk(τ1, τ2) represents a measure for the serial and cross-dependency structure of

(Xt)t∈Z:

Γk(τ1, τ2) :=
(
γj1,j2k (τ1, τ2)

)
j1,j2=1,...,d

where

γj1,j2k (τ1, τ2) := Cov
(
I{Xt+k,j1 ≤ qj1(τ1)}, I{Xt,j2 ≤ qj2(τ2)}

)
,

j1, j2 ∈ {1, . . . , d}, k ∈ Z, τ1, τ2 ∈ [0, 1] and I(A) denotes the indicator function

of the event A. Note that these functions are dependent on two quantiles τ1, τ2

which makes them richer in information than their traditional counterparts.

Moving to the frequency domain, we obtain the matrix of quantile cross-spectral

density kernels f(ω; τ1, τ2):

f(ω; τ1, τ2) :=
(
fj1,j2(ω; τ1, τ2)

)
j1,j2=1,...,d

,
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where

fj1,j2(ω; τ1, τ2) := (2π)−1

∞∑
k=−∞

γj1,j2k (τ1, τ2) exp(ikω),

j1, j2 ∈ {1, . . . , d}, ω ∈ R, τ1, τ2 ∈ [0, 1].

For fixed values of τ1, τ2, the quantile cross-spectral density kernel f(ω)

is exactly the classical cross-spectral density of the bivariate, binary process(
I{Xt,j1 ≤ qj1(τ1)}, I{Xt,j2 ≤ qj2(τ2)}

)
t∈Z which indicates whether the values

of the components j1 and j2 of (Xt)t∈Z are below the respective marginal dis-

tribution’s τ1 and τ2 quantile.

Following this setting, there exists a right continuous orthogonal increment

process {ZT
j (ω) : −π ≤ ω ≤ π} for all j ∈ {1, . . . , d} and τ ∈ [0, 1], such that

the following Cramér representation:

I{Xt,j ≤ qj(τ)} =

∫ π

−π

exp(itω)dZt
j(ω)

and the following relation∫ ω2

ω1

fj1,j2(ω; τ1, τ2)dω = Cov(Zτ1
j1
(ω2)− Zτ1

j1
(ω1), Z

τ2
j2
(ω2)− Zτ2

j2
(ω1))

where −π ≤ ω1 ≤ ω2 ≤ π hold.

Analogously to the classical spectral quantities, we can decompose the

complex-valued quantity fj1,j2(ω; τ1, τ2) into its real part called the quantile

co-spectrum and its imaginary part called the quantile quadrature spectrum.

Furthermore, we consider the correlation between dZτ1
j1
(ω) and dZτ2

j2
(ω):

Rj1,j2(ω; τ1, τ2) := Corr(dZτ1
j1
(ω), dZτ2

j2
(ω)) =

fj1,j2(ω; τ1, τ2)(
fj1,j1(ω; τ1, τ1)fj2,j2(ω; τ2, τ2)

) 1
2

,

(τ1, τ2) ∈ (0, 1)2 termed the quantile coherency, with values Rj1,j2(ω; τ1, τ2) ∈
{z ∈ C : |z| ≤ 1}.

3.7 Interest Rate Futures

Futures contracts are legal agreements between two parties about a delivery

of an underlying asset at certain pre-specified time in the future for a pre-

specified price fixed at the time of the contract’s inception (Kolb & Overdahl

2003). Financial futures are standardised contracts traded at centralised finan-
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cial exchanges that allow for a wide range of financial instruments or indices

to serve as its underlying assets. Futures contracts are usually very liquid,

partly as a result of contract standardisation which allows market participants

to safely trade otherwise illiquid assets. Moreover, the party who holds a short

position is not obliged to physically deliver the underlying asset as the contract

can be sold any time before it’s maturity (Filipovic 2009).

One distinct feature of futures contracts is that the holder of the contract

continuously pays or receives payments that result from an immediate depre-

ciation or appreciation of the contract’s value. This mechanism is called the

marking to market. Each party is obliged to maintain a certain minimum

balance on their account called safety margin to mitigate the possibility of a

default on obligations.

Futures that use debt instruments like US Treasury Bills and US Treasury

Bonds as an underlying asset are called interest rate futures. A specification of

such contract either permits cash settlement or requires a certain class of debt

instrument to be delivered at the contract’s maturity. Because interest rate

futures usually specify a broad range of contracts deliverable upon maturity,

a conversion factor invoicing system is employed to make deliverable contract

prices comparable. The conversion factor is computed so that the principle

invoice amount paid from long to short is adjusted to reflect a reference yield-

to-maturity.

There are two trading regimes associated with financial futures. When

trading through open outcry, the traders are physically present in the ”trading

pit” where they ”cry out” their bids. This auction-like process mitigates ineffi-

ciency and information asymmetry between the traders. The opening hours for

physical futures exchanges are usually limited to several hours every weekday.

In the recent years, the trading pits have been mostly replaced by electronic

trading systems which offer nearly 24-hour opening hours and greatly reduced

transaction costs as opposed to the physical trading. Since each electronic

trade is processed through a centralised trading system, the electronic trading

systems offer a great opportunity for collection of high frequency tick-by-tick

trading data with very granular time measurements.



Chapter 4

Data and Methodology

This chapter describes the raw dataset, discusses transformations made to the

data in order to obtain a dataset suitable for estimation and comments on the

methodology behind computational steps. An overview of the most important

features of the estimated term structure of interest rates futures is presented

and compared to five stylised facts about term structures of interest rates in

the time domain.

Following sections focus on the estimation methodology and results. The

explanation of employed theoretical concepts can be found in Chapter 3.

4.1 US Treasury Futures Data

The dataset used for construction of the term structure consist of four distinct

high frequency tick-by-tick time series of interest rate futures trade data. The

underlying contracts are US Treasury Notes and US Treasury Bonds with times

to maturity ranging from 1 year and 9 months to 25 years.

All the recorded transactions were traded at the Chicago Mercantile Ex-

change and Chicago Board of Trade (CBOT/CME Group) futures exchange. The

trading hours for the listed futures have been evolving over the time, starting

with limited hours during weekdays to a nearly non-stop operation of electronic

trading platform Globex. The covered futures contracts are traded quarterly

with settlement dates in March, June, September and December. For more

details about interest rate futures contracts traded at CBOT/CME see Johnson

et al. (2017).

A wide range of underlying US Treasury bond contracts are eligible for

delivery upon settlement. In order to make all eligible contracts directly com-



4. Data and Methodology 31

parable, CBOT/CME Group uses a conversion factor invoicing system. The

invoice price IP at the settlement is calculated in the following way:

IP = P × CF × CtF + AI.

The daily futures settlement price P is the price of the futures contract at the

settlement date expressed in points and fractions of points with a par on the

basis of 100 points. CF is the conversion factor; that is the price at which a $1
par of an underlying security would trade if it had a 6% yield-to-maturity. The

conversion factor thus takes into account different coupons and remaining time

to maturity of the wide range of Treasuries eligible for delivery. The CtF is

the contract factor, in this case a 1/100 fraction of the underlying’s face value

at maturity. Finally, the seller of the contract is compensated for the interest

accrued between the semi-annual coupon payment dates AI.

The parameters of each of the futures contract included in the dataset are

described below.

Short-Term US Treasury Note Futures (2-Year) The deliverable securities

are fixed-principal US Treasury Notes with fixed semi-annual coupon payments

and the original term to maturity shorter than five years and three months

(CBOT/CME Group 2018d). The remaining time to maturity of a delivered

contract must be longer than one year and nine months from the first day of

the delivery month and shorter than two years from the last day of the delivery

month. The trading unit is represented by a multiple of US Treasury Notes

with a $200,000 face value at maturity. The minimum price fluctuation is 1/4th

of 1/32nd of one point, that is $15.625 per contract. This futures contract is

traded under ticker symbol TU (Bloomberg) or ZT (Globex).

Medium-Term US Treasury Note Futures (5-Year) The deliverable secu-

rities are fixed-principal US Treasury Notes with fixed semi-annual coupon

payments and the original term to maturity shorter than five years and three

months (CBOT/CME Group 2018c). The remaining time to maturity of a

delivered contract must be longer than four years and two months from the

first day of the delivery. The trading unit is represented by a multiple of US

Treasury Notes with a $100,000 face value at maturity. The minimum price

fluctuation is 1/4th of 1/32nd of one point, that is $7.8125 per contract. This

futures contract is traded under ticker symbol FV (Bloomberg) or ZF (Globex).
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Long-Term US Treasury Futures (6 and half to 10-Year) The deliverable

securities are fixed-principal US Treasury Notes with fixed semi-annual coupon

payments and the original term to maturity shorter than 10 years (CBOT/CME

Group 2018b). The remaining time to maturity of a delivered contract must

be longer than six years and six months from the first day of the delivery. The

trading unit is represented by a multiple of US Treasury Notes with a $100,000
face value at maturity. The minimum price fluctuation is 1/2 of 1/32nd of one

point, that is $15.625 per contract. This futures contract is traded under ticker

symbol TY (Bloomberg) or ZN (Globex).

US Treasury Bond Futures The deliverable securities are both callable and

non-callable fixed-principal US Treasury Bonds with fixed semi-annual coupon

payments. For non-callable contracts, the remaining time to maturity of must

be longer than 15 years and shorter than 25 years. The deliverable callable

contracts must not be callable for at least 15 years and have remaining time

to maturity less than 25 years (CBOT/CME Group 2018a). The trading unit

is represented by a multiple of US Treasury Bonds with a $100,000 face value

at maturity. The minimum price fluctuation is 1/32nd of one point, that is

$31.25 per contract. This futures contract is traded under ticker symbol US

(Bloomberg) or ZB (Globex).

4.2 Data Transformations

This section provides detail on all steps of data transformation process that

resulted with the dataset used for subsequent computations1.

4.2.1 Synchronisation and Subsetting

The raw dataset consists of four tick-by-tick trade data time series of closing

prices with precise timestamps. To be able to perform most of the analysis,

equidistant observations synchronised across all time series were required. The

previous-tick synchronisation scheme was chosen as it represents the most com-

mon approach among the practitioners. In our case, all time series were syn-

1All data transformations and computations were done using Python programming lan-
guage. Spectral and Cross-spectral estimates were obtained using R programming lan-
guage. Quantile Cross-Spectral Coherency estimates were computed using quantspec pack-
age for R (Kley 2016). All data visualisations are original and were created using gg-
plot2 package for R (Wickham 2016). All source codes are publicly available at https:

//github.com/nedvedad/mastersthesis.

https://github.com/nedvedad/mastersthesis
https://github.com/nedvedad/mastersthesis
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chronised at 5-minute intervals in order to be able to obtain 5-minute realised

variance estimates in subsequent steps.

Variability in trading regimes posed another issue. Trading hours for open

outcry regime have changed several times within the observed period while the

introduction of Globex platform resulted in nearly non-stop electronic trading.

The dataset combines data from both open outcry and Globex regimes. Only

observations on the intersection of all observed trading regimes were considered

to maintain a constistent dataset. As a result, all trades concluded outside

weekdays between 07:20 and 14:00 Central Time were discarded. Similarly, US

federal holidays and dates where at least one of the time series had no recorded

observation were excluded.

Finally, beginning with March 2000 contracts, the board of directors of

CBOT has decided to lower the nominal coupon used in the construction of

conversion factors from 8% to 6% for all Treasury futures. This change resulted

in a substantial shift of futures prices and dynamics around the November 1999

period. As a consequence, only a subset of observations recorded after January

1, 2000 were kept in the final dataset to mitigate estimation errors resulting

from possible inconsistencies in the data.

4.2.2 Yield to Maturity

Closing prices were used to compute yields to maturity using the following

formula:

yt(m) = m

√
FV

Pt × CF × CtF
− 1,

where m is the contract’s maturity in years, FV is the face value, Pt is the

closing price observed at time t, CF is the conversion factor and CtF is the

contract factor. Since the properties of relevant cheapest-to-deliver contracts

are unknown, the following assumptions were made to compute the yields.

Firstly, the maturities were assumed to be 2, 5, 10 and 25 years for the respec-

tive futures contracts. Secondly, the conversion factors were obtained using the

published lookup tables (CBOT/CME Group 2018e) assuming zero coupon in

each case.

4.2.3 Dynamic Nelson-Siegel Model Estimation

The entire term structure was estimated from the four time series of yields

using the Dynamic Nelson-Siegel Model. For each observation at time t, the
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Nelson-Sigel parameters were obtained via ordinary least squares estimation of

the following equation:

⎡⎢⎢⎢⎢⎢⎢⎣
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ϵt(5)

ϵt(10)
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Exponential Decay Parameter Lambda The original Dynamic Nelson-Siegel

Model allows for time-varying decay parameter λt. However, the improvement

to goodness of fit allowed by time-varying λt parameter have been questioned

(Hautsch & Ou 2008). Moreover, given that only four points along the yield

curve are observed for each point in time, the increase in goodness of fit resulting

from the estimation of dynamic λt would likely come at expense of instability

and possibility of overfitting of the curve. For these reasons, a constant lambda

was used as in the original estimation of the dynamic model by Diebold & Li

(2006).

The choice of lambda is extremely important for the resulting fit. Apart

from governing the exponential decay of the yield curve, the λ parameter de-

termines where the model’s curvature term attains its maximum. In Diebold &

Li (2006), the authors set lambda constant at 0.71732 which is the value that

maximises curvature term at 2 years and 6 months.

In order to determine the lambda value to be used for estimation of the yield

curve, lambdas λ̄i maximising the curvature term for maturities τi between 1

and 10 years with steps of 1 month were calculated, following:

λ̄i = argmax
λ∈Θ

(
1− exp(−λτi)

λτi
− exp(−λτi)), τi =

12

12
,
13

12
, . . . ,

120

12
.

Using each λ̄i, the Dynamic Nelson-Siegel model was fitted and mean squared

error MSEi was computed:

MSEi =
1

n

n∑
j=1

(Yj − Ŷi,j)
2,

2The value presented in the article is in fact 0.0609 which corresponds to maturities
denoted in months as opposed to yearly maturities used in this thesis.
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where n is the number of observations in the dataset, Yj is an observed value

and Ŷi,j is a predicted value using λ̄i. Finally, the lowest MSEi was achieved

with lambda value of 0.6329 which maximises the curvature term at 2 years

and 10 months, a value reasonably close to the one used in Diebold & Li

(2006). Loadings of each of the Nelson-Siegel factors with respect to time to

maturity are plotted in Figure A.1. Apart from showing the maximum of the

curvature factor loading, it is interesting to note that the slope factor loading

is dominating the curvature factor in short and medium-term maturities of up

to 10 years.

4.2.4 Realised Variance

In order to mitigate the amount of microstructure noise in high-frequency

datasets, intraday observations are usually integrated into daily measurements

for financial analysis. The ”daily last observation” approach was used to ob-

tain daily data on yields, closing prices and beta coefficients from the Dynamic

Nelson Siegel Model. Next, 5-minute realised variance of yields and beta coef-

ficients were computed. Many high-frequency volatility estimators have been

proposed over recent years, but 5-minute RV has gained the most recognition

by practitioners. This is demonstrated in a study by Liu et al. (2015) where

400 different estimators were compared using 31 different financial asset time

series including interest rates. The authors have concluded that the 5-minute

RV is very difficult to beat in practice.

4.3 Resulting Dataset

After carrying all transformations described above, the resulting dataset con-

sists of 3,775 daily observations of closing prices, yields, Dynamic Nelson-Siegel

Model factors and realised variances. Period covered in the dataset spans from

January 4th, 2000 to March 9th, 2015. This allows estimation of cycles two

years long as the rule of thumb proposed by Granger & Hatanaka (1964) re-

quires us to have at least seven observations of a cycle for reasonably precise

estimation. The evolution of the number of intraday observations for each time

series is plotted in Figure A.2. The increasing number of recorded transactions

is apparent with the upward trend being attributed to increasing popularity of

electronic trading platforms such as the Globex.
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4.3.1 Yields and Closing Prices

The daily closing prices of each series are plotted in Figure A.3 and presented

along with summary statistics in Table B.1. A tendency of variance of closing

prices to increase as term to maturity increases can be clearly documented. The

opposite holds for the computed yields which are plotted in Figure A.4: the

volatility of yields decreases with increasing time to maturity while the overall

level of yields increases with increasing time to maturity. This is supported by

the summary statistics disclosed in Table B.2.

4.3.2 Nelson-Siegel Factors and Goodness of Fit

Estimated Dynamic Nelson-Siegel factors are plotted in Figure A.5. The level

factor is consistently the largest and the most stable factor over the entire

period. The slope factor is more volatile than level factor but still relatively

stable with mostly slightly negative values. Curvature is the most unstable of all

factors with especially volatile period coinciding with the financial crisis. This

means that most of the yield curve dynamics can be captured by the changes

to curve’s curvature while the level of the yield remains mostly constant. Large

shifts to yield curve’s slope are not as common as shifts to curvature but in

both cases these shifts are persistent.

The goodness of fit of the Dynamic Nelson-Siegel Model can be assessed

from the residual plot for each series in Figure A.6 where the period of financial

crisis causes an apparent shift in the estimated interest rate dynamics. The

estimated yield curve fits the observed series quite well as shown in Figure A.7

where the fitted yield curve is plotted against the observed yields for a selection

of sixteen different dates from the dataset. At times, there are occurrences of

somewhat unrealistically U-shaped short ends of the estimated yield curves

visible at maturities between 0 and 2 years. This anomaly stems from the fact

that there are only 4 observations along the curve for each day and maturity

of 2 years is the shortest available one. However the missing data on the short

end of the yield curve should not significantly affect the estimation at longer

maturities.

4.3.3 Realised Variance

Realised variance of all four yield is plotted in Figure A.8. Three findings are

apparent from the plot. Firstly, the overall level of yields’ volatility decreases
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with increasing time to maturity. Secondly, the realised variance of each series

has significantly increased around the beginning of financial crisis. And lastly,

the pre-crisis period was more volatile for all four time series than the post-crisis

period.

4.4 Stylised Facts About Term Structure

Term structure of interest rate has been a central topic of economic research for

several decades. Numerous empirical studies were concluded and as a conse-

quence, several recurring empirical properties of term structures were termed as

”stylised facts”. We will consider whether the term structure constructed from

interest rate futures data confronts to these stylised facts before committing to

the spectral analysis.

The following five observations about shape, volatility and dynamics of yield

curves were originally summarised in Diebold & Li (2006).

Average Shape The average yield curve shape should be concave and in-

creasing. The plot of the estimated term structure for each date included in

the dataset is presented in Figure A.9 along with mean and median term struc-

ture. Even though individual yield curves take various shapes, most of them

are indeed concave and increasing. The estimated average and median yield

curve shapes are too concave and increasing.

Variety of Shapes Yield curves assume several different shapes over time.

There are four most commonly observed types: upward-sloping, downward

sloping, humped and inverted humped. The evolution of the estimated yield

curve over the observed period is plotted in Figure A.10. We can see that

even though the average shape is upward and concave, there are periods of

negatively sloped curves and periods of flat curves. These observations can

also be seen in the ”cuts” of the term structure as shown in Figure A.7. A

hump shape is sometimes present in the short end of the yield curve but this

is to be attributed to the lack of observations with maturities shorter than 2

years as discussed in Section 4.3.2.

Yield and Spread Dynamics Dynamics of yields should be persistent and

dynamics of spread should be significantly less persistent. Diebold & Li (2006)

link strong persistence of yield dynamics to strong persistence of the model’s
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level factor. Similarly, weak persistence of spread dynamics should be linked to

weak persistence of the model’s slope factor. All factors are plotted in Figure

A.5 where persistence in factors is evident. Supplementary Augmented Dickey-

Fuller test in Table B.3 fails to reject unit-root for all factor series even at 10%

significance level. Looking at autocorrelation functions of the series of factors

in Figure A.11 however shows no significant difference between persistence in

slope and level factors.

Volatility of Short and Long Ends The short end of the term structure is

documented to be more volatile than its long end. This is easily observable

from the plot of realised variances of yields in Figure A.8 where the volatility

clearly decreases with increasing term to maturity. The Dynamic Nelson Siegel

Model factor loadings in Figure A.1 reveal that the long end of the yield curve is

predominantly governed by the level factor. If we consider the realised variance

of model factors in Figure A.12, it is clear that the level factor is the least

volatile one and thus the long end is less volatile than the short end as well.

Persistence of Short and Long Rates Long rates are expected to be more

persistent than short rates. Using argument from the previous paragraph and

looking at the autocorrelation functions of model factors in Figure A.11, the

level factor seems to be the most persistent along with the slope factor which

could hint at high persistence of long rates. The persistence of yield series A.4

is very high for each of the series and autocorrelation function shows to be

inconclusive as each of the series contains a unit-root process.

Estimated yield curves have shown to have concave and upward-sloping shape

on average while also attaining flat and downward sloping shapes during cer-

tain periods. Yields’ volatility appears to be a decreasing function of time to

maturity. Dynamics of yields are highly persistent, however so are the spread

dynamics. Similarly, both short and long rates exhibit persistence of a very

high degree.



Chapter 5

Spectral Analysis of Term

Structure

Following sections present empirical findings obtained by application of mul-

tiple spectral analysis techniques to the term structure data. Firstly, power

spectra of individual time series will be estimated and discussed. Then, the

cross-dependence in frequency domain within different parts of term struc-

ture will be analysed using cross-spectral analysis. Finally, using the quantile

cross-spectral analysis, we will carry out an in-depth analysis of dependence

structures within the joint distributions of various parts of the term structure

in frequency domain.

5.1 Spectral Analysis

Periodograms were used to obtain non-parametric estimates of spectral den-

sities. Despite their convenience, periodograms are known to produce highly

fluctuating spectral density estimates with large variances. Although peri-

odograms are asymptotically unbiased, it can be shown that their variance

does not converge to zero with increasing sample sizes. In another words, pe-

riodogram is not a consistent estimator of spectral density (Nerlove 1964). In

order to obtain a consistent estimator, local averaging of raw periodograms

using Daniell kernel was employed as proposed in Bloomfield (2004).

Yields Estimated power spectra of all yield series with 95% confidence in-

tervals are presented in Figures A.13, A.14, A.15 and A.16. In all spectral

plots, frequencies corresponding to periods of 1 week, 1 month and 1 year were
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highlighted with dashed vertical lines. All spectra follow what Granger calls ”a

typical spectral shape of economic variable” with peaks around frequencies cor-

responding to one year, which also corresponds to empirical findings by Granger

& Rees (1968). A typical spectrum of economic variable contains highly domi-

nant low frequency components that can be a consequence of a trend in mean,

unit-root, strong cyclic components with low frequencies or leakage of power

around neighbouring frequencies. Power in such spectral densities steadily de-

creases as the frequency increases. The amount of variance explained by high

frequency components generally decreases with increasing time to maturity,

meaning that short rates are better explained by high-frequency cycles than

long rates.

First-Differenced Yields Results of Dickey-Fuller test in Table B.4 hint at

presence of unit root in three out of four series of yields. To deal with the

problem of non-stationarity, which is especially crucial for estimation of quan-

tile cross-spectral coherency in later sections, all series of yields were first-

differenced. Their spectra are shown in Figures A.17, A.18, A.19 and A.20. As

expected, the first-differencing has flattened the spectra of yields. This is due

to the fact that first-differencing is equal to application of high-pass filter to a

time series.

If the first-differenced yield series followed a random walk process, we’d see

completely flat power spectra with equal contributions of each frequency to

the spectral density. However, all four spectral density plots of yields show

significant peaks at frequencies around 0.83. This finding suggests that there

might be cyclical components in yields corresponding to 2.4 days (or roughly

a half-week) long periods.

Spectograms of Yields Power spectra of non-stationary time series can also

be represented by spectograms in order to deal with non-stationarity of time

series. Firstly, the data are sliced into many overlapping windows of equal

length, moving both the beginning and the end of each window by a single

observation at a time. Spectral density is then estimated for each window

and plotted in time-frequency domain. The advantage of this approach is that

it allows us to observe the evolution of the spectral density series over time.

Spectrograms for yield series are plotted in Figures A.21, A.22, A.23 and A.24.

It is important to keep in mind that we need at least seven observations for

each cycle to get a reasonable estimate of the power spectrum. The window
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length of 125 observations that was used in construction of these spectograms

thus allows us to analyse only frequencies that are large than 0.11.

It is clear from the figures that the spectra of yields are not constant in time.

The period between 2005 and 2007 has relatively little variance explained by

high frequencies in all series. Yields with 2-year maturity have the highest

amount of variance explained by high frequencies together with the 5-year

yield series. However, during the period between 2012 and 2013, we observe

extremely low density estimates in high frequencies of the 2-year yield series.

Peaks around the frequency 0.83 observed in previous plots are not apparent

in the spectogram representations of yields.

Realised Variances of Yields Power spectra of realised variance of yield series

(shown in Figure A.8) can be found in Figures A.25, A.26, A.27 and A.28. All

series have mostly flat spectra with a large spike at frequencies corresponding

to yearly cycles, indicating strong seasonal behaviour of volatility of the yields.

Moreover, all spectra show significant peaks around weekly frequencies, sug-

gesting a weekly cyclical movements in volatility of interest rate futures yields.

There are few other supplemental peaks that present especially in the series

with maturities of 2 and 5 years which are the most volatile series.

Dynamic Nelson-Siegel Factors Spectra of first-differenced series of Dy-

namic Nelson-Siegel Model factors from Figure A.5 are shown in Figures A.29,

A.30 and A.31. We are not only using the convenience of dimension-reduction

of the Nelson-Siegel model here but we are also taking advantage of the fact

that the model factors are interpretable as level, slope and curvature of yield

curve, allowing us to focus on different aspects of the term structure.

The low-frequency bands of spectra are apparently suppressed by the use

of the first-differencing filter but there are signs of long-term cycles around fre-

quencies corresponding to 4 months in each spectrum. Moreover, the spectrum

of the level factor has a relatively low contribution of frequencies around 0.5.

Cycles longer than a month have relatively little influence in all series.

Realised Variances of Dynamic Nelson-Siegel Factors If we look at realised

variances of the factors in Figures A.32, A.33 and A.34, we find similar spectral

shapes to those of realised variances of yields with significant yearly seasonal

component and apparent peaks at frequencies corresponding to week-long cy-
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cles, meaning that both realised variances of yields and of DNSM factors are

possibly cyclical with weekly periods.

5.2 Cross-Spectral Analysis

Cross-spectral analysis allows us to measure the extent of interrelatedness be-

tween two time series and reveals information about their common lag struc-

ture. For the first part, coherence diagrams are used which, as mentioned

in Section 3.5.2, essentially translate to correlation coefficients between corre-

sponding frequencies of time series. For the second part, phase diagrams are

used to analyse possible phase shifts between the two series.

The interpretation of phase diagrams is much more peculiar. As Granger &

Hatanaka (1964) put it, we are looking for parts of the phase diagram where the

values ”lie about a straight line”. If, at the same time, the coherence between

the two series is ”reasonably high” within the frequency range where phase

lies about a straight line, then this can indicate a simple time-lag between

corresponding frequency components of the two series. The degree of the time-

lag is indicated by the slope of the straight line, about which the phase values

lie.

Yields Firstly, the average coherence was computed over three distinct fre-

quency ranges for series of first-differenced yields following the analysis in

Granger & Rees (1968). The long-run range is defined as frequencies corre-

sponding to periods of over three years. The medium-run spans from one year

to three years and the short-run corresponds to periods between six months

and one year. All estimates are displayed in Table B.5.

Granger and Rees found that, generally, as the frequency increased the

coherency between components decreased. Contrary to this result, we find that

coherency remains relatively stable across frequency ranges using our dataset.

The degree of dependence between series is decreasing with increasing time to

maturity. The highest degree of dependence was found between 5Y and 10Y

first-differenced yields series, which can be seen in detail in Figure A.35. The

coherency is relatively stable across all frequencies while phase is consistently

close to zero. The lowest average coherency is between 2Y and 25Y series,

which can be seen in Figure A.36. The coherency diagram is much more erratic

between 2-years and 25-years maturities. Moreover, we observe small peaks in
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phase around 1 week and 1 month periods in all yields cross-spectra, hinting

at possible lag structure between yield series for the respective periods.

Realised Variances of Yields The cross-spectra of realised variances of yields

are generally flat with dependence between series being uniformly distributed

across the entire frequency domain. Squared coherencies between all pairs of

series of realised variances of yields are plotted in Figure A.37. The degree

of dependence between realised variances of yields increases with decreasing

time to maturity with the highest values at the long-term part of the term

structure. Phase for all combinations of realised variances of yields is close to

zero, revealing no significant lag structure between any pair of series over any

frequency range.

Dynamic Nelson-Siegel Factors Squared coherencies between pairs of Dy-

namic Nelson-Siegel Model factors are plotted in Figure A.38. The dependence

between level and slope factor seems to be higher between frequencies corre-

sponding to 1 week and 1 year while dependence between level and curvature

is low across the whole spectrum with possible peak around frequencies corre-

sponding to 3 days. Dependence between slope and curvature factor is much

higher and is increasing with increasing frequency. No significant lag structure

has been found between the factor estimates of the Dynamic Nelson-Siegel

Model.

Realised Variances of Dynamic Nelson-Siegel Factors The cross-spectral

plots of realised variances between Dynamic Nelson-Siegel Model factors are

displayed in Figures A.39, A.40 and A.41. The dependence structure between

volatility of term structure slope and curvature factors is generally very high

and uniformly distributed across the entire frequency domain. However, de-

pendences between volatilities of level and slope factors and between volatilities

level and curvature factors share both positive and negative peaks. Squared

coherency is significantly lower for these series for frequencies between 1 week

and 1 year range. Moreover, realised volatilities between level and slope and

between level and curvature of the term structure are seemingly positively con-

nected in 1-week long cycles. Finally, we document peaks in squared coherency

around half-week long cycles between these series. This frequency corresponds

to a frequency at which yield series showed significant cyclical components as



5. Spectral Analysis of Term Structure 44

documented in Section 5.1. No significant lag structure was found between

realised variances of DNSM factors.

Dynamic Nelson-Siegel Factors and Yields Finally, Figure A.42 presents

squared coherencies between series of first-differenced DNSM factors and first-

differenced yields of interest rate futures. This series of plots reveals, how

are yields with different maturities connected with level, slope and curvature

factors of the term structure across the frequency domain. The level factor has

flat dependence structure with all yield series where the overall dependence

level increases with increasing time to maturity of yield series. All series show

spikes around half-week long cycles. The dependence between slope factor and

first-differenced yields seem to be low, erratic and flat with several significant

spikes. Given the highly erratic dependence structure, the spikes are expected

to be a consequence of imperfect smoothing rather than evidence of several

highly contributing frequencies. The curvature factor is most highly connected

with all series of first-differenced yields. The dependence structure with the 2

years short-rate is highest for long cycles and steadily decreases with increasing

frequency. The dependence with both 5 and 10 year yields is relatively higher

with similar decreasing profile. Squared coherence between first-differences of

curvature factor and 25 year yields is flat and just below 0.5 level. All pairs

including the first-differenced curvature factor seem to be highly connected in

the high frequency range. Phase diagrams show no significant lag structure

any of the aforementioned pairs of time series.

5.3 Quantile Cross-Spectral Analysis

Spectral analysis allowed us to project the variance of parts of term structure

onto frequency domain and analyse contribution of cycles of various lengths to

their overall variance. Move to the cross-spectral analysis made it possible to

analyse the degree of connectedness of pairs of times series in frequency domain.

In another words, we could see how are cycles of different frequencies on average

connected with each other across different parts of the term structure.

Using the quantile cross-spectral analysis described in Section 3.6 gets us

one step further. The average degree of connectedness between cycles of time

series expressed by squared coherency will further be decomposed across quan-

tiles of the joint distribution. The degree of connectedness between quantiles
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of various parts of the term structure will be presented by means of squared

quantile coherency in frequency domain.

Yields Squared quantile cross-spectral coherency between yields with two

years maturity and the remaining yield series across five different quantile levels

is plotted in Figure A.43. Values of τ1 on the vertical axis give us the quantile

of the marginal distribution of the two-years series while values of τ2 on the

horizontal axis give us quantiles of the marginal distributions of complemen-

tary series that together with two-years series constitute a pair for which the

quantile coherency is computed.

There are a couple of findings standing out. Firstly, the dependence struc-

ture between yields is not uniform across the joint distribution, which is im-

possible to reveal using ordinary coherency measures. Secondly, most of the

dependency between yield series occurs at the main diagonal, that is in the

parts of the joint distribution where τ1 = τ2. Nevertheless, there are also

spikes in quantile coherency in other parts of the joint distribution, for exam-

ple around frequency 0.6 for τ1 = 0.5, τ2 = 0.95. Thirdly, the dependence in low

frequencies often occurs at tails of the joint distribution of the series. Notably,

between two-year and five-year series we can see for τ1 = 0.95, τ2 = 0.05 that

the dependence in frequencies between 1 month and 1 year is relatively high

despite the two series being otherwise independent in this particular part of

the joint distribution.

We find similar results looking at quantile coherency plots of the first-

differenced series of yields with 25 years maturity in Figure A.44. Notice,

that the degree of dependence, as measured by the squared quantile coherency,

is expectedly increasing with a decreasing distance between respective maturi-

ties of the analysed yields. However, the offset is not constant. For example

looking at the tail of joint distribution where τ1 = τ2 = 0.05, we see a clear

spike in quantile coherency between 25Y series and 10Y series, suggesting that

the dependence is strong in weekly cycles at the tail of the joint distribution

of these two series. The quantile coherency for the other two series show no

significant increase within this frequency range.

Realised Variances of Yields Dependence between realised variances of yields

of interest rate futures was already analysed in Section 5.2. Using classical

coherency measures, the results were mostly flat plots with varying degree

of overall dependence and its volatility. To analyse the relationships between
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volatility of yields within the term structure in more detail, we plot the quantile

coherency for all combinations of realised volatility series in Figures A.45, A.46,

A.47 and A.48.

Analysis of the degree of dependence within volatilities of different parts of

the term structure in various parts of the joint distribution reveals considerably

more detail. Similarly to the case of first-differenced yields, we observe that

all series are most significantly connected at main diagonals where τ1 = τ2,

except for the low-frequency range between 1 month and 1 year, for which the

series are connected across almost all parts of their joint distribution. In most

cases, we observe higher quantile coherency for weekly frequencies in different

parts of the joint distribution, mainly but not exclusively where τ1 = τ2. We

also observe several supplementary peaks in quantile coherency. For example

in Figure A.46 for τ1 = τ2 = 0.25, the coherency is a notably stronger for half-

week cycles. In the same figure, there are also apparent peaks in coherency for

frequency 0.6 between volatility of 5-year and 10-year yields at the tail of the

joint distribution where τ1 = τ2 = 0.05.

Dynamic Nelson-Siegel Factors Quantile coherency plots for first-differenced

series of Dynamic Nelson-Siegel Model factors are available in Figures A.49,

A.50 and A.51. The level factor is generally the least connected one with all

other factors while the slope and curvature factors share more complex de-

pendence structure. Figure A.51 shows that slope and curvature of the term

structure are more connected for those parts of their joint distribution where

τ1 = 1−τ2, ie.: on the diagonal with ”opposite quantiles” of respective marginal

distributions. Moreover, for the first-differenced slope and curvature factors,

there are multiple peaks of quantile coherency in different parts of the fre-

quency range and joint distribution. For example looking at the parts where

τ1 = 0.75, τ2 = 0.5 or τ1 = 0.75, τ2 = 0.25, we document a peak of quan-

tile coherency for frequencies around 0.75. While looking at the tail of the

joint distribution, where τ1 = 0.05, τ2 = 0.95, we see an increase of quantile

coherency at the very end of the high-frequency range. Clearly, quantile cross-

spectral analysis reveals more detail about the general dependence structure

than ordinary cross-spectral measures.

Realised Variances of Dynamic Nelson-Siegel Factors Degree of connect-

edness across frequencies between volatility of level, slope and curvature of

the terms structure is shown in Figures A.52, A.53 and A.54. Generally, the
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volatility of term structure factors is highest on the diagonal where τ1 = τ2

with especially strong week-long cycles appearing at various parts of the joint

distribution of all analysed pairs of time series.

Dynamic Nelson-Siegel Factors and Yields Finally, quantile coherency be-

tween first-differenced DNSM factors and first-differenced series of yields was

computed with results available in Figures A.55, A.56 and A.57. The depen-

dence between the level of the term structure and individual yields and between

the curvature of the term structure and individual yields are the strongest with

highest coherency appearing on the diagonal where τ1 = τ2. The slope factor,

on the other hand shows very little coherency overall with highest value on the

opposite diagonal where τ1 = 1 − τ2. Most of the cross-spectra are flat, with

signs of positive peaks in the tails of the joint distribution.



Chapter 6

Conclusion

Term structures are among the most attractive topics in economic research.

They do not merely reveal market participants’ valuation of money in time,

but they also share a deep connection with monetary policy and risk man-

agement. For these reasons, decades of research have been dedicated to the

understanding of drivers and dependencies within term structures. The most

important directions and approaches to term structure modelling were sum-

marised in Section 3.2.

Advances in computing technology allow us to obtain, store and analyse

huge amount of data recorded with ever-increasing precision. A novelty dataset

of tick-by-tick trade data recorded at an interest rate futures exchange provided

us with an opportunity to construct a high-frequency term structure dataset

with an unprecedented amount of information and detail. Theory behind usage

of tick-by-tick high-frequency data was introduced in Section 3.4, overview of

interest rate futures and construction of term structures was covered in Sections

3.1, 3.2 and 3.7. Finally, the entire Chapter 4 was dedicated to the process of

construction of the dataset suitable for subsequent analyses.

While not entirely new, the (cross-)spectral analysis is not nearly as pop-

ular approach as the classical time-domain analysis of economic time series.

This also applies to empirical term structure literature, despite the advantages

that analysis of time series in frequency domain brings. We find the spectral

decomposition especially suitable for term structures as their complex dynam-

ics is susceptible to cyclical behaviour. The methods of spectral analysis were

introduced in Section 3.5.

General dependence structure within term structures are quite complex as

there are multiple exogenous and endogenous factors affecting its dynamics.
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Quantile cross-spectral analysis was employed in order to analyse information

hidden in the various parts of the joint distribution of the term structure in

frequency domain, revealing remarkable degree of insight about the dynamics

within the term structure. Moreover, combination of large and information-rich

high-frequency dataset and the robust and non-parametric estimation tech-

nique presented a great opportunity to study the term structure with unprece-

dented detail.

The results of the analysis of high-frequency term structure in frequency

domain were presented in Chapter 5. Firstly, the univariate analyses of power

spectra were carried out, introducing spectral density of various parts of the

term structure and revealing cycles in yields and weekly cyclical behaviour of

volatility. Secondly, dependence structures within the term structure were anal-

ysed using classical cross-spectral coherency measures, uncovering more detail

about how are different parts and aspects of the term structure connected in

the frequency domain. Finally, the quantile cross-spectral analysis was em-

ployed, revealing details of the dependence structure in quantiles of the joint

distribution of different parts of term structure.

We found that the dependence structure significantly varies across different

parts of the joint distribution. In some cases, we found stronger dependency

in tails of joint distributions, in other cases we documented dependency across

completely different quantiles of marginal distributions and in most cases, we

found large discrepancies between connectedness of high-frequency and low-

frequency components of the term structure. Most of these findings are sup-

ported by empirical literature about financial time series but would be impos-

sible to reveal using classical cross-spectral analysis.

We believe that the aforementioned findings have important implications

not only for the understanding of the dynamics of the term structure itself,

but also for fields like risk management and monetary policy that often rely

on various assumptions regarding the joint distribution of the term structure.

Since term structure has been found to be highly connected with real economic

activity, we believe that using quantile cross-spectral analysis to study the

dependence between the term structure and indicators of economic activity like

GDP or stock indices across quantiles of their joint distribution is the logical

next step in the frequency-domain analysis of term structures. We also believe

that using this approach could bring new valuable insights applicable in both

research and practice.
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Figures



A. Figures II

Figure A.1: Dynamic Nelson-Siegel Model factor loadings



A. Figures III

Figure A.2: Number of intraday observations



A. Figures IV

Figure A.3: Daily closing prices



A. Figures V

Figure A.4: Yields



A. Figures VI

Figure A.5: DNSM coefficient estimates



A. Figures VII

Figure A.6: Residuals from the estimation of the DNSM



A. Figures VIII

Figure A.7: Fitted vs. observed yield curve



A. Figures IX

Figure A.8: Realised variance of yields



A. Figures X

Figure A.9: Mean and median estimated term structure

Figure A.10: Term structure



A. Figures XI

Figure A.11: Autocorrelation functions of DNSM factors



A. Figures XII

Figure A.12: Realised variance of Dynamic Nelson-Siegel Model fac-
tors



A. Figures XIII

Figure A.13: Spectrum of 2Y yields

Figure A.14: Spectrum of 5Y yields



A. Figures XIV

Figure A.15: Spectrum of 10Y yields

Figure A.16: Spectrum of 25Y yields



A. Figures XV

Figure A.17: Spectrum of first-differenced 2Y yields

Figure A.18: Spectrum of first-differenced 5Y yields



A. Figures XVI

Figure A.19: Spectrum of first-differenced 10Y yields

Figure A.20: Spectrum of first-differenced 25Y yields



A. Figures XVII

Figure A.21: Spectogram of 2Y yields

Figure A.22: Spectogram of 5Y yields



A. Figures XVIII

Figure A.23: Spectogram of 10Y yields

Figure A.24: Spectogram of 25Y yields



A. Figures XIX

Figure A.25: Spectrum of realised variance of 2Y yields

Figure A.26: Spectrum of realised variance of 5Y yields



A. Figures XX

Figure A.27: Spectrum of realised variance of 10Y yields

Figure A.28: Spectrum of realised variance of 25Y yields



A. Figures XXI

Figure A.29: Spectrum of first-differenced Nelson-Siegel level factor

Figure A.30: Spectrum of first-differenced Nelson-Siegel slope factor



A. Figures XXII

Figure A.31: Spectrum of first-differenced Nelson-Siegel curvature
factor

Figure A.32: Spectrum of realised variance of Nelson-Siegel level fac-
tor



A. Figures XXIII

Figure A.33: Spectrum of realised variance of Nelson-Siegel slope fac-
tor

Figure A.34: Spectrum of realised variance of Nelson-Siegel curvature
factor



A. Figures XXIV

Figure A.35: Coherency and phase between 10Y and 25Y first-
differenced yields

Figure A.36: Coherency and phase between 2Y and 25Y first-
differenced yields
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A. Figures XXVII

Figure A.39: Coherency and phase between RVs of DNSM level and
slope

Figure A.40: Coherency and phase between RVs of DNSM level and
curvature



A. Figures XXVIII

Figure A.41: Coherency and phase between RVs of DNSM slope and
curvature
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Appendix B

Tables

2Y Close 5Y Close 10Y Close 25Y Close
Observations 3775.00 3775.00 3775.00 3775.00

Minimum 98.23 96.55 94.00 89.22
Maximum 110.40 124.92 135.25 161.81
1. Quartile 103.38 106.33 108.31 109.11
3. Quartile 109.61 119.19 124.23 130.56

Mean 106.37 112.70 115.77 119.11
Median 107.21 112.53 114.34 115.28

Variance 11.46 53.24 93.35 214.86
Stdev 3.39 7.30 9.66 14.66

Skewness -0.53 -0.10 0.13 0.56
Kurtosis -0.91 -1.00 -0.82 -0.61

Table B.1: Summary statistics of daily closing prices

2Y Yield 5Y Yield 10Y Yield 25Y Yield
Observations 3775.000000 3775.000000 3775.000000 3775.000000

Minimum 0.009694 0.014720 0.029340 0.040674
Maximum 0.070384 0.068381 0.067480 0.065753
1. Quartile 0.013322 0.024301 0.038122 0.049645
3. Quartile 0.043407 0.047959 0.052458 0.057208

Mean 0.029048 0.036350 0.045872 0.053826
Median 0.024586 0.036142 0.046770 0.054884

Variance 0.000276 0.000183 0.000076 0.000026
Stdev 0.016604 0.013525 0.008735 0.005071

Skewness 0.592734 0.218717 0.036747 -0.352482
Kurtosis -0.803402 -0.897020 -0.726642 -0.701966

Table B.2: Summary statistics of yields



B. Tables XLVI

Series ADF Stat P-Value
1 Beta2 (curvature) -2.71 0.28
2 Beta1 (slope) -2.09 0.54
3 Beta0 (level) -3.04 0.14

Table B.3: Augmented Dickey-Fuller Test of Dynamic Nelson-Siegel
Model factors (alternative: stationary)

Series ADF Stat P-Value
1 25Y Yield -3.95 0.01
2 10Y Yield -3.32 0.07
3 5Y Yield -2.42 0.40
4 2Y Yield -1.83 0.65

Table B.4: Augmented Dickey-Fuller Test of yields (alternative: sta-
tionary)

5Y
Y
ie
ld

D
iff

10
Y

Y
ie
ld

D
iff

25
Y

Y
ie
ld

D
iff

Short-run 2Y Yield Diff 0.8260742 0.6389234 0.3794293
5Y Yield Diff - 0.9338904 0.7342682
10Y Yield Diff - - 0.8811431

Medium-run 2Y Yield Diff 0.8182944 0.6186933 0.3519748
5Y Yield Diff - 0.9233498 0.7119285
10Y Yield Diff - - 0.8746801

Long-run 2Y Yield Diff 0.8243349 0.6317544 0.4055362
5Y Yield Diff - 0.9173409 0.7402397
10Y Yield Diff - - 0.8944193

Table B.5: Average coherency of first-differences of yields by fre-
quency range
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