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Abstract 

The innate and adaptive immune processes are modulated by hormones including 

glucocorticoids and by microbiota. The exact mechanisms underlying the microbial and 

hormonal contributions to this control are not completely clear.  

Present study is therefore focused to crosstalk between microbiota and de novo biogenesis or 

local regeneration of glucocorticoids. In particular, the study analysed the effect of commensal 

microbiota on expression of genes encoding steroidogenic enzymes (Star, Cyp11a1, Hsd3b1, 

Cyp21a1, Cyp11b1) and regeneration of glucocorticoids (Hsd11b1) in adrenal glands, colon, 

spleen and mesenteric lymph nodes using conventional and germ-free mice. The expression of 

all 5 components of steroidogenesis was identified only in the adrenal gland and colon, whereas 

the lymphoid organs expressed predominantly Star, Cyp11a1 and Hsd3b1 indicating the ability 

to produce only progesterone but not corticosterone. Microbiota decreased the expression of 

Star in all studied tissues but the expression of other genes was insensitive to microbiota or did 

not respond homogenously depending on the tissue and gene.  

Hsd11b1 expression was upregulated by microbiota in the spleen but not in other tissues. 

Similarly, the in vitro treatment of immune cells isolated from mesenteric lymph nodes by 

microbial structures activated Toll-like receptor pathway but didn't affect the expression of 

Hsd11b1. In summary, microbiota seems to influence the biogenesis of glucocorticoids at the 

level of Star, the rate limiting link of steroidogenesis, whereas its effect of regeneration of 

glucocorticoids is less obvious.  
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Abstrakt 

Vrozené i adaptivní imunitní reakce jsou modulovány hormonálně, mimo jiné pomocí 

glukokortikoidů, a působením mikrobiomu, nicméně přesný mechanismus není zcela objasněn. 

Tato studie se zabývá vlivem mikrobiomu na de novo biogenezi a lokální regeneraci 

glukokortikoidů. Konkrétním předmětem analýzy je vliv komenzálů na expresi genů kódujících 

steroidogenní enzymy (Star, Cyp11a1, Hsd3b1, Cyp21a1, Cyp11b1) a enzym zajišťující 

regeneraci glukokortikoidů (Hsd11b1) v nadledvinách, tračníku, slezině  

a mesenteriálních lymfatických uzlinách. Studie byla provedena na konvenčních  

a bezmikrobních myších. 

Exprese všech 5 komponent de novo steroidogeneze byla pozorována pouze v nadledvinách 

a tračníku. V lymfatických orgánech byla pozorována především exprese Star, Cyp11a1  

a Hsd3b1, naznačující pouze schopnost produkce progesteronu, nikoli jeho další konverzi na 

kortikosteron. Vlivem přítomného mikrobiomu došlo k poklesu exprese Star ve všech 

studovaných tkáních, exprese ostatních enzymů byla ovlivněna tkáňově specificky či ovlivněna 

nebyla.  

Konvenční myši vykazovaly zvýšenou expresi Hsd11b1 ve slezině, v ostatních orgánech 

exprese ovlivněna nebyla. Exprese Hsd11b1 nebyla ovlivněna ani in vitro stimulací Toll-like 

receptorů v imunitních buňkách izolovaných z mesenteriálních lymfatických uzlin.  

Z výsledků lze tedy předpokládat vliv mikrobiomu na biogenezi glukokortikoidů na úrovni 

exprese Star, kódujícího limitní enzym steroidogeneze, nicméně vliv na další kroky de novo 

steroidogeneze a lokální regeneraci je méně zřejmý. 
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1. Introduction 

Every multicellular organism living in natural conditions continually communicates with 

omnipresent microorganisms. Diverse microbial strains inhabit all barriers separating inner 

environment of the organism from surroundings, while threatening host's homeostasis. 

Principles of innate and adaptive immunity consist of the ability to recognize own healthy cells 

and quickly and effectively destruct foreign or own unfunctional cells. However, an 

uncontrolled immune reaction can lead to a life-threatening condition, e.g. an anaphylactic 

shock. Thus, every immune reaction in healthy individuals is being controlled by a plethora of 

regulatory mechanisms. These include controlling of inflammation by steroid hormones.  

A group of steroid hormones can be divided into 5 subgroups, glucocorticoids (GCs), 

mineralocorticoids (MCs), androgens, estrogens and progesterone. Steroid hormones are 

produced during a process called steroidogenesis. Systemically are steroid hormones produced 

in adrenal (GCs, MCs, androgens) and gonadal (androgens, estrogens, progesterone) glands. 

Besides the systemic steroidogenesis has been steroidogenesis recently observed also in other 

tissues including epithelial barriers, such as intestine, skin or lungs; immune and visceral 

organs, brain.  
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2. Glucocorticoids and their physiological role 

GCs, MCs, androgens, estrogens and progesterone form a group of steroid hormones. MCs 

serve to maintain an electrolyte and fluid homeostasis. Androgens and estrogens function 

primarily as sex hormones. Progesterone act as a sex hormone, but also as a precursor of other 

steroid hormones. Major functions of GCs consist in the regulation of developmental, metabolic 

and immune processes and their relation to a stress reaction.  

The main murine and rat GC is corticosterone, while in humans it is cortisol. Both molecules 

can be seen in the Fig. 1. In humans, corticosterone is utilized primarily for the synthesis of the 

mineralocorticoid aldosterone. Nevertheless, a small level of corticosterone also occurs in 

human plasma and a little higher in a cerebrospinal fluid (CSF). Higher level in CSF than in 

plasma may point to a regulatory function during a stress reaction (Raubenheimer et al. 2006). 

 

 

Figure 1: Two major mammalian glucocorticoids. Taken from Baker et al. 2013. 

Due to a hydrophobic character, the GCs penetrate easily through membranes. On the other 

hand, the hydrophobicity complicates transport in the bloodstream. Therefore, the majority of 

GCs is transported in the bloodstream bound to corticosteroid binding globulin (CBG).  

 Regulation of a glucocorticoid response  

GCs execute regulatory functions in almost every tissue. Due to a higher affinity, GCs 

preferentially interact with mineralocorticoid receptors (MRs) than with glucocorticoid 

receptors (GRs, NR3C1). It is assumed, that in a resting state, GCs bind only MRs, while during 

a stress reaction, when the level of GCs is high, both types of receptors are occupied (Reul  

& Kloet 1985).  

In a resting state, the majority of cytosolic GRs is bound to chaperons, particularly heat shock 

proteins (HSPs). When linkage between GC and their receptors is formed, GR-HSP complex 
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dissociates. After that, the newly formed GC-GR complex moves from cytosol into the nucleus. 

The GC-GR complex can translocate into the nucleus either as monomer or homodimmer. The 

translocation into the nucleus regulates the expression of many proteins. Small amount of GR 

succeeds in a transition into the nucleus without GC. Besides that, incessant movements of 

molecules cause repetitive dissociations and reassemblies. These and analogous phenomena 

enable the presence of GR without GC in the nucleus and thus GC-independent regulation of 

expression (Fig. 2). 

There are four possible mechanisms how GRs regulate gene expression. GRs bind to  

a specific promoter region of target gene on a deoxyribonucleic acid (DNA). Promoters of 

positively regulated genes or regulatory regions contain glucocorticoid response element 

(GRE), while negatively regulated genes are repressed via negative GRE (nGRE). Direct 

binding of GRs to GREs or nGREs leads to a phenomenon called a cis-regulation (cis-activation 

or cis-repression) of expression (Fig. 2). GR mostly interacts with transcription regulatory sites 

(John et al. 2011). In that case, activator protein 1 (AP1) can probably help remodelling  

a chromatin to make an accessible place for GR (Biddie et al. 2012). Cis-activation operates for 

example at the genes encoding growth arrest and DNA-damage-inducible protein (GADD45G) 

and krüppel-like factor 4 (KLF4), cis-repression at gene of inflammatory cytokine interleukin-

1β (IL-1β) (Dostert & Heinzel 2004; Yang et al. 2017). GRs can also affect expression 

indirectly or in cooperation with other transcription factors via trans-regulation (trans-

activation or trans-repression). Trans-regulation is provided by protein-protein interactions 

with other transcription factors (nuclear factor kappa-light-chain-enhancer of activated B cells 

(NFκB), AP1 and signal transducers and activators of transcription 3, 5 and 6 (STAT3, STAT5 

and STAT6), whose function is facilitated or attenuated by binding of GR.  

Group of trans-activated genes include the genes coding proteins participating in anti-

inflammatory processes, like tumour necrosis factor α (TNFα)-induced protein 3 (TNFAIP3) 

or nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα), 

while example of trans-repressed genes represent pro-inflammatory cytokines (Scheinman et 

al. 1995; Oh et al. 2017).  
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Figure 2: GC or other steroid hormones impact cells on severe levels. Direct interaction of GR 
GRE and nGRE motifs is also known as cis-regulation. Selective glucocorticoid receptor modulators 
(SEGRMs) are nonsteroidal molecules, which are able to interact with GR. Reactive oxygen and 
nitrogen species (RONS) and cytokines are able to trigger GC-independent effects of GR. Taken from 
Scheschowitsch et al. 2017. Abbreviations: GC – glucocorticoid, GR – glucocorticoid receptor, GRE 
– glucocorticoid response element, RONS – reactive oxygen and nitrogen species, SEGRM - selective 
glucocorticoid receptor modulator, TF – transcription factor 

Some isoforms of GRs also execute non-genomic effects. In this case, GR function as  

a receptor trigerring signaling cascades in a cell. In most cases, membraneous types are 

responsible for non-genomic effects (Fig. 2).   

All isoforms of GR origin from 1 gene constituted from 9 exons (Fig. 3). Alternative splicing 

and initiation of a translation enable expression of several variants. After translation, individual 

isoforms can be modified by phosphorylation, binding of small ubiquitine-like molecule 

(SUMO, SUMOylation) or ubiquitination, determining the localization of GRs in a cell and the 

GR lifespan.  
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The majority of GR is actually localized in cytosol, however, there are also evidences for 

nuclear and membraneous localization (Hollenberg et al. 1985; Pérez et al. 2013). Distinct 

representation of GR isoforms offers a possible explanation for differences in the sensitivity 

and reactivity of various tissues to GC (Oakley & Cidlowski 2011). Polymorphism in Nr3c1 

gene is also partly responsible for variations in responses to GC treatment, which can lead to  

a GC dependence or resistance (Krupoves et al. 2011). 

 

Figure 3: A plethora of GR isoforms is generated from 1 gene. Taken from Lu & Cidlowski 
2006. Abbreviations: hGR – human glucocorticoid receptor, mRNA – messenger ribonucleic acid 
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3. Adrenal glands as a systemic source of glucocorticoids  

Systemic production of GCs is localized into the cortex of adrenal glands, particularly into 

zona fasciculata and reticularis. Zona reticularis produces also androgens, zona glomerulosa 

MCs. Major signal triggering production and secretion of GCs is adrenocorticotropic hormone 

(ACTH), which binds to to melanocortine receptor 2 (MCR2). ACTH is released from the 

anterior pituitary during a stress reaction activating hypothalamic-pituitary-adrenal (HPA) axis.  

However, adrenal glands also express receptors recognising microbial structures (for detail 

see chapter 5) indicating a possible direct immune activation of adrenal glands. Lack of these 

receptors affect production of GCs resulting in altered systemic immune reaction (Bornstein et 

al. 2004; Zacharowski et al. 2006).  

 De novo steroidogenesis 

The biosynthetic pathway of steroid hormones is known as a steroidogenesis. The whole 

steroidogenesis contains several reaction steps provided by distinct enzymes (Fig. 4). All 

enzymes are members of a cytochrome P450 or dehydrogenase families.  

Although, individual steroid hormones differ in a plethora of features, all have a common 

precursor – cholesterol.  

 Cholesterol – a precursor of steroid hormones 

Cholesterol can be obtained from several possible sources. First one is an uptake from 

circulating low- or high-density lipoprotein particles (LDL, HDL). Cells can also use own lipid 

droplets containing cholesterol esters or utilize cholesterol stored in membranes. Finally, 

cholesterol can be de novo synthetized in endoplasmic reticulum (Balasubramaniam et al. 1977; 

Rainey et al. 1986; Lange 1991; Kraemer et al. 2007).  

Next steps of steroidogenesis are localized into the endoplasmic reticulum or the inner 

membrane of mitochondria.  

Transport of cholesterol through cytosol, but also membranes, requires auxiliary 

mechanisms. Transcellularly is cholesterol transported in vesicles, lipid droplets or bound to 

transport proteins  (Londos et al. 1995; Heino et al. 2000).  

Transporting cholesterol from the cytosol into the mitochondrion is provided by intermediate 

filaments, mostly by steroidogenic acute regulatory protein (StAR), but also e.g. vimentin (Shen 

et al. 2017). It is a crucial and a rate limiting step of a whole process. Correct delivery of StAR 

protein to mitochondrion is ensured by N-terminus mitochondrial targeting sequence. However, 

although the mitochondrial targeting sequence is localized on the N-terminus, its deletion 

doesn't affect transport a lot. Surprisingly is steroidogenesis more affected by mutations of the 
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C-terminus (Privalle et al. 1983; Clark et al. 1994; Arakane et al. 1996). Major transcription 

factor of StAR is a cyclic adenosine monophosphate response element (CRE), interacting with 

CRE binding sequence (CREB) on a DNA molecule.  

 Steroidogenic enzymes 

Transporting cholesterol to the inner mitochondrial membrane leads to a next step (Fig. 4), 

which is provided by a cytochrome side-chain cleavage enzymatic complex (cytochrome 

P450scc, CYP11A1) localised in the inner mitochondrial membrane. Cytochrome P450scc 

includes a flavoprotein (reduced nicotinamide adenine dinucleotide-adrenodoxin reductase 

(NADH-adrenodoxin reductase)), a ferredox (adrenodoxin) and a cytochrome P450 (Müller et 

al. 2001). CYP11A1 reaction consists of 3 parts. C20 and C22 of the cholesterol molecule are 

being hydroxylated. In the first reaction 22R-hydroxycholesterol arises, second reaction 

produces 20α22R-dihydrocholesterol. After hydroxylation of a cholesterol molecule, a bond 

between C20 and C22 is being cleaved.  Dissociation of 6C long side chain (isocaproid 

aldehyde) produces a 26C product - pregnenolone. After the StAR protein reaction, this is  

a second rate limiting step. 

Human pregnenolone can be hydroxylated at C17 by 17α-hydroxylase (HSD17A, CYP17) 

(Fig. 4). The hydroxylation of C17 results in 17α-hydroxypregnenolone. CYP17 than continue 

with a lyase reaction producing dehydroepiandrosterone (DHEA). The lyase activity is 

downregulated in zona fasciculata, but not in zona reticularis of adrenal cortex.  

Pregnenolone and 17-hydroxypregnenolone are then converted by 3β-hydroxysteroid 

dehydrogenase (HSD3B1) to progesterone and 17-hydroxyprogesterone (Fig. 4).  

The enzyme 21-hydroxylase (HSD21A1, CYP21) then produces 11-deoxycorticosterone or 

11-deoxycortisol (Fig. 4), which are final precursors for corticosterone and cortisol, 

respectively. 

The last hydroxylation is mediated by the first isoform of 11β-hydroxylase (CYP11B1)  

(Fig. 4). The second isoform of CYP11B, the so-called aldosterone synthase, provides a 

conversion of corticosterone to aldosterone.  
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Figure 4: Scheme of steroidogenetic pathway leading to production of GCs and MCs. Taken 
from Davies & Mackenzie 2003. Abbreviations: 3βHSD - 3β-hydroxylase, CYP11A – cytochrome 
side-chain cleavage enzymatic complex, CYP11B1 and 2 -  11β-hydroxylase 1 and 2, CYP17 - 17α-
hydroxylase, CYP21 - 21-hydroxylase 

 Regulation of de novo steroidogenesis 

The signalling pathway leading to a systemic steroidogenesis is initiated by binding ACTH 

to MCR2, coupled with G-proteins activating adenylyl cyclase (AC). Activated AC than 

produces cyclic adenosine monophosphate (cAMP). Sufficient amount of cAMP triggers cAMP 

dependent pathways. The main signalling process leading to the expression of steroidogenic 

enzymes is a pathway via protein kinase A (PKA) resulting in phosphorylation and thus an 

activation of many proteins, including transcription factors of steroidogenic enzymes (Æsøy et 

al. 2002; Zhou et al. 2016). Another mechanism involved in the expression of steroidogenic 

enzymes in adrenals represents the protein kinase C (PKC) pathway, which  reacts to 

angiotensin II and adenosine (Bird et al. 1996; Chen et al. 2010). In human, the PKC pathway 

seems to have distinguishable effects depending on a presence of other substances. The 

presence of angiotensin II results in the increased expression of CYP17 and HSD3B1, 

supporting the production of both, GC and aldosterone. However, a combination with forskolin 
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(activating AC), angiotensin II down-regulates the expression of CYP17, while still up-

regulates the expression of HSD3B1, which probably supports the production of aldosterone to 

the detriment of cortisol (Bird et al. 1996). Angiotensin II has been also shown to activate the 

extracellular signal-regulated kinase (ERK) pathway, which is also involved in regulation of 

steroidogenesis. The ERK pathway can be triggered by the Janus kinase (JAK) pathway (Li et 

al. 2003).  

In adrenals and other tissues is expression of steroidogenic enzymes, MCR2 and other 

proteins involved in a regulation of steroidogenesis, under the control of several transcription 

factors. One of the most important is CREB, which is localized in the nucleus, where it can be 

activated trough phosphorylation e.g. by PKA (Parker et al. 1996). 

Another important transcription factor is steroidogenic factor 1 (SF1). SF1 is expressed in 

canonical steroidogenic organs, such as adrenal and gonadal glands and placenta. In a small 

amount, there is also expressed its second isoform, liver receptor homologue 1 (SF2, LRH1), 

in the adrenals. However, SF1 is irreplaceable with LRH1 in adrenal development (Zubair et 

al. 2006). SF1 probably interacts with other transcription factors including CREB, proteins from 

GATA family and CCAAT/enhancer binding proteins. Some evidences support the theory, that 

SF1 expression is under the control of GATA (Tevosian et al. 2015).  
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4. Extraadrenal sources of glucocorticoids 

Despite adrenal glands, the biogenesis of corticosteroids has also been observed in other 

tissues like skin (Tiganescu et al. 2014;  Vukelic et al. 2011), intestine (Noti et al. 2010; Wang 

et al. 2013), lungs (Hostettler et al. 2011; Simard et al. 2010), brain (Mackenzie et al. 2000; Ye 

et al. 2008), heart (Silvestre et al. 1998), thymus (Qiao et al. 2008). Though, extraadrenal 

sources of corticosteroids exist, they can never fully replace the adrenal one. The importance 

of systemic steroidogenesis can be proved in adrenalectomized mice, which are not able to resist 

inflammations (Cima et al. 2004). A low level of GCs in adrenalectomized individuals also 

indicate that a local steroidogenesis may not be mediated by systemic ACTH, even if it cannot 

be excluded that local ACTH system operates in some tissues, particularly in skin (Slominski 

et al. 1996). ACTH-independence is demonstrated by the absence of its receptors in the intestine 

(Mueller et al. 2007). Conversely, regulation of skin steroidogenesis shares some similarities 

with HPA axis (Slominski et al. 1996; Lytinas et al. 2003). Expression of POMC and production 

of ACTH have been observed in keratinocytes and melanocytes and increased after CRH 

treatment (Rousseau et al. 2008). 

 De novo steroidogenesis and its regulation in the intestine and lymphatic organs 

 Intestine 

Intestinal tract represents a large surface containing diverse microbiome. Data from the 

Metagenomics of the Human Intestinal Tract indicates that human gut is able to host up to ten 

trillion microbial cells (www.metahit.eu). Thus, efficient, but well regulated, intestinal immune 

system is a necessity. Several cell types have been shown to produce GCs, probably to control 

immune functions. Simultaneously has been proven, that microbiome affects expression of 

some steroidogenic enzymes in intestine (Mukherji et al. 2013). 

The expression of steroidogenic enzymes has been observed particularly in the epithelial cells 

from the crypts of small intestine (Cima et al. 2004; Mueller et al. 2007; Mukherji et al. 2013). 

Besides that, expression of steroidogenic enzymes has been observed in T-lymphocytes isolated 

from the small intestine (Cima et al. 2004) and in macrophages and T-lymphocytes from the 

large intestine (Noti et al. 2010). Expression of colonic epithelial cells is not clear, in some 

studies was detected (Noti et al. 2010), when is others not (Mukherji et al. 2013). 

Intestinal isoform of steroidogenic factor slightly differs from the adrenals' one. There hasn't 

been observed any expression of Sf1 in the intestine, but Lrh1. In adrenals, PKA pathway leads 

to an increase of Sf1 expression, whereas intestinal LRH1 only vary between active and inactive 

state (Lee et al. 2006; Kulcenty et al. 2015). Dependence of intestinal inflammations relevancy 
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can be demonstrated by using Lrh1 +/+ and Lrh1+/- mice, when Lrh1 +/+ show milder course of 

inflammation with faster regenerative ability. The difference between Lrh1 +/+ and Lrh1+/- mice 

consists of increased expression of Il-1β and Il-6 in Lrh1+/- individuals simultaneously with 

decreased expression of Cyp11a1 and Cyp11b1. A similar expression profile can be measured 

on patients with IBD. The level of Tnfα is also increased in human (Coste et al. 2007).  

The activation of LRH1 requires phosphorylation of a hinge domain provided by ERK, which 

facilitates tethering of the hinge, ligand binding and DNA binding domains. ERK also activates 

SF1 by phosphorylation of its hinge domain, though targeted serine residues of LRH1 does not 

correspond to those of SF1. The ERK function can be triggered by PKC as a result of phorbol 

myristate (PMA) treatment (Lee et al. 2006). The PMA-mediated expression of steroidogenic 

enzymes have been observed in the intestine, but not the adrenals (Mueller et al. 2007). In 

contrast, SUMOylation inhibits activity of LRH1.  

The intestinal epithelium displays also expression of proteins of CRH/ACTH regulatory 

pathway (Mahajan et al. 2014) but the local, intestinal, regulation of steroidogenic enzymes by 

ACTH has not been ascertained in isolated enterocytes. In contrast, the effect of cAMP-

dependent PKA pathway influenced the enzymes of intestinal steroidogenesis but its effect has 

been opposite in the intestine compared to adrenal glands. In epithelial cells PKA pathway 

inhibited the expression of steroidogenic enzymes whereas it is associated with stimulation in 

adrenal glands (Mueller et al. 2007). It may reflect distinct regulation of transcription factors 

SF1 and LHR1. 

It has been shown, that the expression of some steroidogenic enzymes in ileum is under the 

control of clock genes, whose expression is modulated by microbiome (Mukherji et al. 2013). 

 Lymphatic organs and immune cells 

Lymphatic organs can be divided into two groups, primary and secondary. Primary lymphatic 

organs are responsible for differentiation and maturation of immune cells and include thymus 

and bone marrow. The thymus produces T-lymphocytes, while bone marrow B-lymphocytes 

and innate immune cells. Mature immune cells move into secondary lymphatic organs, spleen, 

and mucosa-associated lymphatic tissue (MALT) including lymphatic organs surrounding gut 

such as mesenteric lymph nodes (MLNs), Peyer's plates, caecum and intraepithelial immune 

cells, collectively called as gut associated lymphoid tissue (GALT). Centralisation in secondary 

lymphatic organs enables fast communication between immune cells and thus also efficient 

reaction to antigens followed by initiation of inflammation (Rescigno et al. 2001).  
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Some studies indicate, that GCs participates on selection, differentiation and apoptosis of  

T-lymphocytes and thus also on development of thymus (Brandt et al. 2007; Mittelstadt et al. 

2011). Increasing expression of steroidogenic enzymes together with age supports theories 

suggesting involvement of GC in apoptosis of T-lymphocytes and age-related involution of 

thymus. Conversely to that, the steroidogenetic activity in thymic epithelial stromal cells 

decreases, which indicates distinct regulatory mechanisms between these two cell types (Qiao 

et al. 2008; Taves et al. 2016).  

Spleen is the largest mammalian lymphatic organ. It can be divided into two parts, red and 

white pulp. Both pulps are amply vascularised. White pulp serves, analogically to lymphatic 

nodes, as a lymphatic tissue, which hosts B- and T-lymphocytes. Red pulp removes and 

destructs abraded or nonfunctional erythrocytes and provides for the lymphocytes an access 

from white pulp to blood and vice versa. Between the two pulps is an area containing B-cells, 

macrophages and dendritic cells (DC). T-cells represents a proven source of GC in the spleen 

(Mahata et al. 2014;  Li et al. 2015). Expression of some steroidogenic enzymes have been 

found also in endothelial cells (Morohashi et al. 1999). 

Expression of SF1 has been detected also in splenic endothelial cells, although it probably 

does not control the expression of steroidogenic enzymes (Morohashi et al. 1999). Nevertheless, 

in splenic endothelial cells act SF1 as a crucial transcription factor during a development, but 

the expression continues also in adult individuals. Mutation in Sf1 is related to maldevelopment 

and altered architecture of the spleen in mouse and complete asplenia in human (Zangen et al. 

2014; Katoh-Fukui et al. 2017; Morohashi et al. 2017).  

Th2 lymphocytes from MLN and spleen of mice infected with parasite have been observed 

to upregulate expression of proteins involved in synthesis and transport of cholesterol and the 

expression of Cyp11a1 coding a protein converting cholesterol into pregnenolone. None of 

mRNA of other steroidogenetic enzymes was detectable during that study. However, 

coexpression of Cyp11a1 and mRNAs of anti-inflammatory cytokines and subsequent 

suppression of Cyp11a1 and cytokine transcription by neutralizing antibody led authors to the 

presumption that pregnenolone produced in CYP11A1 reaction also acts as an  

anti-inflammatory agent. The assumption can be supported by the fact, that pregnenolone also 

inhibited proliferation of Th, Tc and B-lymphocytes (Mahata et al. 2014). 

 Local regeneration and its regulation 

Considerable effect of GC on every tissue, including the brain, requires a precise regulation, 

which can't be ensured only by steroidogenesis as an only one regulatory mechanism. It has 
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been shown, that GC can circulate in the bloodstream also as biologically inactive forms. 

Human main active glucocorticoid is cortisol, which can be converted to inactive cortisone, its 

11-oxoderivate. Similarly, corticosterone can be oxygenated to 11-deoxycorticosterone. 

Biologically inactive forms interact with neither GR nor MR due to their low binding affinity 

to receptors. The ratio between biologically active and inactive form varies during the day and 

between tissues (Morineau et al. 1997). The conversion of active GC to inactive one and vice 

versa is provided by 2 isoforms of 11β-hydroxysteroid dehydrogenase (11βHSD, HSD11B) 

(Fig. 5).  

 

Figure 5: Local metabolism of glucocorticoids by two isoforms of HSD11B. As acceptors/donors 
of electrones are used NADP+(H) and NADH. Taken from Tomlinson & Stewart 2001. Abbreviations: 
NAD+ - nicotinamide adenine dinucleotide, NADP(H) - nicotinamide adenine dinucleotide phosphate 

HSD11B1 utilizes NADP+(H) as a cofactor and is able to work in both directions depending 

on redox potentials of NADP+/NADPH regulated by hexose-6-phosphate dehydrogenase 

(Lavery et al. 2006). 

HSD11B1 is expressed e.g. in heart (Mazancová et al. 2005; Small et al. 2005), vascular 

smooth muscle (Brem et al. 1995), adipose tissue (Mariniello et al. 2006), gonads (Leckie et al. 

1998; Yong et al. 2002), spleen (Moore et al. 2000) bone (Cooper et al. 2018) and skin 

(Tiganescu et al. 2011).  

Conversely to HSD11B1, which is able to catalyse oxidation and reduction, HSD11B2 works 

only as dehydrogenase, which oxidases corticosterone and cortisol to their 11-oxo derivates and 

thus decreases in the cell the glucocorticoid signal.  

HSD11B2 is typical for the epithelia and placenta. It is assumed, that HSD11B2 is often 

situated to the target tissues of MCs. The colocalization of HSD11B2 and MR has been 

demonstrated in several epithelial tissues, e.g. in the intestine or kidney (Hirasava et al. 1997).  

Because of a higher affinity and plasma higher level of GC than MC, MR would primarily 
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interact with GC. It means to keep ion and water homeostasis it is desirable for the MR to bind 

aldosterone and not GC (Gomez-Sanchez & Gomez-sanchez 2015).  

 Intestine 

Levels of HSD11Bs differ along the intestine. The activity of HSD11B2 is generally high in 

tissues expressing MR, such as colon, to maintain ion and water homeostasis (Rubis et al. 2006). 

The expression of Hsd11b1 is detectable along the small intestine and rapidly rises after 

immune stimulation, e.g. with anti-CD3. The upregulated expression affects surroundings 

immune cells (Cima et al. 2004). 

However, differences have been observed also between individual cell types. The expression 

of colonic Hsd11b1 is localized into intestinal immune cells (macrophages, lymphocytes, DCs 

and fibroblasts), but has not been observed in the epithelium (Whorwood et al. 1994;  

Vagnerová et al. 2005). Conversely, the expression of Hsd11b2 has been observed only in 

epithelial cells, not in immune cells or cells of lamina propria. Interestingly, Hsd11b2 is 

expressed more likely in the matured cells of intestinal surfaces, than in crypts (Whorwood et 

al. 1994; Pácha et al. 2002). The occurrence contrasts with enzymes of de novo steroidogenesis, 

which are mostly expressed in the epithelial crypts. 

Levels of Hsd11b mRNA fluctuate during inflammations. It is assumed, that maintaining 

levels of active and inactive forms of GCs provides an effective mechanism to control adequate 

inflammatory reaction (Žbánková et al. 2007). 

 Lymphatic organs and immune cells 

HSD11B1 seems to affect viability of immune cells and a development and function of 

lymphatic organs. As mentioned above, GC probably participates in development and 

involution of the thymus. The ability of Th and Tc cells to express Hsd11b1 indicates, that  

T-lymphocytes are able to control their own viability and regulate the process of selection. 

Conversely, presence of inactive GCs supports the production of antiapoptotic factors and 

receptor of interleukin 7 (IL-7), which supports proliferation. Thus, presence of inactive GCs 

seems to support proliferation and survival of T-lymphocytes (Zhang et al. 2005). This 

hypothesis is supported by results of study performed on young and adult mice proving  

age-dependent increase of de novo steroidogenesis, but also the regeneration (Qiao et al. 2008). 

However, in some cases can locally produced or regenerated GCs facilitate immune activation 

of T-cells, as seen after exposure to anti-CD3. Authors assume, that the effect depends on 

whether the activation is provided indirectly with help of APCs or directly via interaction of. 
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The activation via APC is presumed to be inhibited by GCs, while direct activation of 

lymphocytes with antibodies is intensified by GCs (Cima et al. 2004).  

However, local regeneration of GCs also critically affects differentiation and maturation of 

innate immune cells, particularly monocytes. It seems, that human monocytes during 

physiological conditions don't express any isoform of Hsd11b. However, the expression rises 

during differentiation into macrophages, probably as a reaction to Th2 cytokines IL-4 and IL13. 

It is possible, that increased local regeneration of GCs serves as a self-control mechanism 

preventing excessive production of pro-inflammatory cytokines by macrophages (Thieringer et 

al. 2001). 

Hsd11b1 is abundantly expressed also in spleen and MLNs and other components of GALT. 

The local regeneration seems to be a preferred mechanism used to generate GCs in lymph 

organs, rather than de novo steroidogenesis. The probable reason is a requirement of mechanism 

dynamically reacting to inflammatory reaction (Taves et al. 2016). The idea is supported by 

experimentally induced chronic inflammation during which expression of Hsd11b1 is 

upregulated in secondary lymphatic organs (Ergang et al. 2011).  

More detailed examination of MLN showed, that during chronic inflammation rises the 

expression of Hsd11b1 only in the MLN cortex, but not in paracortex or in medulla (Ergang et 

al. 2017). The cortex hosts primarily B-cells supported by stromal cells, though DCs, epithelial 

cells and a smaller fraction of T-cells are also presented (Willard-Mack 2006). However, the 

fact, that the expression rose only in the cortex, but not in other anatomical compartments of 

MLN, led to the assumption that upregulation of Hsd11b1 by inflammation does no occur DCs 

and stromal cells (Ergang et al. 2017). Although, in another study, was the expression after 

activation with CD-3 observed in contrary only in stromal cells of immune organs, not in any 

immune cell type (Hennebold et al. 1996). 

It has also been shown, that local regeneration support proliferation and survival of both,  

B- and T-cells via induction of antiapoptotic factors and receptors for interleukin 7 (IL-7), 

which is known to support proliferation (Zhang et al. 2005). 

5. Implications of GCs and gut microbiota for immune functions 

The immune system and systemic chronic inflammation are strongly shaped by hormonal 

milieu, especially glucocorticoids, and by gut microbiota. An immunosuppressive effect of GCs 

is used to treat skin, gut or lung inflammations like eczema, inflammatory bowel disease, 

asthma. The effect of GC on immune function is abundantly used in medicine since Hench's 

first observation of therapeutic effects of GC on rheumatoid arthritis (Hench et al. 1949). 
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Similarly, the gut microbiota and its metabolites have been shown to influence immune 

functions directly via bacterial translocation across the intestinal barrier or indirectly via 

interaction of bacteria or their metabolites with specific receptors localized on the cells of GI 

tract. 

 Intestinal microbiome 

Intestinal and other surfaces are being settled by microbiota since the moment of passing 

the birth canal. Early settlement is crucial for morphological, but also behavioural development. 

Infants, which were born by caesarean section have later less fraction of commensals 

(bifidobacterial, Bacteroides fragilis) in the gut that vaginally delivered ones. Conversely, 

pathogenic strains (Clostridium difficile) tend to be increased after caesarean section (Penders 

et al. 2008).  

Commensals can be beneficial to support digestion, production of vitamins and of 

substances toxic for pathogens, but also to protect epithelial barriers from lesion and increase 

of permeability, due to competition for space and resources with pathogens and from inadequate 

immune response to pathogens (Rakoff-Nahoum et al. 2004; O´Mahony et al. 2008; Stefka et 

al. 2014).  On the other hand, pathogens danger is based on an infection, invading trough an 

epithelial barrier or a production of unknown or toxic substances.  

Epithelial surfaces protect inner environment of organism as a mechanical barrier. Epithelial 

cells are being closely connected by tight junctions (TJ), which confine massive paracellular 

flow of liquid to the lumen, but also a free intrusion of microorganisms into the body. Thus, 

microbial structures can be recognised by receptors of immune cells belonging to GALT (Cebra 

et al. 1998). In severe cases microorganisms get into lymph and blood and interact with immune 

cells of peritoneal lymphatic organs, such as splenocytes (Zarember & Godowski 2002). 

Microbial structures can be also carried to immune organs by intestinal DCs after phagocytosis 

of microbes (Rescigno et al. 2001; Brandl et al. 2007). 

Perforations of the barrier resulting in bacteraemia leading to extensive inner inflammations 

typically occur in Crohn's disease. A potential disruptor of TJs causing an protrusions of 

epithelial barrier during Crohn's disease is assumed to be the pro-inflammatory cytokine TNFα 

(Ma et al. 2004).  

Crohn's disease has been traditionally treated by GCs. However, the treatment is not always 

effective, in some cases develops the resistance to GCs (Canani et al. 2006; Krupoves et al. 

2011). Some studies have shown, that syndromes of inflammatory bowel diseases such as 
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Crohn's disease and ulcerative colitis can be more successfully treated using commensals 

compared to GCs' treatment (Sartor 2004; Canani et al. 2006; Ait-Belgnaoui et al. 2012).  

Possibly, commensals modulate inflammation via controlling the proliferation and 

maturation of immune cells and production of cytokines. Commensal species Bifidobacterium 

infantis and Lactobacillus reuteri (L. reuteri) mediate DCs to produce transferring growth 

factor-β (TGF-β) and interleukin-10 (IL-10), which are known to support maturation of 

regulatory T lymphocytes (Treg). Also, applying L. reuteri as a treatment reduced production 

of TNFα (O´Mahony et al. 2008; Karimi et al. 2009).  

Regulation by Tregs probably consists in a production of IL-10 supressing T helper cell 17 

(Th17) mediated inflammations (Chaudhry et al. 2011; Lennon et al. 2014). The proliferation 

of Treg cells and production of IL-10 can be supported by short chain fatty acids (SCFA; acetic, 

propionic a butyric acids), which are produced during microbial fermentation processes (Smith 

et al. 2013).  

 Molecular mechanism of microbial recognition 

Fast recognition of unknown substances is a necessity for successful immune reaction. 

Therefore, innate immune cells and epithelial cells play a crucial role. Neutrophils, basophils, 

eosinophils, natural killer cells, macrophages, but also DCs, epithelial cells and keratinocytes, 

express on their surfaces or in cytosol pattern recognition receptors (PRRs) (Miller 2009). PRRs 

interact with conserved microorganismal molecules, which are known as microbiota-associated 

molecular patterns (MAMPs), which can be divided into two groups. The first group includes 

molecules characteristic for commensals, second for pathogens (PAMPs). Interactions of 

PAMPs and PRRs initiate a signalling pathway activating expression of cytokines and other 

proteins involved in inflammation (Blander & Medzhitov 2006). Besides microbial structures, 

PPRs also react with some endogenous components, such as components of extracellular matrix 

or damaged cells. These endogenous particles are known as damaged-associated molecular 

patterns (DAMP).  

 Toll-like receptors 

The MAMPs interact with receptors on the host cells, which belong to several families. The 

most known group of PRRs is the family of Toll-like receptors (TLRs) (Rakoff-Nahoum et al. 

2004). Another considerable group of receptors recognising molecular patterns is a nucleotid 

binding oligomerization domain (NOD) family (Takeda & Akira 2005). 

13 members of the TLR family have been discovered up to now. Common features of all 

TLR family are ligand binding leucin-rich repeat (LRR) domain, hydrophobic transmembrane 
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domain and Toll/interleukin-1 receptor (TIR) domain, which is named after homology with 

interleukin-1 receptor. 

Even though, TLR contains a hydrophobic transmembrane domain, not every TLR is 

expressed on the cell surface. TLR 3, 7, 8, 9, 11, 12 and 13 are localized in endosomes or 

lysosomes (Matsumoto et al. 2003; Heil et al. 2003; Sturge et al. 2013; Song et al. 2015). 

Each TLR recognizes a specific spectre of PAMPs and DAMPs, as summarized in  

Table 1. 

TLR PAMP DAMP Human Rat Mouse 

1 di- ,triacylated 
lipopeptides   

 

  
 

2 lipoproteins, 
lipopeptides VLDL 

  
 

3 dsRNA HMGB1 
   

4 LPS FNEDA, HMGB1, 
Tenascin-C 

  

 

5 Flagellin   
  

 

6 di- ,triacylated 
lipopeptides   

 

 
 

7 ssRNA   
 

 
 

8 unmethylated CpG 
DNA, dsRNA   

 
 

 

9 IgG-chromatin 
complex DNA, HMGB1 

 

 
 

10 Lipopeptides   
 

 

  
11 Profilin     

 
 

12 Profilin     
 

 

13 23s rRNA     
  

Table1: Table shows the ligand specificity of TLRs. It also points on TLR10, which is  
a pseudogene in a mouse as TLR11 in human. Human completely lack of TLR12 and TLR13. Data 
taken from www.uniprot.com database and Piccinini & Midwood 2010. Abbreviations: DAMP - 
damaged-associated molecular patterns, DNA – deoxyribonucleic acid, dsRNA – double strand 
ribonucleic acid, FNEDA - fibronectin extra domain A, IgG – immunoglobulin G, HMGB1 - high 
mobility group box 1 protein, LPS – lipopolysaccharide, rRNA – ribosomal ribonucleic acid, ssRNA – 
single strand ribonucleic acid, VLDL – very low-density lipoprotein 

Recognition of a broad spectrum of PAMPs and DAMPs is not enabled only by the variety 

of TLR isoforms.  Some isoforms can also form homo- or heterodimers or cooperate with other 

unrelated receptors. Recognition of multitudinous microbial components then results in  

a specific immune reaction.  
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 Signalling pathways from Toll-like receptors to cytokines 

After activation, each TLR couples with adapter proteins. Mainly used adapter protein are 

MyD88 and TIR-domain-containing adapter-inducing interferon β (TRIF). 

MyD88 is an adapter molecule. Its TIR domain is able to couple with TIR domains of all 

TLR isoform, except for TLR3 (Yamamoto et al. 2002). Simultaneously, is MyD88 via its death 

domain (DD) able to interact with a DD of interleukin-1 receptor associated kinase 1 and 4 

(IRAK1 and IRAK4) (Neumann et al. 2007). The complex can be phosphorylated by the IL-1 

receptor-associated kinase M (IRAK-M) operating as a negative regulator of TLR signalling by 

trapping IRAK1 in the activated receptor complex and preventing downstream signalisation 

(Kobayashi et al. 2002). On the other hand, autophosphorylation and phosphorylation provided 

by IRAK4 enables a release of IRAK1 from the complex and coupling to ubiquitin ligase 

tumour necrosis factor receptor associated factor 6 (TRAF6). Activated TRAF6 ubiquitinates 

and thus activates the complex constructed from mitogen-activated protein kinase kinase kinase 

7 (MAP3K7, TAK1) and TGFβ activated kinase 1, 2 and 3 (TAB1, TAB2 and TAB3). 

Activated complex than phosphorylates IκB kinase α and β (IKKα and IKKβ) and NFκB 

essential modulator (NEMO) complex. Phosphorylated complex of IKKα, IKKβ and NEMO 

phosphorylates NFκB inhibitors (IκBs), which remarks them for ubiquitination, release from  

a complex with NFκB and degradation. Finaly, NFκB can translocate into the nucleus (Fig. 6) 

(Qian & Cao 2013).  

TAK1 protein also interacts with mitogen-activated protein kinase (MAPK), which than 

activates c-Jun N-terminal kinase (JNK). JNK phosphorylates c-Jun. C-Jun together with c-Fos 

act as transcription factors also known as AP1. AP1, together with NFκB than function as 

transcription factors of target genes (e.g. proinflammatory cytokines) (Fig. 6) (Qian & Cao 

2013).  

Forming a complex of TRIF, TRAF3, TRAF6 and receptor-interacting serine/threonine-

protein kinase 1 (RIP1) represents an alternative pathway leading from TLR3 and TLR4 to 

activation of TAK1 and consequently to the activation of transcription factors NFκB, MAP 

kinase pathway and interferon regulatory factor 3 (IRF3) (Takeuchi et al. 2000).  

These pathways lead to phosphorylation, dimerization and translocation of STAT1 to the 

nucleus, where they act as transcription factors regulating expression of cytokines. Beside the 

direct activation pathways involving MyD88 and TRIF, STAT1 can be also activated indirectly, 

via expression of cytokines, such as type 1 interferon (IFN1). The receptor of IFN1 can activate 

JAK, which than phosphorylates STATs (Rhee et al. 2003; Luu et al. 2014). 
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Figure 6: Figure shows signalling pathways leading from TLR to expression of cytokines. 
Pathways can be activated via interaction of cytokines, microbial structures, bone morphogenic protein 
(BMPR) or antigenes of B- and T-cell receptors with their receptors (BCR and TCR) expressed in 
immune cells. Receptors activate downstream pathways directly or undirectly, by interaction with 
adapter proteins. Next signallisation can activate expression of cytokines. It can be also activated an 
antiapoptotic pathway via X-linked inhibitor of apoptosis protein (XIAP). Taken from Hirata et al. 
2017. Abbreviations: AP1 - activator protein 1, BCR – B-cell receptor, BMPR – bone morphogenic 
protein receptor, IκBα - nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor α, 
IKK-α and β - nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor α kinase α and β, 
IL-1R – interleukin 1 receptor, JNK – Janus kinase, MKKs - mitogen-activated protein kinase kinase, 
PKC – protein kinase C, TAB1, 2, 3 –transforming growth factor β-activated protein kinase 1-binding 
protein 1, 2, 3; TAK1 - transforming growth factor β-activated protein kinase 1, TGFBR - Transforming 
growth factor beta receptor 1, TNFR1 – tumour necrosis factor receptor 1, TCR - T-cell receptor, TLR 
– Toll-like receptor, TRADD – tumour necrosis factor receptor1-associated death domain protein, 
TRAF2 and 6 – tumour necrosis factor receptor-associated factor 3 and 6, RIP1 - receptor-interacting 
serine/threonine-protein kinase 1, XIAP - X-linked inhibitor of apoptosis protein  

Both pathways, MyD88 and TRIF, can be suppressed by GC. The probable mechanism of 

inhibition of the level of IκB. There are two possibilities, GC suppress a degradation or trigger 

an expression of IκB. GC are also able to support expression of MAPK phosphatase (MKP), 

which in turn dephosphorylates and thus deactivates MAPKs (Chinenov & Rogatsky 2007; 

Vandevyver et al. 2012). GC are also able to suppress TLR function through upregulating 

expression of suppressor of the cytokine signalling 1 (SOC1), which than downregulates 

activation of STAT1, activated by TLR3 a 4 (Bhattacharyya et al. 2011). 
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Expression of intestinal TLRs oscillates with circadian rhythmicity, which depends on 

presence of commensal microbiome.  Absence of microbiome results in loss of rhythmicity and 

simultaneous overall decrease in expression of Tlrs and also Irak4. Probably due to 

downregulated expression of these genes, thus also declines activity of IKKβ and JNK. In 

contrary to that, expression of steroidogenic enzymes and production of GCs in intestine 

increases (Mukherji et al. 2013).  

 Glucocorticoids during inflammation 

As mentioned above, GCs display anti-inflammatory effects. This consists mainly of 

suppression of proinflammatory cytokines expression and enhancement of expression of the 

anti-inflammatory ones. However, recent studies indicate also the effect of cytokines on 

expression of the steroidogenic enzymes. Frequently studied are particularly the effects of  

pro-inflammatory cytokine TNFα. Possible mechanism, how TNFα affects expression of 

steroidogenic enzymes is through c-Jun and NFκB, which are able to suppress the expression 

and activity of LRH1 (Lan et al. 2007; Huang et al. 2014) (Fig. 7). 
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Figure 7: Regulation of a glucocorticoid response is mediated by cytokines and other 
substances mediating inflammation (e.g. 5-HT). Cytokines can via diverse signalling pathways inhibit 
or facilitate function of GCs on a genomic level (e.g. mitogen-activated protein kinase kinase kinase 3, 
4, 6 and 7 (MKK3, 4, 6 and 7) pathway). They can also regulate via covalently modificate 
(phosphorylate) the GC-GR complex and thus regulate its translocation of into the nucleus (e.g. p38, 
JNK pathway). Taken from Pace et al. 2007. Abbreviations: 5-HT – 5-hydroxy tryptamine, ASK1 - 
apoptosis signal-regulating kinase 1, ATP – adenosine triphophate, cAMP – cyclic adenosine 
monophosphate, COX2 – cyclooxygenase 2, ERK1 and 2 - extracellular signal–regulated kinase 1 and 
2, GR – glucocorticoid receptor, HSP – heat shock protein, IFNα – interferon α, IKK-β - inhibitory  
κ B kinase β, IL-1 – interleukin 1,  JAK1 – Janus kinase 1, JNK - c-Jun N-terminal kinase, MEK 1 and 
2 - mitogen-activated protein kinase kinase 1 and 2, MKK3, 4, 6 and 7 - mitogen-activated protein kinase 
kinase kinase 3, 4, 6 and 7, PGD2 – prostaglandine D2, PKA – protein kinase A, PLA2 – phospholypase 
A2, STAT 1, 3, 5 - signal transducer and activator of transcription 1, 3 and 5, TyK2 – tyrosine kinase 2  

 Intestine 

Impaired or repressed local production of GCs often accompanies chronic inflammations, 

together with elevated level of TNFα (Huang et al. 2014). It is assumed, that TNFα has a dual 

effect on intestinal de novo steroidogenesis during inflammations. The effect is probably dose 

and duration dependent. During acute inflammatory reaction, TNFα and both its receptors 

(TNFR1, TNFR2) support the expression of mRNA of steroidogenic enzymes and thus the 

expression of steroidogenic enzymes resulting in increased level of intestinal GC (Noti et al. 

2010; Huang et al. 2014). However, chronically increased level of TNFα mediates suppression 
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of expression of steroidogenic enzymes via TNFR1 (Huang et al. 2014). The expression of 

steroidogenic enzymes is probably mediated by altered activity or expression of LRH1 during 

inflammation (Noti et al. 2010; Huang, C. Lee, et al. 2014). 

The expression of intestinal Hsd11b1 is upregulated during chronic inflammation in response 

to high levels of TNFα and IL-1β. Upregulated expression of Hsd11b1 can result in upregulated 

local regeneration of GCs Conversely, the expression of Hsd11b2 decreases during 

inflammation. Together with the anti-inflammatory activity of GCs, would such result suggest, 

that GCs regulate an expression of proinflammatory cytokines in a negative feedback loop 

(Vagnerová et al. 2005; Žbánková et al. 2007). 

It is assumed, that GCs activate the expression of peroxisome proliferator-activated receptor 

γ (PPARγ) downregulating expression of proinflammatory cytokines, which can explain one of 

mechanisms, GCs downregulate inflammatory processes (Bouguen et al. 2015; Liu et al. 2015). 

 Lymphatic organs and immune cells 

Splenocytes from animals experiencing relatively short (0.5-2h/day) repeated stressful 

situation (resulting in elevation of plasma level of GCs) display altered expression of  

pro- (IFNγ, IL-1, TNFα and IL-6) and anti-inflammatory (IL-10) cytokines. The production is 

shifted mostly in behalf of pro-inflammatory ones. Although, the balance between Th1 and 2 

cytokines seems to be preserved. As a probable explanation has been assumed an impairment 

in a glucocorticoid sensitivity and amplified proliferation of splenocytes (Merlot et al. 2004; 

Avitsur et al. 2005). Nevertheless, prolonged repeated stress (12h/day) result in reduction of 

splenocytes and a shift of balance of Th lymphocytes in behalf of Th2 (Li et al. 2015).  

Interestingly, the ability to control systemic inflammation by GCs during repeated stressful 

conditions seems to decline with age. Groups of young (2 months old) and older (13-15 months 

old) adult mice were repeatedly exposed aggressive individual. Repeated elevation of serum 

GCs resulted in higher expression of splenic TNFα and IL-6 in reaction to LPS. The effect was 

more consider in elder animals, pointing to age-related increasing resistance to GCs (Kinsey et 

al. 2008). 

Chronically elevated GCs do not affect only the production of cytokines, but also expression 

of steroidogenic enzymes. Splenic Th cells from animals repeatedly exposed 12h/day to stress 

upregulated expression of Cyp11a. Interestingly, the upregulation of splenic, but probably also 

systemic, steroidogenesis depended on a presence of TLR9. Authors suggest, that TLR9 could 

be an important link between immune, humoral and neural system (Li et al. 2015).  
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It has also been shown, that presence of foreign antigens in plasma affects expression of 

steroidogenic enzymes in secondary lymph organs. Immunization of mice with bovine serum 

upregulates the activity of HSD3B1 and elevated local level of GCs, especially in lymph nodes, 

but also in spleen. The steroidogenesis was probably upregulated by IL-6 and TNFα 

(Mukhopadhyay & Bishayi 2009). 
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6. Aims of work 

As mentioned above, every epithelial barrier permanently communicates with presented 

microbiome, composed from pathogenic, but also commensal strains. Sophisticated controlling 

mechanisms of immune reactions are thus a necessity. GCs probably regulate immune functions 

in a negative feedback loop, but in some conditions can also support it.  

The data summarized in previous sections indicate that both, microbiota shaping and 

hormonal milieu, in particular, the glucocorticoids, are able to govern inflammation. However, 

there is only a limited knowledge about crosstalk between microbiota and glucocorticoid 

regeneration or de novo steroidogenesis, therefore the present study is focused on the effect of 

commensal microbiota on expression of enzymes responsible for de novo biogenesis and 

regeneration of glucocorticoids in colon, spleen, mesenteric lymph nodes and adrenal glands. 

Specifically, the diploma work tried to analyse the following questions: 

 

1) Does the microbiome affect the expression of enzymes participating in de novo 

steroidogenesis of glucocorticoids in adrenal glands, colon, spleen and mesenteric 

lymphatic nodes? 

2) Does the microbiome affect the local regeneration of glucocorticoids in adrenal glands, 

colon, spleen and mesenteric lymphatic nodes? 

3) Does the in vitro stimulation of TLRs by microbial structures affect the expression of 

Myd88 in mesenteric lymph nodes? 

4) Does the in vitro stimulation of TLRs by microbial structures affect the expression of 

Hsd11b1 in mesenteric lymph nodes? 
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7. Materials & methods 

 Animals 

Adult germ free (GF) and conventional (CV) BALB/C male mice were obtained from 

Laboratory of Gnotobiology – Institute of Microbiology of the CAS, v. v. i. Trexler-type 

isolators were used for breeding GF animals. 4-5 animals kept in home cages received 

autoclaved and γ-irradiated (5,9 kGy for 30 min) standard pellet diet and tap water. The 

alternation of day and night was simulated by 12-h light/dark cycle. GF animals were controlled 

once per week to detect prospective microbial contaminations. All experiments accomplished 

with the Committee for the Protection and Use of Experimental Animals of the Institute of 

Microbiology v.v.i., Academy of Sciences of the Czech Republic. 

 Tissue sampling  

Animals were anesthetised with isoflurane, blood collected by a cardiac punction and 

decapitated. Adrenal glands, colon, spleen and mesentheric lymphatic nodes were removed, 

snap frozen and stored in a liquid nitrogen.  

 Isolation of cells from MLN 

Tissues were placed into the cold RPMI 1640 medium. MLN were pressed between glass 

slides to disengage to individual cells, two times washed with RPMI 1640 and sieved into 

culture plates. Cells were counted and diluted (1,7E6 cells/0,5ml medium). 0,5μl of mixture of 

medium and PAMPs was added. Cell cultures were incubated at 37C in atmosphere of 5 

CO2/air. After incubation cells were transferred into Eppendorf microtubes (Sigma-Aldrich, St. 

Louis, MO, USA) and stored in liquid nitrogen until next experimental work. Before the next 

work were cells transferred into culture plates. 

 In vitro stimulation of TLRs with cocktail of PAMPs 

The cocktail of PAMPs was prepared from lipopolysaccharide (LPS; 0,5μg/ml), zymosan 

(5μg/ml), Pam3CSK4 (synthetic bacterial lipopeptide; 50ng/ml), flagellin (50ng/ml) (activated 

TLR isoforms in Tab. 1) and added into each well of culture plates containing cells from MLN. 

Cells were collected after 0, 0.5h, 1h, 2h, 4h, 6h or 24h from adding of the cocktail of PAMPs.  

 Isolation of total RNA 

Total RNA was isolated using a GeneElute Mammalian Total RNA Miniprep Kit (Sigma-

Aldrich, St. Louis, MO, USA) according to the original manufacturer's protocol. 

Homogenisation was performed using the UP50H ultrasonic homogeniser (Hielscher 

Ultrasonics, Teltow, Germany). Homogenised samples were transferred into filtering columns 
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and centrifuged (10 000g/1min). Filtrates were dehydrated by mixing with 70% ethyl alcohol 

of the same volume. Mixtures were transferred into nucleic acids binding collecting columns 

and centrifuged (10 000g/1min). Tubes were dried, washed with 350μl of Wash Solution 1 and 

centrifuged (10 000g/1min). Tubes were dried again, 500μl of Wash Solution 2 was added into 

collecting tubes and centrifuged (10 000g/1min). Collecting tubes were dried and centrifuged 

(10 000g/5min). Tubes were changed and columns with dry tubes were centrifuged 

(10 000g/5min). When tubes didn't contain any liquid, 20μl of the PCR water was added into 

columns and used for elution. 

Samples were quantified by NanoDrop 1000 spectrophotometer (NanoDrop Technologies, 

Wilmington, DE, USA).  

 Reverse transcription 

The total RNA was used to prepare matrices for synthetization of first strands the cDNA 

using High Capacity cDNA Reverse Transcription Kit (Life Technologies, Carlsbad, CA, USA) 

in a Mastercycler Eppendorf. As primers were used random hexamers. Samples were 5x diluted 

after the process. 

 Quantitative real-time polymerase chain reaction 

Quantitative real-time polymerase chain reaction (Q-PCR) was performed on Viia 7 Real 

Time PCR System (Applied Biosystems, Foster City, CA, USA).  As primers were used 5x Hot 

Firepol Probe Q-PCR Mix Plus (ROX) (Solis BioDyne, Tartu, Estonia). To remark and detect 

cDNA were used TaqMan Assays (Life Technologies) figured in Tab. 2.  

Gene of interest Catalog number 
Star  (Mm00441558_m1) 

Cyp11a1  (Mm00490735_m1) 
Hsd3b1 (Mm01261921_mH) 
Cyp21a1  (Mm00487230_g1) 
Cyp11b1  (Mm01204952_m1) 
Hsd11b1  (Mm00476182_m1) 
Myd88  (Mm00440338_m1) 
Table 2: List of used TaqMan Assays. 

To quantify the PCR products was used the standard curve method. As potential reference 

genes were chosen Hprt1 (Mm01545399-m1) and Tbp (Mm00446973_m1) in colon, Hprt1 and 

Ppib (Mm00478295_m1) in spleen, Hprt1 and Gapdh (cat. no. 4351309) in adrenal gland. The 

suitability of these genes as housekeeping genes was determined in previous experiments using 
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a large panel of 10 potential housekeeping genes and and the geNorm algorithm to determine 

the most stable reference genes. 

Several genes of interest showed only a low level of expression in some tissues, which 

required the specific preamplification step of gene assays with TaqMan PreAmp Master Mix 

(Life Technologies), according to manufacturer's instructions. 

 Statistical analysis 

 Effect of microbiome on de novo steroidogenesis & the local regeneration 

Outlier values were identified and rejected using the Dean's-Dixon's (DD) test. The Fisher's 

exact test was used to statistically analyzed variances of the data. Average values of mRNA 

levels were then analyzed using Student's t-test for data with equal or non-equal variances. The 

results are expressed as the mean ± SEM. As a threshold of statistical significance of all data 

was determined a p<0.05. Statistically significant data (labelled as *) were further analyzed for 

a p<0.01 (**) and p<0.001 (***). 

 Effect of the in vitro stimulation by pathogen associated molecule patterns on 

the expression of Myd88 and Hsd11b1 in mesenteric lymph nodes 

Based on the DD test were rejected the outliers. The data were analyzed by two-way 

ANOVA (microbial status and time of treatment) followed by post hoc Fisher Least Significant 

Difference test. The results are expressed as the mean ± SEM. As a threshold of statistical 

significance of all data was determined a p<0.05. Statistically significant data (labelled as *) 

were further analyzed for a p<0.01 (**) and p<0.001 (***). 
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8. Results 

 Effect of microbiome on de novo steroidogenesis in adrenal glands 

Statistical analyses confirmed, that microbiome significantly affected the expression of Star, 

the gene encoding the transporter of cholesterol to the mitochondria (Student's t-test: p<0.05).  

 

Figure 9: Effect of microbiome on the expression of Star in adrenal glands. The chart shows an 
arithmetic mean of mRNA and standard error of the mean (SEM). The significant difference between 
GF and CV is labelled as * (p<0.05). 

Although, all steroidogenic enzymes were measured in adrenal glands, there has not been 

observed any effect of microbiome (Student's t-test: p>0.05), as seen in Fig. 10, a)-d). 
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Figure 10: Effect of microbiome on expression of steroidiogenic eznymes in adrenal glands. The 
chart shows an arithmetic mean of mRNA and standard error of the mean (SEM). 

 Effect of microbiome on a local regeneration of GCs in adrenal glands 

Effect of microbiome on expression of Hsd11b1, and thus the local regeneration of 

corticosterone from 11-dehydrocorticosterone, hasn't been observed in adrenal glands 

(Student's t-test: p>0.05) (Fig. 11). 
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Figure 11: Effect of microbiome on expression of Hsd11b1 in adrenal glands. The chart shows 
an arithmetic mean of mRNA and standard error of the mean (SEM). 

 Effect of microbiome on expression of de novo steroidogenesis in colon 

In contrast to the adrenal gland, we observed the significant effect of microbiome on the 

expression of Star in colon. GF mice had higher level of Star than CV animals (Student's  

t-test: p<0.01) (Fig. 12).  

 

Figure 12: Effect of microbiome on expression of Star protein in colon. The chart shows an 
arithmetic mean of mRNA and SEM. The difference between GF and CV is labelled as ** (p<0.01). 

Student's t-test has confirmed a significant difference in expression of Cyp11a1 (Student's  

t-test: p<0.05) and Cyp11b1 (Student's t-test: p<0.05) (Fig. 13 a), d)).  Expression of Hsd3b1 

and Cyp21a1 was not significantly affected by microbiome (Student's t-test: p>0.05).  
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Figure 13: Effect of microbiome on expression of steroidogenic enzymes in colon. The chart 
shows an arithmetic mean of mRNA and SEM. The difference between GF and CV is labelled as * 
(p<0.05).  

 Effect of microbiome on a local regeneration of GCs in colon 

The expression of Hsd11b1 didn't differ between GF and CV animals (p>0.05) (Fig. 14).  
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Figure 14: Effect of microbiome on expression of Hsd11b1 in colon. The chart shows an arithmetic 
mean of mRNA and standard error of the mean. 

 Effect of microbiome on de novo steroidogenesis in spleen 

The expression of splenic Star was considerably lowered in the presence of microbiome 

(p<0.01) (Fig. 15).  

 

Figure 15: Effect of microbiome on expression of Star in spleen. The chart shows an arithmetic 
mean of mRNA and standard error of the mean. The difference between GF and CV is labelled as ** 
(p<0.01). 

Of all steroidogenic enzymes, only expression of Cyp11a1 and Cyp21a1 was detectable in 

spleen. There was no difference in the expression of Cyp11a1 between GF and CV animals 

(Student's t-test: p>0.05), but the expression of Cyp21a1 was significantly lowered by 

microbiome (Student's t-test: p<0.05) (Fig. 16, a)-b)). 
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Figure 16: Effect of microbiome on expression of steroidogenic enzymes in spleen. The chart 
shows an arithmetic mean of mRNA and standard error of the mean. The difference between GF and 
CV is labelled as * (p<0.05).  

 Effect of microbiome on a local regeneration of GCs in spleen 

The presence of microbiome elevated expression of mRNA splenic Hsd11b1 (Student's  

t-test: p<0.001), indicating considerably upregulated local regeneration in the spleen, as seen 

on Fig. 17. 

 

Figure 17: Effect of microbiome on expression of Hsd11b1 in spleen. Graph shows arithmetic 
mean of mRNA and SEM. The difference between GF and CV is labelled as *** (p<0.001). 

 Effect of microbiome on de novo steroidogenesis in mesenteric lymph nodes 

Microbiome significantly lowered expression of Star in MLN (Student's t-test: p<0.001) 

(Fig.18). 
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Figure 18: Effect of microbiome on expression of Star in MLN. The chart shows an arithmetic 
mean of mRNA and standard error of the mean. The difference between GF and CV is labelled as *** 
(p<0.001).  

Any effect of microbiome on expression of Cyp11a1, Hsd3b1 and Cyp21a1 was not observed 

during a present study (Fig. 19 a)-c)) (Student's t-test: p>0.05). The expression of Cyp11b1 was 

under the limit of detection.   
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Figure 19: Effect of microbiome on expression of steroidogenic enzymes in MLN. The chart shows 
an arithmetic mean of mRNA and standard error of the mean.  

 Effect of microbiome on a local regeneration of GCs in mesenteric lymph nodes 

Microbiome did not modulate the regeneration of GCs in MLN in present study (Student's t-

test: p>0.05) (Fig. 20). 
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Figure 20: Effect of microbiome on expression of Hsd11b1 in spleen. The chart shows an 
arithmetic mean of mRNA and SEM.  

 Effect of the in vitro stimulation of TLRs by microbial structures on the expression of 

Myd88 in mesenteric lymph nodes 

Two-way ANOVA showed a significant effect of microbiome (F1, 24 = 4.449, p<0.05) but not 

the time (F6, 24 = 2.215, p>0.05) on expression of Myd88 after exposure to microbial structures. 

The interaction between these two factors was significant (F6, 24 = 4.4584, p<0.05) (p<0.05). 

Significant interaction between GF and CV mice indicates that the upregulation of Myd88 

transcript in GF was slower and reached the maximum value at t = 24 h, but the expression 

profile in CV mice reached maximum value much faster (t = 2 h) and that declined to the values 

similar as before TLR stimulation.  Due to these two different time profiles we observed 

significant differences between GF and CV mice at times 2 (p<0.05), 6 (p<0.05) and 24 h 

(p<0.001), as seen in Fig. 21 and 22. 
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Figure 21: Effect of the in vitro stimulation of TLRs by microbial structures on the expression 
of Myd88 in mesenteric lymph nodes.  The chart shows an arithmetic mean of mRNA and SEM. The 
difference between GF and CV is labelled as * (p<0.05) and *** (p<0.001), 

 

Figure 22: Effect of the in vitro stimulation of TLRs by microbial structures on the expression 
of Myd88 in mesenteric lymph nodes.  The chart shows an arithmetic mean of mRNA and SEM. The 
difference between GF and CV is labelled as * (p<0.05). 
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 Effect of the in vitro stimulation of TLRs by microbial structures on the expression 

of Hsd11b1 in mesenteric lymph nodes  

Two-way ANOVA didn't reveal any significant effect of microbiome (F (1, 28) = 0.9949, p>0.05), 

time (F (6, 28) = 0.8781, p>0.05) or interaction between these two factors (F (6, 28) = 1.185, p>0.05) 

on the expression of Hsd11b1 between in distinct time points from immune stimulation (Fig. 23). 

 

Figure 23 Effect of the in vitro stimulation of TLRs by microbial structures on the expression 
of Hsd11b1 in mesenteric lymph nodes. The chart shows an arithmetic mean of mRNA and SEM. 
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9. Discussion 

Present experimental work revealed several differences in the biogenesis and regeneration of 

glucocorticoids between individual studied tissues of GF and CV animals, but also few 

similarities. The first similarity can be found in the gene encoding cholesterol transporter into 

mitochondria, Star. In all studied tissues the expression of Star was decreased in a case of 

presented microbiome. The expression was decreased in peripheral tissue directly exposed to 

microbiome (colon), in immune tissues (spleen and MLN), but also centrally in the tissues 

providing systemic steroidogenesis (adrenal glands).  

The decrease in expression of Star was the only difference observed in adrenal glands of CV 

animals compared to GF ones. However, as a limiting step of steroidogenesis, the expression 

of StAR protein determines the production of all corticosteroids and thus affects the whole 

health condition and phenotype. Mutated Star can results in severe inflammations, an altered 

HPA axis reactivity, growth disorders and salt loss as seen in patients suffering from lipoid 

CAH (Sahakitrungruang et al. 2010). However, consequences of reduced expression of Star are 

probably not as severe as in the case of lipoid CAH, where the impaired function or expression 

is caused by a mutation. The severity of lipoid CAH can be also demonstrated in a mice model 

of disrupted Star, where the mutation is lethal (Carson et al. 1997). Although, a presence and  

a composition of microbiome may participate on the whole phenotype.  

Conversely, the overexpression of Star has been observed in patients suffering from 

adrenocortical adenomas, resulting in Cushing's syndrome. The overproduction can be caused 

by a mutation in cAMP/PKA signalling pathway, which activates the expression of Star (Zhou 

et al. 2016).  

On the other hand, an in vitro study of macrophages has shown, that the overexpression of 

StAR can have beneficial effects in peripheral tissues. Macrophages overexpressing StAR 

protein displayed increased efflux of cholesterol and lowered intracellular lipid levels, 

decreased production of inflammatory substances and prolonged survival. Such condition can 

prevent the development of atherosclerosis (Ning et al. 2009).  

In contrast to Star, the effect of microbiome on the expression of steroidogenic enzymes was 

not identical in the studied tissues.  No effect of microbiome was observed in adrenal glands, 

however, adrenal glands are able to express other isoforms of steroidogenic enzymes (e.g. 

Hsd3b2) (Rainey & Nakamura 2008), which we have not studied. Therefore, I cannot exclude 

the possibility, that other isoforms of adrenal steroidogenic enzymes are more sensitive to 

microbiome.  Future studies will be necessary.  
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The rate limiting enzyme of steroidogenesis, Cyp11a1 (Cima et al. 2014; Miller & Auchus 

2011), was significantly upregulated by microbiota in the colon but not in adrenal gland and 

lymphoid organs. This finding is in agreement with the study of Mukherji et al. (2013). 

Comparing GF and CV individuals revealed an impaired circadian inhibitory mechanism 

controlling expression of Cyp11a1 in GF mice in the ileum. Exacerbated inhibition of the 

expression of Cyp11a1 is than associated with permanently increased production of GC  

(Mukherji et al. 2013).  

Higher expression of Cyp11a1 has also been observed during food allergy reaction. 

CYP11A1 probably induces differentiation of Th lymphocytes into types 2 and 17, which in 

turn leads to expression of Th2 cytokines and IL-17 (Wang et al. 2013; Gelfand et al. 2014). 

Some authors indicate inhibitory effects of LRH1 on the expression of Cyp11a1 during a long 

term exposure to TNFα (Huang et al. 2014). These findings together support the hypothesis, 

that the production of GCs participates in control of inflammation.  

On a regulation of expression of Cyp11a1 may also participate other transcription factors 

than LRH1. It has been previously shown, that the expression of Cyp11a1 can be also regulated 

by GATA4 a 3 transcription factors (Wang et al. 2013) at least in a basal condition.  

In previous studies, the expression of intestinal Cyp11a1 was detected in animals housed 

under conventional conditions only after a strong activation of the immune system by  

anti-CD-3 (Cima et al. 2004). Such a result is not consistent with present results, because the 

expression of Cyp11a1 was detected also during a basal state independently on presented 

microbiome. These discrepancies might reflect the differences in the microbiome composition 

in our and Brunner laboratory breeding facilities. 

The de novo steroidogenesis and the local regeneration was also measured in immune organs. 

In my study, which was performed in basal conditions, the expression of Cyp11a1 was detected 

in spleen as well as in MLN, but without any effect of microbiome. The expression has been 

shown also in previous study, when it increased during immune reaction. Simultaneously with 

the expression of Cyp11a1 rose also the product of CYP11A1 reaction, pregnenolone, which 

have been shown to control inflammatory processes  (Mahata et al. 2014).  

Another study shown, that the expression of splenic Cyp11a1 is associated with modulation 

of the balance between Th1 and Th2 cells (Oka et al. 2000). Thus, it is being offered a question, 

whether the expression differs during inflammation.  

Present results confirm the ability of colon to express Hsd3b1, the second enzyme in the order 

of steroidogenesis (Cima et al. 2013). The expression was not modulated by the presence of 

microbiota. Similar to colon, adrenal expression of Hsd3b1 was not influenced by the 
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microbiota and concerning immune organs, in spleen the expression was below the detection 

limit in spleen but was detected in MLN of GF mice. Similar to our results previous study also 

didn't detect any Hsd3b1 transcript in spleen (Taves et al. 2016). These findings indicate that 

microbiota do not represent strong factor for regulation of Hsd3b1 expression.  

However, Mukhopadhyay & Bishayi detected activity of HSD3B1 in spleen, lymph nodes 

and other lymphatic tissue. Particularly, they revealed a considerable increase of expression and 

activity after injection of E.coli cells and IL-6 (Mukhopadhyay & Bishayi 2009). A possible 

explanation is, that the expression of Hsd3b1 (and also Cyp11b1) is too low to be detected 

during basal conditions, but act as rate limiting enzyme during inflammations (as well as 

Cyp11b1). Taves also assumes that in lymphatic tissues of adult individuals are GCs 

preferentially regenerate rather than produced de novo (Taves et al. 2016).   

The gene Cyp21a1, which encodes 21-hydroxylase, an enzyme catalyzing the conversion of 

progesterone to 11-deoxycorticosterone was expressed in all investigated tissues but 

predominantly insensitive to the presence of microbiota. Only in the splenic tissue we identified 

upregulated Cyp21a1 transcript in GF animals. The mechanism that underlie the microbiome 

effect in spleen is currently unknown. Only little is known about expression of Cyp21a1 in 

spleen. Previous study have shown, that the expression of Cyp21a1 changes during ontogeny 

being higher in adult individuals compared to neonatal ones, which, together with changes in 

expression of other steroidogenetic enzymes, result in age-related changes in production of GCs 

(Taves et al. 2016) 

The final step of corticosteroid biogenesis is 11-hydroxylation of 11-deoxycorticosterone 

into corticosterone, which requires the enzyme 11-hydroxylase encoded by Cyp11b1. Our 

results showed strong expression of this enzyme in adrenal tissue and weaker in colon but the 

transcript was below the detection limit in spleen and MLN. Such result may indicate weak or 

absent production of final glucocorticoids corticosterone and cortisol in spleen and MLN in 

contrast to the possible biogenesis of pregnenolone and progesterone, whose biogenesis does 

not require 11- and 21-hydroxylation. This conclusion is supported by the finding of biogenesis 

of pregnenolone in immune cells (Mahata et al. 2014). During a study comparing adult and 

neonatal individuals, performed in conventional conditions, was not detected any expression in 

adult mice. However, the expression of Cyp11b1 exceeded expression of genes encoding other 

steroidogenic enzymes in neonatal individuals. Taves also suggests, that Cyp11b1 may act as 

one of rate limiting enzymes in lymphatic tissues in adult individuals (Taves et al. 2016).    

In present study colonic expression of Cyp11b1 was elevated in CV individuals, conversely 

to Cyp11a1, which was significantly lowered in CV animals. Some studies emphasize  
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a common transcription regulator for Cyp11a1 and Cyp11b1, LRH1. Previous studies shown, 

that acute immune reaction activated expression of Lrh1. Overexpression of Lrh1 resulted 

probably also in increasing production of its protein, which elevated expression of both 

enzymes, Cyp11a1 and Cyp11b1 (Mueller et al. 2006; Atanasov et al. 2008). Simultaneously, 

the activity of LRH1, and thus also expression of  both enzymes, depends on a cell cycle, when 

gene of both enzymes are mostly expressed during a G1 and S phase (Atanasov et al. 2008). 

CYP11A1 and CYP11B1 than may inhibit expression or activity of LRH1 in a negative 

feedback loop (Mueller et al. 2006). Theory of a negative feedback loop also corresponds with 

results of experiments on chronically ill animals. Some authors indicate possible inhibitory 

effects of LRH1 on Cyp11a1 and Cyp11b1 expression during a long term exposure to TNFα 

(Huang et al. 2014). Present results indicate a distinct mechanism regulating the expression of 

both enzymes during a long-term exposure to microbiome. On a regulation of expression may 

also participate other transcription factors than LRH1, at least in a basal condition. In previous 

studies, the expression of Cyp11a1 in convent animals was detected only in a reaction to an 

immune impulse, while the expression of Cyp11b1 was detected also during basal conditions 

(Cima et al. 2004). Such a result is not consistent with present results, because the expression 

of Cyp11a1 was detected also during a basal state independently on presented microbiome. 

However, results probably correspond in indication of distinct regulatory mechanisms of 

expression of Cyp11a1 and Cyp11b1.  

Present results thus indicate a lower overall basal de novo production of steroid hormones in 

the colon of CV mice with possibly slightly altered composition of steroids, in behalf of GCs 

(which are generated in Cyp11b1 reaction) rather than other steroid hormones. However, no 

protein expression (only mRNA) and expression of second isoforms of steroidogenic enzymes 

was measured in a present study. If actually would be the composition of steroid hormones 

altered in colon in behalf of GCs, it would probably prevent excessive immune reactions in 

physiological conditions. Conversely, disrupted production of GCs is associated with intestinal 

inflammations such as Crohn's disease and ulcerative colitis  (Coste et al. 2007).  

Local production of GCs is determined not only by local de novo biogenesis but also by 

regeneration of active hormones from their 11-oxo derivatives due to reduction of –OH group 

at C11 catalysed by HSD11B1. We proved the expression of gene encoding this enzyme in all 

investigated tissues, but microbiota significantly modulated the expression of Hsd11b1 only in 

spleen, where GF animals showed significantly lower transcription Hsd11b1 that CV animals. 

The mechanisms that underlie the effect of microbiota on splenic Hsd11b1 are currently 

unknown. However, one possibility is likely. Cytokines are important modulators of this 
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enzyme (Thieringer et al. 2001) and their expression is modulated by microbiome (Ghosh et al. 

2007). The reason why cytokines might upregulate splenic but not colonic or MLN Hsd11b1 is 

difficult to explain. Some but not all cytokines upregulate Hsd11b1 and it cannot be excluded 

that the spectrum of cytokines expressed in various lymphoid organs including colon with 

lymphoid follicles in the presence of MAMPs signals is different. However, this hypothesis will 

require further experiments. Previous study shown, that the expression of Hsd11b1 rises also 

during experimentally induced chronic inflammation in spleen as well as in MLN (Ergang et 

al. 2011). In agreement with the absence of any significant effect of microbiome on MLN we 

did not find any upregulation of Hsd11a1 by the cocktail of specific TLR ligands in in vitro 

experiment using immune cells isolated from MLN. Using expression of Myd88, we have 

demonstrated activation of TLR and translocation of the ligand signal into the cells, which was 

observed 2, 6 and 24 hours after ligand application. After the stimulation was in MLN measured 

also the expression of Hsd11b1 at the same time points as Myd88. Although previous studies 

indicated, that in MLN are GCs more likely regenerated than produced de novo to be able to 

dynamically modulate immune function (Taves et al. 2016), present study didn't show any 

difference in expression of Hsd11b1 after stimulation of TLRs. 
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10. Conclusion 

Present study examined the putative interaction/crosstalk between biogenesis and 

regeneration of corticosteroids and microbiome. Using germ-free and conventional mice we 

studied the expression of enzymes of steroidogenesis and glucocorticoid regeneration in adrenal 

glands, colon and secondary lymphoid organs – spleen and MLN. It is well known that colon, 

spleen and MLN permanently communicating with microbiome or receive information about 

microbiome via APCs or directly, when microorganisms penetrate into the body and that 

adrenal glands also have the capability to sense these signals. 

Based on the results I can answer previously asked questions: 

 

1) Does the microbiome affect the expression of enzymes participating in de novo 

steroidogenesis of glucocorticoids in adrenal glands, colon, spleen and mesenteric 

lymphatic nodes? 

The microbiome downregulated the expression of Star in all studied tissues. In colon was 

also downregulated the expression of Cyp11a1 and upregulated the expression of Cyp11b1 by 

microbiome. In spleen microbiome downregulated the expression of Cyp21a1. 

 

2) Does the microbiome affect the local regeneration of glucocorticoids in adrenal glands, 

colon, spleen and mesenteric lymphatic nodes? 

Microbiome affected, particularly upregulated, only the expression of Hsd11b1 in spleen. 

Expression in other tissues was not affected. 

 

3) Does the in vitro stimulation of TLRs by microbial structures affect the expression of 

Myd88 in mesenteric lymph nodes? 

The expression of Myd88 was upregulated after 2 hours and downregulated after 6 and 24 

hours after stimulation compared to control cell culture. 

 

4) Does the in vitro stimulation of TLRs by microbial structures affect the expression of 

Hsd11b1 in mesenteric lymph nodes? 

The expression of Hsd11b1 in mesenteric lymph nodes was not affected by in vitro 

stimulation of TLRs.  
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