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Abstract: Earth climate, in general, varies on many temporal and spatial scales. In
particular, climate observables exhibit recurring patterns and quasi-oscillatory phenom-
ena with different periods. Although these oscillations might be weak in amplitude,
they might have a non-negligible influence on variability on shorter time-scales due to
cross-scale interactions, recently observed by |Palus|[2014b]. This thesis supplies an in-
troductory material for inferring the cross-scale information transfer from observational
data, where the time series of interest are obtained using wavelet transform, and possible
information transfer is studied using the tools from information theory. Finally, cross-
scale interactions are studied in two climate phenomena: air temperature variability in
Europe, in which we study phase-amplitude coupling from a slower oscillatory mode
with an 8-year period on faster variability and its effects, and El Nifio/ Southern Oscil-
lation where we observe a causal chain of phase-phase and phase-amplitude couplings
among distinct oscillatory modes.
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CHAPTER 1

Introduction

To all facts there are laws,
The effect has its cause, and I mount to the cause.
Owen Meredith (Lord Lytton)



With the rise of new technologies during the last, say, 5 decades the world around
us changed, and arguably, so did the science. Fast technological advances allowed
new data collection systems to emerge (satellites, buoys, in-situ measurements such
as radiosondes or aircraft to name a few) and, of course, faster and more affordable
computers in turn allowed for their faster and more precise processing and interpolation
(e.g. reanalysis products). This combined generate a large, previously unthinkable,
amount of experimental data, which promise new and unorthodox discoveries, hidden
from us in the past. Therefore, the science in general needs new mathematical and
computational approaches in order to process, and make sense of such large amounts
of data. In the past, the physicists were usually divided into two groups: theoretical
and experimental. I argue that now yet another category of scientists emerged —
computational scientists or physicists — whose aim is to seek patterns, confirm old
theories and mechanistic interpretations, and propose new ones, based (almost) solely
on the data-driven research.

In the light of these advances, the purpose of this thesis is to update the classical view
on atmospheric dynamics as a fluid dynamical system, which we need to model stochas-
tically due to unresolved small-scale processes. Throughout the thesis, I will operate
with the notion of a complex system, and argue that adopting this view while studying
the interactions between atmospheric and oceanic processes could help to understand,
and possibly even predict, the phenomena emerging from complex interactions within
the climate system.

Exploiting the interdisciplinary options of today’s science, I claim that borrowing
the tools from information theory, in particular, the (conditional) mutual information
and ideas of measuring entropy and information transfer, could help us tackle the
old and prevailing problem of causality, i.e. directed relationships with a forecasting
potential. The problem of distinguishing the cause-and-effect from spurious correlations
dates back to the beginning of the 18century when Irish philosopher Bishop Berkeley
tamously remarked that “correlation does not imply causation”. From that time onwards,
the scientific community was puzzled by differentiating the apparent relationship (such
as covariance or correlation) from the truly causal effect. The stakes were high — by
claiming the causal relationship, one could indicate the predictive potential of the master
variable towards the slave variable.

Connecting the complex systems paradigm with the advances in causal discovery
algorithms became the recurrent theme, or leitmotif, in this thesis. The reasoning goes
as follows: any experimental data, we are able to observe and measure (call them observ-
ables) emerged from an interplay between various physical processes. Let us imagine
those various processes as subsystems or nodes in the complex network. By the means of
applying the causal discovery algorithms we are able to find the connections, the edges,
between the nodes such that they together indeed create a network. And from that
network, which conceptualises the complex system we are studying, some observable
emerges. Thus, we are trying to reverse-engineer the nature and find the subsystems
and connections between them that are responsible for our observed measurement. The
overview of the complex systems framework is presented in chapter

With this particular view on complex atmospheric phenomena, I studied the interac-
tions among temporal scales within atmospheric dynamics. Generally, the physical laws



that govern nature as we know it, are scale-invariant (at least in classical physics). Put
simply, “they do not care” whether we are using them on length scales of 10 millimetres
or tens of thousands of kilometres. However, this view of scientific reductionism is not
completely true, since on various length scales we observe different energy injections
and sinks. As an example, take the atmosphere: the energy from the Sun is the main
energy injection at the planetary scale (~10*km spatial and roughly half a year to year
temporal), then the large portion of this energy is transferred to a lesser, synoptic, scale
and so on up to a so-called molecular scale, where the remainder of the energy is dis-
sipated due to viscosity and molecular character of particles. From this description, it
is immediately obvious that the energy transfer across the scales is omnipresent in such
complex system as the atmosphere. The problem of scaling in the climate system in
theory, and also in data, is addressed in the first half of Chapter The second half of this
chapter is devoted to the general overview of the information transfer in atmospheric
dynamics. That means the description of oscillatory patterns, the methods for extracting
such patterns, the measures of dependence between the time series, followed by a quick
introduction to information theory, and finally, a brief presentation of a topic of statistical
hypothesis testing are all presented.

The reasonable assumption after claiming an energy transfer across temporal scales
would be that also an information transfer across the temporal scales is present in atmo-
spheric dynamics. This possibility was just recently studied by |Palus| [[2014a)b|], where
he found that the slow atmospheric oscillatory phenomena with periods around 8 years
are causally tied with faster oscillation, around one-year periodicities. In chapter [4 we
follow up this direction and examine the effects of this 8—year cycle on faster temporal
scales by extensively studying the behaviour of faster atmospheric modes, conditioned
of the particular phase of the slower phenomenon. The general methodology of how to
approach an information transfer in climate data and the results from various tempera-
ture station data, as well as gridded analysis data, are presented after the introduction to
typical time scales governing the atmospheric dynamics in the European region. Within
this chapter, the temporal, spatial and seasonal variations of the effect are also studied, in
order to present the fullest possible picture of this interesting cross-frequency coupling
phenomenon.

Whereas studying the cross-frequency coupling in Europe, in particular phenomena
around 8 years, which may have stemmed from the dynamics of the North Atlantic
Oscillation, was similar to studying the impacts of a large atmospheric mode on faster
(therefore more localised) behaviour of temperature variability, the subsequent chapter[5|
is dedicated to the atmospheric, or more precisely, atmospheric-oceanic phenomenon
by itself — the El Nifio/Southern Oscillation. The El Nifio/Southern Oscillation is
one of the, if not the oldest observed atmospheric-oceanic phenomenon in a history of
humankind. Very shortly, it is an irregularly periodic variation in sea level pressure,
associated winds, and sea surface temperatures over the tropical, mostly eastern and
central, Pacific ocean. Because of its scale and mechanisms, it affects the climate not
only in the tropics but through various teleconnections is able to perturb the typical
circulation patterns in much of the subtropics and even midlatitudes. Following the
reasoning developed earlier (the energy transfer gives rise to the information transfer),
we adopted this view and exploited the causal discovery framework in order to depict



and study the low-frequency coupling to the high-frequency variability. The chapter
tirstly introduces the ENSO phenomenon, gives an overview of how we, as a humankind,
observe ENSO and states the main physical mechanisms behind the oscillation. Since it is
very well known that ENSO, as a complex system, constitutes of various temporal scales,
or rather pacemakers that contribute to the overall variability, the overview of temporal
scales in ENSO figures as a section just after the physical description. Afterwards, a
short summary of ENSO modelling is presented. Finally, one of the observed ENSO
time series — the Nifio 3.4 index — underwent the cross-scale analysis, where we found
a suite of significant interactions that, we believe, are instrumental in setting the extreme
cold (La Nifia), or warm (El Nifio) event.

After studying the consequences of detected cross-frequency interactions, we also
opted for studying the very same interactions in various ENSO models. The reasoning
behind this is that we believe that the cross-scale interactions are a fundamental property
of complex systems and any good, or close to reality, a model should, of course, also
replicate the cross-scale interactions. With this goal in our minds, we studied two
conceptual models of ENSO (one dynamical — the parametric recharge oscillator due to
Stein et al.|[|2014], and one statistical, based on the idea of linear inverse models and due
to [Kondrashov et al.|[2005]]) and a suite of CMIP5 global circulation models [1aylor et al.|
2012|], concretely, their representation of ENSO dynamics, captured by the modelled
Nifio 3.4 index. As a final piece of the puzzle, we included the robustness analysis as
the final part of chapter [5, where we contemplate the strength and significance of our
tindings.

As a good habit, this thesis is concluded and summarised in chapter [6, where the
main theoretical viewpoints and results are outlined and possible outlook for similar
work is presented. Furthermore, this thesis is accompanied by an appendix, where I
describe my Python package pyC1iTS (Python Climate Time Series) and its methods
for analysing the spatio-temporal climate data, usually distributed as a net CDF archive.
This package was used in order to perform all the computations needed in this thesis
and was written throughout the course of my doctoral studies. I thought it would be a
nice addition to the overall work I have done. Following the description of the package, I
also included figures and tables associated with the chaptersdand p|that accompany the
main text but are not in any way essential for the scientific points I am trying to make.

I wish to all potential readers that they learn something new from this thesis, which
will stimulate their curiosity and keep them asking and wondering about our world.



CHAPTER 2

Complex systems framework

Nature uses only the longest threads to weave her patterns, so that each
small piece of her fabric reveals the organization of the entire tapestry.
Richard P. Feynman



An introductory definition of complex systems would be that of a “system composed of
many components”. However, this simple definition barely scratches the surface of how
powerful the perspective of complex systems could be. To fully appreciate the notion
of complex systems, one has to recognise strengths and weaknesses of how science has
previously approached understanding the world around us [|Bar-Yam, |2002].

As|Bar-Yam,[2002] notes, one of the most important observations in science in general,
is that everything is made out of parts. Then we proceed to figure out how its parts
work; this will help us know how the systems as a whole work. Therefore, scientists
consider a study of parts usually to be a study of the system in general. The problem is
that we left out the relationships between the parts — how the parts interact.

From this emerges a better definition of complex systems as a “new approach to science,
studying how relationships between parts give rise to collective behaviours of a system, and how the
system interacts and forms relationships with its environment” [|Bar-Yam,|2002]. This approach
makes it possible for us to define and contemplate terms that shape the behaviour of
complex systems such as emergence, interdependence and self-organising patterns.

As we will see later, these properties of complex systems will shape our understand-
ing of some important phenomena emergent from Earth’s climate system. The purpose
of this chapter is to introduce the basic concepts and tools used in the study of complex
systems: I will introduce and define dynamical system from a mathematical perspec-
tive, establish a notion of complex networks and relationships between the parts of such
networks and lay the foundations of how we analyse different scales in atmospheric
dynamics.

2.1 Dynamical systems

What is a dynamical system? Virtually anything that evolves over time can be thought
of as a dynamical system. It consists of two main parts: a state vector, which exactly
describes the state of some system, and a function (rule), which advances the state of
the system to the next instant of time, given the current state [Scheinerman, 2012|]. The
state vector must completely determine the system’s state, in the example of a simple
pendulum, the state vector would consist of an angle, 0, and an angular velocity, w.
The function, which describes how these two variables evolve in time in the case would
be Newton’s second law (relating force applied to the pendulum with its mass and
acceleration) and a simple formula relating angle with velocity, 0’(t) = w(t). The time
in the notion of dynamical systems can be thought of as discrete, as separate chunks,
each following the next, or as continuous, in which case it runs smoothly. Of course, in
real-world applications like Earth’s climate, the time is always continuous.

2.1.1 Autonomous systems

One of the most powerful and ubiquitous behaviours of systems, in general, is an oscil-
lation. Oscillation is the repetitive variation, typically in time, of some measure about
a central value. This central value serves as an equilibrium and the system oscillates
between states around equilibrium. The pendulum from the former paragraph can serve



as a prototypical example of an oscillatory behaviour. By defining oscillatory behaviour,
we shall progress to the division of dynamical systems into forced, conservative and
self-sustained, of which the self-sustained oscillation is a prime example.

Self-sustained oscillators were introduced by|Andronov et al.|[1937]] (much later edition
available as Andronov et al.|[|2013]), although Rayleigh has already distinguished between
forced and maintained oscillations, and H. Poincaré introduced the notion of the limit
cycle. These oscillators are a subset of the class of dynamical systems and include chaotic
oscillations and as such are omnipresent in nature: a pendulum clock, a firefly emitting
light pulses, a vacuum tube radio generator, and a contracting human heart among many
of such systems [Pikovsky et al., 2003].

Mathematically, a self-sustained or autonomous system is defined by having a limit
cycle in its phase space. That is, the trajectory in a phase space corresponds to a closed
curve, and a particular state is repeated after the period T. As an example, consider a
simple system, whose temporal dynamics as a time series and a phase space portrait is
depicted in Fig. In this picture, equivalent states x(t) and x(¢t + T), where T is the
period of the system, correspond to the same point in the phase space, although cor-
respond to different points in the time series representation, with the distance between
them of one period. The form of this cycle, and hence the form of the oscillation itself is
completely determined by the internal parameters of the system [|Pikovsky et al., 2003].

[,
Ll

Y TIME

Fic. 2.1.| Example of a periodic oscillation, which is represented by a closed curve in
the phase space (left) of the system: equivalent states x(f) and x(t + T) correspond to
the same point on a limit cycle.

The limit cycle of linear (or quasilinear) oscillator is nearly a circle, hence the oscilla-
tion itself is a sine wave, and could be described mathematically as

x(t) = Asin wot + ¢y, (2.1)

where w( denotes the angular frequency, which is related to the oscillation period T
by wo = 2n/T. Next, the intensity of an oscillation is denoted by its amplitude A
and ¢(t) = wot + ¢y is its phase, with ¢ being the initial phase. Having defined the
amplitude and the phase of the oscillator, we shall proceed to state the main features of
oscillators.

Self-sustained oscillations are non-decaying stable oscillations in autonomous dis-
sipative systems. As an opposition to the self-sustained oscillators, we can think of
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tforced oscillators. Although, both of them are represented by closed curves in the phase
space (recall Fig. 2.1]left), they have an essential difference: the phase on a limit cycle
is free, but the phase on the stable closed curve of the forced system is unambiguously
related to the phase of the external force [|Pikovsky et al.,2003|]. In the latter text, we will
mainly work with autonomous systems as we will see later, they can exhibit interesting
behaviour once they are coupled to some other autonomous system.

2.1.2 Introducing coupling and causal relations

On our route to complex systems, let us start with the simplest possible case, that
is coupling two oscillators together. Generally speaking, the interaction between two
systems is nonsymmetrical: either one oscillator is more powerful than the other, or they
influence each other to different extents or both. On a descriptive level, let us denote the
partial frequencies of two autonomous oscillators as w1 and w; and let w1 < w»; and the
observed frequencies of interacting oscillators by €2 . Then, if the coupling is strong
enough, frequency locking will appear as a mutual adjustment of frequencies, so that
O = Q = Qand typically w1 < Q < wy [Pikovsky et al.,|2003]. This frequency locking
is just one example of interesting behaviours that emerge from coupling dynamical
systems together.

On a model level, one can imagine coupling, or interaction between systems, simply
as introducing a variable from one such (sub)system to the equations of the other. If
the influence is bi-directional, a variable from second such subsystems appears in the
equations. Now, let assume that the coupling is uni-directional, from subsystem one to
subsystem two. If we knew the systems equations, of course, we could infer that the
systems are coupled and the exact nature of this coupling. On the other hand, if we
did not know the full description of the system in the form of equations and only work
with measured time series, the problem becomes much more interesting. With this, we
stumbled upon one of the fundamental questions of the most natural and social sciences
over the history: detection and clarification of cause-effect relationships, or shortly a
causal discovery.

To define causality as such, one may spend numerous evenings reading literature
and still not come to a satisfactory definition. Nevertheless, according to Wikipedia, a
causality is “the natural or worldly agency or efficacy that connects one process (the cause) with
another process, or state (the effect), where the first is partly responsible for the second, and the
second is partly dependent on the first” [wikipedia.org, bll. Despite the fact, that causality
expresses a kind of a “law” necessity, causal relationships are often investigated in
situations which are influenced by uncertainty, and is viewed as a phenomenon which
can be “measured” and quantified [Hlavickova-Schindler et al.,|2007].

While considering deterministic approaches, or systems, the literature discusses two
important conditions for causality to exist: necessity (“if X occurs, then Y must occur”),
and sufficiency (“if Y occurs, then X must have occurred”) [|Granger, 1950]. However, this
deterministic formulation is not tractable in reality, since almost no real-life system is
strictly deterministic in the sense, that its outcomes can be predicted with certainty
[Hlavickova-Schindler et al| 2007]. In the real-world applications, it makes much more
sense to consider a so-called probabilistic notion of causality described by |Suppes|[|[1970]
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as “an event X is to cause to the event Y if: X occurs before Y, likelihood of X is non zero, and
likelihood of occurring Y given X is more than the likelihood of Y occurring alone”.

The question, of course, would be why do we want to know the causal relations in
our system? What information can we get? Practically, three things: uncovering the
underlying dynamics, assessing susceptibilities to perturbations in systems [Runge et al.),
2015] and enhancing the prediction skill. To illustrate what I mean by these three reasons
to bother with causality, consider the illustration in Fig.

complex system consisting observable, e.g. temperature
of 3 oscillators

Fic. 2.2.| Illustration of causal relationships: on the left-hand side is complex systems
with three autonomous oscillators with uni- and bi-directional coupling with different
frequencies. From the intertwined dynamics of oscillators emerge the so-called ob-
servable — a time series we can measure, on the right-hand side, usually contaminated
with noise.

On the left-hand side of the Fig. we have three self-sustained (or autonomous)
oscillators coupled together in some way. In this illustration, they exhibit uni-directional
coupling from middle to fastest oscillator and bi-directional coupling between middle
and slow oscillator. From the collective dynamics of these coupled oscillators (which
we can call a complex system) emerges a so-called observable, i.e. a time series we can
measure and analyse. For the purpose of this example, let it be a surface temperature
time series from some station. One peculiar way how to imagine causal relations and
consequences of them is to consider that nature works from left to right: the oscillators
are parts of a complex system, their collective dynamics give rise to a variable, which
we call the temperature. Now, we can (and should) measure temperature and record
it, hence generate a time series. By applying causal discovery algorithms we are trying
to reverse-engineer the nature and working from right to left: given the time series of
our interest, we are trying to identify the subsystems (i.e. the individual oscillators),
describe them (for example by their frequency, and instantaneous phase and amplitude),
and infer the relationships between them.

Inferring the relationships between subsystems would certainly help in uncovering
the underlying dynamics — in this case, it is very well defined by the subsystems them-
selves and their properties, and by the relationships between them. As for assessing
susceptibilities — imagine introducing a perturbation into the fast oscillator in the il-
lustration, e.g. in the form of elevated amplitude. This perturbation would spread and

11



mediate in the system and by knowing the relationships among subsystems, we would
be able to predict what is going to happen and possibly take an appropriate course of
action. As a perturbation imagine e.g. extreme events, volcanic eruptions, geoengi-
neering etc. and as a system consider Earth’s climate, hence it is of utter importance to
study causal relations in this way [Runge et al.|, 2015]. Lastly, knowing the relationships
between the subsystems could improve the prediction and forecasting, assuming that
we are able to predict the subsystems’ behaviour within particular uncertainty bounds.

2.2 Complex systems & networks

Although briefly defined in the short introduction to this chapter, complex systems
definitely deserve more attention. As noted above, we can think of complex systems
science as studying how relationships between parts of a system give rise to collective,
usually nonlinear, behaviours. By definition, these systems exhibit behaviours, which
is intrinsically difficult to model due to its dependencies, relationships, or interactions
between their parts. This is the difference between various systems: general systems the-
ory focuses on the collective behaviours, but in non-complex systems, the reductionist
approach is usually taken. This means that the collective behaviour is some linear combi-
nation of individual behaviours of the systems’ parts. The emerging nonlinear behaviour
of complex systems is indeed the key difference — emergent properties (meaning they
are not apparent from individual components in isolation but result from interactions of
the individual parts), often chaotic nature (sensitive dependence on initial conditions)
and the difficulty to make sensible model: all are rising from the nonlinearity of such
systems.

The Earth is a highly complex system formed by a large number of subsystems,
including biosphere, atmosphere, lithosphere, social and economic systems and more
[[Donner et al., |2009]. Each of this subsystems can be also viewed as a complex sys-
tem, e.g. we can treat the atmosphere as a complex system consisted of synoptic-scale
phenomena, and go even further and consider synoptic-scale phenomena as a complex
system consisting of local interacting weather patterns and in turn consider those as
complex systems consisting of individual particles of air, and so on. As a result of these
interactions, the Earth can be portrayed as a complex and evolving network. As I stated
before, if one studies only the part of the Earth’s complex system, one would completely
miss some of the relevant facts. To motivate with an example, consider that the tectonic
activity and the resulting motion of plates as an important trigger for the formation of
oceanic currents, which determines the climate on large scales through heat transfer
[|Saltzman, 2002], for which there exists numerous concrete examples, such as the closure
of the seaway between North and South America started an era of increasing glaciation
in both poles [Haug et al., 2001}

2.2.1 Complex network paradigm

Given the structure of complex systems, such as the Earth, we operate on several sub-
systems, but notably also on their relationships. A particularly helpful approach arises
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by the name of complex networks. Complex networks paradigm is a powerful toolbox
for studying non-trivial topological features in a graph and hence studying the structure
of statistical interrelationships between various subsystems.

Networks as such are all around us. Think of electric power grids, the Internet,
highway and subway systems, neural networks, social networks, and much more. His-
torically, they have been mainly in the domain of the branch of discrete mathematics
known as graph theory. Mathematically, a complex network is represented by a graph
G = (N, £), which consists of two sets: N, such that N # 0, and £ is a set of (un)ordered
pairs of elements of N. The elements of N = {n1,ny,...,ny} are the nodes (or vertices,
or points) of the graph G, while the elements of £ = {I1, [, ..., [k} are its links (or edges,
or lines) [Boccaletti et al., 2006|.

In an undirected graph, each of the links is defined by a couple of nodes i and j and
the order is not important: in an undirected graph, as expected, we have [; ; = [;;. Ina
directed graph, the order is important, thus [; ; # [;;. In a basic definition of a graph,
the links are either there or not, hence they are binary. An extension to this exists in the
form of weighted network, where each link possesses its weight. Examples of a graph
with 7 nodes (N =7) and 14 links (K = 14) are presented in Fig.

Fic. 2.3.| Graphical representation of undirected (a), a directed (b), and a weighted
undirected (c) graph with 7 nodes and 14 links. Figure taken from Boccaletti et al.|[2006].

In climate science, the most used type of graph or network is undirected (similar
to a network (a) in Fig. — it is usually constructed with bivariate dependence
measure such as correlation. Directed, or causal, graphs are used far less because of
their complexity and the fact, that they are hard to interpret and often suffer from various
robustness problems, in particular when using nonlinear approaches (for a discussion on
linear vs. nonlinear approach see e.g. [Hlinkaet al.,|2014b|]). Likewise, weighted networks
are also not common in climate science, since they are hard to interpret and some of
the measures commonly computed for unweighted networks are hard to generalise
[[Boccaletti et al., 2006]].
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Although complex networks as defined above seem like a perfect match for studying
systems in their full complexity, a question remains whether we can learn something
new by using this approach. From its famous first use in climate science by
[2004]], it gained much interested in the community and led to some significant
advances in our understanding of climate (e.g. [T50nis et al.|[2006]]; [Ebert-Uphoff and Deng|
[2012]]; [Fountalis et al] [2015]]; Wiedermann et al [2016]]; [Hlinka et al] [201/0] and much
more). In a field of statistical climatology, a large body of approaches has been used in
the past, including empirical orthogonal functions (EOF), maximum covariance analysis
(MCA), or canonical correlation analysis (CCA) [von Storch and Zwiers, 2002|]. Many
classical approaches suffer from implicitly assuming linearity (EOF, MCA) and because
of this, nonlinear generalisations of these methods emerged [Donner et al, m Another
point of criticism would be that globally variance-maximising modes are not necessarily
relevant locally, and the identified modes strongly depend on the spatial domain of the
interest [Monahan et al., 2009]. Since complex networks has been successfully used in
variety of other fields of application (see e.g. [Albert and Barabisi) [2002]]; [Newman| [2003];
Boccaletti et al|[2006]) as a methodological alternative, allowing to identify the general
relevance of a given node within the graph, and also to highlight the important statistical
associations among other nodes, it was only a matter of time until Isonis and Roebber|
proposed to the apply complex networks framework in climate science.

N time series compute similarity
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Fic. 2.4.| Schematic illustration of the construction of a climate network form a global
gridded climatological data set. Inspired by a figure from Donner et al.|[2017].

To briefly illustrate the typical use of complex networks in climate science consider
Fig. First step consists of selecting the data and optionally preprocessing them, in
order for the data to represent what we shall study. Next step is to compute a similarity
between time series — here the options are vast. The first, and most natural choice
would be to compute the correlation matrix, but we may opt to use other bi-directional
measures, like mutual information or synchronisation. In this case, the similarity matrix
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will be symmetric. Another family of similarity measuresis uni-directional, e.g. Granger
causality or transfer entropy, and of course, in this case, the matrix would be non-
symmetric. Having computed the similarity matrix S, the usual step is to transform
the similarity matrix into unweighted (binary) adjacency matrix A denoting whether
the given statistical similarity is considered relevant. This nonlinear transformation
corresponds to thresholding the similarity matrix as

Aij=0(S;;=S)1~-0i;), (2.2)

where ©(+) denotes Heaviside function, 6; ; the Kronecker delta and S* denotes a thresh-
old value [|Donner et al., 2017).

The last aforementioned step effectively creates a graph or a complex network, and
subsequently, we can apply a variety of graph-theoretical measures to quantify a topol-
ogy of such network. For a comprehensive review of network characteristics see e.g.
Albert and Barabasi [2002)] or [Boccaletti et al.|[2006].

The complex networks framework offers a powerful instrument in analyses of com-
plex systems, and also a compelling concept when thinking about complex systems
as such. In next chapter, I will describe how a temporal scales shape the behaviour
of certain phenomena. It turns out that imagining processes at certain frequencies as
nodes in a network, while the links would describe relationships between those pro-
cesses is a robust portrayal of the studied system and presents a paradigm on which the
state—of—the-art analyses of complex systems could be conducted.
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CHAPTER 3

Temporal scales in
atmospheric dynamics

Big whirls have little whirls
that feed on their velocity,
and little whirls have lesser whirls,
and so on to viscosity.
Lewis Fry Richardson
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Physical laws of nature work with a notion of scales. Generally, a scale is a particular
distance determined with the precision of one order of magnitude [wikipedia.org, |d|]. The
concept of scale is of great importance, because of the decoupling phenomena, when
it is believed that processes on different length scales are said they cannot affect each
other. Scientific reductionism states that the physical laws on shortest scales can be
used to derive a compact description at larger length scales. The scaling paradigm is,
naturally, also present in the atmospheric physics, or more broadly, in fluid dynamics
and thermodynamics.

3.1 Scaling in the climate system — theory

To see an origin of scaling, consider the basic equations of incompressible and dry
hydrodynamics, the famous Navier-Stokes equations. They read

ov . Vp )
§+(V-V)v = —pa+vVv+f (3.1)

Vv = 0, (3.2)

where v is the velocity of a fluid, t is time, p is the pressure, p, is the air density,
v is kinematic viscosity, and f represents the body forces (per unit volume) due to
stirring, gravity etc. Eqn. expresses the conservation of momentum, while eqn. (3.2)
expresses the conservation of mass in an incompressible fluid [Lovejoy and Schertzer,
2013]. These equations are formally invariant under isotropic “zooms” x = Ax" as long
as one rescales the other variables as

v =AYy
t = A—yv+1tl
(3.3)
v = Avetly
f = /\Zyv—lf/’

where Y, is an arbitrary scaling exponent. The rescaling of the viscosity may seem odd,
but it may be understood as a rescaling of the eddy-viscosity or renormalised viscosity;
similar remarks can be made for the forcing f [|Schertzer et al.,[1998].

If an additional constraint is imposed, such as the conservation of energy flux, this is
enough to determine the value of the coefficient y,. Indeed, considering the energy flux
€ = —dv?/dt, we find

x = Alx
(3.4)
€ = A—l+3yv€/.
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If the energy flux is scale-invariant, we get y, = 1/3; hence for fluctuations of the velocity
Av over distances Ax we obtain

Ax = ATAx’
(3.5)
Av = AVBAY,
which gives us the famous [Kolmogorov, [1941]] law:
Av ~ e'PAxt; Hy =y, =1/3. (3.6)

This Kolmogorov law is the prototype of emergent turbulent law, which communi-
cates the fact, that the dynamics of fluids should be repeating scale after scale, or in
other words, after some renormalisations, the dynamics is scale-invariant. However, the
eqn. does not hold at all observable scales: it breaks down due to a viscosity at
small enough scales (the derivatives converge) and similarly, at large scales, the forcing
term breaks the scaling symmetry [Lovejoy and Schertzer, 2013]]. But since the outer scale
is roughly the size of the planet and the inner (“viscous”) scale is typically 0.1-1mm, the
scaling range is potentially still of factor 101°.

Let us make a transition from theoretical scaling based on the fluid dynamics equa-
tions to a more practical approach — consider the known atmospheric processes. Various
atmospheric processes and their typical scales are summarised in Fig.[3.1|and Table
As the figure shows, processes in Earth’s climate system span scales within a factor of 10"
in a spatial sense and even 10'2 in a temporal sense. These processes exchange energy
and influence each other in a non-trivial way. The energy is transferred in both direc-
tions simultaneously: the upscale cascade (smaller scales to larger), and the downscale
cascade (larger to smaller). One can image energy as becoming a part of the atmospheric
heat engine by entering at molecular level scale and exiting at the molecular level scale
after a journey through weather systems (as illustrated in Fig.[3.1/and Table at many
temporal and spatial scales.

The upscale energy cascade begins with the interception of Sun’s energy at Earth’s
surface by molecules and the energy is conducted to the air. Subsequently, the energy
is transferred via convection, conduction, and radiation and through evaporation and
condensation of water molecules to become the driving force of weather systems. On the
other hand, the downscale energy cascade gets an injection at largest scales from the Sun
(in the form of unequal heating which drives large-scale atmospheric motion), this energy
is subsequently cascading downwards until the molecular level where is dissipated. Or
alternatively, the molecules lose the energy while ascending or by radiation. In the light
of both energy cascades, we see that the interaction between scales is important and
as you can imagine, mathematically very complex. These cascades are usually local in
Fourier space, or better said: the energy transfer is most efficient between neighbouring
scales [Lovejoy and Schertzer, |2013|l. According to |Rose and Sulem| [1978], it is natural
to consider a discrete hierarchy of eddies, which may be defined as a fluid “coherent”
structures. Considering energy transfer from one scale to another, only the motions
which can distort these eddies are dynamically important. After a short thinking and
playing with important quantities, as in |Lovejoy and Schertzer| [|2013|], we came to an
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Fic. 3.1.| Illustration of various spatial and temporal scales of atmospheric processes.
Processes taking place in atmosphere are shaded with pink colour, while oceanic pro-
cesses are shaded with light blue. The figure demonstrates the vastness of scales — the
factor is around 10'? in a spatial and 10'? in a temporal sense.

approximation of “eddy turnover time”, T, = l,,/v,, where I, is a typical length scale and
v, is dynamically important velocity. This simple approximation ties the typical lifetime
of structures of size [, with their typical velocities, v,,.

Table 3.1 summarises exactly the typical scales both in a spatial and temporal sense,
also giving an example of an atmospheric process operating on the respective scales. This
table also states the typical source of energy at respective scales and from this we can
somehow reconstruct the means how energy cascades downscale: from energy injections
at planetary scale in the form of unequal distribution of solar heating it cascades to
power the jet streams and atmospheric fronts, subsequently transforming into wind
shear at mesoscale, and interaction with obstacles and air viscosity at microscale, finally
dissipating due to molecular processes, which are best described using the kinematic
theory of gases. It is only natural to expect that the peculiarities of the energy cascade
will affect neighbouring scales, or said differently — due to energy transfer between
scales, these scales are affecting each other.
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TasLE 3.1.| Summary of various typical scales in atmospheric dynamics: the span,
typical lifetime, characteristic examples and energy sources. Table taken from
shorstmayer.com,

3.2 Scaling in atmospheric data

Now, you should be convinced that scales as such are a very important concept from
the theoretical point of view in the atmospheric dynamics, but what about the data?
Fortunately, today we live in the “golden age” of atmospheric observations, when in-situ
and remote data routinely span scale ratios of 10>~10? in space or time and operational
models are not particularly trailing [|Lovejoy and Schertzer, 2013|].

“The climate is what you expect; the weather is what you get”, famously written by
Robert Heinlein in his 1973 novel could serve as an example of two different regimes in
atmospheric dynamics. As far as the data-based evidence goes, this is partially true, with
the addition of one more regime — the macroweather. As a typical example of scaling of
the atmospheric field, see Fig. In this figure, we observe three distinct scaling regimes
in the atmospheric dynamics. The first regime is in the right-hand part of the figure
and shows the typical “weather” regime. That is the regime in which the fluctuations
increase with scale, or put differently: the difference between today’s and tomorrow’s
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temperature is lower than between today’s and the day after tomorrow’s temperature.
After the weather regime, we observe the first transition to the macroweather regime.
This regime has statistics, which are very close to those predicted by simply extending
the weather scale models to low frequencies, e.g. traditional global climate models
(GCMs hereafter) when these are run without special anthropogenic, solar, orbital, or
other climate forcings, i.e. “control runs”. In this macroweather regime, the fluctuations
are actually decreasing with increasing scale, since it obtains no new internal dynamical
element nor forcing mechanisms [Lovejoy and Schertzer, 2013|]. Finally, the left-most
regime in the Fig. corresponds to our usual ideas about climate — this includes
the multidecadal, multicentennial and multimillennial variability [Lovejoy and Schertzer,
2013]]. This example well documents the fact, that fields in the atmosphere are indeed
scaling, therefore various scales are exchanging energy, and with that also information.
For other examples of various scaling in both spatial and temporal sense, see|Lovejoy and
Schertzer[2013]] and references therein.
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FiG. 3.2.| A composite spectrum of GRIP ice-core 6'%0 (a temperature proxy), with the
spectrum of the (mean) 75°N 20CR reanalysis temperature. All spectra are averaged
over logarithmically spaced bins. Three distinct regimes are shown corresponding to

the weather, the macroweather, and the climate. Figure taken from|Lovejoy and Schertzer
[2013].
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3.3 Information transfer in atmospheric dynamics:
the synthesis

Having laid the foundations of complex systems, network theory and scaling in atmo-
spheric dynamics both from a theoretical and data-driven perspective, let us synthesise
these fields into a study of information transfer across temporal scales in atmospheric dy-
namics. In this section, I will build the necessary tools for studying and understanding
information transfer, by the means of synchronisation and causal relationships, across
various scales in climate phenomena.

3.3.1 Fourier domain: a description of oscillatory patterns

The frequency, or Fourier, domain refers to the analysis of mathematical functions or
signals with respect to frequency, rather than time. Simply, a time-domain plot shows
how a signal changes over time, whereas a frequency-domain plot visualise how much
of the signal lies within a given frequency band [Broughton and Bryan, 2011|]. The
description of any process in a frequency domain is particularly useful when dealing with
oscillatory or quasi-oscillatory processes and recurring patterns. The coupled climate
system exhibit a number of large-scale phenomena, the so-called climate modes such
as El Nino/Southern Oscillation, the Asian monsoon, the North Atlantic Oscillation,
the Madden-Julian Oscillation, and much more. While these modes are not exactly
periodic, they are indeed oscillatory in character [|Viron et al., 2013]. When we include
with these the higher-frequency cycles apparent in climate dynamics, such as the annual
cycle, their harmonics, diurnal cycle and so on, we come to the conclusion that many
distinct behaviours in climate dynamics can be described in frequency-domain. Or
put differently, they exhibit oscillatory or quasi-oscillatory behaviour, the maxima and
minima are recurring with some approximate period and the dynamics of the climate
as a whole can be thought of as a collection (or a network) of these coupled phenomena,
from which arises complex multi-scale behaviour we can measure by the means of
temperature, pressure and other atmospheric observables [Palus, |2014a].

The immediate connection one usually makes with the word “Fourier” is that of a
spectrum. The spectrum, or spectral density, describes how the energy of a signal is
distributed with frequency. Simply it shows on which frequency the power in the signal
resides. From the first data-driven atmospheric spectrum by Panofsky and Van der Hoven
[[1955]], various spectral methods were used to identify and study oscillatory phenomena
in various fields, from wind, temperature and pressure fields, to boundary conditions
in the form of terrain roughness. For identifying spectral peaks, probably the most
used algorithm is Fourier transform (e.g. [Bracewell and Bracewell, 1986]), which is a
decomposition technique that takes an input in the form of function in time and outputs
its frequency components. Mathematically, a Fourier transform of a function f(x) is
defined as

(€]

@) = / Fx)e i dy, (37)

—00
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for any real number, £ € R. Having defined the Fourier transform, or more precisely
its algorithmic implementation, which goes by the name Fast Fourier Transform (e.g.
Cooley and Tukey|[1965]]), the route to defining a spectral density is rather straightforward
with

Sex(f) = 12()I? (3.8)

where X(f) is a Fourier transform of the signal and f is the frequency. In words, one
computes a Fourier transform of desired time series over frequency bins of interest and
squaring the Fourier coefficients gives an estimate of spectral density. As an example
of spectral content in atmospheric data, consider Fig. As the figure clearly shows,
and as one would expect from daily average surface air temperature time series, a clear
spectral peak is occurring at exactly one year — the annual, solar, cycle. Apart from the
main annual peak, we see clearly see various local maxima and minima, e.g. peak in
7-8-year periodicity.
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Fic. 3.3.| FFT spectral density of daily average surface air temperature from station
Prague — Klementinum with temporal span 1. January 1770 — 1. January 2016. Data
from ECA&D project [Klein Tank et al}2002]. The dotted vertical lines show frequencies
between 1 and 10 years with an annual span.

By the means of spectral analysis, as shown here, one can detect typical periodicities,
or cycles, in the given signal. From the spectral representation, it is obvious, that the
signal is of multi-scale nature, i.e. is a mix of various sources of cyclicities together (recall
Fig.[2.2). Our goal is to study the relationships between these various cycles obtained in
the data, so we would need a means of extracting the oscillatory modes from data.
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3.3.2 Extracting oscillatory modes from observables

In order to study distinct oscillatory phenomena in the observational data, we would
need tools to extract the modes. Since the observational data, e.g. surface air tem-
perature, reflect complex atmospheric dynamics on multiple temporal scales, the phase
dynamic approach [Pikovsky et al.,2003] is of particular use. In accordance with |Gans et al.
[2009] we can write for arbitrary time series s(t), the analytic signal ¢(t) as a complex
function of time defined as

W(t) = s(t) + i3(t) = A(t)e?®, (3.9)

In this phase dynamics approach, one expects the time series to have an oscillatory
character and these are conveniently described by the means of the instantaneous am-
plitude A(t) and phase ¢(t). We expect these to be a function of time and are allowed to
fluctuate. From the eqn. (3.9) we obtain the description of instantaneous phase as
5(t)
£ = tan —=, 3.10
¢(t) = arctan S0) (3.10)

and instantaneous amplitude as

A() = +Js2(b) + 82(8). (3.11)

Given this convenient description of oscillatory modes in time series, one has practi-
cally two options how to proceed. The imaginary part of the time series, 5(t), is usually
obtained by the means of the Hilbert transform of s(t) [Pikovsky et al., 2003} |Gans et al.,
2009]. It simply extends the signal into a complex plane in such a manner, that it satis-
ties the Cauchy-Riemann equations in order for the complex representation of the time
series to be holomorphic, i.e. complex differentiable [Benedetto,|1996]. Since the Hilbert
transform is a unit gain filter at each frequency, broadband signals from multi-scale
processes should be prefiltered to the frequency band of interest. This can be done using
methods from signal processing e.g. band-pass filter centred around the frequency of
interest.

The second option is to exploit the theory of wavelets, particularly the continuous
complex wavelet transform (CCWT hereafter) [lorrence and Compo, 1998]. A wavelet
transform is a form of a time-frequency representation of a continuous-time signals
(analog signal in signal processing terminology) and therefore is related to the harmonic
analysis. Given a signal of finite energy, by the means of continuous wavelet transform,
it is projected on a family of frequency bands. This projection of a function x onto the
subspace of scale 4 has the form

Xalt) = / WTy{x}(a, b) - as(1)dlD, (3.12)
R
with wavelet coefficients

WTy()0,0) = (5, 90a) = [ 200paplt)a. (3.13)

R
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In words, one simply convolves the signal of interest with predefined mother wavelet.
The beauty of this approach is that in each time scale (frequency) of interest, the complex
wavelet coefficients can be directly applied to eqns. and in order to obtain the
time series of instantaneous phase and amplitude. Therefore, the continuous complex
wavelet transform provides both filtering to the frequency band of interest and estimation
of instantaneous phase and amplitude.
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Fic. 3.4.| Illustration of continuous complex wavelet transform on daily average surface
air temperature from station Prague — Klementinum. Shown are raw temperature in
light grey, amplitude A1y, of the annual cycle decomposed using CCWT in red, phase
¢1yr of the annual cycle in green and reconstructed signal, A1y(t) cos 1y(t), in black.
Data from ECA&D project [Klein Tank et al., 2002|.

The oscillatory modes in atmospheric dynamics are rarely completely and absolutely
regular. The cycles could speed-up, slow-down, suddenly jump to a different place in
a cycle and so on. Phases of this cyclic components do fluctuate and, thus, offer an
additional information to analyse: one could compute instantaneous frequency [Gans
et al., 2009} \Palus and Novotna, 2009; [irsa and Miiller, 2013|] as a temporal derivative of the
instantaneous phases (in a data-driven fashion one would compute a linear regression
to obtain a slope as an estimate of a derivative). Yet another variable for analyses of
oscillatory modes would be a phase fluctuation — a difference between instantaneous
phase obtained from the data and ideal regular cycle, e.g. annual when computing the
fluctuations of annual phase as a shift of season timing, which was done e.g. by Palus
et al.|[2005].
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3.4 Measuring the dependence: linear and nonlin-
ear methods

Let us take a break from the atmosphere and its dynamics and dive into basics of prob-
ability theory. In probability theory, a cornerstone is a random variable, also called
random quantity or stochastic variable. It is a variable whose possible values are numer-
ical outcomes of a random phenomenon [Grinstead and Snell, |2012]. It is common that
these outcomes depend on some physical variables that are not very well understood.
This definition mirrors a definition of observables (recall subsection and Fig. 2.2),
thus it is convenient to think of the observables as random variables. Mathematically, a
random variable X : () — E is a measurable function from a set of possible outcomes ()
to a measurable space E and usually X is real-valued, i.e. E = R. The probability that X
takes a value in a measurable set S C E is written as

Pr(X € S) = P({w € Q|X(w) € S}), (3.14)

where P is the probability measure equipped with Q). We will work only with real-valued
variables, hence in our case E = R always.

When given a random variable X : (3 — R, one can ask e.g. how likely is that the
outcome of X is equal to 2, and the answer is, of course, the same as the probability of
an event {w : X(w) = 2}, which can be also written as P(X = 2) for short. Recording all
these probabilities of ranges yields the probability distribution of X and can always be
captured by its cumulative distribution function

Fx(x) =P(X < x). (3.15)

3.4.1 Basic dependence measures

Having defined a random variable, we can move on into statistical dependence, which
is defined as any statistical relationship (causal or not) between two random variables
or bivariate data. The most used and known such measure is the correlation. Correlation
measures linear dependence and can be thought of as indicating predictive power that
may be exploited in practice. In general, correlation is not sufficient to claim any causal
relationship, which, unfortunately, is an often used logical fallacy. But one needs to
carry in mind that cum hoc ergo propter hoc (“with this, therefore because of this”) is not
always true.

For building a proper definition of correlation as a statistical dependence, we need
to begin with covariance. Covariance is, as its name suggests, a measure of how two
random variables jointly vary. In words, if the greater values of one variable correspond
to greater values of the other variables (and vice versa), we say that the variables show
similar behaviour and the covariance is positive. Mathematically, covariance is defined
as the expected product of their deviations from their individual expected values as

cov(X,Y) = oxy = E [(X —E[X]) (Y - E[Y])] = E[XY] - E[X]E[Y]. (3.16)
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A similar definition holds for random vectors X € R™ with

cov(X,Y) = oxy=E [(x —EX])(Y-E[YD'| = E[XY"]-E[X]E[Y]", (3.17)

where -T denotes a transpose of a vector or a matrix. Finally, foravector X = [X1, X, ..., Xm]T

of m jointly distributed random variables we define its covariance matrix as
Z(X) = cov(X, X). (3.18)

There are several correlation coefficients measuring the degree of dependence. The
most common of these is Pearson product-moment correlation coefficient, commonly
called just Pearson’s correlation coefficient [[Lee Rodgers and Nicewander, 1988|]. It is
defined simply as normalised covariance, therefore

E [(X = ux) (Y -
oy = corr(X, ) = EY) _ [(X = ux) ( HY)]’ (319)
ax0Y axoY

with ux being the expected value of X and ox its standard deviation. Pearson’s corre-
lation coefficient exhibit some nice properties, e.g. cannot exceed 1 in its absolute value
and is symmetric, i.e. corr(X, Y) = corr(Y, X). If the variables are independent, pxy =0,
but the converse is not true, since Pearson’s correlation coefficient detects only linear
relationship. This is beautifully visualised in Fig

Fig. 3.5.] Several sets of (x, y) points, with the Pearson’s correlation coefficient of x
and y for each set. Note that correlation cannot detect nonlinear relationships (bottom
row). Figure by Denis Boigelot, taken from (wikipedia.org[c].

When we start in the middle of the top row, we observe independent variables
(multivariate Gaussian with diagonal covariance matrix), hence py,, = 0. As we increase
the diagonal elements in the covariance matrix of multivariate Gaussian, by the same
token we also increase (in absolute value) the correlation coefficient p. This is visualised
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in the top row on both sides from the middle. In the middle row, we can see various
slopes of the dependence, but always with the perfect correlation coefficient of +1,
except the middle example, when it is undefined as the variance of y, 0y, is zero. Finally,
exploring the third row in the Fig. one immediately see some dependence between
variables, but this time it is nonlinear dependence, and, as expected, in all cases the
Pearson’s correlation coefficient equals 0.

The Pearson’s correlation coefficient is widely used in data-driven fashion, because
it can be easily rewritten from original definitions via random variables, to a definition
with series of measurements of X and Y, written as x; and y; withi = 1,2,...,n, as
sample correlation coefficient with

Sw-nWi-9)  Sw-9i-9)

=Ly \/z (i = 2P 5 (i~ 7)’

where X and y are the sample means, and s, and s, are the corrected sample standard
deviations of X and Y, respectively. Although Pearson’s (or rather sample) correlation
coefficient is widely used with atmospheric data in order to infer relationships, it is able
to detect linear relationships, and only mere “visual similarity” — not causal.

One step further would be to assess the relationship, that possesses a true potential
for prediction, and the Granger causality exactly offers that. As the name suggests, it was
brought into computational practice by Clive Granger [Granger,|1969] and it characterises
to what extent a process X is leading another process Y. We say, that the process X
Granger causes another process Y if future values of Y can be better predicted using
the past values of X and Y rather than just Y alone. The ideas behind such definition
come from the work of Norbert Wiener [Wiener, 1956 and Granger in his Nobel lecture
[Granger, 2004|] identified two components for the statements about causality:

Ty = (3.20)

¢ the cause precedes the effect, and

* the cause contains information about the effect that is unique and is in no other
variable.

The standard test for Granger causality (GC hereafter) is based on a linear regression
model and consists of series of t-tests and F-tests on lagged values of X. The hypothesis
Granger proposed to test has the following form:

PIY(t+1) € A|T(t)] # P[Y(t +1) € A|T_x(})], (3.21)

where P refers to probability, A is arbitrary non-empty set, and 7 (t) and Z_x(t) respec-
tively denote the information available as of time ¢ in the entire universe, and that in the
modified universe from which X is excluded. If this hypothesis is accepted, we say that
X Granger-causes Y [Granger, | 1980).

The mathematical statement of Granger causality to test the null hypothesis that x
does not Granger-cause y would firstly find the proper lagged values of v to include in
a univariate autoregression:

y(t)=ao+a1y(t = 1)+ ay(t =2) +--- + a,,y(t —m) + n(t). (3.22)
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Next, the autoregression is augmented by including the lagged values of x:
y(t) = ag+ary(t—1)+asy(t=2)+- - -+any(t—m)+byx(t—p)+- - -+byx(t—q)+&(t). (3.23)

All lagged values of x that are individually significant according to their t-statistics
will be kept, providing that collectively they add explanatory power to the regression
according to the F-test. The null hypothesis that x does not Granger-causes y is accepted
only if no lagged values of x are retained in the regression. The extension of this test for
multivariate analysis is straightforward: the autoregression has the form

L
X(t) = ) AX(t 1) +€(t). (3.24)
=1

A time series X; is called a Granger-cause of another time series X; if at least one of the
elements of A.(j,7) for T = 1,...,L is significantly larger than zero in absolute value
[ILiitkepohl| [2005].

In the following section, I will review the basic concepts of information theory and
define a very useful measure called mutual information, which can be used in detecting
predictive causality even in nonlinear systems.

3.4.2 A quick introduction to information theory

Information theory, originally proposed by Claude Shannon in a pioneering paper “A
Mathematical theory of computation” in 1948 published during his work at Bell Systems
[Shannon| |2001], studies the quantification, storage and communication of information
[Cover and Thomas| 2012|]. A key measure is an entropy, which quantifies the amount of
uncertainty involved in the value of a random variable. As an example, consider that
identifying an outcome of a fair coin flip (with two equally possible outcomes) provides
less information (lower entropy) than specifying the outcome of a fair die (with 6 equally
probable outcomes).
The Shannon entropy is mathematically defined as

H(X) == p(x)Inp(x) (3.25)

xeX

for discrete random variable X. When one works with continuous variables, the sum in
eqn. (3.25) transforms to integral / x - dx. From the above definition, it is obvious that
in the case of p(x) = 0y x, the Shannon entropy is H(X) = 0, while for p(x) = 1/N for
x =1,2,...,N the Shannon entropy is maximised with H(X) = InN. The base of the
logarithm in the definition of Shannon entropy (eqn. (3.25)) can, in theory, be arbitrary,
however one would usually use either base of 2 (log,), which renders the unit of entropy
as “bits”, while using natural logarithm (In) changes the unit to “nats”.

The close parallels between Shannon entropy and thermodynamic entropy, defined
by Ludwig Boltzmann and J. Willard Gibbs in the 1870s, exist and these were also
commented on by Shannon himself. The definition of thermodynamic entropy is very
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similar to the Shannon entropy:
S = —kg Z pilnp;, (3.26)
i

where p; is a probability of a microstate i taken from an equilibrium ensemble and kg
is Boltzmann constant. The differences between the two are mainly theoretical [|Berut
et al.,|2012|, e.g. the information entropy H can be computed for any probability distri-
bution, while the thermodynamic entropy S refers to thermodynamic probabilities p;
specifically.

The joint entropy is merely the entropy of their pairing and this also implies that if
X and Y are independent, then their joint entropy is just the sum of their individual
entropies. It is defined as

H(X,Y) == p(x,y)Inp(x,y). (3.27)
X,y

In a similar fashion, one can define a conditional entropy, which refers to the conditional
uncertainty of X given random variable Y as

H(XY) == > p(y) ) p(xly)Inp(xly)

yeY xeX
(3.28)
== > plx, ) Inp(xly).
X,y
A basic property of the conditional entropy is then
H(X|Y)=H(X,Y) - H(Y). (3.29)

A very important concept in information theory is that of the mutual information. It
quantifies the amount of information that can be obtained about one random variable
by observing another. It is defined as

I(X,Y) = Z;‘ p(x,y)In %. (3.30)
We can also write
s Sron
ZP(XIy)p(y)lnp & ("i) 3.31)
- I—I(X) _H(X|Y)
— H(Y) - H(Y|X).
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from which we can immediately see that knowing Y, we can save on average I(X,Y)
bits/nats in encoding X compared to not knowing Y. Moreover, mutual information is
symmetric, thus

I(X,Y)=1(Y,X) =H(X)+ H(Y) - H(X, Y). (3.32)

Finally, mutual information can be expressed as the average Kullback-Leibler divergence
(relative entropy) [Kullback and Leibler, 1951|] between the posterior probability distribu-
tion of X given the value of Y and the prior distribution on X. In other words, it measures
how much the probability distribution of X changes when we are given the value of Y,
therefore

I(X,Y) = Dxr (p(x, pllp(x)p(y)), (3.33)

where Kullback-Leibler divergence itself is defined for two probability densities p(x)
and g(x) as

Diep@llg) = ¥ —pIng) - 3 -p@)npx) = 3 payin 22

(3.34)
xeX xeX xeX ( )

and quantifies how far from each other are the “true” probability distribution p(x) and
an arbitrary probability distribution g(x).
Mutual information possesses very useful properties, in particular

e I[(X,Y) >0,
* I(X,Y) =0, if and only if X and Y are independent.

We can see the latter is true when we realise that if two random variables are independent,
then p(x, y) = p(x)p(y) and therefore the logarithm in eqn. equals to zero.

Similarly to the conditional entropy, we can define the conditional mutual informa-
tion of the variables X and Y given the variable Z equivalently to eqn. as

I(X,Y|Z) = H(X|Z) + H(Y|Z) - H(X, Y|Z), (3.35)

which, after breakdown, gives us

_ _pxylz)
e _;p(Z);;p(x Yl NG p(ylz)
_S Y b, g, 2y ) .
z€Z erxeXp v p(x Z)p(y,z)

For Z independent of X and Y we, of course, have I(X, Y|Z) = I(X, Y). The conditional
mutual information characterises the dependence between X and Y without a possible
influence of another variable (Z). Finally, conditional mutual information could be
rewritten using just the mutual information between the variables as

I(X,Y|2) = 1(X,Y,Z) - I(X,Z) - I(Y, Z). (3.37)

All possible combinations of information theoretical measures between three vari-
ables, X, Y, and Z, are shown in Fig. Each of the three circles represent a random
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H(X[Y,Z) 1(x,Y|2)

I(X,Y,2)

I(X,2|Y)

Z

Fic. 3.6.| Venn diagram of information theoretic measures for three variables X, Y and
Z represented by the upper left, upper right and bottom circles, respectively. The ap-
propriate conditional entropy, mutual information or conditional mutual information
is written in the respective part of the diagram.

variable with its own entropy (H(X), H(Y), and H(Z) respectively) and in the intersec-
tions are defined their conditional entropies (H(X|Y, Z), H(Y|X, Z), and H(Z|X, Y)) and
combinations of conditional mutual information and mutual information between all
three variables. From this, we can also see that mutual information can be defined for n
variables as

I(X1,Xa, ..., Xn) = HX1) + HXo) + -+ + H(X) — HX1, Xo, . .., X). (3.38)

In a similar fashion, one can define also conditional mutual information of a group of
variables and also multivariate generalisations of conditional mutual information
. As already mentioned, all these functionals can be defined also for continuous
random variables rather than discrete ones, simply by interchanging all the sums for
integrals and the PDFs for the probability distribution densities [Palus et al., [1993}: |Cover]
land Thomas|,[2012]].

3.4.3 Computational approaches for mutual information

When computing the information theoretic measures from measured data (the observ-
ables) one additional step has to be done, that is to estimate the PDF. In theory, when
computing entropy or mutual information for random variables, the theoretical PDF is
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known (consider an example of a fair coin, or a die). When working with observables,
one has to discretise the phase space in order to get partitions and subsequently estimate
the PDEF. For an exhaustive overview of various computational methods tackling the
information theoretical measures, see [Hlavackova-Schindler et al.|[[2007]].

Various strategies have been proposed to partition the observational space, one of the
most popular and easiest to implement is the fixed partitioning of the space using the
histogram method [Butte and Kohane,|1999]. In this approach, the range of the variable is
partitioned into mx discrete bins with fixed, constant width hx. If the k; is the number
of measurements laying in the bin a;, then the probability p(x;) is estimated by relative
frequencies of occurrence, so

px(ai) = ki/N, (3.39)

where N is the size of the dataset. This method is usually referred to as the equidistant
binning method, as all the bins have same distances between each other. However, it
can be demonstrated [Steuer et al., 2002] that the estimate of MI fluctuates around a true
value or gets systematically overestimated, in particular in higher dimensions when
insufficient amount of data leads to low occupancy of many bins giving an incorrect
estimate of probability distributions [Hlavackova-Schindler et al., |2007]. The illustration
of the equidistant binning partition of the phase space is shown in Fig. A, where the
phase space is partitioned using 2 bins.

o o o
o o
e(1)
o
o o o
o ° 5 o ° 5 o 9 5
A B C

Fic. 3.7.| Illustration of three methods for estimating the probability density from
the data: (A) equidistant binning method, (B) equiquantal binning method, and (C)
k-nearest neighbours algorithm. See text for details to each method.

The simplest adaptive partitioning method was proposed by |Palus et al.| [1993]]; Palus
[[1995] based on marginal equiquantisation. In this method, the marginal boxes are not
defined equidistantly (i.e. having the same size), but rather so that there are approxi-
mately same number of samples in each marginal box. The choice of a number of bins
is, however, crucial. For this, [Palus| [1995] proposed that the number of marginal bins
should not exceed the (1 + 1)* root of the size of the dataset, i.e. ¢ < "¥N. This equi-
quantisation method effectively transforms each variable in its dimension into uniform
distribution and then the mutual information is fully determined by the value of the
joint entropy of the studied variable. Moreover, this method is invariant against any
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monotonous (even nonlinear) transformation of the data [Palus, |1996| and due to this
property, it is useful when statistically testing against surrogate data. The example of
equiquantal binning of the phase space is shown in Fig. B and one can see that
the bins are of different sizes, albeit they contain the same number of data points (in
marginal distributions).

Estimators of Shannon entropy based on k-nearest neighbours search are studied for
more than 60 years, however, they cannot be directly generalised to higher-dimensional
spaces [Hlavackova-Schindler et al.,|2007]. The idea of these neighbours searching algo-
rithms is to rank the neighbours by distance for each point and then to estimate the
entropy from the average distance to the k-nearest neighbour, averaged over all data
points. Mathematically, Shannon entropy H(X) = — f p(x)Inp(x)dx can be understood
as an average of In p(x). One of the specific algorithms for computing an estimate of mu-
tual information is due to|Kraskov et al.|[2004] (the KSG algorithm) and is fully described
in the respective paper. The mutual information estimated using this algorithm works
well also on non-Gaussian general distributions. An extension of the KSG algorithm
for estimating conditional mutual information in arbitrary dimensions is due to |Frenzel
and Pompe|[2007]]. A naive illustration of k-nearest neighbours algorithm is provided in
Fig. C, where the (i) denotes the distance to a 2"d nearest neighbour from the black
point.

Giving the description of three frequently used methods for estimating the (con-
ditional) mutual information raises a question of which one to use? This is an open
problem and the number of various estimators with a diverse range of assumptions and
statistical properties is abundant in the research literature. The criteria which point
to the best one would be that of a consistency and good performance in the sense of
small systematic and statistical error for a wide class of PDFs [Hlavackova-Schindler et al.,
2007|]. To best of my knowledge, this problem is not yet solved and the use of particular
algorithm heavily depends on the intent, various statistics of the data, computational
resources available, and time.

3.4.4 Inferring the causality from information theoretic mea-
sures

Let us show how one can infer the causal relationship using the conditional mutual
information defined in the former sections. Let {x(¢)} and {y(¢)} be realisations of sta-
tionary and stochastic ergodic processes {X(¢)} and {Y(¢)}, respectively, fort =1,2,....
Recalling the previous section, the mutual information I(y(t), x(t + 7)) measures the
average amount of information contained in the process {Y} about a process {X} in its
tuture, in particular, 7 time steps ahead (or so-called 7-future). The mutual information
will, however, also contain an information about the 7-future of the process {X} con-
tained in the past of the process itself, if the processes {X} and {Y} are independent
(i.e. if I(X,Y) > 0). In order to obtain the net information about the t-future of the
process {X} contained in the process {Y}, one has to estimate the conditional mutual
information I(y(t), x(t + 7)|x(t)). This was e.g. used by |Palus et al. [2001] in order to
define a coarse-grained trans-information rate able to detect the direction of coupling in
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unidirectionally coupled dynamical systems.

Since we usually work with dynamical systems evolving in measurable spaces, in-
stead of stochastic processes, the respective conditional mutual information should be
considered as n- and m-dimensional vectors, if we assume that the dynamics is evolving
in n and m dimensions. Because one regularly records only one observable, instead of
the original vector components X (t) and 17(1‘), the time-delay embedding vectors due to
Takens [1981)] are taken. Then the mutual information is written as

[(y(8), x(t + D)x(t)) = Iy (t), y(t = p), ..., y(t = (m = 1)p), x(t + 7)

| x(t), x(t = 1), ..., x(t = (n=1)n)), (3.40)

where nand p are time lags used for embedding of trajectories X(t)and Y(t), respectively.

Formally, )?(t + ) should also be expanded using the |Takens| [1981] theorem, albeit
only one component is usually used for simplicity. The same idea can be exploited
and formalised with Markov processes of finite orders m and n, thus |Schreiber| [2000]
proposed a “transfer entropy”, which is equivalent to conditional mutual information
[[Hlavickova-Schindler et al., 2007} |Palus and Vejmelka), [2007]].

Numerical experiments due to Palus and Vejmelka|[2007/]] suggest that the conditional
mutual information in the form

I(y(t), x(t + )| x(t), x(t =1,...,x(t = (n =1)7n))) (3.41)

is sufficient to infer the coupling direction between the systems X (t) and ?(t). The
dimensionality of condition #n must contain the full information about the state of the

system X (t), while single components y(t) and x(t + 7) provide sufficient information
about the directional coupling.

As an example consider two unidirectionally coupled Rossler systems, studied ex-
tensively by |Palus and Vejmelka [2007)], which is given by

J'Cl = —W1X2 — X3
X2 = w1Xx1 + a1x2 (3.42)
X3 = by + x3(x1 —¢1)

for the autonomous system {X}, and

Y1 =—w2ys — y3 +€(x1 — y1)
;1]2 = waly1 +a2lY> (3.43)
Y3 = by + y3(y1 — c2)

for the driven, or response, system {Y}. The parameters are fixed as a; = a; = 0.15,
b1 = by = 0.2, c1 = ¢ = 10.0, and frequencies w; = 1.015 and w; = 0.985, hence
the two systems have a very similar period. The system {X}, defined by eqns. (3.42),
is autonomous (“master”) and is driving the system {Y}, defined by eqns. (3.43), via
the diffusive coupling term e(x; — y1) in the right-hand side of the driven, or “slave”,
system. The parameter € stands for the coupling strength and after integrating the
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0 0.1 0.2
coupling strength

Fic. 3.8.| Conditional mutual information for unidirectionally coupled Réssler sys-
tems and (3.43), as functions of coupling strength €. Top row is the conditional
mutual information with 1-dimensional condition, I(x(t), y(tf + 7)|y(t)) as solid line
and in the other direction, I(y(t), x(t + 7)|x(t)) as dashed line. Bottom row is the same,
expect the condition is 3-dimensional. Figure taken from [Palus and Vejmelka, |2007)].

above eqns. and for different coupling strengths, the conditional mutual
information is estimated in order to assess the existence of directional coupling [Palus
and Vejmelkal, |2007].

Observing the Fig. 3.8 brings important observation: the direction of coupling can
be reliably detected when the systems are coupled, but not yet fully synchronised [Palus]
and Vejmelka, 2007]. Additionally, Palus and Vejmelka| [2007]] conclude, that if one uses
only one-dimensional condition in the conditional mutual information, the estimates
of CMI are biased and this bias is different in different directions. Typically, the bias
is larger in the direction from slower to a faster system (considering typical periods,
in this case, the frequencies w; and wy), or from a system with simpler dynamics to a
system with more complex dynamics (e.g. a periodic system seemingly drives a chaotic
system) [[Palus, 2014all. The noise level can also bias the estimates of CMI. For correct
and robust inference of a causal influence, the causality measure must asymptotically
vanish in the uncoupled direction. For this particular example, the needed embedding
dimension is 3 as seen in Fig. bottom plot, where the estimates of CMI differ for
different directions for coupling strengths € lesser than approximately 0.12. This is not
true for the one-dimensional embedding as seen in the top plot. For this particular
example, the behaviour is the same irrespective of whether the 3-dimensional condition
is constructed using the original components x1(t), x2(t), x3(t) of the system ora
time-delay trajectory reconstruction x1(t), x1(t — 1), x2(t — 2n). The embedding delay 7,
is usually chosen as a first minimum of the auto-mutual information I(x(t), x1(t + 1))
following the Fraser and Swinney [1956| recipe, or one would simply use a rule of thumb:
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the embedding delay 71 should be approximately one quarter of a typical period of
embedded system ||Fraser and Swinney, (1986|.

3.5 Statistical hypothesis testing

We saw that in the case of deterministic dynamics, the conditional mutual information
is able to find the direction of coupling. Now imagine, that instead of working with
although chaotic, but deterministic dynamics and known system, we have to infer causal
relationships in measured real-world data. These are usually contaminated with noise
(the best-case scenario is additive uncorrelated white noise, but this is rarely true, e.g.
Vasseur and Yodzis| [2004)]; |Sura et al| [2005]]; \[Kang et al.|[2014]), moreover with various
levels. Also, when we observe these systems, we somehow capture their dynamics
in some confined temporal span and we have no means by saying whether we “saw
everything” that systems are capable of doing. In other words, when our measurements
hint that the system is occupying some area in the phase space, we have no guarantee that
before we started to measure, the system did not undergo a phase transition, switched
limit cycles, or went through a tipping point and back. Because of these difficulties, we
almost never encountered a value of conditional mutual information of 0. A typical value
of CMI between two normalised time series is between 0 and 0.5 and we, unfortunately,
have no means by saying whether it is enough (and say, yes, there is a causal relation)
or not. For these reasons we need to perform some kind of test, whether our result is
significant or not — just then we can say that we observe causal relationship, usually
with an addendum “on a 0.05 significance level”.

The field of statistics is concerned with collecting, analysing, interpreting and ex-
plaining some data. Using statistical models, one might draw an inference about a
process underlying the data. The birth of modern statistics is dated with Karl Pearsons
paper [1900] on goodness-of-fit test, although the field itself is older.

A statistical hypothesis (also called confirmatory data analysis) is a hypothesis that
is testable on the basis of observing a process, which is modelled using a set of random
variables [Stuart et al., 1999|]. The statistical hypothesis test is a method of statistical
inference, where commonly two data sets are compared (one of the data sets could be
synthetic from an idealised model). A hypothesis of statistical relationship is proposed,
as an opposition to theidealised null hypothesis, which proposes no relationship. Finally,
the relationship is deemed statistically significant if this would be an unlikely realisation
of the null hypothesis according to the threshold probability. This process is aided
by identifying two conceptual types of errors and is referred to as Neyman—Pearson’s
hypothesis testing [Neyman and Pearson, |[1933].

The testing process has usually the following reasoning [Hogg and Craig, 1995]:

1. initial search for a hypothesis,

2. stating the null and alternative hypotheses, usually denoted as Hy and Hy, respec-
tively,

3. considering statistical assumptions; e.g. about independence or the form of distri-
butions,

4. deciding on the test and stating relevant test statistic,
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4

deriving the distribution of the statistic under the null hypothesis, Hy,

6. selecting a significance level, « — a probability threshold below which the null
hypothesis Hyp will be rejected,

7. partitioning the possible values of statistic for which the null hypothesis is rejected,

a so-called critical region,

computing the observed value of test statistic,

9. and finally, deciding to either reject the null hypothesis in favour of alternative one,

Hj, or not reject it.

@

The problem is, that when choosing whether to reject the null hypothesis, an error
might occur. The Neyman-Pearson’s approach tries to minimise this error: in this
framework, the significance « is called Type I error (a false positive result, i.e. incorrectly
rejecting the null hypothesis in favour of the alternative one), and g is so-called Type
I error (a false negative result, i.e. incorrectly accepting the null hypothesis, although
the alternative one should be accepted). The validity of errors is understood in a long
run: in repeated use of this procedure, the long-run average actual errors should not be
greater than the long-run average reported error [|Berger et al.,2003].

In the preferred approach, the discriminating statistics are carefully selected to match
the null hypothesis, and ideally, it should follow a standard, or at least “standardised”,
distribution. In that case, the distribution can be analytically derived, and the critical
value for a given significance level a can be easily computed using a known formula
(or can be found in a table in various statistical textbooks, e.g. |Burington and May
[1953]). However, sometimes (or rather, almost all the times) the theoretical distribution
is not known and one has to refuge to computational approach, so-called Monte Carlo
simulation [Hope| |1968;|Noreen,|1989; Efron and Tibshirani,|1994], which is able to accurately
estimate the distribution of test statistics and its confidence range. The idea is to compute
values of test statistics for many different realisations of the null hypothesis in order to
derive the distribution of the statistics empirically. One of the Monte Carlo methods is a
surrogate data method, which was proposed for inference of nonlinearity in the data by
constructing a synthetic dataset as realisations of linear stochastic model replicating the
linear properties [Theiler et all|1992)]. Shortly, the surrogate data method is a proof by
contradiction technique, when one generates surrogate data according to specified null
hypothesis using Monte Carlo method. The discriminating statistics are computed for
the original time series and set of surrogates.

As a motivating example consider the spurious correlation between the number of
Republican senators in the U.S. Senate and sunspot number, which I will briefly describe
here and is described in full length in |Palus [2007]]. It concerns the historical data of
the two, for clarity shown in Fig. Both quantities are normalised to zero mean
(by subtracting the mean) and unit variance (by dividing the standard deviation). We
can immediately observe that the apparent relationship, in particular in the first say
20-30 years, is remarkably good. In fact, the sample correlation coefficient between
the two for period 1960-1986 is r = 0.52. Sample correlation is one of the most used
statistics, therefore considering the null hypothesis of linear independence (Hyp : r =
0), its distribution under this null hypothesis is known for datasets sampled from an
independent identically distributed normal population (or IID Gaussian). The critical
value for correlation to be significant given the degrees of freedom, df, and significance
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level, a, can be easily computed analytically, or simply found in statistics textbooks. In
our case, hence df = 12 and a = 0.05, the critical value is y = 0.458. This means, that the
null hypothesis of no linear dependence should be rejected, and therefore interpreted as
an evidence for the causal relationship. However, this is obviously wrong. Where did
we make a mistake?

2.0 SENATORS
—=— SUNSPOTS
1.5
1.0
0.5

0.0

-0.5

NORMALISED QUANTITY

-1.5

-2.0

1960 1970 1980 1990 2000 2010

Fic. 3.9.! The normalised number of Republicans in the U.S. Senate in grey and
normalised number of sunspots in black. Adapted from |Palus|[2007].

The problem is in the null hypothesis when we assumed IID Gaussian process, which,
besides other things, means that there should not be a relation between any x; and x;;.
This is not true, though. The subsequent values in both datasets are not independent, in
particular, the time series of sunspot number with its cyclic behaviour (roughly 11-year
cycle) is exhibiting autocorrelation, thus 7(x;, x;+;) # 0 for j # 0. This serial correlation,
of course, violates the assumption of IID Gaussianity and the null hypothesis is ill-posed.

The solution lies in using surrogate data, when one generates a set of synthetic data
from sunspot numbers (in this case using the Barnes et al. [1980] model, in full detail
described in |Palus| [2007]), say 100 000 realisations and computes a sample correlation r
between the senators time series and each synthetic sunspot number time series. Using
this approach the p-value of the sample correlation is now p < 0.14, which is not
considered small enough to reject the null hypothesis. The statistical test with proper
null hypothesis showed that this rather high correlation (r = 0.52) occurred by chance.

In general, the surrogate data generation algorithms can be classified into two groups:

* typical realisations: surrogate data are generated as outputs of some well-fitted
model to the original data

* constrained realisations: surrogate data are generated directly from the original data
by some suitable transformation of them.

In the following text, I will introduce some of the most known and used techniques for
generating surrogate time series that are useful in the context of climate science.
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3.5.1 Fourier Transform surrogates

Probably the most known type of surrogate data is Fourier transform (FT) surrogates,
also called Random Phases surrogates. The algorithm was developed by |[feiler et al.
[1992|], who sought an appropriate test for rejecting the null hypothesis of a linear
stochastic process, thus testing for nonlinearity in the data. It is a non-parametric
method (constrained realisation), which preserves the so-called linear properties of the
original time series.

For a Gaussian process, its linear properties are specified by squared amplitudes
of the Fourier transform [Palus,|2007], and the required transformation is generated by
multiplying the Fourier transform of the data by random phases and transforming back
into the time domain, so for the surrogate series {x’(t)} it is

N-1
x(t) = ) el/P(k)e 2N, (3.44)
k=0

where 0 > aj > 27 are independent, uniformly distributed random numbers and P (k)
is a periodogram of the original time series {x(t)}, so

N-1

2
P(k) = (Zx(t)eiznkt/N) . (3.45)

t=0

In summary, the Fourier transform surrogates are widely used as a surrogate data
representing a null hypothesis of a linear stochastic process with the same spectrum as
the original data. However, they performance can be jeopardised by various caveats:
Chan|[[1997] shows that asymptotically the FT surrogates are valid for Gaussian circular
processes; |Schreiber| [1999] notes, that FT surrogates preserves the periodic autocorrela-
tion function rather than the standard autocorrelation function; and [Palus [[1995] finds
that for strongly cyclic data (such as e.g. surface temperature with strong annual cycle)
and limited length of the available data, the FT surrogates exhibit blurred spectral peak
and have weaker autocorrelation than the original data, which can introduce a falsely
rejecting the null hypothesis.

Apart from the original FT method, a few extensions exist. |Iheiler et al. [1992] pro-
posed a histogram transformation (rescaling the data) ensuing equal histograms of the
original data and the surrogates because realisations of pure FT surrogates tend to have
Gaussian distribution. This new method is called Amplitude Adjusted FT surrogates, or
AAFT surrogates. Histogram transformation is, however, a static nonlinear transforma-
tion (static as it has nothing to do with the dynamics of the process) [Palus, 2007, hence
the null hypothesis must be appropriately updated.

Nevertheless, |Schreiber and Schmitz|[1996|] found that for short strongly autocorrelated
time series, the improved AAFT method biases towards a flatter spectrum. Hence, they
introduce an even more improved method, when they iteratively correct the deviations
in the spectrum and the distribution, switching between randomising the phases in the
Fourier domain, and correcting the histogram of the raw data values. Since this process
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is iterative, the algorithm is named Iterative Amplitude Adjusted FT surrogates, thus
TIAAFT.

The Fig.[3.10]summarises all three presented algorithms for generating FT surrogates
and their derivatives. The daily air surface temperature data from Prague — Klementinum
[Klein Tank et al.,2002] was taken, climatologically normalised (or deseasonalised accord-
ing to some authors, e.g. [20140]]), that is the climatological mean was removed
as was the climatological standard deviations. Then, 5 surrogates of each type (that is
FT, AAFT and IAAFT) were generated and the climatological standard deviation and
mean subsequently multiplied in and added, respectively. The Fig. shows the time
series themselves (panel A), Welch spectra (panel B), autocorrelation function (panel C),
and histograms of the data with their respective kernel density estimates using Gaus-
sian kernel (panel D). As one can see, all the measures coincide almost perfectly (with
one exception in the form of one FT surrogate realisation exhibiting greater power in
the annual cycle as seen in Fig. panel B). From this, we conclude that indeed the
FT surrogates and their derivatives preserve basic linear properties of the original time
series, and therefore are suitable as a null model for a linear stochastic process.
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FiG. 3.10.| Anexample of Fourier transform surrogate data and its derivatives. Shown
are the time series themselves (A), Welch linear spectra (B), autocorrelation function
(C), and histogram with kernel density estimate (Gaussian kernel) of the data (D).
Shown are always the original time series of surface air temperature from Prague —
Klementinum, and 5 realisations of each type of surrogate data: FT, AAFT and IAAFT.
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3.5.2 Autoregressive (moving average) surrogates

Another widely used type of surrogate data is based on autoregressive (AR) model,
or more generally on autoregressive moving average (ARMA) models. Autoregressive
models are based on a definition of a linear stochastic model (e.g. |Priestley [[19581])

X(H)=XO0)+ > a;X(t—i)+ > BNt -1+ &EG) (3.46)

autoregression moving average

where by =1, 3,72 |ai] < oo, 2}’10 |bj| < o0, and {N(t)} is iid Gaussian process with zero
mean and finite variance. The ARMA model is defined as autoregression and moving
average terms in the eqn. (hence, in general, without the residual term), while the
AR model is defined without the moving average term in the eqn. and with the
residual term. Of course, this is a theoretical definition of infinite AR (or ARMA) model,
in practice, the first, autoregressive, term has p (m) summands for AR (ARMA) model,
while the second, moving average, term has n summands. Shortly, we write AR(p) as an
autoregressive model of order p, and ARMA(m,n) as an autoregressive moving average
model of orders m and n.

When one would use an AR surrogate for testing this would be a typical realisation
(in opposition with constrained realisation of FT surrogate) as firstly one needs to fit the
model and estimate the coefficients a; for i < p when using AR model, or estimate the
coefficients a; and b; for i < m and j < n. After fitting an ARMA model to the data, one
tinds the coefficients and residuals, there are two options how to generate the surrogate
itself: either using shuffled residuals as the innovations in the model or use Gaussian
random process as the innovations. Using ARMA surrogate data represents the null
hypothesis of a linear process without any cycles in the data. The order selection criteria
are usually estimated as approximations to Schwarz’s Bayesian Criterion (SBC) [|Schwarz
et al.,|1978|] or Akaike’s Final Prediction Error (FPE) [Akaike, (1970].

Similarly as for FT surrogates, Fig. illustrates basic linear measures describing
the original time series (again, daily surface air temperature from Prague — Klementinum
[Klein Tank et al 2002|]) and 5 realisations form each model. Shown are two different
models: an autoregressive model of order p = 1, which is routinely used as basic typical
realisation model of a linear process with no cycles, and then more complex model of
order p = 7. The order of the more complex model was estimated as ideal using the
SBC (note, that in this case, the FPE gives the same estimate of order). As with the FT
surrogates, AR surrogates are able to mimic the linear statistics of the data (with a little
offset in the autocorrelation function, see Fig. C). In this case, the AR surrogates
were created using deseasonalised data (translated to climatological zero mean and
unit variance, as before with FT surrogates) and therefore we are creating surrogate data
from the normalised anomalies, hence they look like they are able to resemble the annual
cycle. Although resembling the FT surrogates, the difference is that AR surrogates are a
typical realisation, whereas FT surrogates are constrained (by the particular spectrum).
Fourier Transform surrogates would mimic the variability of the AR surrogates if we
randomised not only the phases but the amplitudes as well.
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Fic. 3.11.| An example of autoregressive (AR) surrogate data and its derivatives.
Shown are the time series themselves (A), Welch linear spectra (B), autocorrelation
function (C), and histogram with kernel density estimate (Gaussian kernel) of the data
(D). Shown are always the original time series of surface air temperature from Prague
— Klementinum, and 5 realisations of two different models: one with order p = 1, and
with ideal order estimated using Schwarz’s Bayesian Criterion (SBC) as p = 7.

3.5.3 Complicated null models

As can be anticipated, throughout time many different methods for generating surrogate
data in order to test statistical hypotheses have been developed. Preservation of spectra
and amplitude was solved in FT surrogates by amplitude adjustments and iterative
procedures as in IAAFT (recall sec. 3.5.1). Since preserving autocorrelation function,
and therefore, the linear spectrum can be easily done in Fourier domain, Breakspear et al.
[2003] introduced surrogate data based on discrete wavelet transform [|Daubechies| [1992],
where the randomisation is done by manipulating the wavelet coefficients in one of the
following ways:

* arandom permutation,
e cyclic rotation with a random offset, or

* block resampling — a random permutation of a block of wavelet coefficients.

All these approaches preserve so-called linear properties (i.e. the first and second
moments), however any possible nonlinear dependence between the signal at time s(t)
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and its past s(t — n) is destroyed, as are the potentially hierarchical, multi-scale interac-
tions. |Angelini et al.|[2005] articulated a need for bootstrapping methods for testing the
hierarchical structure in atmospheric turbulence data. Same authors also proposed a
sophisticated block resampling technique, only with partial success, as the multifractal
properties were not fully reproduced in the synthetic dataset. |Ihiel et al.|[2006|] suggested
using a “twin” surrogate data, which preserve nonlinear dependence in trajectories in
the phase space of the process, however, the method is not suitable, since the process of
generating the surrogate data violates the recurrence condition.

Finally, |Palus| [2008] proposed a method, that the resampled data replicate multi-
fractal properties of the original input data. The construction preserves multifractal
spectrum, as well as the nonlinear dependence structure. The so-called multifractal
surrogates are based on the idea of |Arneodo et al|[1995], who proposed a cascade pro-
cess using the dyadic tree structure to construct a self-similar process whose properties
are defined multiplicatively. Naively, applying a discrete wavelet transform to an ex-
perimental measured time series {s(t)} yields a set of wavelet coefficients {c;}, which
are randomly permuted, rearranged in order to preserve the amplitudes, and finally
inverse-transformed back into temporal domain. The new coefficients {C;x} preserve
the statistical relationship among the scales due to recurrent cascade from coarse to finer
scales [\Palus, |2008].

Another possibility to generate synthetic time-series for statistical testing would be
a use of a statistical model, based on the idea of linear inverse models [Penland, |1989,
1996]. Statistical, or data-driven, models are constructed using the ideas of stochastic
inverse models, where one models the evolution of a time series as

dx = Bdt + dr°, (3.47)
where the linear operator BY and the covariance matrix of the residual noise Q = (r’r’T)
can be directly estimated from the observed statistics of x by multiple linear regression
[|Darlington and Hayes, |2016]. These models are usually constructed in a phase space
spanned by first few empirical orthogonal functions [Hannachi et al., |2007]. Models
like these have shown success in predicting ENSO [Penland and Sardeshmulkh, |1995; Kon-
drashov et al.,|2005]], tropical Atlantic variability [|Penland and Matrosoval 1998, as well as
extratropical atmospheric variability [Winkler et al., 2001

Kondrashov et al.| [2005] and \Kondrashov et al.| [2015] extended the idea to include
nonlinear terms, as well as more levels, where the residual in eqn. is subsequently
modelled in a linear fashion, thus adding the next level to the model. This is to be
continued until the residual at the level L is white in time.

This type of model opens a possibility to exploit the idea behind multilevel nonlinear
models in a surrogate testing when one includes as many levels, or as many nonlinear
terms, to correspond with the properties one wishes to preserve. This was experimen-
tally tested when testing for statistical significance in a study of causal relationships in
ENSO [Jajcay and Palus|, | 2016b].

The scientific literature on the uses of surrogate data in geosciences is, to this day,
abundant and I refer the potential reader to exhaustive reviews, e.g. due to|Schreiber and
Schmitz| [2000] and |Venema et al.| [2006].
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CHAPTER 4

Time scales of the European
surface air temperature
variability

Shallow men believe in luck or in circumstance.
Strong men believe in cause and effect.
Ralph Waldo Emerson
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Over the past few decades many authors and teams studied the low-frequency vari-
ability in climate variables in order to assess and possibly separate the anthropogenic
climate change from the natural variability on long temporal scales (see e.g. \Ghil and
Vautard| [1991)]; Mann and Parkl [1993|]; |Allen and Smith| [1994]]; [Plaut and Vautard| [[1994];
Dettinger et al.| [1995]; [Folland et al. [2002|; Viron et al.|[2013] and many more). This
is crucial for our understanding of the climatic response to increasing greenhouse-gas
and aerosol concentration, and ultimately for the prediction of future climate on Earth.
However, studying the variability over time scales beyond the synoptic range turned out
to be extremely challenging because of two properties in particular: nonlinearity and
unpredictability [Plaut and Vautard,|[1994]. All studies conducted in the past found that
significant, albeit irregular, warming has occurred on a global scale since 1850. This
trend is rather flat from the middle of the nineteenth century till 1910, followed by an
increase of more than 0.1°C/decade during 1910-1940 and the last two decades, with an
even larger increase in the most recent past [Moron et al.,[1998]. The two episodes were
separated by mild cooling, especially in the Northern Hemisphere [Parker et al., 1994,
1996} [Folland et al., 2002]. Recent global warming has been associated by some authors
with abrupt changes in the North Pacific around 1976 or with a gradual changes in the
sea surface temperature in the tropical Pacific [Pan and Oort|, 1990} Irenberth, (1990; |Kerr,
1994 |\Latif and Barnett, |1994, 1995|], as well as with other regional phenomena [|Folland
et al,|1986; |[Kumar et al., [1994; |Hurrell, [1996].

Since this trend is irregular, and the tentative identification of anthropogenic, or any
other external influence on it, it is not feasible to isolate it from the natural climate
variability. This so-called natural climate variability is usually interpreted as a red
noise background [Hasselmann, |1976], and it has been recently argued, that it has some
regularity embedded into it. The existence of such regularities on the interannual
time-scales is well established and attributed mostly to an instability of the coupled
ocean-atmosphere system in the tropical Pacific [Philander, 1983} |Rasmusson et al., 1990.
The distinct periodicities of roughly 2-3 years and 4-6 years have been associated with
the El Nifio/Southern Oscillation phenomenon [|[Rasmusson and Carpenter, {1982} | Barnett,
1991} |Allen|, (1992 Mann and Park, 1994; |Jiang et al. 1995], and although the evidence for
similar regularities on the decadal and even longer time scales exists [|Ghil and Vautard,
1991 |Allen and Smith,(1994; |Plaut et al., 1995 Mann and Park, 1996b], it is hard to establish
the significance of these results, mainly due to shortness of instrumental records of
temperature, sea surface temperature, or pressure.

Moving away from the equator and ENSO, the extratropical atmosphere is, as well
as the tropical, dominated by low-frequency motions. It is true, though, that the syn-
optic fluctuations are more noticeable in our daily lives, or when we look at the next
day forecast. The manifestation of low-frequency phenomena involves planetary waves
that generally have e-folding times much longer than baroclinic transient waves in mid-
latitudes. The key phenomenon is that the synoptic transients are able to maintain
low-frequency motions by themselves through nonlinear feedback [Egger and Schilling),
1984} \Metz,|1987|]. Starting in the 1980s with the work of |Wallace and Gutzler|[1981]], var-
ious researchers correlated the oscillations across large regions, spanning thousands of
kilometres, giving rise to teleconnection patterns. These turned out to explain a large por-
tion of low-frequency variability and have been attributed to several causes, including
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the propagation of atmospheric Kelvin and Rossby waves, changes in thermally di-
rect circulations, intrinsic modes of atmospheric variability, and changes in the oceans’
wind-driven thermohaline circulation [Feliks et al., |2010]. In the former literature the
terms “teleconnection” and “oscillation” are often used synonymously, ever since the
discovery of the North Atlantic, North Pacific and Southern oscillations by |Walker|[1931,
1932]. Although the pioneering studies did not explicitly imply the presence of distinct
spectral peaks, Walker [1931]] did hint at their presence in the Southern Oscillation. Since
then, the teleconnection patterns, or oscillations over the globe became one of the most
studied phenomena in the climate science.

4.1 Overview of modes of variability and their tem-
poral scales in Europe

4.1.1 The North Atlantic Oscillation

Probably the most prominent and studied weather phenomenon in the Northern Hemi-
sphere is the North Atlantic oscillation (usually abbreviated as NAO) [Rogers, [1990;
Hurrell, 1995]. NAO manifest itself as fluctuations in the difference of atmospheric pres-
sure at sea level between the semi-permanent synoptic Icelandic low and the Azores
high. By the means of fluctuations of these semi-permanent centres, NAO controls the
strength and direction of westerly winds onto European continent, and location and
storm tracks across the North Atlantic [Hurrell et al.,|2003|]. The situations is, that west-
erlies blowing across the Atlantic bring moist air into Europe: strong westerlies imply
cool summer, mild winters, and frequent rain, while suppressed westerlies entail more
extreme temperatures both in summer and winter, heat waves, freezes and reduced rain-
fall [ncdc.noaa.gov) cpc.ncep.noaa.gov]. Now, a positive phase of NAO (NAO+) result in a
large difference in the pressure between Azores high and Icelandic low and this leads to
increased westerlies. In contrast, during a negative phase of NAO (NAO-), the pressure
difference is small, and consequently, the westerlies are suppressed, meaning, apart from
cold dry winters, also a southward shift in storm tracks towards the Mediterranean Sea,
which in turn brings rainfall to southern Europe and North Africa. Moreover, NAO is
responsible for strength and position of the North Atlantic jet stream. All these effects
turn NAO into the most important cause of climate variability in the North Atlantic area
on interannual time scales [Hurrell, |1995; [Hurrell and Van Loon, 1997, |Osborn et al., |1999;
Rodrigo et al., 2001]]. The illustration of NAO dipole centres during both phases, as well
as effect on humidity, is shown in Fig. 4.1l with positive phase, NAO+, on the left-hand
side, and negative phase, NAO-, in the right-hand side.

In order to study the NAO temporal variability, it is crucial to have some kind of time
series representing the phenomenon. For this purpose, the NAO index was proposed
and in the recent years several other NAO indices emerged with various definitions
and time-averaging [Hurrell and Van Loon| 1997} |Jones et al}|1997]]. In general, the indices
described NAO phenomenon could be splitinto two: station-based index and PCA-based
index. The station-based index of the NAO is based on the difference of normalised sea
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e

Fic. 4.1.| An illustration of NAO’s two distinct phases: (left) the positive NAO phase
and (right) the negative NAO phase. The dipole structure of semi-permanent action
centres of Icelandic low and Azores high is render with white ellipses. The effects
of both phases on humidity during winter months November—April are renderer in
yellow for dry and blue for wet conditions. Adapted from windows2universe.org,

level pressure between Lisbon, Portugal and Stykkishélmur/Reykjavik, Iceland [Hurrell,
1995]. The data goes back to 1864. Positive values of this index are associated with
a positive phase of NAO (recall Fig. left-hand side), hence stronger-than-average
westerlies. This index is usually taken in monthly resolution, although daily, annual,
and seasonal resolution are not uncommon. |Jores et al.|[1997] instead of using the station
in Lisbon, Portugal uses either Gibraltar or Ponta Delgada, Azores for defining the NAO
index.

The other family of NAO indices are PCA-based. PCA, which stands for Principal
Component Analysis [Hannachi et al., 2007] is a statistical procedure that uses an orthog-
onal transformation to convert a set of observations of possibly correlated variables into
a set of values of linearly uncorrelated variables called principal components. Shortly,
PCA analysis is usually done by the means of singular value decomposition [|Golub and
Van Loan), |1996] of spatio-temporal matrix X as

r
X = Aapuy, (4.1)
k=1

with Ay being the k'h eigenvalue, uy the right singular vector, or the EOF (empirical
orthogonal function) loading pattern, and ay the left singular vector representing the time
series of the respective loading, or sometimes called PC, as a principal component. This
method is often used for dimensionality reduction, by truncating the sum in eqn. (4.1)
and keeping just first M elements, where M is generally much smaller than r. The goal
of PCA analysis is to maximise the second-order moment (the variance), and by this, we
also minimise the squared error between the original field and its PCA representation.
While the station-based index has its strength in the temporal span, as the indices
extend back to the mid-19century, they may not be the optimal representation of the
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Fic. 4.2.| PCA-based NAO index. (top) Shown is first EOF loading pattern of DJFM sea
level pressure anomalies (SLPA) which represent the North Atlantic Oscillation. Data
from NCEP/NCAR reanalysis [[Kalnay et al.} | 1996|]. This first component explains 43.8%
of the total variance in the SLPA field over the Atlantic sector. (bottom) The normalised
time series (PC) of the respective EOF pattern in black. Shown is also station-based
NAO index with dashed red line and the Pearson’s correlation coefficient between the
two is at 0.87 level.

associated spatial pattern. Since the stations are fixed in space, they cannot track the
movement of the NAO centres of action through the annual cycle, and their individual
pressure readings can be noisy due to small-scale and transient meteorological phenom-
ena unrelated to NAO. As with the station-based indices, also PCA-based indices come
in more flavours. The original PCA-based NAO index due to Hurrell [1995]] is defined as
the first principal component (i.e. the time series of first EOF loading pattern) of sea level
pressure anomalies over the Atlantic sector, 20°— 80°N, 90°W — 40°E. As written above,
the PCA-based index is used to track the seasonal movements of the Icelandic low and
Azores high. As an example, Fig. 4.2| shows the first EOF loading pattern of sea level
pressure anomalies (SLPA) in winter time — December — March (DJFM). The principal
component time series (PC) is shown in bottom part of the figure in thick black as nor-
malised time series to zero mean and unit variance. Also shown is station-based NAO
index for the same temporal span and the Pearson’s correlation coefficient between the
two is at 0.87 level. The first EOF loading pattern, which represents the NAO, explains
43.8% of the total variance in the SLPA field over the Atlantic sector.

Apart from the usual PCA-based NAO mode found in the SLPA field, some authors
also seek modes of circulation variability over the Atlantic sector in other types of data,
most notably in 500hPa level of geopotential height field (HGTAS500) (e.g. |Van den Dool
[2007]; Beranova and Huth|[2008]). The first EOF loading pattern of HGTAS500 field from
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Fic. 4.3.| PCA-based NAO index. (top) Shown is first EOF loading pattern of DJFM
geopotential height at 500hPa anomalies (HGTA500) which represent the North At-
lantic Oscillation. Data from NCEP/NCAR reanalysis [Kalnay et al!, [1996]. This first
component explains 36.7% of the total variance in the HGTA500 field over the Atlantic
sector. (bottom) The normalised time series (PC) of the respective EOF pattern in
black. Shown is also station-based NAO index with dashed red line and the Pearson’s
correlation coefficient between the two is at 0.85 level.

NCEP/NCAR reanalysis data [|Kalnay et al.,[1996] is shown in Fig. As can be seen
from the figure, the EOF pattern very much resembles the EOF pattern from SLPA field
(compare Figs. 4.3 with[4.2)), with small deviations, such as the negative centre of action
in the HGTADBO0O field is shifted westward over Greenland (in SLPA field it is between the
Greenland and Iceland) and the positive centre of action in the HGTA500 field is spread
in the zonal direction. The respective time series of this EOF loading pattern correlates
with the station-based NAO index at the 0.85 level, and the mode of variability associated
with this EOF pattern is responsible for 36.7% of the total variance in the HGTAS500 field.

Now, given the effect of NAO on European temperatures and precipitation (see e.g.
Huth| [1997]]; [Chen and Hellstrém| [1999); [Jones et al|[2003]; Trigo et al|[2004]; Beranovd and|
Huth| [2008]) one might ask whether the NAO phenomenon is associated with some
typical frequency. Despite intense research in the last few decades, the physical mech-
anisms underlying the temporal variability of the NAO remain unclear. The spectral
analysis of the NAO indices, both using classical and also wavelet analysis, provides a
near-white noise like behaviour [Gdmiz-Fortis et al.,2002]. Others claim, that the spectral
behaviour of NAO resembles a pink noise (pink noise exhibits 1/ f spectrum, opposed
to a white noise, which exhibits flat power spectrum) with very little predictability
nandez et al., 2003]. However, some significant power associated with periods around
2 years, between 5 and 6 years and at quasi-decadal scales have been reported

50



on NAO DJFM: S
on NAO DJFM: SS
on NAO DJFM: S
on NAO DJFM: SSA mo

FFT SPECTRUM [dB]
FFT SPECTRUM [dB]

0 w0 v
R
Do oY

—— station NAO
—— PCA NRO - SLPA
"1 —— PCA NRO - HGTA500

5 o B
AR
[

10 100 1071
FREQUENCY [1/year] FREQUENCY [1/year]

Fic. 4.4.| (left) FFT spectra of three distinct NAO indices. Station-based NAO index
[|[Hurrell, 1995] FFT spectrum in black, PCA-based indices in colour: EOF1 derived from
SLPA in red, and derived from HGTA500 in green. Note elevated power between 2 and
3 years and around 8 years. (right) FFT spectra of 4 different SSA modes (see text) of
station-based NAO winter index (mean over DJFM values).

1984; |Pozo-Vizquez et al., |2000; |Stephenson et al., [2000; |Pozo-Vizquez et al [2001]. Some of
these significant power can be also estimated using basic FFT spectrum as in Fig. 4.4} left.
This low-frequency variability has been associated with processes involving the North
Atlantic ocean basin [|Delworth, 1996} [1aylor and Stephens, (1998 Iimmermann et al.,{1998],
and also internally generated atmospheric processes [|Perlwitz and Graf,|1995].

Since NAO behaviour resembles a noise process, it would be beneficial to use a
more sophisticated method for identification and distinction the signal from noise in
some measured variable. Many authors used the Singular Spectrum Analysis (SSA
hereafter) for this purpose, which is based (similarly as PCA) on an orthogonal decom-
position of a covariance matrix of the data. In the field of climate science when dealing
with one variable, one would use a univariate form of SSA and time-lagged covariance
matrix, i.e. instead of several components of multivariate data, a time series and its
time-lagged counterparts are considered [\Vautard and Ghil, 1989} \Ghil and Vautard|, 1991;
Allen and Smith| (1994]. This decomposition can provide us with a set of orthogonal
components with different dynamical properties, therefore phenomena of interest such
as slow modes, or trends, and regular and quasi-regular oscillations can be identified
and retrieved from the noise background.

Mathematically, let {y(i)} be a univariate time series — a realisation of stochastic
process {Y} which is stationary and ergodic. Now, map into space of n-dimensional
vectors x(i) with components x* (i) as

x*(@) = y(i +k-1). (4.2)
The sequence of vectors x(7) is usually referred to as the n X N trajectory matrix X = {xi.‘ }

the number 7 is the embedding dimension. Now, the covariance matrix from trajectory
matrix C = XTX have elements

1 N
cu = 75 ), (0, (43)
i=1
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where 1/N is a normalisation and the components x*(i) are supposed to have zero mean.
Then the symmetric matrix C is decomposed as

Cc=vzv], (4.4)

where V = {v;;} is an n X n orthogonal matrix, X = diag (o1, 02,...,0,) is a diagonal
matrix of non-negative eigenvalues of C by convention in descending order. Finally, the

modes & i‘
n

&k = Z vt (4.5)
1=1
fork =1,...,m are considered as the “signal” part, and the modes fork =m +1,...,n
are considered the noise part of the original time series. The signal modes can be used
to reconstruct the “signal” part of the original time series

m
i = Z vl (4.6)
1=1
and the original time series, including also the noise part, would be reconstructed as
n
k= ol 4.7)
1=1

The modes & i‘ can be interpreted as time-dependent coefficients (something like princi-
pal components in PCA), and the orthogonal vectors vy = {vk; } as basis functions, called
empirical orthogonal functions. The eigenvalue signal-noise distinction can, unfortu-
nately, be obtained only in idealised conditions, many Monte Carlo approaches emerged
to address this issue, the most prominent being the Monte Carlo SSA (MC-SSA), where
the synthetic AR(1) time series are constructed, and subsequently the spectra from orig-
inal data-based eigenvalues and synthetic eigenvalues are compared.

Gamiz-Fortis et al.|[2002] and |Palus and Novotna [|2004|] used the SSA approach in order
to detect dominant modes in lagged covariance matrix of NAO index. With the use of
embedding window of 40 years, the pair of dominant modes were found to exhibit a
spectral peak around 7.8 years [|Gamiz-Fortis et al.,|2002; |Palus and Novotna, 2004]. This
can be seen also in Fig. right, where I show the FFT spectra of 4 distinct SSA modes:
the pair of leading modes 1 and 2, and then the 6 and 7 modes, which exhibit elevated
variance in the period around 4.8 years.

Since NAO is the most prominent phenomenon that largely affects the weather in
Europe, it was important to lay the basics for its understanding and to study on which
temporal scales the NAO exhibits notable variance. As we will soon see, some of the
European station data exhibit power at frequencies around 8-year cycle, or at least the
cycle around 8 years turns out to be prominent in information transfer across temporal
scales.
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Fic. 4.5.| RPCA-based EA index. (top) Shown is third rotated EOF loading pattern of
DJFM geopotential height at 500hPa anomalies (HGTA500) which represent the East
Atlantic pattern. Data from NCEP/NCAR reanalysis [[Kalnay et al] [1996]. This third
rotated component explains 11.7% of the total variance in the HGTA500 field over the
Atlantic sector. (bottom) The normalised time series (PC) of the respective EOF pattern
in black. Shown is also EA index (based on rotated PCA) with dashed red line and the
Pearson’s correlation coefficient between the two is at 0.53 level.

4.1.2 Other modes of variability over Europe

In addition to already mentioned and described NAQO, other circulation patterns, or
modes, are active in the Euro-Atlantic area, and these include the East Atlantic (EA)
pattern and two Eurasian patterns (EU1 and EU2) [[Barnston and Livezey,[1987]. However,
studies of relationships between these teleconnection patterns other than the NAO and
temperature or precipitation in Europe have been scarce. [Beranovi and Huth| [2008]
demonstrate that the circulation variability patterns in Europe are strongly related
to both temperature and precipitation over Europe and these relationships are non-
stationary.

Apart from NAO, the somewhat prominent mode of variability is East Atlantic (EA).
It can be identified as a strong centre over the North Atlantic with a strong northwest-
southeast gradient towards western Europe. Its usual pattern is depicted in Fig. Also
shown is the time series of third rotated EOF loading pattern, that represent EA in black,
with EA index in dashed red. The two indices correlate at 0.56 level. The
EA pattern is useful for explaining interannual variations of sensible climate variables
such as temperature, wind, and precipitation in particular over southern Europe, where
some argue that its impact is even higher than that of NAO [Saenz et al., 2001} |Vicente-
Serrano and Lopez-Moreno, | 2006} \Rodriguez-Puebla et al.,|2010]. The effect on larger-scale
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Fic. 4.6.| RPCA-based EU2 index. (top) Shown is fourth rotated EOF loading pattern
of DJFM geopotential height at 500hPa anomalies (HGTA500) which represent the East
Atlantic pattern. Data from NCEP/NCAR reanalysis [Kalnay et al.,|1996]. This third
rotated component explains 10.4% of the total variance in the HGTA500 field over the

Atlantic sector. (bottom) The normalised time series (PC) of the respective EOF pattern
in black.

circulation in southern Europe, in turn, affects the regional- to local-scale ecosystems
lldeCastro et al., |20006; |Josey et al., 2011} |Salmaso, 2012|]. As with NAOQ, its predictability is
somewhat limited, although some attempts have been made [[glesias et al.|, 2014].

Other prominent modes of variability that explain a large portion of variance over
Atlantic sector include the so-called Eurasian patterns 1 and 2 (EU1 & EU2). Their
description, to this date, differs from study to study and as an example of the spatial
pattern consider Fig. 4.6| which represents EU2 pattern as fourth rotated EOF loading
pattern.

As in the case of NAO, let us look at the spectral content of other modes of variability:
Fig. 4.7/ renders linear FFT spectra of three indices: EA index [rncep.noaa.gov] in black,
EA index based on our rotated PCA of HGTA500 in red, and finally EU2 index based
on rotated PCA of HGTAS500 in green. As the figure clearly shows, the spectral power
of two EA indices differs, namely official EA index shows elevated power on 2 years
and between 4 and 5 years band, whilst our RPCA-derived EA index shows a peak in
spectral power on roughly 1.5 year period. Similarly as official EA index, RPCA-derived
EU2 index shows power between 4 and 5 years band.

Of course, this list of modes is by no means exhaustive, it should serve a purpose
of informing a reader about typical techniques that might be used for determining
dominant modes of variability. Studying the spectral content of such modes proves to
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Fic. 4.7.| FFT spectra of three indices that represent other modes of variability over
Euro-Atlantic sector: EA index [ncep.noaa.gov| FFT spectrum in black, RPCA-based EA
index in red and RPCA-based EU2 index in green.

be useful in determining their typical periodicities and might hint us to an association
between these circulation modes of variability and particular phenomena in temperature
or precipitation time series that one might observe from station data. For extended and
more detailed studies of various circulation modes in Euro-Atlantic sector (or global
modes of variability) consider reading e.g. Barnston and Livezey| [1987|]; |Beranova and
Huth|[[2008];|Vejmelka et al.|[2015]]; lonita et al.|[2015]].

4.2 Information transfer across temporal scales

With the noble goal of understanding the very complex behaviour of the atmospheric
dynamics, many attempts have been made to infer possibly nonlinear dynamical mech-
anisms from meteorological data that date back to 1980s. It all started with researchers
claiming detection of climate attractor of low dimensions [Nicolis and Nicolis, 1984;
Fraedrich, 1987} (Isonis and Elsner, 1988)]. Whilst this was happening, the pioneers of
chaos, including Lorenz himself, were in opposition and pointed at the limited relia-
bility of algorithms for detection of chaotic attractors and claimed the observations of
low-dimensional climate attractor as spurious [|Grassberger, [1986; |Lorenz, |1991)]. Some
authors even claim that e.g. temperature could be explained even in a linear paradigm
of stochastic process [Palus and Novotna, 1994; [Hlinka et al., 2014b|]. |Sura et al.| [[2005]]
claim that statistics of atmospheric circulation, although not exactly Gaussian, are con-
sistent with a paradigm for a linear system perturbed by multiplicative noise. In simpler
words: nonlinearity is not needed for circulation statistics to become non-Gaussian —
the state-dependent variations of stochastic feedbacks from unresolved system compo-
nents, which we identify as multiplicative noise, are enough to perturb the system away
from strictly Gaussian statistics.

On the other hand, search for more local patterns on specific temporal scales in
the temperature, but also other atmospheric fields, led to the identification of various
oscillatory phenomena, possibly possessing nonlinear origin, expressing various rela-
tionship with global modes of climate variability. An example can be given in the form
of oscillatory modes in Eastern Mediterranean synchronising with the aforementioned
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NAO [Feliks et al.,|2010], or oscillatory phenomena in temperature with approximately
7-8 years period couples to geomagnetic activity and solar activity [Palus and Novotna,
2009], or the same oscillatory phenomena in temperatures exhibiting coherent patterns
in relation with the same frequencies in NAO variability [Palus and Novotna, 2004].

The task of detecting the oscillatory phenomena and inferring the relationship be-
tween them and other modes of climate (or even oceanic) variability gained momentum
lately and is associated with reward by the means of possible successful forecasting of
such phenomena with high societal impact. Besides the prediction question, the search
is also driven by pure curiosity of uncovering the dynamical mechanisms underlying
various modes and phenomena responsible for the weather and climate we observe and
experience every day.

4.2.1 Detecting cross-frequency coupling

Synchronisation, as one of the specific types of dependence, plays a very important
role in the study of the cooperative behaviour of complex systems or their parts. It
has been observed in many scientific fields and phenomena such as cardio-respiratory
interactions [Schifer et al., (1996} |Palus and Hoyer, 1998], neural signals on various levels
of organisation of brain tissues [Rodriguez et al| 1999; Palus et al., 2001} |Lehnertz et al.|
2009], or coherent variability in the atmosphere [Rybski et al., |2003; \Palus and Novotna,
2009; [Feliks et al., 2010; Palus and Novotna, 2011|]. Going beyond the synchronisation, one
may attempt to infer and distinguish mutual interactions from the directional coupling,
that is to identify drive-response relationship between the systems, or subsystems.

Typically, the causal relation is sought between pairs of different variables or different
modes of atmospheric variability. By contrast, |Palus| [[20144,b] suggested an approach,
where the complexity is examined by identifying causal relations between processes
operating on different temporal scales within a single climatic time series. This makes
sense when you recall Fig. 2.2l where a number of autonomous oscillatory subsystems
with their dependencies gave rise to a process, which we can measure (an observable).
Now, with the suggested approach of identifying causal relationship within one variable,
we are effectively adapting the view as depicted in the figure, when the variable we
are studying is the observable, and the sought causal phenomena are the interactions
between the subsystems in the left-hand side of the figure.

I tried to built the theory of how to infer causal relations in (quasi-)oscillatory phe-
nomena in the preceding chapter, namely on how to extract the oscillatory modes of
variability from the observable (sec. [3.3.2), then on how one can measure the depen-
dence between the variables in general (sec. 3.4), and how in measure synchronisation
and causal relationships, in particular, utilising the (conditional) mutual information
(sec.[3.4.4), and finally, how to establish the statistical significance of the results (sec.[3.5).
Just a short recapitulation: from the experimental time series the oscillatory modes
are extracting by the means of complex continuous wavelet transform (we use Morlet
mother), and subsequently the phase ¢(t), and amplitude A(t) time series are used in
computation of the synchronisation or causal phenomena as I(¢1(t); p2(t)) for deter-
mining synchronisation, I(¢1(t), ¢2(t + 7) | ¢2(t),...) for determining phase coupling
(causality), and finally I(¢1(t), A2(t + 7)| A2(t), A2(t = 77),...) for determining phase-
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amplitude coupling.

For a numerical experiment in the aforementioned setting, let us follow [20144],
section 3. For the first experiment, 65 536 samples of Gaussian white noise were gener-
ated. Next, the CCWT was used to decompose the time series into components related to
time scales from 181 to 23170. Subsequently, cross-scale phase-phase interactions were
studied using the mutual information I(¢1(t); ¢2(t)), where the phases ¢ were taken for
the larger scales from 2436 to 23170 samples, and phases ¢; for the smaller scales from
181 to 1722 samples. The results are summarised in Fig. Even though the Gaussian
white noise does not support any cross-scale interactions (by definition), some values of
the mutual information I were elevated (upper left-hand side in Fig. a), where the
large and small scales are the closest. Clearly, this results from a spectral leakage of the
CCWT producing false positives. Since this is an artefact of the extraction method, it
is also present in the Fourier Transform surrogates and this prevents from claiming the
interactions as statistically significant, as observed in Fig.|4.8| b. Both the z-score (Fig.
¢) and statistical significance (or p-values, Fig. d) show no significant nonzero values
of mutual information. After taking into an account the multiplicity of statistical tests,
we can still encounter up to 5% of false positive results, which would appear as random
spots or blobs in the significance plots.
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Fic. 4.8.] (a) Cross-scale phase-phase interactions measured by I($1(t); ¢2(t)) for the
Gaussian white noise decomposed using CCWT. (b) The mean I;(¢1(t); ¢2(t)) for 1000
realisations of the FT surrogate data for the GWN. (c) z-score (colour-coded for z > 2)

and (d) significance levels (colour-coded if p < 0.05). Figure taken from [Palus|[2014d].

For the second numerical experiment, 2014a] has chosen a dyadic tree of
wavelet coefficients, which is constructed using random multipliers with a log-normal
distribution 2008||. Same sample size as before is generated from this multifractal
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process and similar methodology is applied to infer the cross-scale interactions in this
sample. The results are summarised in Fig. In this case, the scales were used in
the same range of 8-1024 samples, hence the maximum of mutual information I(s1; s2)
is located on the diagonal in Fig. a, where the two scales are identical. As before,
from the values of mutual information itself, we cannot distinguish true interactions
from artefacts of the method, so the empirical distribution evaluated using 1000 FT sur-
rogate realisations was generated, and subsequently compared with the values from the
actual data. The result, seen in Fig. b, confirms the cross-scale interactions with the
scale ratio of 1:2 (i.e. scales 8 and 16, or 16 and 32, etc are coupled). Other question
would be whether these cross-scale interactions are symmetrical or directed, and |Palus]
[|20144|] answered the question by computing the conditional mutual information in form
I(p1(t); Ppa(t + 1) | Pa2(t), P2t — 1), P2(t — 217)) to estimate the directed phase-phase cou-
pling. Again, the true cross-scale directed interactions are visible only after estimating
the empirical distribution using 1000 FT surrogate data realisations. From Fig. d we
can clearly see the direction of the influence, which goes from scale s to scale s/2 (in
frequencies as f — 2f), i.e. from scale 32 to scale 16 and so on. This result motivates
our next goal, thus apply the methodology presented here on real-world data — surface
air temperatures. The reader is advised to see |Palus| [2014a|] for a discussion concerning
the results of the last two numerical experiments.

4.2.2 Cross-scale information transfer in temperature records

In the previous chapters and sections, I tried to build a strong case for seeking rela-
tionships in complex weather phenomena such as quasi-oscillatory systems or recurrent
patterns in atmospheric variables. As written before, oscillations exhibiting periods
between 6 and 11 years have been observed in various meteorological variables from Eu-
ropean and Mediterranean areas by many authors (recall sec. #.T). Since the amplitudes
of these oscillations are typically small, therefore hidden in the red-noise background,
they lack adequate assessing of their effect on shorter time scales. Following the methods
developed earlier in this thesis, Palus|[2014ab] studied possible cross-scale interactions
between oscillatory modes with periods between 6 and 12 years and variability with
typical time scales from a few months to 4 years. As before, the modus operandi starts
with CCWT using the Morlet mother wavelet in order to extract the oscillatory modes
of the desired period, and continues with estimating the phase and amplitude time
series and mutual information between a pair of variables, and finally finishes with es-
tablishing the statistical significance of the results. The analysis examined phase-phase
and phase-amplitude interactions, with the former ones not present in the considered
European station data sets [|Palus, |2014a. On the other hand, the phase-amplitude in-
teractions in the form of phase ¢ of slow oscillations influencing the amplitude A, of
higher-frequency phenomena studied with functional

I(p1; Ao(t + 1) | Aa(t), Aa(t — 1), ..., Aos(t —mn)) (4.8)

(7 is the forward time lag, n is the backward time lag in the m + 1-dimensional condition)
were present in various station data.
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Fic. 4.9.| (a) Cross-scale phase-phase interactions measured by I(s1(t);s2(t)) for a
multifractal process decomposed using CCWT. (b) Significance levels (colour-coded
if p < 0.05) for (a) using 1000 realisations of FT surrogate data. (c) Cross-scale
phase-phase directed interactions — information transfer measured by I(¢1(t); p2(t +
T) | p2(t), p2(t — 1), P2(t —21n)) for a multifractal process. (d) Significance levels (colour-
coded if p < 0.05) for (c) using 1000 FT surrogate data realisations. Figure taken from
Palus|[2014a).

Palus| [2014a] used daily mean surface air temperature (SAT) records from various
European stations, in particular stations with temporal span 1901-1999 were located in
Bamberg (DE), Basel (CH), De Bilt (NL), Potsdam (DE), Vienna (AT), and Zurich (CH).
Other stations with longer temporal span until 2008 or 2011 were Prague — Klementinum
(CZ) and various German weather stations. The inclusion criterion for Palus’s study was
the availability of at least 90 years of uninterrupted daily record since the computations
of the conditional mutual information were performed using time series of length 32 768
samples. This was required due to reliability and sensitivity of subsequent statistical
testing procedures. In the study, the functional in eq. is evaluated and averaged
for forward time lags 7 from 1 to 750 days, while the backward lag 7 is set to 1/4 of the
period of the slower oscillations characterised by the phase ¢ [Palus, |2014a].

Temperature records, in particular from midlatitudes exhibit a strong spectral peak
at the annual period since the evolution is dominated by the solar annual cycle. In many
studies, the annual cycle is removed from the data, thus forming anomalies (SATA),
however Palus [2014a] was interested in discovering interactions between all relevant
scales, therefore used raw SAT data for the computation of CMI. Surrogate data testing
pose as an integral part of the method to infer cross-scale relationships, but the problem
arises because they might not be able to accurately reproduce such a strong cyclic
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component, and even the FT surrogate procedure fails to reproduce strong cyclicity
and/or long coherence times [|Palus,|1995|]. Fortunately, a doable workaround is available
— to remove the seasonality both in mean and variance from the data (thus create
normalised SATA time series) before entering the randomisation procedure. This is
easily done by subtracting the mean for each calendar day and then dividing by the
standard deviation of each calendar day. Then, the randomisation procedure generates
a surrogate time series of deseasonalised nature and then finally the original seasonal
standard deviation and mean is added to the surrogate time series. Surrogate data
generated this way conserve the desired linear properties of the time series and also
reproduce strong annual component in the raw SAT data [Palus| 20144l
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Fic. 4.10. | Causalinfluence of the phase of slower oscillations on the amplitude of faster
fluctuations in the daily surface air temperature from Prague — Klementinum (CZ). The
significance levels (colour-coded if p < 0.05) for the conditional mutual information
with (a) 2-dimensional, (b,d) 3-dimensional and (c) 4-dimensional condition, obtained
using the (a-c) FT surrogate data and (d) multifractal surrogate data. Figure taken from
Palus| [2014al.

The significance levels for the CMI as in eq. obtained from the Prague — Kle-
mentinum daily SAT record are presented in Fig. The results for CMI using 2,
3, and 4 conditioning variables are shown in subpanels a—c, respectively. Since the in-
crease of conditioning dimensions does not substantially change the patterns of causal
relationships, we shall use conditioning dimension of 3 in subsequent analyses. Also,
using alternate null hypothesis by the means of multifractal surrogate data [Palus|, 2008]
instead of widely-used FT surrogates leads to the same conclusions. Therefore, we also
declare the results as robust.
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Fic. 4.11.| Causal influence of the phase of slower oscillations on the amplitude of
faster fluctuations in the daily surface air temperature from (a) Potsdam (DE), (b)
Hamburg (DE), (c) Bamberg (DE), and (d) De Bilt (NL). The significance levels (colour-
codedif p < 0.05) for the conditional mutual information with 3-dimensional condition,
obtained using the FT surrogate data. Figure taken from Palus|[|2014a].

The pattern of the ¢1 — A, directional interactions in SAT from Prague — Kle-
mentinum (14°25'E x 52°05'N, Fig. c) is almost the same as that from Potsdam
(13°04’E x 52°23'N, Fig. a) and very similar to the pattern from Hamburg (10°0'E
x 53°33'N, Fig. b). The pattern from Bamberg (10°53’E x 49°53'N, Fig. c) is
slightly different, without the interactions with a period of driven amplitude around
3 years. Even more changes can be seen in pattern from a coastal city, De Bilt (5°11'E
x 52°06’N, Fig. d) with lesser interaction around annual driven amplitude, but
reversely, large blob appears in longer time scales of the driven amplitude.

These interesting observations due to |Palus| [2014a] support the conclusion of uni-
directional cross-scale interactions or an information transfer from slower to faster scales
present in atmospheric dynamics. In particular, the phase of the slower oscillatory
phenomenon of periods between 7-9 years influence the amplitude around annual fre-
quency, and also slower phenomena between 7-8 years influence amplitude around 2.5
years period. These findings hold throughout few stations in central Europe, while
coastal stations of Hamburg and De Bilt exhibit slightly different patterns, which might
point to the fact that the phase-amplitude coupling is present, but the interactions them-
selves are modulated via some other process in the atmospheric dynamics. Presented
results provide an evidence for the existence of previously unknown phenomenon in at-
mospheric physics, although the understanding of its physical mechanisms still remains
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a challenge for further research. The outputs of this statistical tests, however, provide
us only with a qualitative description of the cross-scale interactions, and another step is
needed to qualitatively assess their effect on climate variability on shorter time scales.

4.3 Evaluating the effect of cross-scale interactions

The significance plots presented in the previous section provide us with a qualitative de-
scription of phase-amplitude interactions. However, they do not give us the information
of what magnitude the effect is. The simple approach to quantify the effect of cross-scale
interactions by the name of conditional means was proposed by |Palus|[2014a/b] and fur-
ther used to study the spatial and temporal variability of the effect itself by |[ajcay et al.
[2016].

The technique of conditional means is computing using the simple binning. In order
to study the effect of phase of the slower phenomena, we conditioned on the phase of
8-year cycle. The phase interval (-7, ), representing the full period, is divided into 8
bins, such that one bin roughly represents one year. For each bin, the mean (in fact any
statistical moment, such as the second moment — the variance) is evaluated and thus
discretised estimate of a studied variable is obtained. If the 8-year cycle has no influence
on the studied variable, the conditional means in all 8 bins should be the same, equal
to the unconditional, global mean. Or rather, due to finite sample effect, the conditional
means would randomly fluctuate around the unconditional mean. On the other hand, if
the conditional means vary as a function of the phase of the particular cycle, we would
conclude that cycle has an effect on a studied variable, and the overall size of the effect
can be approximated by taking the difference between the maximum and minimum
conditional mean. As before, the statistical significance of such an effect is evaluated
using the surrogate data method.

7\/\/ A\/A
Fic. 4.12.| Conditional means technique illustration. Phase of the 8-year cycle ¢gy(t)
extracted from Prague — Klementinum SAT data [Klein Tank et al|2002]] in bottom part of
the figure in black, amplitude of the 8-year cycle Agy.(t) in orange. The original SATA
data shown in grey, while the reconstructed component Agy(t) cos ¢sy:(t) shown in

darker grey. Also shown are first two bins (bright blue and green, respectively) used
for computation of conditional means.

The conditional means technique is visualised in Fig. The full interval of phase
cycle (in this example the phase of 8-year cycle ¢gy(t) in black) is divided equidistantly
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into 8 bins, in the figure visualised with blue bin as the first bin (representing roughly
first year of the cycle) and with green bin representing the second one (or second year
of the 8-year cycle). Then the mean (or any other statistical moment) of some studied
variable (e.g. the Prague SATA, shown in grey in the Fig. is taken conditionally on
the bin, thus on the phase of the cycle.

The strongest mode of variability in the European midlatitudes is without a doubt
an annual cycle, which is manifested by strongly cyclic, sinusoidal signal. Although the
boundary conditions that gave rise to annual cycle (insolation from Sun accompanied
by Earth’s rotation) are constant along the zonal circles, the annual cycle (both in phase
and amplitude) varies in time and space [|[Mann and Park,1996a; Wallace and Osborn| 2002;
Zveryaev, |2007; |Stine et al.,|2009]. When a reader recalls Fig. we concluded that the
phase of slower phenomena influences the amplitude of (roughly) annual cycle. The
apparent relationship between the two can be seen from Fig. where, among others,
the CCWT reconstruction Agy(t) cos ¢sy:(t) of the 8-year cycle is drawn in red, and the
CCWT amplitude A1y.(t) in blue — their Pearson’s correlation coefficient is at —0.82
level. Also drawn are the raw SAT data from Prague — Klementinum station [Klein Tank
et al., 2002 in grey, the CCWT reconstruction A1y,(t) cos ¢1y:(t) of the annual cycle in
black, and finally two distinct “climatological” amplitudes. Firstly, one climatological
amplitude is defined as the difference between mean summer temperature (June until
August, JJA) and mean winter temperature (December until February, DJF) in each year,
shown in Fig.[#.13]as orange dots, while the second climatological amplitude is estimated
as the difference between the means of daily temperatures above the upper quartile and
below the lower quartile in each year, shown in yellow dots. Both amplitudes are
in good agreement with the CCWT extracted amplitude A1y(f) in blue, therefore we
conclude that the CCWT extracted amplitude indeed reflects the temporal variations in
the strength of the annual cycle in this particular location.

Similar to |Palus| [2014al], I was interested in spatial variations of the basic apparent
relationship between the annual cycle and 8-year cycle. From station datasets compiled
by ECA&D [Klein Tank et al., 2002 I selected a set of 10 stations (including Prague)
with uninterrupted period from at least the beginning of 20t"century. The list of used
stations is given in Table. and their spatial locations are shown in Fig. Time
series of surface air temperatures from these 9 remaining stations for the same time span
are plotted in Figs. and Also plotted are the cycles of our interest: that is the
CCWT reconstruction Agy,(t) cos ¢gy:(t) of the 8-year cycle, the CCWT reconstruction
A1yr(t) cos ¢1y:(t) of the annual cycle, the CCWT amplitude A1y.(t), and two distinct
climatological amplitudes, defined similarly as in the case of Prague — Klementinum
shown in Fig.

In all studied station data the apparent relationship between the 8-year cycle and
the annual amplitude is confirmed (Pearson’s correlation coefficient between the recon-
struction of 8-year cycle and the annual amplitude is with the exception of Orenburg
and CET at levels lower than -0.80). Also noticeable is the approximate agreement of
the climatological amplitude of all studies stations with the annual amplitude extracted
by the means of CCWT. Therefore, we may extend the conclusion from the Prague —
Klementinum station to other stations throughout Europe and say that the 8-year cy-
cle exhibit apparent relationship with the annual amplitude and this annual amplitude
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Fic. 4.13.| Cycles of our interest in SAT data from Prague — Klementinum station
[|Klein Tank et al}|2002] in the period 10 October 1933 to 30 September 1946. Shown
are the SAT daily average in grey, the CCWT reconstruction Agy(t) cos ¢sy:(t) of the
8-year cycle in red, the CCWT reconstruction A1y;(t) cos ¢1y:(t) of the annual cycle in
black, the CCWT amplitude A1yr(t) in blue, and two various estimates of climatological
amplitude (see text for details) as orange and yellow circular marks.

indeed reflects the climatological amplitudes in Europe. In the next sections, we will
evaluate the effect of 8-year cycle on the amplitude of annual cycle, as well as the overall
surface air temperature anomalies (SATA) variability using both linear and nonlinear
methods. Also, we will see how this effect varies in both spatial and temporal sense, as
well as between various seasons.

4.3.1 Conditional means of the annual amplitude

As written above, there is an apparent relationship between the amplitude of annual
cycle and the 8-year cycle in temperatures. This is visually clear from Fig. and
this is a partial confirmation of found cross-scale coupling between the phase of slower
phenomena and the amplitude of faster cycles as qualitatively found by the CMI anal-
ysis (recall Fig. [£.10). This relationship is further studied using the conditional means
technique, which is visualised in Fig. This was done by computing the means of
the amplitude of annual cycle (AAC), A1y(t), conditioned on the phase of the 8-year
cycle, Alyr(t). The histogram of the conditional means of AAC is presented in Fig.
A. In the panel A is shown the full period 1779-2009. Due to the cone-of-influence in
the computation of the CCWT, the first and last 4 years (as half of the cycle of interest)
are cut, since the phase in this regions is not estimated robustly. The maximum mean
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Fic. 4.14.| Conditional means for the amplitude of annual cycle (AAC), A1y (t), for the
Prague — Klementinum SAT data within the period (A) 1 January 1779 to 31 December
2012; (B) 1 January 1914 to 31 December 1961; and (C) 1 January 1962 to 31 December
2009, conditioned on the phase of the 8-year cycle, ¢sy:(t), divided into 8 equidistant
bins. Note, that each bin represents approximately 1 year of the 8-year cycle.
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(conditioned on the phase of 8-year cycle) is located in the eight, last, bin at 20.55°C,
while the minimum is located in the fourth, middle, bin at 19.97°C. This directly implies,
that through the 8-year cycle, the AAC changes, on average, within the range of 0.59°C.
This change of 0.59°C is the average change for the 29 8-year cycles. However, using the
different segments of the data, the results differ due to nonstationarity of the temper-
ature data and their cross-scale interactions. As an example, consider panels B and C
in Fig. where two distinct segments of the data underwent the same analysis. The
segments were 1 January 1914 to 31 December 1961, and 1 January 1962 to 31 December
2009, respectively. Both segments represent the average change due to 8-year cycle in six
cycles. The difference between the maximum and minimum bin in each panel, which we
call the effect of 8-year cycle, is larger in the shorter segments than on the average in full
temporal span of the data. This implies that the effect of 8-year cycle fluctuates around
the overall value (given by the analysis on the full temporal span, hence 1 January 1979
to 31 December 2012) and sometimes is larger and sometimes smaller.

A similar analysis with other statistical moments can be done instead of computing
the average. As an example, we were also interested whether the standard deviation
around the mean is also subject to variations due to the 8-year cycle. The technique is the
same — that is to compute the standard deviation of the amplitude of the annual cycle
conditioned on the phase of 8-year cycle. The results are summarised in Fig. The
overall shape of the conditional histograms is different from the means. The conditional
means (Fig. exhibit convex behaviour with the minima in the middle of the cycle
and maxima in the beginning and the end of the cycle. Moreover, the shape is somewhat
regular, resembling sinusoid. On the other hand, the shape of the conditional standard
deviation histograms is irregular, with more fluctuations. In particular, the overall
histogram for the full period exhibit very low difference between the maximum and
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Fic. 4.15.| Conditional standard deviations for the amplitude of annual cycle (AAC),
A1y:(t), for the Prague — Klementinum SAT data within the period (A) 1 January 1779
to 31 December 2012; (B) 1 January 1914 to 31 December 1961; and (C) 1 January 1962
to 31 December 2009, conditioned on the phase of the 8-year cycle, ¢sy.(t), divided into
8 equidistant bins. Note, that each bin represents approximately 1 year of the 8-year
cycle.
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minimum bin, suggesting that the 8-year cycle modulates the mean of the AAC, but not
its standard deviation. The effect on standard deviation in the overall histogram is only
0.07°C. However, the effect is larger when selecting shorter periods, such as panels B
and C in Fig. This, again, suggests that the standard deviation conditioned on the
phase of 8-year cycle fluctuates in the temporal sense.

Other station temperature data underwent the same analysis as Prague — Klementinum,
which serves as a test bed. Recall, that list of all stations used in this thesis is in Table[A.T]
and their respective spatial locations are depicted in Fig. Additional figures for con-
ditional means of AAC changing with the phase of 8-year cycle can be seen in Figs.
and in the appendix. From the additional figures, it seems clear, that similar
effect as in Prague can be detected in other stations throughout Europe. The overall effect
varies between 0.29°C for CET, UK and 0.87°C for Potsdam. Also, connecting the spatial
locations of studied stations with their respective values of the difference between the
maximum and minimum bin suggests that there is an approximately east-west gradient,
with lower values in the west and higher in the east. This will be studied later using
the gridded temperature data. Moreover, we conclude that all studied stations exhibit
the same behaviour concerning the effect of 8-year cycle on AAC, that is the shape of
the histograms is similar, resembling the sinusoid, with maxima in the beginning and
the end of the cycle and minima in the middle of the cycle. The analysis suggests that
8-year cycle in European temperatures might have a profound effect on the amplitude
of annual cycle.
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4.3.2 Opverall temperature variability in the 8-year cycle

Since the estimation of causal linkage in the air temperature variability showed a possible
influence of 8-year cycle not only on the amplitude of the annual cycle, but the significant
interactions were spread around an annual cycle from 6 up to 18 months (recall Figs.
and [.11)) [Palus| [20144]. Therefore we also examined the effect of 8-year cycle on overall
variability represented by the surface air temperature anomalies (SATA). As before, the
conditional mean technique was employed, this time not on the amplitude of annual
cycle, but on the SATA itself. The Fig. visualises the effect of 8-year cycle on the
overall temperature variability. The negative temperature anomalies (or “cold bins”)
prevail in the beginning and the end of the 8-year cycle (with minimum in the eighth
bin at -0.45°C), while the positive anomalies (“warm bins”) dominate the middle of the
cycle (with the warmest, fourth, bin having 0.35°C anomaly). In this case, the difference
between coldest and warmest bin is 0.81°C, hence we conclude that the 8-year cycle has
an effect on the overall temperature variability and this effect is of overall magnitude at
0.81°C. As in the case of AAC, this effect seems to vary depending on temporal span
used for the estimation. On shorter spans (see panels B and C of Fig. the effect is
larger — 1.08°C and 1.51°C in periods 1914 to 1961 and 1962 to 2009, respectively.
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Fic. 4.16.| Conditional means for the surface air temperature anomalies (SATA), for
the Prague — Klementinum data within the period (A) 1 January 1779 to 31 December
2012; (B) 1 January 1914 to 31 December 1961; and (C) 1 January 1962 to 31 December

2009, conditioned on the phase of the 8-year cycle, ¢sy:(t), divided into 8 equidistant
bins. Note, that each bin represents approximately 1 year of the 8-year cycle.

As for the spatial variations of this effect, the conditional means of SATA from other
European stations are rendered in the appendix (sec.[A.2.3), in particular, Figs.
and The effect of the 8-year cycle is visible in all other station, exhibiting itself
strongest in St. Petersburg station and weakest in CET — Central England Temperature.
This suggests, as in the case of AAC, an approximate east-west gradient of the influence
with strong influence in the eastern part of Europe. As with Prague — Klementinum
station, the effect is variable in the temporal sense for all the stations, but the shape of
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the influence, with cold bins in the beginning and the end of the 8-year cycle and warm
bins in the middle, holds throughout the datasets.
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Fic. 4.17.| Conditional standard deviations for the surface air temperature anomalies
(SATA), for the Prague — Klementinum data within the period (A) 1 January 1779 to
31 December 2012; (B) 1 January 1914 to 31 December 1961; and (C) 1 January 1962 to
31 December 2009, conditioned on the phase of the 8-year cycle, ¢sy:(t), divided into
8 equidistant bins. Note, that each bin represents approximately 1 year of the 8-year
cycle.
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The conditional standard deviations of SATA, computed in the similar fashion as
conditional means, are presented in Fig. .17 for overall period and two distinct shorter
periods. They are behaving the opposite way as the conditional means, meaning low
standard deviation while the anomaly is high — in the middle of the 8-year cycle, and
high standard deviation when the anomaly is low — in the beginning and the end of
the 8-year cycle. This is not really surprising, as it is known that the winter standard
deviations are generally larger than the summer ones (e.g. Glaser and Riemann|[2009]];
[Jones et al.|[[2014]]).

As a final look onto this effect of the 8-year cycle, we were interested whether the
difference in SATA can or cannot be explained by the amplitude of the 8-year cycle only,
omitting any cross-scale interactions. For the period 1 January 1962 to 31 December
2009 (for SATA see Fig. C; and for AAC see Fig. C), we also looked at the
distribution of values in the synthetic dataset. Namely, we employed Fourier Transform
surrogates, generated 5000 synthetic time series, and each of these time series underwent
the same analysis as actual Prague — Klementinum SAT data. We were interested in two
measures: first, the difference between the maximum and the minimum bin when
computing conditional means of SATA, and then in the value of the amplitude of 8-
year cycle. If the amplitude of the 8-year cycle would be approximately the same as the
difference between the bins, this would suggest the difference in SATA conditional means
can be explained by an 8-year component, linearly added to a background variability
[Jajcay et al.,|2016|. However, as seen from Fig. the value of the difference in the data
exceeds the 95" percentile of the related surrogate data distribution (Fig. A), ie.
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Fic. 4.18.| (A) The difference between the maximum and the minimum SATA condi-
tional mean depicted by the position of the black thick line (= 1.5°C) and the distribution
of the same differences obtained from 5000 realisations of the FT surrogate data (grey
histogram. Shown is also the p-value of the significance. (B) The mean amplitude
of the 8-year cycle depicted by the position of the black thick line (= 0.5°C) and the
distribution of the mean amplitudes of the 8-year cycle obtained from 5000 realisations
of the FT surrogate data (grey histogram). Shown is also the p-value of the significance.

it is statistically significant at p < 0.05. On the other hand, the mean amplitude of the
8-year cycle estimated from the data is less than 0.5°C and is well reproduced in the FT
surrogate data (Fig. B). These computational statistics support the hypothesis that
the 1.5°C difference in the SATA conditional means is not a result of a random variability,
neither can be explained by an 8-year component, linearly superposed to a background
variability. Since the amplitude of the 8-year cycle itself is smaller than 0.5°C, it seems
that the difference 1.5°C of the annual means during the 8-year cycle mainly results from
the cross-scale interactions of the 8-year cycle with the variability on shorter time scales,
represented here with SATA |[]ajcay et al., 2016|.

4.3.3 Temporal variations in the effect of the 8-year cycle

As we have seen in the previous sections (and from the additional datasets presented
in the appendix), the effect of the 8-year cycle on the shorter time scales, in the form of
phase-amplitude coupling, possesses substantial temporal variability. In order to depict
the nonstationarity of the temperature data itself, and their cross-scale interactions, the
temporal evolution of the difference between the maximum and minimum conditional
means was characterised using the sliding window of 16 384 daily SAT samples. The
analysis went as follows: in each temporal window of 16 384 samples (this was chosen
because of the requirement of multifractal surrogates, which were employed in statistical
testing, for a time series length of 2", n € N), which roughly represents 44 years and
10 months, the conditional means of AAC and SATA were computed, their difference
as the proxy of the cross-scale effect was recorded, and finally the same analysis was
done on 5000 realisations of synthetic surrogate data, in order to establish a statistical
significance of the results.
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We used three different types of surrogate data: Fourier Transform (FT) surrogates
(see sec. E and references therein), autoregressive surrogates of order 1 (AR1) (see
sec.[3.5.2]and references therein), and finally multifractal (MF) surrogates (see sec.[3.5.3]
and references therein). The three different methods of how to generate surrogate data
represent three different null hypothesis that we wanted to test. The weakest null hy-
pothesis supposes that no cycles are present in the data and it is represented by AR1
surrogates. Fitting the AR model of order 1 to the deseasonalised data yields the AR
coefficients and the respective residuals. Each surrogate data realisation is generated
using the estimated AR1 model with innovations obtained as shuffled residuals. The
FT surrogates represent the null hypothesis of a linear stochastic process with the same
spectrum as the sample spectrum of the tested experimental data. Note, that no in-
teractions between different temporal scales (frequencies) can exist — this is due to
the randomisation of phases in the Fourier domain, hence any nonlinear properties of
the original data, including possible cross-scale interactions are destroyed. Finally, the
most sophisticated hypothesis is represented by the MF surrogates in which possible
information transfer from larger to smaller scales, explained by the random cascades on
wavelet dyadic trees, is preserved. Since the generation of the MF surrogates is based on
a model of turbulent cascade in which a dynamical model on the time scale S influences
(transfers energy and information onto) a mode on the scale S/2 (f — 2f), but no other
cross-scale relations are present [|ajcay et al., | 2016].

In all three cases, the seasonal variance and mean are returned to the surrogate data
after they are generated. After processing all 5000 surrogates, the results are sorted in
ascending order and the value of the 4750element is considered as the estimate of the
95tpercentile of the surrogate data distribution. If the data value is greater than the
95t percentile, we consider it statically significant with p < 0.05. Note that the tests are
not corrected for their multiplicity (by the means of False Discovery Rate, or Bonferroni
correction), so we can encounter up to 5% of false positive results.

The temporal evolution of differences between the maximum and the minimum bin
(thus the effect of the 8-year cycle) in the amplitude of annual cycle (AAC) was computed
as described formerly with Prague — Klementinum station data [Klein Tank et al., 2002].
The plotisrendered in Fig. in this case, tested against 5000 autoregressive surrogates
of order 1 (AR1). As the figure clearly shows, 65 windows of effective length 36.86 years
(the window used for sliding was indeed 16 384 daily samples, which equals to 44.86
years, but due to edge effect of wavelet transformation, half of the 8-year cycle is cut
both from beginning and the end of the wavelet representation of the data) were found
significant, mainly in the last 90 years. The values of the difference peak at roughly 1.2°C,
thus we might conclude that the effect of the phase of 8-year cycle on the amplitude of
the annual cycle can reach up to 1.2°C and that this effect varies substantially over the
time span of the data, sometimes low and not significant, but last approximately 90 years
somewhat higher and usually statistically significant.

Tightening the null hypothesis from the weakest one of no cycles present in the data
to the null hypothesis of a linear stochastic process, represented by Fourier Transform
surrogates (FT), we expect some changes in significance levels. When you compare AR
surrogates (Fig. with the same plot, but this time, tested against 5000 FT surrogates
(Fig. [£.20), the change in surrogate distribution is visible instantly: the mean of the
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Fic. 4.19.| Temporal evolution of the effect of 8-year cycle on the amplitude of annual
cycle, Alyr(t), in the Prague — Klementinum daily SAT. The differences between the
minimum and maximum AAC conditional means (thick black curve), tested against
5000 AR1 surrogates (the means over the surrogate distribution as thinner grey curve;
the 95" percentile of the distribution is plotted using light grey curve, connected with
the mean by grey filling). Windows with statistically significant differences are marked
with black dots, plotted in the middle of the window of the effective length 36.86 years.

surrogate distribution (grey line) is higher, and the surrogates, in general, replicate the
overall curve estimated with the data. In case of AR surrogates, the surrogate mean and
95tpercentile were more-or-less stationary, while the FT surrogates distribution varies
in the same way as data does. Still, the majority of temporal windows are significant
in tests against both null hypothesis, and we still conclude that the profound effect of
8-year cycle on the amplitude of annual cycle is present, can reach up to 1.2°C and is
larger and usually statistically significant in the last 90 years.

Finally, the most sophisticated null hypothesis, which generation allows for cross-
scale interactions to exist (although only in the f — 2f mode) is represented by multi-
fractal (MF) surrogates. The Fig. visualises the distribution of differences between
the maximum and minimum bin of conditional means of AAC of 5000 MF surrogates.
Shown is also the data curve for comparison. The figure clearly shows different be-
haviour of the synthetic data set, which can be seen both from the mean of the surrogate
distribution and from the curve signifying the 95 percentile. The pattern of significant
temporal windows is the same as in the case of testing against FT or AR1 surrogates,
suggesting that the method for determining the effect of the 8-year cycle is robust, and
moreover is robust against different null hypotheses. In the case of testing against MF
surrogates, the test is the most conservative one, leaving 58 significant temporal win-
dows. Still, the fact, that the effect of 8-year cycle on the amplitude of the annual cycle
is somewhat stronger and usually statistically significant in the last 90 years, holds.

In a similar fashion, we studied the effect of 8-year cycle on overall temperature
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Fi1c. 4.20.| Same as Fig. but tested against 5000 FT surrogates.
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Fic. 4.21.| Same as Fig. but tested against 5000 MF surrogates.

variability, represented by the anomalies from surface air temperature. The modus
operandi was the same: we evaluated the difference between maximum and minimum
bin of conditional means of SATA, conditioned on the phase of the 8-year cycle, in a
temporal window of 16 384 daily samples, then shifted the window by one year and
evaluated the same difference in 5000 surrogate data realisations in order to assess the
statistical significance. Fig.[#.22renders the temporal evolution of the effect of the 8-year
cycle on overall temperature variability in the actual Prague — Klementinum data, as
well as the mean and 95" percentile of empirical surrogate data distribution, obtained
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Fic. 4.22.| Temporal evolution of the effect of 8-year cycle on the surface air temperature
anomalies (SATA) in the Prague — Klementinum daily SAT. The differences between
minimum and maximum SATA conditional means (thick black curve), tested against
5000 AR1 surrogates (the means over the surrogate distribution as thinner grey curve;
the 95™percentile of the distribution is plotted using light grey curve, connected with
the mean by grey filling). Windows with statistically significant differences are marked
with black dots, plotted in the middle of the window of the effective length 36.86 years.

as 5000 Monte Carlo realisations of AR1 model. In contrast with the effect on AAC, the
effect on overall temperature variability is larger, peaking at more than 2°C. As in the
case of AAC, the effect seems higher in the last approximately 80 years and also, in this
period is usually statistically significant.

When we recall the values of the effect of the 8-year cycle shown in histograms
(Fig. [£.16), now we see that the value of overall period (the difference between the
maximum and minimum bin) of 0.81°C almost the lowest one in our temporal sliding
window analysis. From the beginning till the middle of the 19'the effect of the 8-year
cycle was rather strong (also seen from the AAC temporal window analysis, Figs.
[.21), then for about a century was substantially weaker, and then again, at the beginning
to the middle of 20%'century the effect was stronger and usually statistically significant.
The effect on SATA varies from about 0.5°C up to more than 2°C, which suggests that
the cross-scale interactions are themselves non-stationary.

As alast addition to the puzzle, the effect of the 8-year cycle on SATA was studied and
tested against other types of surrogate data, representing distinct null hypotheses. The
hypothesis of no cycles is, again, represented with AR1 surrogates and the respective
testing is shown in Fig. More conservative null hypothesis of a linear stochas-
tic oscillator is represented by FT surrogates and the appropriate testing is shown in
Fig. Finally, the most complex and sophisticated null hypothesis is represented by
multifractal surrogates, which allow for certain cross-scale interactions to be present in
synthetic data. The mean and 95" percentile of such distribution is shown in Fig.
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Fi1G. 4.23.| Same as Fig. but tested against 5000 FT surrogates.

As seen from the different figures, the FT surrogates are much more conservative than
the autoregressive surrogates, leaving only 10 significant temporal windows. Most
of the still significant windows are present in the last 70 years of the data. Finally,
the effect of 8-year cycle on the overall temperature variability was tested against 5000
MF surrogates and although one would expect less significant temporal windows as
in the case of testing against FT surrogates, the MF surrogate testing yielded actually
more significant windows, turning the MF surrogates hypothesis of possible cross-scale
transfer less conservative than the FT surrogates hypothesis of linear stochastic oscilla-
tor. The explanation of this result, howsoever interesting, is unfortunately behind the
scope of this thesis, hence the only thing taken further from this would be the fact that
the Fourier Transform surrogates represent the most conservative null hypothesis as a
testing ground for statistical significance.

As before, we were also interested on spatial variations of the effect of the 8-year
cycle, hence we repeated the analysis of the temporal variability for other European
stations with long enough available daily time series. The results are summarised in the
appendix (sec.[A.2.4), namely in Figs. where in the left column is plotted the
effect of the phase of 8-year cycle on the amplitude of annual cycle (AAC), while in the
right column the effect on overall temporal variability, represented by SATA. The first row
in the figures visualises tests against AR surrogates, middle row against FT surrogates,
and finally, the last row shows testing against MF surrogates. From the figures, we can
conclude that the effect is present in all stations, usually more significant in AAC than in
SATA, and in general the value of the effect is between 0.2°C up to 2.7°C. We also note,
that as before, the east-west gradient of strength of the effect of the 8-year cycle seems to
exists, where the westernmost station (CET, UK — Fig. exhibit considerably lower
values of the effect than eastern stations (Orenburg and St. Petersburg , both RU —
Figs.|A.15(and |A.16| respectively). We, therefore, looked into this spatial variability with
more sophisticated tools than a collection of stations — specifically, let us work out the
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effect of the 8-year cycle on AAC and SATA in analysed, gridded data.

4.3.4 Spatial variability of the effect of the 8-year cycle

The ECA&D project, which provided us with the various station data, also offers E-
OBS gridded data set with 0.5°x0.5° resolution of average daily surface air temperature
[Haylock et al.,2008|]. We made use of this data set, in particular, we selected temporal span
of 1 January 1950 to 31 August 2017 and spatial span bounded by the box of 35°N-70°N
and 12.5°W-60°E. Each grid point in this dataset underwent the same analysis as before,
thus for each grid point, we computed the effect of the 8-year cycle on the amplitude of
the annual cycle (AAC) as well as the overall temperature variability represented by the
anomalies of surface air temperature (SATA). The effect was estimated as the difference
between maxima and minima in conditional means technique over 8 bins, representing 8
distinct years of the cycle. Each grid point was subsequently tested against 1000 Fourier
Transform surrogates in order to establish a statistical significance of the result.

The results of analysis on gridded data are rendered in Fig. The areas with
the statistically significant effect of the 8-year cycle on the amplitude of annual cycle
(psyr(x) — A1yr(x)) are marked with a hatch pattern. The grey areas on the map stand
for NaNs (not a number) — this means that particular grid point includes some missing
data and therefore the analysis could not be done. The effect on AAC overall ranges from
values around 0.2°C in the south-western Europe up to 1.6°C in the Baltics and Finland.
The statistical significance of the effect exhibit rather smooth pattern, with significance
in the areas with quantitatively elevated effect — these areas include the eastern part of
France, whole central Europe, the Baltics, Finland and Scandinavia and part of Balkans.
This analysis confirms our finding when estimating the effect from various stations over
Europe that the effect of the 8-year cycle on the AAC varies spatially and this variation
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Fic. 4.25.] Spatial variability of the effect of the 8-year cycle on the amplitude of the
SAT annual cycle in Europe. Differences of the maximum and minimum conditional
means of the ECA&D reanalysis SAT annual cycle amplitude, A1y(x, t), conditioned
on the phase of the 8-year cycle, ¢sy:(x,t), are plotted in colour. The hatch pattern
marks the areas where the effect is statistically significant (p < 0.05) when testing using
1000FT surrogates.

is rather strong (between 0.2 and 1.6°C for the 1950-2017 period).

We also performed a similar analysis in order to study the effect of 8-year cycle on
overall temperature variability, represented by the anomalies of surface air temperatures
(hence ¢syr(x,t) — T(x,t), where T represents the spatio-temporal field of surface air
temperature anomalies). The respective result is plotted in Fig. Although the
differences, which is a proxy for the overall effect of 8-year cycle, reach up to 2.3°C
in western Russia, the effect is mostly not significant when testing using 1000 Fourier
Transform surrogates. The statistical significance is only established in a very small
region with the maximal difference in western Russia. Other, even smaller, “blobs” of
statistical significance (e.g. one around Dresden, DE, other in north-western Hungary)
are ascribed to the multiple comparison problem, which we do not address, hence these
are probably false positives.

From the analysis done on the gridded dataset, we conclude that the effect of 8-
year cycle, in particular, the phase of 8-year cycle ¢sgy:(x,t), indeed affects the faster
time scales. Concretely, its effect on the amplitude of the annual cycle, A1y:(x, t) varies
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FiG. 4.26. Spatial variability of the effect of the 8-year cycle on the overall temperature
variability, represented by surface air temperature anomalies. Differences of the max-
imum and minimum conditional means of the ECA&D reanalysis SATA data, T(x, t),
conditioned on the phase of the 8-year cycle, ¢sy:(x, t), are plotted in colour. The hatch
pattern marks the areas where the effect is statistically significant (p < 0.05) when
testing using 1000FT surrogates.

throughout Europe, is lowest in south-western Europe with values around 0.2°C, and
peaks in the Baltics with 1.6°C. The effect on the AAC is mostly statistically significant
and therefore, at least in the period 1950-2017, the phase of the 8-year exhibit statistically
significant cross-frequency coupling with the amplitude of the annual cycle and alter its
values up to 1.6°C. On the other hand, although the effect of the phase of the 8-year cycle
reaches up to 2.3°C and its spatial variations resemble the spatial pattern of the effect on
AAC (Fig.[4.25), it was not deemed statistically significant.

4.3.5 Seasonal effects of the 8-year cycle

As a final piece of the puzzle, we opted to repeat the former analysis of the effect of
the 8-year cycle on overall temperature variability represented by SATA on seasonally
divided data. That is, everything is done as before, but instead of taking the time series
as they are, we selected only particular months. In accordance with a huge body of
climatological literature, we worked with seasons defined as follows: the winter season,
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Fic. 4.27.| Temporal evolution of the effect of 8-year cycle on the surface air temperature
anomalies (SATA) in the Prague — Klementinum daily SAT for (A) winter, DJF, season;
(B) spring, MAM, season; (C) summer, JJA, season; and (D) autumn, SON, season. The
differences between minimum and maximum SATA conditional means (thick black
curve), tested against 5000 FT surrogates (the means over the surrogate distribution
as thinner grey curve; the 95" percentile of the distribution is plotted using light grey
curve, connected with the mean by grey filling). Windows with statistically significant
differences are marked with black dots, plotted in the middle of the window of the
effective length 36.86 years.

including months December, January, and February (DJF); the spring season, including
March, April, and May (MAM); the summer season, including June, July, and August
(JJA), and finally, the autumn season with September, October, and November (SON).
The seasonally depended analysis was done only on SATA data, not on the AAC since
the amplitude of the annual cycle is constant (at least in the approximation) during a
calendar year, therefore such analysis would not yield any relevant information.

The first analysed data set was daily station SAT from Prague — Klementinum. The
plots are shown in Fig. The first obvious thing to consider is how much the strength
of the effect heavily depends on the season. During MAM, JJA, and SON seasons, the
effect reaches up to 2°C, albeit is not significant. Contrarily, the effect in the winter season
can reach up to 6°C and is usually statistically significant. The differences between cold

78



and warm bins were highest during the first half of the 19'century with differences
more than 5°C, while in the recent times, they fell to approximately 4°C, but they are
still significant with respect to the surrogate testing using 5000 FT surrogates.

On the other hand, other seasons than winter one, the difference between warm and
cold bins resemble the temporal evolution of the whole year analysis (recall Fig. 4.23),
with the majority of the record yielding the effect below 2°C and almost no significance
with respect to surrogate testing.

The analysis of the seasonal effect of the 8-year cycle onto SATA variability was
conducted on other stations from the compiled dataset as well and the results are sum-
marised in the appendix (sec.[A.2.5), particularly in Figs. In summary: for all
stations hold that the effect is strongest in the winter season in comparison with the other
(the winter effect ranges from 2°C to over 6°C), the east-west gradient modulates the
strength of the effect itself (eastern stations exhibiting stronger effect of the 8-year cycle)
and also the seasonal dependence — western stations show lesser seasonal modulation
of the effect, while the effect in the eastern stations heavily depends on the season. This
is further studied in the gridded data set.

The gridded data set yielded the same picture as analyses done before (Fig. 4.28):
the effect of the 8-year cycle is strongest in the winter (DJF), reaching up to 6.6°C in
the Baltics, southern Finland and the westernmost part of Russia. Clearly, the effect
is statistically significant (shown by the hatching in Fig.[4.28). Apart from the regions
with the highest effect, the areas over central Europe (Poland, Germany, the northern
part of Czech Republic, and parts of Ukraine) were also deemed statistically significant
with overall strength of the effect between 3°and 4°C. The effect itself exhibit southwest-
northeast gradient towards western Europe with a weak effect of the 8-year cycle in the
southern and western part of Europe, and strong effect in the northern and eastern part
of Europe. For the spring (MAM) and autumn (SON) season, the effect is considerably
weaker throughout Europe, with the maximum values around 2°C and is not statistically
significant almost nowhere (omitting the expected false positives, up to 5% of the grid
point-wise results). Finally, the summer season (JJA) supports rather a weak effect, but
stronger than in the transient seasons of spring and autumn. The effect reaches up to
2.5°-3°in the Baltics and southern Finland and is statistically significant. The seasonal
modulation of the effect itself is also spatially variable (as expected per previous station-
based analyses): in the southern and western Europe the effect is almost of the same
magnitude throughout the year, while the magnitude of this effect in the northern and
eastern parts of Europe varies substantially in the range between 2°-6.6°C.

4.3.6 Discussion

Considering air temperature variability in a range of time scales, |Palus|[2014b|] presented
a statistical evidence for a cross-scale-directed information flow from larger to smaller
time scales in long-term SAT records from European stations. The phase of a slow oscil-
latory process influences temperature variability on shorter time scales. The influencing
oscillatory phenomenon has variable frequency; however, its most probable period is
close to 8 years, and for this period it has also the strongest effect (see |Palus|[2014b],
Figures 2b and 3a). These periods (time scales) are consistent with the observations of
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FiG. 4.28.| Spatial variability of the effect of the 8-year cycle on the overall temperature
variability, represented by surface air temperature anomalies, SATA, for (A) winter,
DJF, season; (B) spring, MAM, season; (C) summer, JJA, season; and (D) autumn, SON,
season. Differences of the maximum and minimum conditional means of the ECA&D
reanalysis SAT annual cycle amplitude, A1y:(x, t), and SATA data, T(x, t), respectively,
conditioned on the phase of the 8-year cycle, ¢gyr(x, t), are plotted in colour. The hatch
pattern marks the areas where the effect is statistically significant (p < 0.05) when
testing using 1000 Fourier Transform surrogates.

an oscillatory mode with the period between 7 and 8 years in long-term temperature
and other meteorological records in Europe. Therefore, in this study, we have applied
a simple conditional mean technique in order to quantitatively estimate the effect of the
oscillatory mode with the period close to 8 years on the surface air temperature variabil-
ity in Europe. The cycle itself has a small amplitude (<0.5°C in the presented example
of the station SAT record from Prague — Klementinum, see Fig. b) and is hidden in
overall temperature variability. However, due to the cross-scale interactions, the 8-year
cycle influences the temperature variability on shorter time scales. The amplitude of the
annual cycle in SAT changes within this cycle by 0.7°-1.4°C, and the overall variability of

80



SAT anomalies changes in annual means by 1.5°-1.7°C. The strongest effect of the 8-year
cycle has been observed in the winter season — the DJF SATA means change in the range
4°-5°C. (This summary is restricted to twentieth-century central Europe, where we have
available both the station and reanalysis data giving consistent results.) These results
suggest that the weak 7-8-year cycle plays a very important role in the temperature vari-
ability on interannual and shorter time scales. Therefore, this phenomenon deserves
further study and understanding of its mechanisms.

Palus|[2014b] hypothesizes that in the analysed SAT data, we have observed a regional
manifestation of a general phenomenon of cross-scale interactions in the atmospheric dy-
namics in which global, low-frequency modes influence local, high-frequency variability.
For instance, Chekroun et al.|[|2011] reported that the phase of the low-frequency modes
of the El Nifio/ Southern Oscillation influences high-frequency variability (“weather
noise”) of the sea surface temperature in the tropical Pacific. For the data analysed in
this study, the most relevant global mode is probably the North Atlantic Oscillation
(NAO). The influence of the NAO on the air temperature in Europe is known [Marshall
et al| 2001, and its mechanisms depending on the phase of the NAO are described,
e.g., by Hurrell and Dickson|[2005]]. Typically, Pearson’s correlations have been computed
between (mostly winter) air temperature records and NAO indices (see, e.g., |Pokorna
and Huth [2015]); however, specific time scales have not been considered yet, although
the 7-8-year cycle has also been detected in the NAO index [Gamiz-Fortis et al., | 2002}
Palus and Novotna, 2004|]. Our results demonstrate the importance of understanding the
climate variability in scale-specific regional modes and their cross-scale interactions and
causal relations with global circulation variability modes which are localised not only
in space [|Vejmelka et al., 2015] but also in a time scale or in a frequency range [Groth and
Ghil, 2011} 2015].
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CHAPTER 5

Complex dynamics and
extremes in El Niiio /
Southern Oscillation

In an El Nifio year, you have winners and losers.
Walter Baethgen
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In the last chapter, we introduced a somewhat peculiar phenomenon of cross-scale
interaction, where the phase of the slower oscillatory phenomenon (in our case approx-
imately 8-years) affects the amplitude of faster cycles. We hypothesise that what we
actually observed was a mere regional manifestation of a general phenomenon of these
cross-scale interactions in the atmospheric dynamics in which a global, low-frequency
modes influence local, high-frequency variability [|Palus, 2014D; |Jajcay et al., |2016|. As
an example, |Chekroun et al.|[2011]] reported that the phase of the low-frequency modes
of the El Nifio/ Southern Oscillation influences high-frequency variability (“weather
noise”) of the sea surface temperature in the tropical Pacific. The aforementioned result
motivated us to exploit the framework developed by Palus| [20144,b], and used by |Jajcay
et al.|[2016], in order to study the possible cross-scale coupling in the dynamics of El
Nifio/ Southern Oscillation, to which this chapter is devoted.

5.1 Overview of El Nifno/ Southern Oscillation

El Nifio/ Southern Oscillation (commonly referred to as ENSO) is a well known coupled
ocean-atmosphere phenomenon, which manifests itself as a quasi-periodic fluctuation
in a sea surface temperature (El Nifio part) and air pressure of the overlying atmosphere
(Southern Oscillation part) across the equatorial Pacific Ocean. The warming phase
of the sea surface temperature is known as El Nifio and is accompanied with high
air surface pressure in the tropical western Pacific, while the cooling phase of the sea
surface temperature is known as La Nifia, and is, in turn, accompanied by low air surface
pressure [[ones et al.,|2007/|]. The two periods last several months each, they are typically
occurring every few years (with exceptions), and their effects vary in intensity.

Although the exact causes for initiating warm or cool ENSO events are not fully
understood, the two components of ENSO — sea surface temperature and atmospheric
pressure — are strongly related, therefore, even in the end of 1960s, Bjerknes [1969]
hypothesised that ENSO is a consequence of slow feedbacks in the ocean-atmosphere
coupled system, that allow the growth of small disturbances to the large-scale ocean
state.

After Bjerknes [1969] published his hypothesis, it was not until the 1980s that ENSO
was extensively studied. The intense warm episode of the 1982 — 83 El Nifio, which
was not recognised until it was well developed, galvanised the tropical climate research
community towards understanding, and ultimately, predicting ENSO [Wang et al., 2016}
This motivated the ten-year international TOGA (Tropical Ocean-Global Atmosphere)
program to study and predict ENSO. During TOGA program (1985-94) the successful
observing system for ENSO was built [McPhaden et al., |1998] and the understanding
of its mechanisms was hugely advanced by focusing on the interaction between the
tropical Pacific and the atmosphere [Neelin et al.,[1998]. After TOGA program finished,
the ENSO community shifted its focus on more intricate details of ENSO dynamics,
such as different types of ENSO events, ENSO low-frequency variability, and ENSO
variability under global warming [Wang et al.,|2016]. In the following text, I will give a
summary of ENSO observations, a brief overview of physical mechanisms behind ENSO,
and of various models (from global circulation models, through conceptual dynamical
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models, to statistical models based on the past data) that were developed during past
few decades.

5.1.1 Observing ENSO

Modern observational data associated with ENSO can go back to the late 19™century.
Since the actual observations of sea surface temperature in the ocean are sparse, in
particular at the beginning of the record, the produced data sets are in general produced
from the sparse data using models, and other statistical methods (e.g. interpolation).
One of the most used observational records of ENSO are without a doubt the ENSO
indices. All of them were design to monitor the tropical Pacific, and all of them are
based on sea surface temperature (SST) anomalies averaged across a given region. The
Nifio regions are labelled 1, 2, 3, and 4 and correspond with the labels assigned to ship
tracks that crossed these regions, and the measurements from these tracks enabled the
historic records of El Nifio. The regions are depicted in Fig.
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Fic. 5.1.| Illustration of 4 different Nifio regions, from which the indices are derived
as spatial average of SST over the region. Nifio 3.4 regions, which is the most used one,
is visualised with dotted patch.

The Nifio 1+2 region (Fig. light red) is the smallest and easternmost of the
Nifio SST regions and corresponds with the region of coastal South America where El
Nifio was first recognised by the local population. It spans the box 0°- 10°S, 90°W —
80°W, and tends to have the largest variance of the SST Nifio indices.

Next, the Nifio 3 region (Fig. violet) was once the primary focus for monitoring
and predicting El Nifio, but later researchers learned that the key region for the coupled
ocean-atmosphere interactions for ENSO lies further west [[Irenberth,|[1997). It spans the
rectangle of 5°S — 5°N and 150°W — 90°W.

The favoured region for defining El Nifio and La Nifia events is the 3.4 region (Fig.
dotted patch). Its anomalies may be thought of representing the average equatorial SSTs
across the Pacific from about the dateline to the South American coast. The Nifio 3.4
index typically uses a 5-month running mean, and the individual events are defined
when the Nifio 3.4 SST exceed +/— 0.4°C for a period of six months or more. It lies
between the Nifio 3 and 4 regions, therefore spans the rectangle of 5°S — 5°N and 170°W
—120°W.
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The last of the Nifio regions, the Nifio 4 region (Fig. green), captures the SST
anomalies in the central equatorial Pacific and tends to have less variance than the other
Nifio regions. It spans the rectangle of 5°S — 5°N and 160°E — 150°W.

Other indices also exist, most notably the Oceanic Nifio Index (ONI) which uses
the same region as Nifio 3.4 index, but rather is defined as 3-month running mean.
Moreover, the individual events to be classified as a full-fledged El Nifio or La Nifia,
the anomalies must exceed +0.5°C or -0.5°C for at least five consecutive months. As a
last notable index, [[renberth and Stepaniak [2001] introduced the Trans-Nifio Index (TNI)
in order to define the unique character of each El Nifio or La Nifia event. This index
should be used in combination with Nifio 3.4 index and is defined to be the difference in
normalised SST anomalies between the Nifio 1+2 and Nifio 4 regions. Thus it measures
the gradient in SST anomalies between the central and eastern equatorial Pacific.

The temporal evolution of aforementioned Nifio indices and their derived version are
plotted in Fig. The time series all of the plotted indices are taken from [Rayner et al.
[2003]. Moreover, their basic characteristics (first four standardised statistical moments
and their correlation with others) are depicted in Table Both from the table and the
plotted time series we immediately see the statements from previous paragraphs to be
true. In particular, the Nifio 1+2 having the largest variance, while the Nifio 4 region the
lowest. We can also observe that the Nifio 4 region is the warmest one, with the mean
over last 70 years of data larger than other by more than 1.5°C. Also noticeable from
the histograms and from the measures of skewness is the fact, that the Nifio 1+2 and
3 are skewed towards colder SSTs, while Nifio 4 and 3.4 are skewed towards warmer
SST, in particular, the Nifio 4 exhibit high negative skewness of -0.47. On the other
hand, all basic Nifio indices exhibit slightly to moderately negative kurtosis, hence have
light-tailed (or platykurtic) distributions.

When looking at the Pearson’s correlation coefficient between the various Nifio in-
dices (Table 5.1), the first thing that comes to mind is a rather high correlation between
Nifio 3.4 and Nifio 3, and 4 (0.86 and 0.84, respectively). This is a good thing since it
means that Nifio 3.4 is indeed able to capture the SST in both central and eastern Pacific.
On the other hand, a very low correlation between Nifio 1+2 and Nifio 4 index at 0.04
level suggests that the difference between the easternmost region in the Pacific and cen-
tral Pacific are huge when it comes to the temporal evolution of SST. A high correlation
between the ONI and Nifio 3.4 index is not a surprise since both are based in the same
region.

From the anomalised Nifio 3.4 index (Fig. bottom) it seems like the ENSO exhib-
ited an oscillatory behaviour with 3-5 years preferred time scale, in spite of considerable
irregularity in the record. The second point to be made, ENSO events show quite a large
asymmetry between the El Nifio warm events and La Nifia cold events, with anomalies
of El Nifio larger than those of La Nifia/|Wang et al., 2016/

Apart from indices described above, the evolution of ENSO can be seen in the zonal
wind, surface air pressure, and 20°C isotherm depth fields. The zonal wind anomalies
indicate ENSO because of the ocean-atmosphere coupling. The Southern Oscillation part
of the ENSO is an oscillation pattern in surface air pressure between the tropical eastern
and the western Pacific ocean waters. The strength of the oscillation is measured by the
Southern Oscillation Index (SOI), which is computed from fluctuations in the surface
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Fic. 5.2.| Time series of various Nifio indices in the temporal span of January 1950 to
December 2017. (top) 4 raw SST time series, spatially averaged over 4 distinct Nifio
regions. (middle) Derived Nifio indices ONI and TNI. (bottom) Anomalised Nifio 3.4
index, using 1950 — 1980 climatology, shown is 5-months running mean. The threshold
is +0.4°C.
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1950-2017 correlation with Nifio:

region mean var skew kurt || 1+2 3 4 34 histogram

Nino 1+2 || 2329 536 021 -1.02 X 080 0.04 043

Nifio 3 25.80 157 011 -0.651( 080 X 049 0.86

Nifio 4 2846 044 -047 -0131( 004 049 X 0.84

Nifio3.4 || 27.00 0.89 -0.12 -0.31 | 043 0.86 0.84 X

ONI 003 070 035 012 || 030 0.63 0.83 0.85

TNI -036 186 044 -0.09| 024 0.04 -051 -0.22

m ssT [c]

TasLE 5.1. | Summary of time series of various Nifio indices. The table states first four
statistical moments, their correlation matrix (correlations among the indices), and plots
their histograms.

air pressure difference between Tahiti and Darwin, Australia. El Nifio episodes exhibit
negative SOI, meaning lower pressure over Tahiti and higher pressure over Darwin,
while La Nifia episodes have positive SOI, hence higher pressure in Tahiti and lower in
Darwin. This also means that the SOI and Nifio 3.4 indices are anticorrelated. Finally,
the 20°C isotherm depth in the ocean serves as a proxy for thermocline depth. The
variations of the thermocline, in particular, its slope and depth, is very important feature
of ENSO, but unfortunately, the subsurface ocean temperature measurements have been
sparse in the past.

One of the goals of TOGA initiative was to build and maintain the observing system
in the tropical Pacific. This goal was accomplished and the system was built, containing
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Fic. 5.3.| Time-longitude sections of monthly (left) sea surface temperature, (middle)
zonal wind, and (right) 20°C isotherm depth anomalies between 5°S and 5°N from
January 2005 to December 2017. White rectangles signify data gaps. Data provided by
the TAO/TRITON array [Hayes et al., 1991]].

about 70 moored buoys [Hayes et al., (1991; IMcPhaden, {1995]. The system was named
TAO/TRITON array and as of now is maintained by the USA and Japan. Most of
the buoys are equipped with a 500-m thermistor chain and meteorological sensors.
Moreover, at the equator, five to seven moorings are equipped with acoustic Doppler
current profiler and current meters [McPhaden et al.| |1998]. The example of data from
TAO/TRITON can be seen in Fig. where the time-longitude sections of sea surface
temperature, zonal wind, and 20°C isotherm depth anomalies are rendered. The data
clearly show close relationships among zonal wind anomalies, SSTs and thermocline
depth anomalies. Moreover, they allow us to see the temporal evolution of the warm
event 2014 - 16, as well as the cold event 2010 — 11.

In the middle of 2014, a positive anomaly of the thermocline (meaning deeper ther-
mocline, thus warmer subsurface waters) begins to spread from the western Pacific
eastward. This is usually viewed as a precursor of El Nifio. This propagation is sup-
ported by westerly zonal wind anomalies. As the depression of thermocline extends
to the east, warm subsurface waters are carried to the surface due to the equatorial
upwelling. Once the SSTs becomes anomalously warm, the Bjerknes feedback begins —
the westerly wind anomalies in the central Pacific cause the eastern Pacific thermocline
to deepen even further, leading to additional warming of the surface waters. However,
the shallower thermocline accompanied by cold subsurface waters in the western Pacific
poses as a balancing agent, since this leads to the termination of the event. As the cold
anomalies below the surface of the ocean propagate eastward, they cause the gradual
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erosion of the surface warm anomalies. This, in fact, reverses the chain of events of the
Bjerknes feedback and the coupled system is driven towards a La Nifia phase. During
La Nifia phase all the processes reverse direction, and as the cold waters are extending
eastward, the easterly zonal wind anomalies act to deepen the eastern thermocline, thus
cooling the surface waters.

5.1.2 A physical description

In the previous sections we saw how the El Nifio or La Nifia events are built, now let
us see what is actually happening physically in the tropical Pacific region. As written
above, ENSO exhibit three distinct phases: neutral, warm phase (El Nifio), and cold
phase (La Nifia). All the phases of ENSO are depicted in Fig.|5.4, where the schematics of
atmospheric and oceanic circulation, as well as sea surface temperature, and thermocline
depth are drawn.

Normal Conditions
y T !

Convective
Circulation

Equator

120° E 80° W

El Nifio Conditions La Nina Conditions

Thermocline

120°E 80° W 10° E 80° W

Fic. 5.4.| Illustration of circulation patterns in the atmosphere and the ocean, sea
surface temperature and thermocline depth during (top) neutral conditions, (bottom
left) El Nifio conditions, and (bottom right) La Nifia conditions. Figures by “Fred the

Oyster”, taken from [wikipedia.org [@]

The normal circulation pattern in tropical Pacific ocean is termed the Walker circu-
lation. It consists of the surface trade winds blowing from the east to the west across
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the tropical Pacific. Since these trade winds gather warm water pool towards the west,
the air rises above this region. Then the upper-level winds blow from the west to the
east, and finally, the sinking air is returned back to the surface in the tropical eastern
Pacific, finishing the circulation. The Walker circulation further sustains the region of
permanent precipitation over the warm pool, since the rising air is very moist and during
its vertical advection it condensates. Gathering of the warm pool in the western Pacific
also influences the depth and inclination of the thermocline, which acts to maintain
the current state via equatorial upwelling. When the thermocline is deeper than the
upwelling level, the water brought to the surface is warm (a normal state in the western
Pacific), and vice versa — shallower thermocline means that the upwelling brings cold
waters to the surface (a normal state in the eastern Pacific). All of these processes are
depicted in Fig.[5.4] top panel.

Although the exact mechanisms that trigger the change of neutral state to an El
Nifio state are not known, the El Nifio phase starts to building up by weakening, or even
reversing, the Walker circulation which causes the ocean surface to be warmer than the
average, as upwelling of cold water occur less or not at all in the eastern Pacific. With
the disruption of Walker circulation, we observe westerly wind anomalies and these,
via already mentioned Bjerknes feedback, cause the thermocline to deepen even further
in the eastern Pacific, leading to additional warming. Since the warm pool extends
to central, even eastern Pacific, the El Nifio phase also shifts the belt of permanent
precipitation eastward. Since condensation is a particularly rich source of latent heat,
the El Nifio event disturbs the storminess and heating in the tropics, which affects the
Hadley circulation. The El Nifio event supercharges the poleward flow, which in turn
causes further changes in atmospheric flow, including the jet stream over the Pacific.
Through these profound changes in the atmospheric flow, even if El Nifio is specific to
the tropical Pacific, it does have worldwide impacts.

The La Nifa event displays the opposite behaviour of aforementioned fields. That
is, the Walker circulation is strengthened, meaning the trade winds exhibit easterly
anomalies, warm pool shifted even more westward and the slope of the thermocline is
more inclined — shallower in the eastern Pacific and deeper in the western Pacific. The
belt of permanent precipitation is shifted westward.

The theoretical explanations of ENSO can be loosely grouped into two frameworks: in
the first E1 Nifio is one phase of a self-sustained, unstable, and naturally oscillatory mode
of the coupled ocean-atmosphere system; in the second El Nifio is a stable (or damped)
mode triggered by, or interacted with, stochastic forcing or noise such as westerly wind
bursts and Madden-Julian oscillation events (e.g. (Gebbie et al. [2007];Wang et al. [2016]),
and the tropical instability waves in the eastern Pacific (e.g. |An [2008]). Both of the
frameworks involves the Bjerkness [1969]] feedback.

Bjerknes|[1969] first hypothesised that the interaction between the atmosphere and the
equatorial eastern Pacific ocean gives rise to El Nifio, due to initial positive SST anomaly
in the eastern Pacific, which reduces the east-west SST gradient and therefore the strength
of Walker circulation, ultimately resulting in weaker trade winds. The weaker trade
winds, in turn, reinforce the SST anomalies by driving the ocean circulation. However,
this positive feedback would result in a never-ending warm state of the equatorial
Pacific, and therefore a negative feedback is needed in order to make the coupled system
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oscillatory. Whilst searching for necessary negative feedbacks, four conceptual ENSO
oscillator models have been developed: the delayed oscillator [|Suarez and Schopf, (1988,
Battisti and Hirst,1989], the recharge oscillator [[in,|199/a,b|], the western Pacific oscillator
[[Weisberg and Wang,1997;\Wang et al., 1999], and the advective-reflective oscillator [Picaut
etal}|1997)]. Each of these oscillator models emphasised different negative feedback in the
Pacific: the delayed oscillator counts on reflected Kelvin waves at the ocean boundary,
the recharge oscillator works with a discharge process due to Sverdrup transport, the
western Pacific oscillator relies on wind-forced Kelvin waves, and the advective-reflective
paradigm depends on anomalous zonal advection [Wang et al., 2016].

The delayed oscillator of |Suarez and Schopf [1988] introduced the candidate mecha-
nism for ENSO, modelling the effects of equatorially trapped oceanic wave propagation.
On one hand, the positive coupled feedback leads to SST anomaly into the warm state.
On the other hand, the delayed negative feedback, due to free Rossby waves generated
in the eastern Pacific coupling region and propagated to and reflected from the ocean
western boundary ultimately to be returned as Kelvin waves, reverses the SST anomaly
to the neutral state.

Wyrtki| [1975, |1985]] was first to suggest a buildup in the western Pacific of warm
water as a precondition of El Nifio. The warm water volume over the entire tropical
Pacific would build up (or charge) gradually, and during the warm event, the water
is discharged to higher latitudes, while the tropics are filled with cold water. In the
meantime, the warm water again slowly charges in the upper subsurface layer of the
ocean. Using these ideas about the necessary buildup, and based on a coupled model
of Zebiak and Cane [1987], |[in| [1997ab] derived and formulated his recharge oscillator
model. In this conceptual model, the recharge-discharge process of equatorial heat
content makes the coupled system oscillate. The discharge process is initiated during
a warm, El Nifio, phase due to the divergence of Sverdrup transport associated with
westerly wind anomalies and eastern SST warm anomalies. This discharge of the warm
water leads to a transition phase, when the entire equatorial thermocline is anomalously
shallow, and thus leading to cold waters upwelling to the surface, and ultimately to a La
Nifia phase. During a cold phase, the converse effects occur, giving rise to an oscillatory
behaviour of the coupled system.

The western Pacific oscillator model, due to |Weisberg and Wang| [1997]; \Wang et al.
[1999], emphasise the role of western Pacific in ENSO, which was overlooked in the de-
layed oscillator model. In particular, the off-equatorial SST anomalies, and off-equatorial
anomalous anticyclones. The equatorial westerly wind anomalies act to deepen the ther-
mocline and increase SST via positive feedback (classical Bjerknes feedback). Although,
in contrast, the off-equatorial cyclones raise the thermocline via Ekman pumping, and
thus a shallow off-equatorial thermocline anomaly expands over the western Pacific
leading to a decrease in SST and increase in sea level pressure (SLP) in the off-equatorial
western Pacific [Wang et al.,|1999]. During the mature phase of El Nifio, the off-equatorial
anticyclones initiate equatorial easterly wind anomalies in the western Pacific, and they
in turn cause upwelling and cooling that proceed eastward as a forced ocean response
providing a negative feedback, allowing the coupled system to oscillate [Wang et al.
2016|.

Finally, the advective-reflective oscillator proposed by |Picaut et al.|[1997] stresses the
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importance of zonal currents, in particular, the anomalous zonal currents associated with
wave reflections at both, eastern and western, ocean boundaries, and the mean zonal
currents converging at the eastern edge of the warm pool. In the course of El Nifio event,
the westerly anomalies produce upwelling Rossby and downwelling Kelvin waves that
propagate westward and eastward, respectively. After Rossby waves reach the western
boundary, the waves are reflected as upwelling Kelvin waves, whereas the Kelvin waves
after they reach the eastern boundary, reflect as downwelling Rossby waves. Since both
the upwelling Kelvin, and downwelling Rossby waves have westward zonal currents,
they tend to push the warm pool back to its original position in the western Pacific. This,
again, makes the coupled system oscillate.

As many people use to say that truth is somewhere in the middle, more than one
conceptual model may operate in nature. Motivated by the existence of the four oscil-
lator models, |Wang| [2001] formulated a unified ENSO oscillator model, which includes
the physics of all oscillators models discussed above. As suggested by the unified oscil-
lator model, ENSO is a multi-mechanisms phenomenon and the relative importance of
different mechanisms is time-dependent.

Another, conceptually different, view of ENSO is that various El Nifio events are a dis-
crete series punctuating the periods of natural or cold conditions. In this view, ENSO is
characterised as a stable (or damped) mode triggered by stochastic atmospheric/oceanic
torcing (e.g. [Laul| 1985} |Penland and Sardeshmukh| 1995 |Philander and Fedorov| 2003]).
The difference in comparison with the aforementioned oscillator models is that the dis-
turbances that drive ENSO are external, and therefore suggests a natural explanation
for the irregularity of ENSO events in terms of noise. The external atmospheric forc-
ing can include the Madden—Julian Oscillation and westerly wind bursts (e.g. |Gebbie
et al.|[2007]), and the oceanic noise may include the tropical instability waves (e.g. |An
[2008]). However, even a sequence of independent warm events can still be consistent
with delayed oscillator physics, since the termination of an individual El Nifio event
still requires negative feedback that can be provided by wave reflection at the western
boundary [Mantua and Battisti, 1994].

5.1.3 Typical scales in El Nifio/ Southern Oscillation

After years of extensive research, the scientific community reached a general consensus
on the fundamental features of ENSO phenomenon itself, and on other processes that
contribute to its dynamics. I refer the potential reader to reviews by Rasmusson and Car-
penter [1982|] or|Neelin et al.|[1998)]. One of the results of the extensive research refers to the
temporal scales involved in ENSO dynamics. As an example, it is now widely accepted
that the occurrence frequency of ENSO peaks in approximately 3- to 5-year periods. In
addition, a secondary peak at approximately 2-year periodicity was noted by several
authors, firstly by |Rasmusson et al.|[1990]. The oscillator hypotheses, briefly described in
the previous section, are all in agreement with these interannual periodicities. However,
the ocean-atmosphere interactions (which are modelled via the oscillators) can explain
the principal features of ENSO, its observed intrinsic characteristics exhibit profound
irregularities. The individual El Nifio and La Nifia events are often dissimilar from each
other in terms of their amplitude or evolution pattern [Yeo and Kim| 2014
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This irregularities and uniqueness of each individual event make it almost impossible
to grasp and comprehend the nature of ENSO as a whole. One obvious way how to
better understand the nature of this phenomenon is to decompose its measurements —
the SSTs, and therefore its dynamics — into less complicated categorical modes. Various
authors used various methods to achieve this. |Barnett [1991)] used simple temporal filters
and complex empirical orthogonal functions (CEOF) and came to a conclusion that ENSO
is principally a three time-scales process, consisting of an annual cycle, a quasi-biennial
oscillation, and a lower frequency variation pattern. Few years after, |Latif ef al.|[1997]
also identified three modes of variability, though the use of principal oscillation pattern
(POP) analysis and these were an interannual mode, a decadal mode, and a trend
or unresolved ultra-low frequency variability pattern. Kim| [2002] decomposed tropical
Pacific SST variability into two dominant modes — a biennial mode and a low-frequency
mode — via cyclostationary empirical orthogonal functions (CSEOF) analysis. |Yeo and
Kim| [2014]] repeated the CSOEF analysis to identify, again, three modes of variability
in a 140-year long SST dataset: a global warming mode (ultra-low frequency), a low-
frequency variability mode, and a biennial oscillation mode.

In addition to decomposition efforts, some authors reported various individual time
scales that play a role in ENSO dynamics. [Rasmusson et al.|[1990] was one of the first that
noted the existence of biennial component in ENSO dynamics (SSTs and zonal wind)
through the use of SSA. He also identified a low-frequency peak with a period between
4 and 5 years. [[iang et al|[1995] confirmed these findings of quasi-biennial variability in
the ENSO region, and also described a quasi-quadrennial peak in principal components
from decomposed SSTs via multichannel SSA (M-SSA).

Aside from these interannual and longer time scales involved in ENSO, one always
needs to keep in mind our Sun, which forces undoubtedly one of the most profound
cycles—the annual cycle. There are many observational studies documenting the annual
evolution of SST and its associated atmospheric counterparts [|Wyrtki, 1965; Hastenrath
and Lamb, 1978 |Mitchell and Wallace, 1992;\Wang, | 1994]. It is an important point to realise
that the annual cycle in the tropics, similarly as ENSO itself, arises from coupled tropical
atmosphere-ocean interactions, and it not only coexists with ENSO but also strongly
interacts with it, enriching its characteristics (e.g. |[in et al. [1994]; |[in| [1996]; Stuecker et al.
2013, [2015]l; |Chen and Jin| [2017]]).

One of the processes with interesting interplay between the annual cycle and ENSO
is definitely ENSO’s synchronisation to the annual cycle. Firstly, the observational
evidence in the form of a similar pattern of developing individual ENSO events with
building during boreal summer and peaking during boreal winter was found [Rasmusson
and Carpenter| 1982} |Larkin and Harrison), [2002|]. As |Stein et al.|[2014] noted, the exact
mechanisms responsible for this synchronisation are not known, although two possible
candidates exists: frequency locking of ENSO to periodic forcing by the annual cycle [in
et al., 1994} I ziperman et al., 1994|], and the modulation of ENSO’s coupled stability due
to the seasonal variation of the background state of equatorial Pacific [|Philander et al.,
1984} |Hirst} [1986]].

The last, but also very important, point I wanted to make is that some studies [An and
Wang, 2000; \Wang and An| 2001 have shown that the frequency of ENSO is dependent
on the spatial structure of zonal wind stress anomalies, in particular, the longitudinal
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position of the westerly anomalies. \An and Wang [2000] argue that the delayed oscillator
theory only qualitatively describes the effect of the zonal location of the wind anomalies
on ENSO frequency. They also identify yet another feedback — zonal advective feedback
— where the zonal position of the zonal wind stress anomalies influences the zonal
currents in the central equatorial Pacific. This zonal advective feedback favours the
transition of the ENSO, rather than its growth, and consequently supports a shorter
oscillation of 2—4 years with a lower amplitude when the zonal wind stress is shifted
westward. Conversely, when the wind stress is shifted eastward, it favours the growth
of ENSO cycle rather than its transition and therefore a longer oscillation of 4-6 years
with larger amplitude tend to happen [|An et al., |1999;|/An and Wang| 2000]. The leading
interpretation of such studies is that the balance between the zonal advective feedback
and the thermocline feedback (anomalous easterlies in the eastern Pacific caused mean
upwelling to increase) is a key parameter in the structure and dynamics of the coupled
ENSO mode and the frequency of ENSO cycle: the thermocline feedback favours the
recharge oscillator mode with a strong, 4 — 6 years periodic ENSO, while the zonal
advective feedback is characterised by a weaker and shorter (2 — 4 years) ENSO [An and
Jin} 2001}

Similar results were reported by |Fedorov and Philander [2001] via stability analysis
of Cane-Zebiak coupled model [Zebiak and Cane, 1987], where the 2 distinct unstable
modes emerged: the “delayed oscillator” mode with longer (5-year) oscillations driven
by vertical movements of the thermocline and the “SST” mode with shorter time scale
(approximately 2 years), controlled by advection and entrainment across the thermocline.
In conclusion, it seems that both feedbacks are very important, and as noted before with
the unified oscillator paradigm, both of them coexists and their significance varies over
time.

A couple of recent studies also addresses the temporal variations in shorter time
scales than ENSQ itself. |Chen and [in|[|201/)] used a linear coupled framework to quantify
the internal dynamics and external forcing that determine the amplitude of the annual
cycle. \Wang et al.| [2017] argue for enhanced biennial variability in the Pacific due
to the Atlantic capacitor effect, arguing that since the 1990s a warmer Atlantic and
global warming provided favourable background state for the Atlantic capacitor effect,
ultimately giving rise to enhanced biennial variability in the Pacific basin.

The purpose of this section was to give an overview of temporal scales that are central
to the dynamics of ENSO. With the richness of its spectrum and various processes
involved in influencing it, it would be even unnatural if the temporal scales would not
be coupled in some intrinsic way via cross-scale interactions introduced earlier.

5.2 Modelling of El Nifio/ Southern Oscillation

Because of the immense impact of ENSO in a global scale, ranging from disturbed
circulation patterns, precipitation changes, and warm or cold spells even outside of
the tropical belt [Lau and Nath, 2001} Alexander et al., 2002|] which result in societal and
economic impacts, the great emphasis is put in forecasting and simulating the ENSO
phenomenon. The efforts are focused into understanding and simulating ENSO through
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the conceptual models, forecasting its effects on seasonal-to-interannual time scales, and
predicting how its impacts may change over coming decades, in the light of global
warming.

The modelling systems of ENSO usually fall into a large hierarchy of models, rang-
ing from simple conceptual models (similar to oscillator models mentioned earlier) to
high resolution fully-coupled general circulation models. These models are based on
the equations emerging in fluid dynamics, or their conceptualised versions. However,
another large category exists and that is the so-called statistical models of ENSO, which
are in opposition to dynamical models. They are not based on the underlying physical
description of the phenomenon, but rather use a statistical formulation and are trained
on past observed data, in order to capture and subsequently simulate the temporal and
spatial patterns displayed by the phenomenon.

In the tropics, the question of forecasting at the seasonal time-scale is linked to
the availability of accurately predicted SST. Because the characteristic time scales (or a
lifetime of planetary-sized structures) of the ocean are considerably longer than those
of the atmosphere, the predictability limit is also expected to be longer in the ocean.
Based on this, it can be argued that the climate predictions at lead times of one to
a few seasons are primarily the matter of predicting SSTs [|Goddard et al., |2001)]. The
respond of the tropical atmosphere to the SST forcing was first thought to be coherent
and reproducible (e.g. |Stern and Miyakoda [1995]; Shukla| [1998]), however, has been
challenged and shown to be inadequate in the summer monsoon regions [Wang et al.|
2005|]. Moreover, Fu et al.|[2003] and [Zheng et al.|[2004] have suggested that this “forecast
the SSTs and the atmosphere will follow” approach has shortcomings for predicting
intraseasonal oscillations as well.

The dynamical models can be subdivided into two categories: conceptual models
which are usually low-dimensional, and comprehensive fully coupled ocean-atmosphere
general circulation models (COAGCM). Apart from the level of physical detail and the
overall dimensionality, the difference also lies in typical use. Conceptual models serve as
a test-bed for theoretical advances in understanding the ENSO phenomenon, but their
forecasts are not particularly skilled. The COAGCMSs, on the other hand, serve exactly
the purpose of forecasting the ENSO at the longest lead-lag possible.

The in-depth review of COAGCMs and their ability to simulate ENSO is far beyond
the scope of this section, chapter and even thesis, but I will mention a few important
points for our work. Although the representation of ENSO in coupled models has
advanced considerably during the last two decades, several aspects of the simulated
climatology and ENSO are not well reproduced by the current generation of COAGCMs
[[Jin et al} 2008]. The systematic errors in SST are often largest in the equatorial Pacific,
and the model representation of ENSO variability are often weak and/or incorrectly
located [Delecluse et al.,|1998;|Davey et al.,2002|]. In addition to initial condition error (the
memory of the system resides in the upper ocean, thus it is imperative to determine the
initial state as accurately as possible), most models simulate an equatorial cold tongue
that is too prominent [AchutaRao and Sperber, 2002 \Davey et al., |2002], and finally the
models differ in their representation of intraseasonal variability both due to weather

noise and organised structures as the Madden—Julian Oscillation (e.g. |Lau and Waliser
[20TT]).
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Yet another important point to realise is that the coupled models initialised from
observed initial states tend to adjust toward their own climatological mean and vari-
ability, leading to forecast errors. The errors associated with such adjustments tend
to be more pronounced during boreal spring [/in et al., [2008]. This suggests that the
so-called “spring predictability barrier” (e.g. |Webster| [1995]) may be associated with a
“spring variability barrier” in coupled models [Schneider et al., 2003]]. Apart from the
spring barrier problem, Wittenberg|[2009] pointed out, using a 2000 years control run,
that ENSO exhibits strong interdecadal and intercentennial modulation of its events. To
the extent that such modulation is realistic, it could attach large uncertainties to ENSO
metrics diagnosed from centennial and shorter records — with important implications
for historical and paleo records, climate projections, and model assessment and inter-
comparison [Wittenberg, |2009]. Moreover, his analysis of the wait times between ENSO
warm events do not require multidecadal memory; it can simply arise from Poisson
statistics applied to ENSO’s interannual time scale and seasonal phase-locking.

While the purpose of the last two paragraphs was not to criticise the COAGCMs and
their skills, it was to state the problems associated with them. With constantly improving
computational capacities, parametrisation schemes, and resolution, the COAGCMs still
offer a very promising avenue for successfully forecasting ENSO and its events.

5.3 Synchronisation and causality in E1 Nifio/ South-
ern Oscillation

In order to examine the possible synchronisation and causality in El Nifio/ Southern
Oscillation phenomenon, we adopted the methodology developed by |Palus| [2014a,b]
and described in detail in sec. We were interested in studying the interactions
between the processes dominated by different temporal scales using the phase dynamic
approach. As a quick recapitulation, we first applied, to the monthly Nifio 3.4 index
[|[Rayner et al., 2003] with temporal span of 1900-2010, the continuous complex wavelet
transform with Morlet wavelet (Lorrence and Compo| [1998)] and sec. and obtained
time-dependent complex wavelet coefficients ,(t) for a given central period p as

Up(t) = sp(t) +i3,(t) = Ap(t)e’®r®) (5.1)

From the wavelet coefficients we subsequently extracted the instantaneous phase, ¢, (t),
and amplitude, A,(t), time series are given by

_ Sp(t)
Pp(t) = arctansp(t) (5.2)
Ap(t) = Jsp(t) +85(t). (5.3)

To study the possible cross-scale interactions, we computed the mutual information,
as well as the conditional mutual information (Palus and Vejmelka|[2007] and sec. 3.4.2),
based on the phase and amplitude time series associated with variability at two different
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time scales, p1 and p,. In particular, mutual information

L (dp, (£); Pps (1)) (5.4)

characterises phase synchronisation between two time series [|Palus), |[1997)]. Conditional
mutual information

I (Qp, (1) Pp,(t+T) = Pp, (1) [ Ppy (1)) (5.5)

where 7 is forward time lag, describes the information in ¢,, about the future of ¢,,,
hence measures phase-phase causality. Similarly, the functional

I(p,(£); Apy(t + T) | Apy (1), Apy(t — 1), Apy(t —27)) , (5.6)

with n being the backward time lag and 7 the forward time lag, is a measure of
phase-amplitude causality. The (conditional) mutual information was estimated us-
ing k-nearest neighbours algorithm. For additional details please see previous sections
of this thesis (sec. and [4.2.T), and references therein.

The statistical significance of our results was estimated using a randomisation pro-
cedure by generating Fourier Transform surrogate data from the Nifio 3.4 time series,
which creates surrogate data set with the same spectrum as that of the original data,
but with no interactions between processes of different time scales (for details of the FT

surrogates, see sec.|3.5.1).

5.3.1 Interactions in the observed ENSO

We examined the synchronisation and causal interactions in the Nifio 3.4 time series for
the quasi-oscillatory modes with periods ranging from 5 to 96 months. In Fig. [5.5 we
are looking for the observed interactions characterised by causality estimate exceeding
the 95™percentile of the distribution of this quantity for the surrogate data samples,
where the surrogate time series were generated using a Monte Carlo method, yielding
synthetic time series with the same spectrum, but void of any cross-scale interactions.

There exist three pairs of modes that exhibit phase synchronisation (Fig. A). The
mode with a period between 1.8 — 2.1 years — let us call it quasi-biennial (QB) mode —
is synchronised with the range between 8 and 14 months. Besides the obvious annual
cycle (AC), this range also includes the so-called combination tones (CT) described by
Stuecker et al|[2013] as a nonlinear atmospheric response to combined seasonal and
interannual SST changes. The combination tones themselves seem to result from an
interaction of two distinct processes — the annual cycle and the low-frequency (LF)
ENSO mode. In our analysis, the combination tones further interact with the annual
cycle via synchronisation. Finally, the third synchronisation pair is the low-frequency
mode (periods between 5 and 6 years) with somewhat higher frequency QB mode, with
period above 2 years. We attribute other small significant “blobs” to the existence of
false positive since, during a statistical test, each pair of modes is tested independently,
therefore a problem with multiple comparisons arise. Because we do not address this
problem by applying a correction, we anticipate for up to 5% false positive rate.

These results reconfirm an important role of the annual cycle in ENSO dynamics, with
strong events peaking in boreal winter [Iorrence and Webster, (1998 |Larkin and Harrison,
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Fic. 5.5.! Cross-scale (A) phase synchronisation, (B) phase-phase causality, and (C)
phase-amplitude causality in the observed Nifio 3.4 time series. The phase synchro-
nisation is a symmetrical relation, hence the plot is symmetric, while causality plots
are shown with the period of the driver (master) time series on the x-axis and driven
(slave) time series on the y-axis. Shown are (positive) significance-level deviations from
95t percentile of the k-nearest neighbour estimates of (conditional) mutual information,
tested using 500 FT surrogates.

2002]], and point to the link between QB and LF modes which may be responsible for ex-
treme ENSO events [Barnett, (1991} |[iang et al., {1995} |Kim| |2002|]; thus, this synchronisation
analysis brings out known ENSO properties consistent with previous research.

The phase-phase causality (Fig. B), on the other hand, provides an additional
information that complements the phase synchronisation results and addresses the
causes of these synchronisations by elucidating important directed connections between
the LF, QB and AC/CT ENSO modes. The phase of LF modes (with periods between
4 — 6 years) affects the range of AC/CT, which means that the “shape” of the annual
cycle depends on whether the LF mode is in its extreme warm or extreme cold phase.
Furthermore, the phase of the AC mode is a skilful precursor for the phase of QB modes
with the periods of 1.8 — 2.1 years, while the phase of QB modes with periods of 2 — 3
years dictates in part the phase of the CT modes (period 12 — 16 months).

The only pronounced phase-amplitude causality link (Fig. C) is the one between
the phase of the LF ENSO mode (periods of 5 — 6 years) and the amplitude of QB modes
(periods of 1.8 — 2.1 yr).

A little note considering the frequency width of found modes. In general two options
exist: the range of frequencies we see in our results is, in fact, multiple processes with
similar frequency, co-interacting together and with the distinct modes as captured by
our synchronisation analysis. The second option is that the range represents one process
either with temporally variable frequency or a wider bandwidth properties. Since the
Morlet mother wavelet itself contain wider range of frequencies and is not really sharp-
peaked in the Fourier domain, we also need to keep in mind the subsequent effect on
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the “resolution” in the frequency domain. Finally, the temporal mode is not necessarily
associated with only one physical process — it might be an oscillatory representation of
more processes that interact together, e.g. a positive or negative feedback loop.

Our analysis thus identifies the three fundamental time scales in ENSO dynamics
— AC, QB and LF — consistent with previous work [Barnett, 1991} |Kin, 2002 Yeo and
Kim, |2014], but offers further details on the interaction between these modes. Some of
the interactions we identified rigorously here have been previously theorised to exist,
but, to the best of our knowledge, were never detected in a data-driven way. Based on
our results, it is natural to consider the AC and CT processes in combination to define
the quasi-annual (QA) variability. The QB modes can be divided into two — “faster”
and “slower” — sub-ranges, with the periods of 1.8 —2.1 yr and 2.1 — 3 yr, respectively.
Similarly, the LF processes can be divided into the ones associated with 4 — 5 year and 5
— 6 year periods.

We observe a pronounced connection between the (phase of) the slower LF mode and
both the phase and amplitude of the faster QB mode. In particular, the slower LF mode
affects the phase of the QA mode, and, therefore, — indirectly — the phase of the faster
QB mode, which tends to be affected by and phase-synchronised with the QA mode; the
slow LF mode also directly affects the amplitude of the faster QB mode. The connections
between the phase of slow LF mode and the phase of QA mode important in the causal
sequence above are both direct and indirect. In the latter indirect case, the connection
works through the phase synchronisation between the slow LF mode and the slow QB
mode and subsequent causal effect of the latter on the phase of the QA mode. The faster
LF modes add to the picture by also affecting the phase of the QA mode, and, therefore,
indirectly, the phase of the faster QB mode.

5.3.2 Consequences of causal connections

One of the main findings of our study is the apparent importance, in ENSO dynam-
ics, of the LF phase—QA phase—QB phase causal linkages, as well as LF phase—QB
amplitude causal linkages. To illustrate these causal connections further, we utilised an
approach of conditional composites, in which we first identified three distinct phases
(by dividing the span between maximum and minimum values into three bins) of the
low-frequency (LF) ENSO component: LF-, LFO and LF+; and subsequently computed
the composites (mean values) of any variable of interest over the data points associated
with these three phases.

Fig. 5.6/ visualises the response of the AC frequency to changes in the phase of the
LF ENSO variability, thus illustrating the LF phase—QA phase causal linkage. Here,
we composited the instantaneous frequencies of the annual cycle computed as the slope
of the continuous 12-month-long snippets of the AC-phase time series via the robust
regression. These results are presented in the form of histograms and suggest that the
positive phase of the LF cycle speeds up the annual cycle (thus shortens its period and
increases its frequency), while the negative period of LF cycle causes the AC period to
become longer than a year. Not surprisingly, the annual cycles associated with neutral
LFO conditions, as well as climatological annual cycles, have the average period of exactly
one year.
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Fic. 5.6.| Histograms of instantaneous frequencies of the Nifio 3.4 annual cycle. Top
panel: unconditioned (using all data); bottom: histograms conditioned on the phase of
the low-frequency (LF) ENSO mode, from left to right: negative LF phase, neutral LF
phase, and positive LF phase. The black vertical line marks exactly 1 year period, and
also given are respective means + one standard deviation of instantaneous frequencies
for all 4 panels.

In fact, not only the effective frequency but also the entire shape of the annual cycle
changes depending on the phase of the LF ENSO mode. Fig. 5.7 shows conditional
composites of the annual cycle associated with the LF-, LFO and LF+ phases of the
low-frequency ENSO cycle; these composites were computed by averaging the raw Nifio
3.4 data associated with a given phase of LF variability for each month. The neutral LF
conditions correspond to the seasonal cycle of Nifio 3.4 temperatures, that is close to a
climatological seasonal cycle. The latter cycle is not purely harmonic and is characterised
by relatively fast warming between January and May and a slower cooling afterwards.
The annual cycle conditioned on LF- phase has the same general character but is on
average cooler than the climatological AC. The annual cycle associated with the LF+
phase of interannual ENSO signal is, of course, warmer on average due to El Nifio-type
conditions, but also has a very different, more harmonic shape, with September-through-
December warming absent from the LF—-, LFO and climatological annual cycles. Also
shown in Fig.[5.7are the Nifio 3.4 time series during two extreme El Nifio events (namely,
1982/83 and 1997 /98 events). Note how a very strong biennial ENSO signal during those
years completely masks any visible AC variability that may be present in the Nifio 3.4
time series at that time. An episodic character of such pronounced biennial extreme
events makes it difficult to associate the QB ENSO variability with alterations between
weak and strong annual cycles, as was suggested previously 1987]. We argued

that such extreme ENSO events arise due to synchronisation between a suite of different
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QB modes, which are individually characterised by a relatively small variance.

28.0-

26.5-
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Fic. 5.7.! Annual cycle composites of Nifio 3.4 index conditioned on the phase of
low-frequency (LF) ENSO mode. Also shown are snippets of the Nifio 3.4 time series
during two particular extreme ENSO events: 1982/83 and 1997/98.

We hypothesise here that these “internal” QB synchronisations arise due to causal
interactions represented by the QA phase—QB phase causal linkage identified by our
conditional mutual information analysis. This linkage is further illustrated, albeit indi-
rectly, in Fig. which shows that the composite annual cycles associated with QB-,
QB0 and QB+ phases of QB variability closely match those associated with LF-, LFO
and LF+ phases, respectively, consistent with LF phase—QA phase—QB phase directed
connections.

Moreover, Fig. identifies clear growth in the amplitude of the BC and QB variabil-
ity as the low-frequency phase changes from La Nifia (LF-) to El Nifio (LF+) conditions,
consistent with the LF phase—QB amplitude causal interaction. On the other hand,
the changes in the amplitude of AC anomalies conditioned on the LF phases are non—
monotonic and somewhat less pronounced compared to those in BC and QB amplitudes.

We hypothesise that the interactions identified above are instrumental in setting up
extreme ENSO events (Fig. 5.10). In particular, during all of the strong El Nifio events
of years 72/73, 82/83 and 97/98, the QA, QB and LF modes were characterised by
synchronous pronounced maxima. Note, however, that strictly speaking, the synchro-
nisation with LF mode is not really necessary for an extreme ENSO event to materialise,
since the “peak” of this mode spans a good part of the year (for example, the peak of
LF mode did not really occur in winter 1982/83, but the LF wintertime “background”
during that time was still abnormally warm), while the amplitude of the QA mode is, in
general, small, so that this mode does not contribute much directly to the magnitude of
a given event. Instead, what appears to be essential for an extreme ENSO to occur is the
synchronisation of multiple QB modes with each other. We believe that this “internal”
QB synchronisation is what has been picked up by our conditional mutual informa-
tion analysis in the form of LF>QA—QB phase connections and also LF phase—QB
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Fic. 5.8.| Annual cycle composites of Nifio 3.4 index associated with different phases
of QB variability with central periods between 18 and 30 months. Also shown are
annual cycle composites associated with different phases of LF variability.
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Fic. 5.9.| The amplitudes of AC, BC, and QB cycles conditioned on the phase of LF
ENSO mode. AC, BC and QB stand for wavelet reconstructed time series associated
with annual cycle anomalies, biennial cycle, and quasi-biennial variability with central
periods between 18 and 30 months, respectively. The climatological annual cycle was
subtracted from the raw Nifio 3.4 data prior to the wavelet analysis.

amplitude connections (since synchronisation of phases of different QB modes should
automatically result in a large-amplitude event). By contrast, during a moderate El
Nifio of 87/88, the LF, QB and QA modes exhibited phase shifts, with lower-frequency
modes leading the higher-frequency modes (in particular a suite of QB modes) instead
of being “stacked” on top of one another, thus limiting the magnitude of this event.
Notably, strong La Nifia events do not seem to be associated with the minimum of the
LF mode but instead, occur during near-neutral LF conditions when the minima of the
QA modes and the minima of the whole range of QB modes synchronise. Thus, in both
El Nifno and La Nina cases, the behaviour of the QB modes has a vital control on the
magnitude of the ENSO events.
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Fic. 5.10.| (top) Wavelet reconstructions of the observed Nifio 3.4 index (1970 — 1999):
reconstruction of the annual cycle (AC; in black), quasi-biennial cycle (QB, for a range
of periods from 18 to 30 months, with 2 months step; shades of blue to green), and
low-frequency cycle (LF, 5 year period; in red) of ENSO. All of these reconstructions
were computed via continuous complex wavelet transform (CCWT) as A, (t) cos ¢, (t),
for the corresponding central wavelet periods p. (bottom) The full observed normalised
Nifio 3.4 index. The years of strong El Nifio and La Nifia events are marked with the
red and blue shading, respectively.

5.4 Causal relationships in ENSO models

Apart from seeking cross-scale interactions in the observed Nifio 3.4 time series, we also
sought these interactions in synthetic time series obtained from a variety of models. In
particular, we were interested in seeking the interaction in a conceptual, low-dimensional
dynamical model due to |Stein et al.|[2014] — the parametric recharge oscillator, then in
the empirical stochastic model of Pacific sea surface temperatures due to|Kondrashov et al.
[2005]], and finally in the ENSO representations (the Nifio 3.4 spatial average) within the
Coupled Model Intercomparison Project Phase 5 (the famous CMIP5 framework) [1aylor
et al} 2012].

We sought the cross-scale interactions in the low-dimensional conceptual models for
a slightly different reason than in the GCMs of CMIP5. If the interactions would be
present in the low-dimensional conceptual models, that would mean that a physical
mechanism present and conceptualised by the model, is (at least in part) responsible for
the particular interaction. This would point us towards the mechanistic interpretation
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of described interactions. On the other hand, seeking cross-scale interactions in the
CMIP5 models had the purpose of validating the dynamical representation of ENSO in
the COAGCMs. If any discrepancies should arise, understanding them would possibly
be the key to an improved ENSO prediction.

5.4.1 Conceptual models

The first model of our interested was the parametric recharge oscillator (PRO) [/Stein
et al.,|2014] which is based on the recharge oscillator [/i1} [1997ab] mentioned earlier. The
parametric part is due to seasonally varying coefficients [Stein et al., 2010], taking the
form of a stochastic parametric oscillator

dT

7 = “AMOT+w®H+ (1) (5.7)
dH
& = -RT, (5.8)

where T represents eastern equatorial Pacific SST anomalies, H represents the zonal
mean equatorial Pacific thermocline depth anomalies, A(t) and w(t) are the seasonally
varying growth rate and angular frequency parameters of the oscillator, the constant R
relates to the time scale of the geostrophic adjustment of the thermocline to wind stress
anomalies, and &(t) is Gaussian white noise representing the forcing by the atmosphere.
The parameters A and @ can be derived from a statistical-dynamical estimation of the
linearised upper ocean heat budget based on the Bjerknes index [[in et al} |2006], and
model runs utilising the estimated growth parameter reproduce the observed seasonal
cycle of ENSO variance [Stein et al., 2010

Modulation of the angular frequency parameter (w) was shown to have little effect
on the seasonal variance of ENSO [Stein et al.,|2010|], hence the model is further reduced
to

i—f = AT + w.H + &(t) (5.9)
dH
T = e, (5.10)

where w, = VwR. The eqns. and constitute the PRO model of ENSO.

Following |Stein et al.|[2014]], we used two traits of the parametric recharge oscillator:
neutral model, which is purely deterministic with &(t) = 0 and A(t) = Agcos (wat) (wq
being the annual frequency) in eqn. 5.9 and damped model with the non-zero damping
parameter (A(t) = A+e€ cos (w,t) with A being the mean damping rate based on statistical-
dynamical fit of the PRO model to output from a high-resolution GCM reanalysis [Stein
et al.,|2010]) and Gaussian white noise &(t) driving present in eqn. (5.9).

In the neutral case, the system exhibits both the phase synchronisation and phase-
phase causality over a broad range of scales as shown in Fig. The parametric
recharge oscillator is not a multi-scale process; in fact, it contains one oscillation (ENSO)
mode and a periodically changing parameter (the annual cycle). These two modes
interact and create the combination tones. The main (ENSO) mode is quasi-periodic,

104



PRO neutral

PHASE SYNCHRONISATION  PHASE-PHASE CAUSALITY , PHASE-AMP CAUSALITY
ot ‘ e e i e ‘

o]

————— \/

~

~
4
~

{
A

- o=

(=)

=
x

=l

Ul
w

v

'S

w
w

w

N
N

¥

. o

- '

PERIOD PHASE [years]
Y

PERIOD PHASE [years]
S

(i

PERIOD AMPLITUDE [years]

-

=
[

ca | = - -
2 3 4 5 6 7
PERIOD PHASE [years]

A B C

Fic. 5.11.| Same as Fig. but for synthetic Nifio 3.4 time series simulated by neutral
PRO model.
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appearing in the wavelet spectrum as a broadband peak. Since all the oscillatory modes
are driven by the main PRO mode, all of them are coherent and provide a picture of
mutually phase-synchronised modes over a wide range of periods, while the observed
LF—QB phase-amplitude causality is lacking completely, as depicted in Fig.

For the damped PRO model, the presence of noise destroys the synchronisation and
causality phenomena observed in the deterministic neutral model. The corresponding
results are presented in Fig. in the form of aggregated thresholded binary maps.
The colour shading in these plots shows the number of realizations (out of 20) in which
the respective synchronisation/causality relationship was significant. The interactions
depicted in Fig. exhibit huge variance from one model realisation to another and
no significant interactions seem to be systematically present. We thus conclude that
the low-order damped PRO model is unable to simulate synchronisation and causality
phenomena robustly, as significant interactions identified in each realisation are driven
by the noise sampling, rather than by any underlying low-order dynamics.

The second conceptual model of our interest was an empirical model based on the
idea of linear inverse modelling (LIM) [|Penland, 1989]. We built the inverse stochastic
model following the empirical model reduction (EMR) methodology introduced by
Kondrashov et al.| [2005].

As a starting point in developing the ENSO model hierarchy, Kondrashov et al.|[2005]]
used a concept of inverse stochastic models. Let us denote the climate-state vector by X,
its temporal means by X, and x = X — X the vector of anomalies, then the evolution of x
can be expressed as

x = Lx + N(x), (5.11)

where the dot denotes a time derivative, L is a linear operator, and N represents nonlinear
terms; both L and N may be a function of X, but this dependence is not taken into account
here.

The simplest type of inverse model is the linear stochastic model [[Penland,|1989, 1996/,
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Fic. 5.12.| Same as Fig.[5.5| but for synthetic Nifio 3.4 time series simulated by damped
PRO model. Shown in each panel are aggregates (sums) of thresholded binary maps
over 20 realisations of this model.

which is obtained by assuming, in eqn. (5.11)), that N(x)dt ~ Txdt + dr'®), where T is the
matrix describing linear feedbacks of unresolved processes on x, and r?) is a white-noise
process that can be spatially correlated. Considering this assumption eq. (5.11) becomes

dx = BOxdt +dr®, BO =L +T. (5.12)

The matrix B() and the covariance matrix of the noise process Q = (rOrOTy can be di-
rectly estimated from the observed statistics of x by multiple linear regression [ Wetherill,
19871. \Penland and Sardeshmukh|[1995]; |[ohnson et al.|[2000a,b] have shown some success
in predicting ENSO variability. This type of models are usually constructed in a phase
space of the system’s leading empirical orthogonal functions (EOFs), hence the state vec-
tor, x, or predictor-variable vector, consists of amplitudes of the corresponding principal
components (PCs), while the vector of response variables contains their tendencies x.
Kondrashov et al|[2005] noted that the assumptions of linear, stable dynamics, and
of additive white noise used to construct LIMs are only valid to a certain degree of
approximation. In particular, the stochastic forcing 9 in eqn. typically involves
serial correlations, thus is not white in a temporal sense. First major modification due
to [Kondrashov et al.|[2005], based on previous results and methodology of |Kravtsov et al.
[2005], is assuming a polynomial, rather than a linear form of N(x) in eqn. (5.11)), in
particular, a quadratic dependence. The i'component N;(x) of N is then written as

N;(x)dt ~ (xTAix +tx + cz(.O)) dt + drfo). (5.13)

The matrices A; represents blocks of a third-order tensor, while the vectors bgo) =1+t

are the rows of the matrix BO = L+ T (compare with eqn. (5.12)). These objects, as
well as the components of the vector ¢, are estimated here by multiple polynomial
regression [|[McCullagh and Nelder,|1989).
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The final quadratic model, Kondrashov et al. [2005] used, reads
dv; = (xTApxc+ b"x + ) dt+dr”; i=1,...,D (5.14)

where x = {x;} is the state vector of dimension D. However, the stochastic forcing ' in
eqn. typically involves serial correlations (as noted earlier) and might also depend
on the modelled process x. To address the issue, |[Kondrashov et al. [2005] included an
additional model level to express the known time increments dr'") as a linear function of

T
an extended space vector [x, 1?] = (xT, r¥T)". More levels could be added in the same
way, until the Ltlevel’s residual ¥/+1) becomes white in time, and its lag-0 correlation
matrix converges to a constant matrix, therefore the multi-level model is written as

dx; = (xTAix +b"x + cgo)) dr +r%dt, (5.15)
drfo) = bgl)[x, r0)dt + rfl)dt, (5.16)
drl’ = bPx, 1@, fMdt + rPdt, (5.17)
drlt = b(.L)[x 0 rD]dt + dry, (5.18)

i i 4 A i 4 )
i =1,...,D.

These equations describe a wide class of processes in a fashion that explicitly accounts
for the modelled process x feeding back on noise statistics: the vectors bgl) are the

rows of matrices BY) that represent this “eddy feedback”. The multi-level linear model
is obtained by setting, in eqn. (5.15), A; = 0 and ¢© = 0. Further details for the
particular ENSO model appear in |Kondrashov et al.|[2005], while the general details of
the methodology and discussion can be found in Kravtsov et al.|[|2005].

As a final contribution to the model was to include the seasonal dependence in the
dynamical part of the first level (eqn. (5.15)), namely by assuming the matrix B®) and
vector ¢?) to be periodic with period T = 12 months:

B® = Bj+B,sin(2nt/T) + B cos (2ntt/T) (5.19)
9 = ¢+ cssin(2nt/T) + cc cos (2mt/T). (5.20)

This was done in order to account for seasonal variations in the mean state of the
linear, dynamical, stochastically forced model, since |Thompson and Battisti [2000, 2001]
demonstrated that this helps to qualitatively reproduce the observed seasonal patterns
of variance and lagged autocovariance in tropical Pacific SSTs.

In this work, we trained the linear model (hence set A; = 0 and ¢© = 0) three level
(L = 3) model using the monthly ERSSTv.4 dataset [Huang et al |2015] in the phase
space of leading 20 EOFs of SST(30°S — 60°N) and used it to obtain multiple independent
synthetic ENSO time series of the same simulation length as the observational data
record. We also tried to use the quadratic model (results not shown here), but the results
with the linear model were more satisfactory, hence in the further research, we opted to
use the linear model only.

107



statistical EMR

PHASE SYNCHRONISATION PHASE-PHASE ?AUSALITY

PHASE-AMP CAUSALITY
W q d . e =N - i

‘ ’
17

~

~

(=2

(=]

w1

Ul

IS

w
w

N

N

PERIOD PHASE [years]
PERIOD PHASE [years]
N

funy
iy
s

PERIOD AMPLITUDE [years

aY ] = £ &
1 2 3 4 5 6 7 1 2 3 4 5 6 7
PERIOD PHASE [years] PERIOD PHASE [years]

A B C

Fic. 5.13.! Same as Fig. but for synthetic Nifio 3.4 time series simulated by the
empirical stochastic three level EMR. Shown in each panel are aggregates (sums) of
thresholded binary maps over 20 realisations of this model.

At the simulation stage, we used three different schemes for modelling stochastic

forcing rgs), all of which where based on random sampling from the library of the
“observed” third-level residual forcing arising from the model construction (regression)
procedure. In the first scheme, the forcing was randomly sampled from the library
of the observed residuals, and did not depend on the simulated state of the model,
corresponding to the classical LIM model. The second scheme chose the model forcing
using the entry in the observed residual library that corresponded to the month on
which the observed ENSO state was the closest to the current simulated ENSO state;
note that the random forcing so computed depends on the state of the system, and thus
represents the so-called multiplicative noise. The third forcing scheme was similar to
scheme 2, but used 5-month-long snippets from the observed forcing library instead of
the single state [Chekroun et al., 2011}

The results for the EMR model driven by multiplicative noise snippets are shown in
Fig. in the form of aggregated plots, which are analogous to those for the damped
PRO model (Fig. .

Unlike the low-order dynamical PRO model, the empirical stochastic model is clearly
able to simulate synchronisation phenomena, in which QB mode is synchronised with
the AC and that the AC is phase synchronised with the combination tones. The same
synchronisation behaviour was observed in the observational data (recall Fig.[5.5). The
majority (though not all) of the empirical model realisations were also able to correctly
simulate the observed phase-phase causal relationships, with directional connection
from LF mode to the AC modes, as well as from the AC modes to the modes in the QB
range (compare the B panels of Fig.[5.5/and Fig.5.13). However, only a few realisations
of the empirical stochastic model could capture the observed phase-amplitude causality
from the LF mode to the QB mode; hence, we conclude that the present empirical model
is not able to accurately simulate this aspect of the observed phase-amplitude causal re-
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phase—phase causality in EMR: various noise parametrisations
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Fic. 5.14.| Phase-phase causality diagnosis in three versions of the Kondrashov et al.

[|2005]] three-level empirical (EMR) model of ENSO: (A) model driven by additive noise;
(B) model driven by multiplicative noise computed as the observed residual forcing rl@
for the month in which the observed sea-surface temperature state is the closest to the
current simulated state; (C) model driven in the same way as in (B), but using 5-month
snippets (instead of the single monthly value at each time) from the observed forcing

library (this panel is the same as panel (B) of Fig.[5.13).

lationships in ENSO. Further improvements may perhaps be achieved by experimenting
with the empirical model formulation (changing the number of variables, a degree of
nonlinearity etc.), but these experiments are beyond the scope of the present study.

Fig. shows phase-phase causality results for the EMR model utilising three
different stochastic forcing schemes (see above). Note that the LF>QA—QB causal
links are present in all of the plots, but become progressively more pronounced from
the scheme utilising additive noise (A), to the one with multiplicative noise (B), to,
finally, the scheme using multiplicative noise snippets (C). This argues that: (i) the QB
dynamics is present in the algebraic structure of the deterministic operator of the EMR
model, since the model driven by the additive noise does possess these dynamics; but
also that (ii) causal interactions that involve QB modes are sensitive to the structure of
the state-dependent (multiplicative) noise forcing.

To conclude, the PRO dynamical model fails to reproduce any of the observed causal
interactions (recall Figs. and whereas the statistical EMR does offer promising
results, especially with regards to reproducing the observed LF—=QA—QB phase causal-
ity (recall Fig.[5.13). Our analyses suggest that the QB modes in the EMR are inherently
present in the algebraic structure of this model’s deterministic propagator (thus are at
least partially seen in the model driven by any type noise, see Fig.[5.14), but are strongly
influenced by the feedbacks that involve state-dependent, multiplicative noise. On the
other hand, nonlinearity in the propagator is not needed to reproduce the phase-phase
causality interactions.
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5.4.2 The Coupled Model Intercomparison Project Phase 5

For the purpose of validating the dynamical representation of ENSO and its cross-scale
interactions, we analysed in same manner the time series of the sea surface temperature
obtained from the individual runs of COAGCMs within The Coupled Model Intercom-
parison Project Phase 5 (CMIP5) [[Iaylor et al.,|2012|] framework, which aims for providing
global circulation models (GCMs) outputs from various modelling groups. The Table
states the models and number of their different realisations used in this thesis. All of
the realisations were historical 20 century runs with a temporal span of 1850 — 2005.

The overview of comparison between the observed Nifio 3.4 and simulated time series
from CMIP5 models is visualised in Fig. To start with, we measured the similarity
between the observed and simulated wavelet spectra [Torrence and Compo, 1998] using
root-mean-square distance and Pearson’s correlation coefficient, with zero distance and
unit correlation coefficient indicating the perfect match. The ensemble-mean values of
these two measures for individual CMIP5 models are shown in the first two columns of
Fig. The models exhibit great variations in their ability to match the observed Nifio
3.4 spectra, with correlation coefficients ranging from 0.2 to 0.8 and rms distances from
30 to 120; furthermore, there are also substantial sampling variations in the NINO3.4
spectra from multiple runs of a single model (not shown). This means that the ENSO
tends to exhibit different epochs of sampling variability in models, in which its strength,
spectrum and other properties may vary significantly [|Wittenberg|, 2009].

Similarly to the wavelet spectra, the synchronisation and causality maps (see exam-
ples in Fig. analogous to the observed maps of Fig. [5.5), vary considerably from
model to model (Fig. right columns), as well as between individual runs of a single
model (not shown). We compared the observed and simulated maps using, once again,
the standard Pearson’s correlation coefficient, as well as the so-called Adjusted Rand
Index (ARI), which is especially well suited to measure the similarity of clustered data
[|[Hubert and Arabie, |1985]]. Both measures were computed for the pairs of interaction
maps (observation vs. individual simulation) filled with ones or zeros depending on
whether the significant interaction between the processes of different time scales was
identified or not (so the coloured areas of maps in Figs. 5.5/and [5.16would be filled with
ones and white areas — with zeros); hereafter, we will call the maps so constructed the
thresholded binary maps.

The above similarity measures averaged over the ensembles of individual model
simulations (Fig. right columns) are in fact fairly low. For phase synchronisation,
the highest similarity was detected in the CanESM2 model, at the 0.24 level. The phase
synchronisation map for the best run of the CanESM2 model (Fig. A) indicates
synchronisation between the processes with the same time scales as in the observed
data (Fig. A), that is, between the LF, QB and AC/CT modes. This, however, is more
of an exception than a rule, as the time scales of significant phase synchronisation in
most of the runs do not match the observed time scales.

The similarity levels between phase-phase causality maps from observations and
model simulations are about the same as for phase synchronisation maps, with the
maximum ensemble-mean correlation of 0.23 obtained for the CCSM4 model. The
causality map for the best run of this model (Fig. B) is correlated with the observed
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Fic. 5.15.| Measures of similarity between various characteristics of the observed and
CMIP5 simulated Nifio 3.4 time series. Shown are ensemble averages of these charac-
teristics over multiple runs of individual models (see the model acronyms on the left).
The first two columns compare the observed and simulated wavelet spectra, using the
root-mean-square (rms) distance (labelled as L2 dist.) and Pearson’s correlation (corr.),
both computed in the frequency space. Next three pairs of columns display measures
of similarity between the observed and simulated interaction maps analogous to the
observed maps of Fig. namely the phase synchronisation, phase-phase causality,
and phase-amplitude causality maps. Each pair presents two distinct similarity mea-
sures: the Pearson’s correlation (corr) in the phase space of the corresponding map, as
well as the Adjusted Rand Index (ARI; see text).

map (Fig. B) at the 0.41 level, and captures correctly the observed LF — QA, LF — QA
and QA — QB connections. Note that the best matches to the observed maps in terms
of phase synchronisation and phase-phase causality come from individual simulations
of different models, meaning that neither model run was able to capture the entirety of
the observed interactions. Finally, no model was able to capture the observed phase-
amplitude causal connection between the LF and QB modes (Fig. C). The highest
ensemble-mean correlation between the observed and simulated maps is only 0.03 (MRI-
CGCM3), with the highest correlation of 0.1 for one of the CSIRO-mk360 simulations (the
corresponding causality map is shown in Fig. C). The phase synchronisation and
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FiG. 5.16.| The same as in Fig.|5.5, but for the individual simulations of CMIP5 models
that best match the observed structures: (A) phase synchronization in CanESM2 model;

(B) phase-phase causality in CCSM4 model; and (C) phase-amplitude causality in
CSIRO-mk360 model.

phase-phase causality maps for the latter run are, however, inferior to those from other
models in terms of their similarity to the observed maps (not shown).

To summarise, the CMIP5 models exhibit great sampling variations in the simulated
ENSO characteristics. Some of the simulations do exhibit certain aspects of interactions
between the processes of different time scales which match the observed interactions.
However, no single simulation is able to reproduce the entire sequence of causal connec-
tions inferred from the observed data. Additional information concerning the CMIP5
modelled data are presented in the appendix (sec.[A.3.T). In particular, Table states
the models and number of respective realisations used in this study, and Table[A.3|states
the values of similarity measures for individual runs — the ensemble means are depicted

in Fig. @}

5.5 Robustness analysis

In order to assess the robustness of our results, we estimated the (conditional) mutual
information using equiquantal binning method (using 4 bins) and compared the re-
sults to the k-nearest neighbours estimate (k = 64); see sec. Hlavackova-Schindler
et al.|[2007], and references therein for a comprehensive review of (conditional) mutual
information estimators and their caveats. Both estimates underwent the statistical sig-
nificance testing using 500 Fourier transform surrogates and were computed using the
Nifio 3.4 index data for a full available period 1870 — 2016. The conditional mutual
information, which reflects phase-phase causality, was averaged over forward time lags
1-30months, T =1,...,30 [|Palus and Vejmelkal, 2007].

As can be seen from the robustness analysis result in Fig. both estimates provide
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Fic. 5.17.! (A and C) Cross-scale phase synchronization and (B and D) phase-phase
causality in the observed Nifio 3.4 time series for a full period 1870 — 2016. Shown
are (positive) significance-level deviations from the 95" percentile of the (A and B)
equiquantal binning estimates and (C and D) of the k-nearest neighbours estimates of
(conditional) mutual information, tested using 500 Fourier transform surrogates.

the same picture with only small deviations, which we consider to be statistical fluctu-
ations. Cross-scale interactions, which are of main interest here, are virtually the same
— we can clearly identify the phase synchronisation between the annual cycle (AC) and
quasi-biennial (QQB; periods of 1.8 — 2.1 yr) mode and between the AC and combination
tones (CT; periods approximately 9 and 14 months). As for the phase-phase causality,
one could distinctly detect the low-frequency (LF; periods 4 - 6 yr) phase driving the AC
phase and that the phase of QB is partially slaved to the phase of AC.

For the second phase of robustness analysis, we divided the full Nifio 3.4 data period
into two equally long periods, namely 1870 — 1943 and 1943 — 2016 periods, and estimated
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Fic. 5.18.! (A and C) Cross-scale phase synchronization and (B and D) phase-phase
causality in the observed Nifo 3.4 time series for (A and B) the first half of the full
period 1870 — 1943 and (C and D) the second half of the full period 1943 — 2016.
Shown are (positive) significance-level deviations from the 95%percentile of the k-
nearest neighbours estimates of (conditional) mutual information, tested using 500
Fourier transform surrogates.

the phase synchronisation and phase-phase causality for each of these periods separately.
The causality estimates from the two different periods exhibit substantial differences
(Fig. ), which can either be due to the true change in ENSO dynamics between the
two periods or due to the less robust estimation of the mutual information for a shorter
time series. The wavelet power spectra of the Nifio 3.4 time series computed for the full
(1870 —-2016) period, as well as for the 1870 — 1943 and 1943 — 2016 sub-periods (Fig.
suggest that the former possibility is more likely. Indeed, the ENSO variability in the
second part of the record (1943 — 2016) exhibited more power at QB periods compared
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with the first part of the record (1870 — 1943); thus the phase synchronisation between
AC and QB modes was more pronounced during 1943 — 2016 compared to 1870 — 1943,

consistent with Fig.
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Fic. 5.19.| Power spectra of Nifio 3.4 SSTs, as a function of period. These three spectra
are computed by time-averaging the spectral power from the wavelet analysis using
the Morlet mother wavelet [Torrence and Compo, |1998|]. Spectrum for the full period of
1870 — 2016 in solid black, and dashed red and dotted green for the first (1870 — 1943)
and second (1943 - 2016) halves of the data, respectively.

Note that neither of the three Nifio 3.4 spectra shown here exhibits an enhanced
power at QB frequencies. However, the QB component of ENSO variability can be
detected via advanced spectral methods, such as the Singular Spectrum Analysis []iang
et all 1995]. The low relative power of QB modes is due to the fact that these modes
are only intermittently active. Despite that, our analysis suggests that the QB modes are
central to, and in a sense define ENSO variability, and ENSO events occur when a wide
suite of these QB modes synchronise. The QA and LF modes serve as the pacemakers of
ENSO events, through the direct and indirect causal connections established previously
(Figs.[5.5 through5.10). Similarly, the LF ENSO variability (periods of 4 — 6 yr) was also
more pronounced in the second part of the record, leading to a more distinct detection
of LF phase— AC phase causality during that period (Fig.[5.18). This apparent change in
ENSO dynamics is in agreement with the studies which indicate that ENSO behaviour
can exhibit multidecadal epochs characterised by pronounced differences in diverse
ENSO characteristics, but what causes ENSO to change and whether these changes are
stochastically or dynamically driven are still unresolved questions in the community
[Wittenberg|, 2009} \Vecchi and Wittenberg), |2010; |Li et al.|, 2011} |McGregor et al., [2013]].

On the other hand, the observed phase-phase causality, where the AC partially drives
the variability in the QB range as seen in the estimates of the conditional mutual infor-
mation for the whole period (see Fig. was not be found to be statistically significant
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in neither of the half-period estimates, perhaps with a slight hint to this behaviour in the
second part of the record. (Fig.[5.18). This is most likely to be attributed to the insufficient
length of the analysed time series. It is well known that the sensitivity of detection of
the causal relationships strongly depends on the length of the time series, as well as on
the dimensionality of the joint probability distribution [Palus and Vejmelka,2007;|Vejmelka
and Palus, 2008]. When we halved the time series of Nifio 3.4 for robustness analysis,
the number of monthly observations with each half dropped accordingly (from approx-
imately 1700 to 850 data points), leading to a larger uncertainty of higher-dimensional
probability distribution estimation and the ensuing loss of statistical significance.

5.6 Discussion & Outlook

The tools of information theory, used throughout this thesis, enabled us to uncover an
intricate network of interactions underlying the observed ENSO variability. In particular,
we showed that the (phase of) low-frequency (LF), interannual ENSO mode directly af-
fects the amplitude of QB variability. It also indirectly affects the phase of QB variability,
via the intermediate causal connection with the phase of the annual cycle (AC) and its
combination tones (CT) associated with the LF mode [Stuecker et al., 2015|]. The AC/CT
modes combined constitute the quasi-annual (QA) variability (changes in the shape of
the annual cycle). The above LF-QA—QB phase interactions and LF phase—QB am-
plitude interactions result in intermittent synchronizations among different QB modes
that occur preferentially during certain phases of the LF mode, thus leading to extreme
(biennial) ENSO events (Fig. . This allows multiple QB modes, which are normally
desynchronised and are thus associated with small overall energy, to occasionally pro-
duce a signal with the amplitude exceeding those of QA and LF cycles. One of the key
messages from our work is to suggest a much more important role of the quasi-biennial
(QB) modes in ENSO dynamics than, perhaps, thought previously.

The three important time scales — QA, QB and LF — detected by our independent
analysis of ENSO interactions have been identified in previous studies as well [Barnett,
1991y |Kiml, 12002 |Yeo and Kim, 2014]]. Our results on synchronisation of QB and QA modes
are also consistent with previous work [Rasmusson et al.|, 1990; |Stein et al., 2014|]. However,
the novelty of our work, aside from applying an original methodology to analyse climate
data, is in obtaining a new compact description of the causal interactions instrumental
in ENSO dynamics. The causal connection between the phase of the LF variability
and that of the QA variability — that is, changes in the shape of the annual cycle
depending on the state of the LF ENSO mode — is conceptually similar to the effect of
low-frequency component of North Atlantic Oscillation variability on the annual cycle
of surface temperature over Europe [\Palus et al.,|2005]. A mechanistic explanation of the
QA—QB phase causality remains elusive, with possible hints from empirical modelling
(see below).

The observed ENSO interactions are poorly represented in the historical simulations
of CMIP5 climate models, which exhibit large sampling variations in ENSO spectra and
causality maps, both from model to model and among different runs of a single model.
Some of the model simulations match time scales or select causality characteristics of
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the observed ENSO variability, but no single simulation is able to reproduce the full
picture of the observed interactions. The ENSO variability in long pre-industrial control
runs of CMIP5-type models is known to exhibit multidecadal epochs characterised by
different ENSO behaviour [Wittenberg, 2009]. Hence, there is still a possibility that the
models possess correct ENSO dynamics, but the sample of 89 20!century simulations
considered here was simply not large enough to generate the ENSO epoch that would
match the observed epoch. Analyses of long pre-industrial runs are in order to address
this issue. However, the experiments with an empirical stochastic ENSO model of
Kondrashov et al.| [[2005]] suggest that the chances of reproducing the observed ENSO
behaviour in ensemble simulations of the 20!century climate are much higher than
the CMIP5 ensemble results. This implies that CMIP5 models do indeed misrepresent
ENSO dynamics. The same conclusion holds for the conceptual parametric recharge
oscillator model of |Stein et al.| [2014], which also fails to capture the observed cross-
scale causal relationships in ENSO. By contrast, the success of the empirical ENSO
model in reproducing the essential phase interactions among LF, QA and QB modes
allows one to address, in a mechanistic fashion, the dynamics of these interactions,
with initial indications pointing to the importance of both deterministic dynamics and
state-dependent (multiplicative) noise in controlling the QB variability.

Thus, neither conceptual nor state—of-the—art dynamical climate models studied here
were able to mimic the structure of the observed ENSO interactions, while the empirical
models considered did quite a bit better. Understanding the discrepancies between
the observed interactions and the interactions simulated by the dynamical models —
especially with respect to their ability to model the QB modes — may be the key to an
improved ENSO prediction. Finally, the observed interactions may pose as a starting
point in developing a conceptual model capturing the cross-scale information transfer
in ENSO dynamics.

A large portion of this chapter (from the [Synchronisation and causality in El Nifo/|
ISouthern Oscillation| section onwards) will tentatively appear as an article and is cur-
rently under review [[ajcay et al., 2018).
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CHAPTER 6

Summary & Conclusion

The scientist only imposes two things, namely truth and sincerity,
imposes them upon himself and upon other scientists.
Erwin Schrodinger
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A better understanding of dynamics of complex systems, such as Earth’s climate or
the human brain, is one of the key challenges for contemporary science and society in
general. Huge amounts of experimental data that are being produced every day require
new mathematical tools for their description and also new computational tools to make
sense of them. This thesis aims for bridging various scientific fields, namely climate
science, information theory, and complex systems analysis. Moreover, I attempted to
show that such an interdisciplinary approach could indeed deliver new paradigms,
concepts, and results into the climate science field.

Not a long time ago (a couple of decades at most [Ledford, 2015]) scientists began to
describe some of the observed phenomena by the moniker complex systems. Examples of
these complex systems include Earth’s climate, the human brain, an ecosystem, a cell, and
tew argue that ultimately the universe in its entirety is also a complex system. A common
property of these systems is an intrinsic difficulty to model them, sometimes even to
describe them properly, due to the dependencies, relationships, and interactions between
their individual parts. Stemming from these properties are nonlinearity, emergence,
spontaneous order, adaptation, and feedback loops to name a few [|Bar-Yamni, |2002|]. The
second chapter of the thesis (first being the Introduction) was devoted to building a
theoretical background and, in a sense, imagination in order to successfully grasp the
intricacies of the complex networks paradigm.

One of the adequate ways how to efficiently describe a complex system is a network
(a discrete graph) [|Boccaletti et al.,|2006]. The nodes of the network would represent the
parts of the system, while the links in the network their interactions. These might be
directed or not directed (cf. Fig.[2.3). The notion of complex network turned out to be
very useful in imagining the very nature of causal relations. Recalling Fig. from a set
of three nodes representing three distinct autonomous oscillators with different natural
frequencies and a set of causal relations connecting the nodes, emerges the observable
we are measuring, e.g. the temperature. The collective dynamics of the oscillators
coupled in a way that is described by their causal relationships causes the signal, the
time series we collect. Now, by applying causal discovery algorithms, we are trying
to reverse-engineer the nature and from the observable, we extract candidates for the
nodes in the network (hence the oscillatory phenomena, or pacemakers in the climate
system), as well as the causal relations (the links between them).

Of course, this is a very high-level depiction of the complex climate system with
autonomous oscillators and links between them. The physical reality is, as usual, much
more complicated. As we saw later in this thesis, two main interpretations emerge: the
nodes might represent distinct physical processes operating on particular time scales
and the links would then be the couplings between the processes, or another possibility
is that the nodes are themselves oscillatory representation (with a particular period) of
coupled physical processes that interact together (e.g. feedback loop) and then the causal
links would represent higher level connections or coupling between a set of processes.
Unfortunately, figuring out which of these interpretations is more likely is beyond the
scope of the thesis and I leave the potential contemplation to a reader.

Now, let us return back to the climate science. The physical laws of nature work
with a notion of scales. Generally, a scale is a measure of the distance of our interest.
As an example, consider a research dealing with atmospheric fronts — that also means
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that we are dealing with spatial scales of thousands of kilometres and temporal scales
of days to weeks. Chapter |3 is dedicated to the problem of temporal scaling in the
atmospheric dynamics. Namely, I first showed that the physical laws governing the
atmospheric dynamics are formally scale-invariant (sec.3.I). Concretely, the governing
equations are scale-invariant under isotropic “zooms” as long as other variables are
rescaled as well [Lovejoy and Schertzer, 2013|]. The outcome of this mathematical practice
is an interesting fact that the dynamics repeats itself scale after scale (again, after needed
renormalisations). However, this scaling (captured by the eqn. (3.6)) breaks down at the
smallest observable scales (due to viscosity), and at the largest, planetary scales (due to
the forcing term — energy injection from the Sun).

Making a transition from theory and equations to the observations in the climate
science — we have energy injection at the planetary scale, then we have a scaling range
of roughly 10 orders of magnitude where the scale-invariance holds and plethora of
processes exist which exchange energy and in general interact with each other in a
non-trivial way, and finally we have the viscous scale, where the energy is effectively
dissipated due to molecular nature of considered fluid. Fig.[3.1jand Table[3.I|summarise
the above written and state various atmospheric and oceanic processes and their typical
scales. Injecting the energy at the largest scales and dissipating it in the smallest scales
mean that the energy transfer must take place in-between and via this energy transfer,
the scales are interacting with each other. Taken the side of the theory of information,
one might argue that the distinct scales engage in information transfer,because they are
coupled and affect each other — typically the neighbouring scales affect each other, but
actually, there are no restrictions in this (at least theoretically).

Now Ishall collect all the building blocks introduced earlier and provide the synthesis
for studying the information transfer in atmospheric dynamics, or more concretely,
across temporal scales in atmospheric dynamics. A few necessary tools in order to
synthesise the topic are as follows: we would need a method which is able to extract
an oscillatory mode of a given frequency from a time series, then we would need
some kind of a measure of dependence which will tell us whether the two time series
have something in common, and finally we would need to design a statistical test, able
to recognise if the estimated dependence could arise simply by chance or it is truly
statistically significant.

Since we are looking for recurrent patterns and oscillatory, or quasi-oscillatory be-
haviour, we exploited the phase dynamics approach, where an arbitrary signal can be
written as a complex function of time, or more precisely as the product of the instan-
taneous amplitude and cosine of the instantaneous phase (cf. eqn. (3.9)). In order to
obtain the imaginary part of the signal (needed for the analytic description) we utilised
the continuous complex wavelet transform (CCWT) [lorrence and Compo, 1995 and the
beauty of this approach is that in each scale (predefined period of the mother wavelet)
the complex wavelet coefficients can be directly used to estimate the phase and ampli-
tude time series (eqns. and (3.11)). The illustration of the workings of CCWT is
provided in Fig. where aside from the raw time series (the surface air temperature)
are shown the CCWT-extracted instantaneous phase and amplitude time series.

Having extracted the time series of our interest, now we would like to measure their
mutual dependence. This can be done using any of the wealth of methods mathematics
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offers us. We can use classical covariance or sample correlation in order to detect a linear
relationship, lagged correlation to detect lagged relationships, but in any case, the result
would be indicative of a mere visual similarity, an apparent relationship if you will. One
step further would be to assess the possible causal relationship, in this framework, we
speak about predictive, or Granger, causality [Granger, 1980]. The idea behind predictive
causality is that in order to claim a causal relationship between two variables, they need
to comply two rules: the cause precedes the effect, and the cause contains information
about the effect that is unique and is in no other variable. The standard test for Granger
causality is based on a linear regression model and consists of series of t-tests and F-tests
on lagged values (cf. eqn. (3.21)). Note that Granger causality is defined to seek only
linear causal dependence.

The linearity constraint of Granger causality can be tackled by estimating the nonlin-
ear predictive causality and this can be conveniently done employing measures emerg-
ing from information theory. A quick introduction to information theory is provided
in sec. One of the key measures in information theory is the mutual information,
which quantifies the amount of information that can be obtained about one random
variable by observing another. It measures how much the probability distribution of
one variables changes when we include another variable (cf. eqn. (3.33)). From this
can be seen that it also measures the nonlinear dependence, as the mutual informa-
tion is zero if and only if the two random variables are independent (hence their joint
probability distribution is simply the product of two marginals). Now the conditional
mutual information, as the name suggests, measures the amount of information two
random variables share, but this time conditioned on the third variable. All possible
combinations of information theoretical measures are visualised as Venn diagram in
Fig.

In order to estimate the (conditional) mutual information from observed data, one
has to estimate the probability density function. This is known problem for a long time,
without the one correct answer. As usual, a wealth of methods exist and few of them are
described in sec. The concrete example how to infer causality from information
theoretical measures in two unidirectionally coupled Réssler systems, taken from |Palus
and Vejmelka)[2007], is provided in Fig.[3.8and in the surrounding text. Shortly, numerical
experiments due to|Palus and Vejmelka [2007] suggest that if one estimates the conditional
mutual information between variable X now, variable Y in the 7-future and condition
on variable Y now and eventually on variable Y in the (n — 1)n-past (with n being the
dimensionality of condition), she is is fact estimating the causality X — Y.

The final building block is provided in sec. 3.5/ as a short introduction to statistical
hypothesis testing. This is a very needed part of the overall analysis since the value of
(conditional) mutual information does not provide us with any definite answer. The
theoretical distribution is not known in this case, hence we opt out to generate an
empirical distribution of the test statistics using Monte Carlo methods. Briefly, after
computing the value of (conditional) mutual information between the pair of variables,
we shall generate a synthetic dataset that copies some of the properties of tested variables
and omits others, for example 1000 Fourier Transform surrogates [Theiler et al., 1992 and
then estimate the value of (conditional) mutual information in the synthetic data set. That
creates our test statistics from which we subsequently assess the statistical significance
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of our result.

We are finally approaching the interesting part of this work — the results. In order
to understand the complex behaviour of the atmospheric dynamics from meteorological
data researchers back in the 1980s opted for complicated nonlinear methods: from
studying the climate attractor of low dimensions [Nicolis and Nicolis, {1984; Isonis and
Elsner, |1988], to claiming such an attractor as spurious [Grassberger, [1986; |Lorenz, [1991].
Some authors claim that the non-Gaussian statistics of the circulation are consistent with
the paradigm for a linear system perturbed by multiplicative noise (e.g. |Sura et al.|[2005]),
therefore nonlinearity is not needed. On the other hand, search for local patterns on
specific temporal scales led to an identification of various oscillatory phenomena possibly
possessing nonlinear origin and actively interacting with global modes of atmospheric
variability (e.g. |Palus and Novotna) [2004]; |Palus and Novotna| [2009]]; |Feliks et al.| [2010]).
The task of detecting the oscillatory phenomena and inferring the relationship between
them and other modes of climate (or even oceanic) variability gained momentum lately
and is associated with reward by the means of possible successful forecasting of such
phenomena with high societal impact.

Although typically, the causal relation is sought between pairs of different variables
or different modes of atmospheric variability, we build here upon the results of Palus
[2014a)b], where the complexity is examined by identifying causal relations between
processes operating on different temporal scales within a single climatic time series.
This makes sense when we recall Fig. 2.2l where a number of autonomous oscillatory
subsystems with their dependencies gave rise to a process, which we can measure
(an observable). Now, with the suggested approach of identifying causal relationship
within one variable, we are effectively adapting the view as depicted in the figure, when
the variable we are studying is observable, and the sought causal phenomena are the
interactions between the subsystems in the left-hand side of the figure.

Studying interactions between dynamics on various time scales in long-term daily
SAT records from European locations, Palus|[[2014b] has observed an information transfer
from larger to smaller time scales in the form of a causal influence of the phase of
slow temperature oscillations on the amplitude of faster temperature variability. The
influenced faster variability is characterised by the temporal scales from a few months
to 4-5 years, while the periods of the influencing oscillatory phenomenon vary between
6 and 11 years; however, the most probable period is between 7 and 8 years (see either
Figs. and [f.11] here, or original [Palus|[2014D], Figure 3a).

However, the statistical evidence provided by Palus [2014b] is enough for claiming
qualitative cross-scale coupling, the quantitative study of the effect of this cross-scale
coupling was provided by |Jajcay et al.|[2016] and is in detail also supplied here. For
evaluating the effect of cross-scale interactions we opted for a simple method by the
name of conditional means. This method works by dividing the full period of slow
oscillations into bins (in our case the 8-year cycle was divided into 8 bins, hence one
bin represents approximately one year of the cycle) and then for each bin one has to
compute the conditional mean (or any other statistical moment for that matter) in order
to obtain the discretised estimate of the quantity. If the 8-year cycle has no influence on
the studied variable, the conditional means in all 8 bins should be the same, equal to
the unconditional, global mean. Or rather, due to finite sample effect, the conditional
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means would randomly fluctuate around the unconditional mean. On the other hand,
if the conditional means vary as a function of the phase of the particular cycle, we
would conclude that that cycle has an effect on a studied variable, and the overall size
of the effect can be approximated by taking the difference between the maximum and
minimum conditional mean. The method of conditional means is visualised in Fig.

In this thesis, I studied two separate quantities on which the 8-year cycle should have
an effect. That is the annual cycle (or, rather its amplitude, so the amplitude of annual
cycle — AAC) and the short-term overall variability, represented by the anomalies of
surface air temperatures — SATA. The conditional means of AAC in various periods
of the full record are depicted in Fig. The effect of the 8-year cycle on the AAC
seems to vary in time but overall is non-negligible at values around 0.6°C — 0.8°C. The
similar figures for the different stations than Prague — Klementinum are depicted in the
appendix (Figs.|A.5]|A.6, and |A.7).

Similarly, the effect of the 8-year cycle was studied with an association to the overall
temperature variability represented by SATA in Fig. in Prague — Klementinum
station and in Figs. |A.8} |A.9] and |A.10| for other European stations. The effect is also
variable in time and it reaches up to 1.5°C in the case of Prague station and 1962 —
2009 period. A numerical experiment confirming that this difference in SATA cannot be
explained solely by the very existence of the 8-year cycle linearly added to the background
variability, but rather must be a manifestation of the cross-scale coupling is depicted in
Fig. and described in detail in the surrounding text.

From the conditional means in all used stations estimated for different periods, we
saw that the effect seem to vary in time. The nonstationarity of the cross-scale effect
was further studied by applying a sliding temporal window on the full available data
record. For each window of effective length 16 384 daily values (approximately 44
years and 10 months) the conditional means were computed and the effect of the 8-year
cycle estimated as a difference between the minimum (the coldest) and the maximum
(the warmest) bin. In order to establish a statistical significance of this result, in each
window 5000 surrogate data realisations of three different types were generated and
the p-value was subsequently computed. Three different types of surrogate data signify
three different null hypotheses, but all three show consistent results. That is, the effect of
the 8-year cycle on AAC in Prague — Klementinum station varies significantly over time,
having values between 0.2°C up to 1.3°C, and in the last decades is usually statistically
significant. The Figs. and show the temporal variations of the effect,
tested using 5000 autoregressive surrogates of order 1, Fourier Transform surrogates,
and multifractal surrogates, respectively. Similarly, the effect of the 8-year cycle on overall
SATA variability strongly varies between the minimum value of 0.5°C to the maximum
of more than 2°C. As in the case of AAC, the effect on SATA is usually significant during
last decades, with values exceeding 1.4°C (Figs. - for the three types of null
hypotheses).

As suggested by repeating the analyses on data from different European stations, the
effect also seems to possess spatial variability, which was further assessed by repeating
the analysis on both AAC and SATA in gridded analysis data provided by the ECA&D
project [[Haylock et al.,|2008|]. For each point on a 0.5°%0.5° grid, the phase of the 8-year
cycle was extracted, as well as the amplitude of the annual cycle, and conditional means
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were computed. The significance was tested using 1000 Fourier Transform surrogates
and the results for AAC are rendered in Fig. and for the SATA variability in Fig.
Our initial hypothesis of spatial variability was confirmed — the effect on AAC varies
between 0.1°C in south-western Europe and 1.6°C in the Baltics and is usually statistically
significant. On the other hand, the effect on SATA also varies considerably but is non-
significant over a huge portion of the grid points with a small exception in western
Russia.

The final piece of the puzzle was to estimate the seasonal dependency of the effect.
This is easily done by selecting only some months in the data and repeat the analysis,
including the statistical testing. In accordance with a huge body of climatological liter-
ature, we worked with seasons defined as follows: the winter season, including months
December, January, and February (DJF); the spring season, including March, April, and
May (MAM); the summer season, including June, July, and August (JJA), and finally, the
autumn season with September, October, and November (SON). As it turned out, the
strength of the cross-scale effect heavily depends on the season: it is the strongest in the
winter (DJF). For the Prague — Klementinum data, the effect in winter time reach higher
than 5°C and is almost always significant. On the other hand, other seasons exhibit
lower effect (between 1°C and 2°C) and are mostly not statistically significant. For all
other European stations the same holds (Figs.[A.20—[A.24): the effect is strongest in the
winter season in comparison with the other (the winter effect ranges from 2°C to over
6°C), the east-west gradient modulates the strength of the effect itself (eastern stations
exhibiting stronger effect of the 8-year cycle) and also the seasonal dependence — west-
ern stations show lesser seasonal modulation of the effect, while the effect in the eastern
stations heavily depends on the season. This was confirmed using the gridded dataset
(Fig. with the strength of the effect in winter season reaching up to 7°C in western
Russia. Also, over much of the central and western Europe and parts of Scandinavia,
the effect was deemed as significant under surrogate testing.

These results suggest that the weak 7-8-year cycle plays a very important role in
the temperature variability on interannual and shorter time scales. Therefore, this
phenomenon deserves further study and understanding of its mechanisms. |Palus|[|2014b]
hypothesises that in the analysed SAT data, we have observed a regional manifestation of
a general phenomenon of cross-scale interactions in the atmospheric dynamics in which
global, low-frequency modes influence local, high-frequency variability. For instance,
Chekroun et al |[2011] reported that the phase of the low-frequency modes of the El Nifio/
Southern Oscillation influences high-frequency variability (“weather noise”) of the sea
surface temperature in the tropical Pacific. For the data analysed in this study, the most
relevant global mode is probably the North Atlantic Oscillation (NAO). The influence
of the NAO on the air temperature in Europe is known [Marshall et al., 2001], and its
mechanisms depending on the phase of the NAO are described, e.g. by [Hurrell and
Dickson| [|2005]. Typically, Pearson’s correlations have been computed between (mostly
winter) air temperature records and NAO indices (see e.g. |Beranova and Huth| [[2008]];
Pokorna and Huth| [2015]]) however, specific time scales have not been considered yet,
although the 7-8-year cycle has also been detected in the NAO index [Gamiz-Fortis
et al., |2002; \Palus and Novotna, |2004]. These results demonstrate the importance of
understanding the climate variability in scale-specific regional modes and their cross-
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scale interactions and causal relations with global circulation variability modes which
are localised not only in space [Vejmelka et al., 2015] but also in a time scale or in a
frequency range [|Groth and Ghil,|2011} 2015].

The latter result of identifying the cross-scale interactions motivated a similar study
of a more global phenomenon with a huge socio-economical impact — the El Nifio/
Southern Oscillation (ENSO). The next chapter of this thesis (chapter 5) is devoted to the
basic description of physical mechanisms, typical time scales involved, modelling, and
of course, assessing the cross-scale interactions in ENSO phenomenon. ENSO is one of
the oldest observed, coupled ocean-atmosphere phenomenon, which manifests itself as
a quasi-periodic fluctuation in a sea surface temperature (El Nifio part) and air pressure
of the overlying atmosphere (Southern Oscillation part) across the equatorial Pacific
Ocean. The warming phase of the sea surface temperature is known as El Nifio and
is accompanied with high air surface pressure in the tropical western Pacific, while
the cooling phase of the sea surface temperature is known as La Nifia, and is, in turn,
accompanied with low air surface pressure. The two periods last several months each,
they are typically occurring every few years (with exceptions), and their effects vary in
intensity.

Although the exact causes for initiating warm or cool ENSO events are not fully
understood, the two components of ENSO — sea surface temperature and atmospheric
pressure — are strongly related and the first possible mechanism in the form of a positive
feedback loop in the ocean-atmosphere coupled system was due to Bjerknes [1969]. For
us, data-driven researchers, the interesting part is how scientists usually observe ENSO.
The equatorial Pacific ocean is divided into 3 main regions (Fig. from which stem
various ENSO indices — they are always the spatial average of sea surface temperature
(SST) in given region. The most used one is undoubtedly the Nifio 3.4 region which
spans approximately central equatorial Pacific. All four indices (with an addition of
derived Nifio indices ONI and TNI) are plotted as time series in Fig. Table 5.1
summarises their basic statistical properties, their mutual interdependence in the form
of correlation, and their histogram.

The visual depiction of circulation patterns associated with neutral, warm, and cold
events is provided in Fig. and described in the surrounding text. Briefly, the nor-
mal state consists of Walker circulation (easterly surface trade winds, convection in the
western Pacific, westerly upper-level wind and descending air in the eastern Pacific) and
inclined thermocline, where it is deeper than the upwelling level in the western Pacific
(thus upwelling brings warm water to the surface) and shallower in the eastern Pacific
(thus brings cold water to the surface). The warm event usually starts with weakening
or even reversing of the Walker circulation which causes the ocean surface to warm up.
Westerly surface wind anomalies then further cause the thermocline to deepen in the
eastern Pacific via Bjerknes feedback. Moreover, due to westerly wind anomalies, the
belt of permanent precipitation shifts eastward and rich energy budget in the form of
latent heat that is released due to condensation disturbs the storminess and heating in
the tropics. All this ultimately supercharges the poleward flow (disturbs Hadley cir-
culation), which in turn causes further changes in the circulation, including jet stream
over the Pacific. Through these profound changes in the atmospheric flow, even if El
Nifio is specific to the tropical Pacific, it does have worldwide impacts. As expected, the
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La Nifa event displays the opposite behaviour of aforementioned fields. That is, the
Walker circulation is strengthened, meaning the trade winds exhibit easterly anomalies,
warm pool shifted even more westward and the slope of the thermocline is more in-
clined — shallower in the eastern Pacific and deeper in the western Pacific. The belt of
permanent precipitation is shifted westward.

The theoretical explanations of ENSO can be loosely grouped into two frameworks:
in the first El Nifio is one phase of a self-sustained, unstable, and naturally oscillatory
mode of the coupled ocean-atmosphere system; in the second El Nifio is a stable (or
damped) mode triggered by, or interacted with, stochastic forcing or noise such as
westerly wind bursts and Madden—Julian oscillation events (e.g. |Gebbie et al.|[2007)]; Wang
et al.|[2016]), and the tropical instability waves in the eastern Pacific (e.g. |An| [2008])).
Both of the frameworks involves the |Bjerknes(s [1969] feedback. Both frameworks are
briefly explained in the second part of sec.[5.1.2]

One of the results of the extensive research refers to the temporal scales involved
in ENSO dynamics. |Barnett|[1991] came to the conclusion that ENSO is principally a
three time-scales process, consisting of an annual cycle, a quasi-biennial oscillation, and
a lower frequency variation pattern. A few years later, Latif et al|[1997] also identified
three modes of variability, namely an interannual mode, a decadal mode, and a trend
or unresolved ultra-low frequency variability pattern. |Kin [2002] decomposed tropical
Pacific SST variability into two dominant modes — a biennial mode and a low-frequency
mode, while|Yeo and Kim|[2014], again, identified three leading modes: a global warming
mode (ultra-low frequency), a low-frequency variability mode, and a biennial oscilla-
tion mode. The biennial (or rather quasi-biennial) mode was noted by several authors
[|[Rasmusson et al.,{1990; |[iang et al., 1995]. Another important fact is that the frequency of
ENSO is dependent on the spatial structure of zonal wind stress anomalies, in particular,
the longitudinal position of the westerly anomalies [|[An and Wang, 2000; \Wang and An),
2001]. Since our analysis will focus on faster-than-decadal variability in the ENSO dy-
namics, the most prominent modes for us to note shall be the annual cycle, the (quasi-)
biennial mode and the low-frequency mode.

Finally, after an extensive review of known facts about the ENSO and its dynamics,
let us dive into the analysis of possible cross-scale interactions. Having adopted the
phase dynamics principle as in the case of European temperatures, from the Nifio 3.4
we extracted the quasi-oscillatory modes with periods ranging from 5 to 96 months by
the means of CCWT. We were interested in three types of relationships: the phase syn-
chronisation (eqn. (5.4)), the phase-phase causality (eqn. (5.5)), and the phase-amplitude
causality (eqn. (5.6)), and these were computed between each pair of quasi-oscillatory
modes. The statistical significance of our results was estimated using a randomisation
procedure by generating Fourier Transform surrogate data from the Nifio 3.4 time series.

The results of our analysis are depicted in Fig. where we identified the three
fundamental time scales in ENSO dynamics — the annual cycle (AC), the quasi-biennial
mode (QB), and low-frequency mode (LF) — consistent with previous work [Barnett,
1991} [Kim), 2002} |Yeo and Kim, 2014]], but offers further details on the interaction between
these modes. Some of the interactions we identified rigorously here have been previously
theorised to exist, but, to the best of our knowledge, were never detected in a data-driven
way. We observe a pronounced connection between the (phase of) the slower LF mode
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and both the phase and amplitude of the faster QB mode. In particular, the slower
LF mode affects the phase of the QA (which we defined as the combined AC and
combination tones processes (CT), defined by |Stuecker et al.|[|2013]) mode, and, therefore,
— indirectly — the phase of the faster QB mode, which tends to be affected by and phase-
synchronized with the QA mode; the slow LF mode also directly affects the amplitude of
the faster QB mode. The connections between the phase of slow LF mode and the phase
of QA mode important in the causal sequence above are both direct and indirect. In the
latter indirect case, the connection works through the phase synchronisation between
the slow LF mode and the slow QB mode and subsequent causal effect of the latter on
the phase of the QA mode. The faster LF modes add to the picture by also affecting the
phase of the QA mode, and, therefore, indirectly, the phase of the faster QB mode.

One of the main findings of our study is the apparent importance, in ENSO dynam-
ics, of the LF phase—QA phase—QB phase causal linkages, as well as LF phase—QB
amplitude causal linkages. To illustrate these causal connections further, we utilised an
approach of conditional composites (based on conditional means technique introduced
earlier). Fig. visualises the response of the AC frequency to changes in the phase
of the LF ENSO variability, thus illustrating the LF phase—QA phase causal linkage.
The results suggest that the positive phase of the LF cycle speeds up the annual cycle
(thus shortens its period and increases its frequency), while the negative period of LF
cycle causes the AC period to become longer than a year. In fact, not only the effective
frequency but also the entire shape of the annual cycle changes depending on the phase
of the LF ENSO mode. Figs.[5.7]and [5.§|illustrate this fact by plotting the conditional
composites of the annual cycle associated with distinct phases of the LF mode. More-
over, Fig.|5.9/identifies clear growth in the amplitude of the BC and QB variability as the
low-frequency phase changes from La Nifia (LF-) to El Nifio (LF+) conditions, consistent
with the LF phase—QB amplitude causal interaction.

Finally, we hypothesise that the interactions identified above are instrumental in
setting up extreme ENSO events, which is depicted in Fig. In particular, during
all of the strong El Nifio events of years 72/73, 82/83 and 97/98, the QA, QB and LF
modes were characterised by synchronous pronounced maxima. What appears to be
essential for an extreme ENSO to occur is the synchronisation of multiple QB modes with
each other. We believe that this “internal” QB synchronisation is what has been picked
up by our conditional mutual information analysis in the form of LF-QA—QB phase
connections and also LF phase—QB amplitude connections (since synchronisation of
phases of different QB modes should automatically result in a large-amplitude event). By
contrast, during a moderate El Nifio of 87/88, the LF, QB and QA modes exhibited phase
shifts, with lower-frequency modes leading the higher-frequency modes (in particular
a suite of QB modes) instead of being “stacked” on top of one another, thus limiting the
magnitude of this event.

Apart from seeking cross-scale interactions in the observed Nifio 3.4 time series,
we also sought these interactions in synthetic time series obtained from a variety of
models. In particular, we were interested in seeking the interaction in a conceptual,
low-dimensional dynamical model due to |Stein et al.|[|2014] — the parametric recharge
oscillator, then in the empirical stochastic model of Pacific sea surface temperatures due
to |[Kondrashov et al.|[2005]], and finally in the ENSO representations (the Nifio 3.4 spatial
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average) within the Coupled Model Intercomparison Project Phase 5 (the famous CMIP5
framework) [|Taylor et al.,|2012].

In a nutshell, the PRO dynamical model fails to reproduce any of the observed causal
interactions: the neutral realisation is not a multi-scale process and therefore all the
oscillatory modes extracted from the time series are coherent and provide a picture of
mutually phase-synchronised modes over a wide range of periods (Fig. ; and in the
damped realisations (as driven by noise, we integrated 20 of them) the presence of noise
destroys the synchronisation and causality phenomena observed in the deterministic
neutral model and the interactions (depicted in Fig. exhibit huge variance from one
model realisation to another, and no significant interactions seem to be systematically
present.

Unlike the low-order dynamical PRO model, the empirical stochastic model (signif-
icant cross-scale interactions depicted in Fig. is clearly able to simulate synchroni-
sation phenomena, in which QB mode is synchronised with the AC and that the AC is
phase synchronised with the combination tones. The same synchronisation behaviour
was observed in the observational data. The majority (though not all) of the empirical
model realisations were also able to correctly simulate the observed phase-phase causal
relationships, with a directional connection from LF mode to the AC modes, as well as
from the AC modes to the modes in the QB range. However, only a few realisations of
the empirical stochastic model could capture the observed phase-amplitude causality
from the LF mode to the QB mode; hence, we conclude that the present empirical model
is not able to accurately simulate this aspect of the observed phase-amplitude causal
relationships in ENSO. As a final piece, Fig. shows phase-phase causality results for
the EMR model utilising three different stochastic forcing schemes (details in the text).
Note that the LF>QA—QB causal links become progressively more pronounced from
the scheme utilising additive noise, to the one with multiplicative noise, to, finally, the
scheme using multiplicative noise snippets. This interesting behaviour suggests that
the QB modes in the EMR model are inherently present in the algebraic structure of
this model’s deterministic propagator, but are strongly influenced by the feedbacks that
involve state-dependent (multiplicative) noise.

For the purpose of validating the dynamical representation of ENSO and its cross-
scale interactions, we analysed, in the same manner, the time series of the sea surface
temperature obtained from the individual runs of COAGCMs within The Coupled Model
Intercomparison Project Phase 5 (CMIP5) [Taylor et al., 2012 framework. Table
summarises used realisations and modelling centres in this study. The overview of
comparison between the observed Nifio 3.4 and simulated time series from CMIP5
models is visualised in Fig. To start with, we measured the similarity between
the observed and simulated wavelet spectra (first two columns): the models exhibit
great variations in their ability to match the observed Nifio 3.4 spectra, with correlation
coefficients ranging from 0.2 to 0.8 and rms distances from 30 to 120. This means that the
ENSO tends to exhibit different epochs of sampling variability in models, in which its
strength, spectrum and other properties may vary significantly [|Wittenberg, |2009]. The
next 6 columns in the Fig. [5.15 show Pearson’s correlation and Adjusted Rand Index
(ARI — details in text) for synchronisation, phase-phase causality, and phase-amplitude
causality maps. To summarise, the CMIP5 models exhibit great sampling variations in
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the simulated ENSO characteristics. Some of the simulations do exhibit certain aspects
of interactions between the processes of different time scales which match the observed
interactions. However, no single simulation is able to reproduce the entire sequence
of causal connections inferred from the observed data. The best realisations (the most
similar to the observed data) are depicted in Fig.

In order to validate our results, we performed the robustness analysis, which sum-
mary can be found in sec. The robustness analysis firstly compares two different
computational algorithms for estimating the (conditional) mutual information: equi-
quantal estimate and k-nearest neighbours estimate (the algorithms themselves are de-
scribed in sec. and references therein). As can be seen from the analysis result in
Fig. both estimates provide the same picture with only small deviations, which we
consider to be statistical fluctuations.

For the second phase of robustness analysis, we divided the full Nifio 3.4 data period
into two equally long periods, namely 1870 — 1943 and 1943 — 2016 periods, and estimated
the phase synchronisation and phase-phase causality for each of these periods separately.
The causality estimates from the two different periods exhibit substantial differences
(Fig. 5.18), which can either be due to the true change in ENSO dynamics between the
two periods or due to a less robust estimation of the mutual information for a shorter
time series. The wavelet power spectra of the Nifio 3.4 time series computed for the full
(1870 - 2016) period, as well as for the 1870 — 1943 and 1943 — 2016 sub-periods (Fig.
suggest that the former possibility is more likely. Indeed, the ENSO variability in the
second part of the record (1943 — 2016) exhibited more power at QB periods compared
with the first part of the record (1870 — 1943); thus the phase synchronisation between
AC and QB modes was more pronounced during 1943 — 2016 compared to 1870 — 1943,
consistent with Fig.

The tools of information theory, used throughout this thesis, enabled us to uncover
an intricate network of interactions underlying the observed ENSO variability. In partic-
ular, we showed that the (phase of) low-frequency (LF), interannual ENSO mode directly
affects the amplitude of QB variability. It also indirectly affects the phase of QB variabil-
ity, via the intermediate causal connection with the phase of the annual cycle (AC) and
its combination tones (CT) associated with the LF mode. The AC/CT modes combined
constitute the quasi-annual (QA) variability (changes in the shape of the annual cycle).
The above LF>QA—QB phase interactions and LF phase—QB amplitude interactions
result in intermittent synchronizations among different QB modes that occur preferen-
tially during certain phases of the LF mode, thus leading to extreme (biennial) ENSO
events (Fig.[5.10). This allows multiple QB modes, which are normally desynchronised
and are thus associated with small overall energy, to occasionally produce a signal with
the amplitude exceeding those of QA and LF cycles. One of the key messages from
our work is to suggest a much more important role of the quasi-biennial (QB) modes in
ENSO dynamics than, perhaps, thought previously.

The novelty of our work, aside from applying an original methodology to analyse
climate data, is in obtaining a new compact description of the causal interactions in-
strumental in ENSO dynamics. The causal connection between the phase of the LF
variability and that of the QA variability — that is, changes in the shape of the annual
cycle depending on the state of the LF ENSO mode — is conceptually similar to the effect
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of low-frequency component of North Atlantic Oscillation variability on the annual cycle
of surface temperature over Europe [|Palus et al.,|2005]. A mechanistic explanation of the
QA—QB phase causality remains elusive, with possible hints from empirical modelling.

The observed ENSO interactions are poorly represented in the historical simulations
of CMIP5 climate models, which exhibit large sampling variations in ENSO spectra and
causality maps, both from model to model and among different runs of a single model.
Some of the model simulations match time scales or select causality characteristics of
the observed ENSO variability, but no single simulation is able to reproduce the full
picture of the observed interactions. The ENSO variability in long pre-industrial control
runs of CMIP5-type models is known to exhibit multidecadal epochs characterized by
different ENSO behaviour [Wittenberg, 2009]. Hence, there is still a possibility that the
models possess correct ENSO dynamics, but the sample of 89 20%century simulations
considered here was simply not large enough to generate the ENSO epoch that would
match the observed epoch. Analyses of long pre-industrial runs are in order to address
this issue. However, the experiments with an empirical stochastic ENSO model of
Kondrashov et al|[2005] suggest that the chances of reproducing the observed ENSO
behaviour in ensemble simulations of the 20century climate are much higher than
the CMIP5 ensemble results. This implies that CMIP5 models do indeed misrepresent
ENSO dynamics. The same conclusion holds for the conceptual parametric recharge
oscillator model of |Stein et al|[2014], which also fails to capture the observed cross-
scale causal relationships in ENSO. By contrast, the success of the empirical ENSO
model in reproducing the essential phase interactions among LF, QA and QB modes
allows one to address, in a mechanistic fashion, the dynamics of these interactions,
with initial indications pointing to the importance of both deterministic dynamics and
state-dependent (multiplicative) noise in controlling the QB variability.

Thus, neither conceptual nor state—of-the—art dynamical climate models studied here
were able to mimic the structure of the observed ENSO interactions, while the empirical
models considered did quite a bit better. Understanding the discrepancies between
the observed interactions and the interactions simulated by the dynamical models —
especially with respect to their ability to model the QB modes — may be the key to an
improved ENSO prediction. Finally, the observed interactions may pose as a starting
point in developing a conceptual model capturing the cross-scale information transfer
in ENSO dynamics.

One idea of such a model emerges from the realm of machine learning, concretely
adapting a recurrent neural network architecture. A recurrent neural network (RNN)
is a class of artificial neural network where connections between units form a directed
graph along a sequence. This allows it to exhibit dynamic temporal behaviour in a
time sequence. A type of RNN named an echo state network, contains a sparsely
connected hidden layer with fixed weights. Thus this hidden layer acts as a so-called
dynamical reservoir that produces dynamical states which the RNN (after sufficient
training) is able to harvest and reproduce specific temporal patterns. The idea is to
exploit causal connections found by our analysis and to build a dynamical reservoir using
the parts of conceptual dynamical models of ENSO, couple them according to found
causal linkages and then finally, train the weights between the input time series and this
conceptual causal dynamical reservoir. The obvious option how to conceptually model
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synchronisation and causality phenomena in the network of oscillators is to exploit the
Kuramoto| [1975, 1954] model of synchronising oscillators: one would define oscillators
as per different oscillatory modes found in our analysis, and then couple them with
symmetric matrix as for modelling synchronisation, and finally with non-symmetric
matrix as for modelling the phase-phase causality:

Mz

do; K
dQZz = Keyn ZASW sm caus

AL sin (¢j(t — 1) — $i(t)), (6.1)

j=1

where the system is composed of N oscillators with their natural frequencies w; and
phases ¢;; Ksy, denotes the synchronisation strength, A?jyn is symmetric binary matrix

with 1 for interacting oscillators i and j, Keys is coupling strength for causal connec-
tions, and Al?]?‘”s is non-symmetric binary matrix causally connecting oscillators j — i

with backward delay 7, and finally, &; poses as Gaussian white noise. This would be
an addition to slowly growing literature considering neural networks as a time series
predictors in climate science (see e.g. |Lins et al. [2010]; Patil et al. [2016]; Zhang et al.
[2017])).

On abroader scale, the framework we used here is applicable to analysing phenomena
across a wide range of disciplines — for example, in neuroscience, where cross-frequency
phase-amplitude coupling has recently been observed in electrophysiological signals
reflecting the brain dynamics. This cross-frequency coupling enriches the cooperative
behaviour of neuronal networks and apparently plays an important functional role in
neuronal computation, communication, and learning [|Canolty and Knight, 2010.
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Appendix

A.1 pyCliTS — Python Climate Time Series pack-
age

This appendix gives an overview (not a full documentation) of the Python Climate Time
Series package — pyC11iTs. This package was written by me in the course of analysing
data for this thesis. However, I thought that some other people analysing climate data
within Python environment might find the package useful. The package is currently in
the 0.2 version, licensed under the MIT licence.

A.1.1 Introduction and installation

As usual with Python libraries, there are no executables in pyclits, but it is intended
to be used in small Python scripts. Its object-oriented architecture allows for a clean and
flexible source code representing the logical dependencies between various concepts and
methods. Its design also supports fully flexible use of the package, from interactive local
session in IPython to massive parallel computations on clusters. It can be deployed on
Linux, Mac OS X, as well as Windows systems with appropriate dependencies. Among
the required dependencies one might find numpy and scipy, which are among the most
widely spread libraries for scientific computing in Python. Other, recommended depen-
dencies, include sklearn (machine learning package), cython (Python to C compiler),
matplotlib (powerful plotting in Python), netCDF4 (Python interface to netCDF C
library), basemap toolkit (library for plotting 2D data on maps in Python), pywavelets
(wavelet transforms in Python), and pathos multiprocessing (parallel graph man-
agement in heterogeneous computing). Although these packages are not required, I
strongly advise to install them all in order to ensure smooth running and performance
of pyclits library.
The homepage of this packageresidesathttps://github.com/jajcayn/pyclits,

and the package (with its dependencies) can be installed either from github, or using
pip with

bash

1 pilp install pyclits

Alternatively, the latest version can be installed from github.com directly with

bash
1 pip install git+https://github.com/jajcayn/pyclits.git
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The installation automatically takes care about the dependencies, and with the exception
of basemap toolkit, it installs all required and recommended packages.

The package is, as of now, compatible with Python version 2.7. Compatibility with
Python version 3+ is planned in near future.

A.1.2 Software structure

The pyclits package consists of one main class that holds the geophysical data (DataField),
two classes for computations: SSA class (holds the data and performs SSA) and VARmode 1
(holds the data and is able to fit an AR model). The base DataField class is subse-
quently inherited in SurrogateField class (able to construct surrogate data) and in
EmpiricalModel class (able to construct spatio-temporal model of geodata based on
the idea of linear inverse models). Apart from these classes, the package offers a wealth
of convenience functions. The basic architecture is depicted in Fig. which also
renders the dependencies between various classes and functions in the package.

DataField VARmodel

-core class < -VAR(p) model
-holds time series of geo-field -able to fit and integrate
*geofield.py *var model.py

SurrogateField
_» -holds geofield of surrogate ¢
data

*surrogates.py

ssa class

-holds data

-performs (rotated) M-SSA
*ssa.py

EmpiricalModel
_> -holds geofield <
-able to fit and integrate

*empirical_ model.py

functions:

*data loaders.py

_1 load station data
load reanalysis data

*functions.py

{ cross-correlation

kernel density estimate
detrend

partial correlation

Haar fluctuations

*mutual inf.py

(cond.) mutual information
*wavelet analysis.py

- {|continuous wavelet

r——————l————l———————————————J

Fic. A.1.| Illustration of the pyclits architecture. Thick black lines signify inheri-
tance of classes, dashed lines mean that the function is (or may be) used in the class.
The file names containing the respective class or function are typeset in italics.

In the following text, I will briefly describe the core functionality of various classes
and functions. Furthermore, the package is accompanied with 8 examples — Python
scripts that illustrate various capabilities of the package. The examples can be found
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on the homepage of the package in the examples folder: https://github.com/
Jajcayn/pyclits/tree/master/examples

DataField class (in geofield.py)

This class holds the time series of a geophysical field. The fields for gridded data (re-
analyses, CMIP5 model outputs, etc.) are generally 3-dimensional (time x latitudes x
longitudes), for stations data the fields are typically 1-dimensional, containing just tem-
poral dimension. The class has four basic properties and those are: DataField.data,
DataField.time, DataField.lats, and DataField.lons. All of them are, by
default, numpy arrays. The time field is stored as ordinal values with 1 January of year
1 being 1. The class can be initialised empty and then filled with

python

from pyclits.geofield import DataField
gf = DataField()
gf.data = some_array_created earlier

or, alternatively, filled with data using 1oad function as

python
from pyclits.geofield import DataField

gf = DataField()
gf.load(filename='slp.mon.mean.nc', variable_name='slp', dataset='NCEP')

This construction fills all four basic properties of the class. The class also offers a
convenience function create_time_array, which, when filling data manually, auto-
matically fills the temporal field given the starting date of the data and their temporal
sampling.

python

from pyclits.geofield import DataField

from datetime import date

gf = DataField()

gf.data = some_array created earlier

gf.create_time_array (date_from=date (1950,1,1), sampling='m')

Finally, the class also supports loading of the station data, although it only works with
the file format as ECA&D project [Klein Tank et al., 2002|] uses:

python
from pyclits.geofield import DataField

gf = DataField()
gf.load_station_data (filename='Prague_ECA_TG.txt', dataset='ECA-station')

After the data is loaded and saved in the Dat aField structure, a wealth of methods
is available for manipulating the data:
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copy returnsa copy of a DataField instance, itis also possible to copy just a temporal slice
passing the boolean array of temporal indices (compatible with indices returned
by select_date function)

select_date selects the date range in the data

get_sliding_window_indexes returns list of indices for sliding window analysis

get_date_from_ndx returns date given the index

find_date_ndx returns an index which corresponds to a given date

get_spatial_dims return spatial dimensions of the data

get_closest_lat_lon return closest grid point in gridded data to a given latitude
and longitude pair

select_months selects only certain months from the data

select_lat_lon selects region given by pair of latitudes and pair of longitudes

cut_lat_lon cuts selected regions from the data (e.g. the equatorial belt)

latitude_cos_weights returns a grid with scaling weights based on cosine of lati-
tude

flatten_field reshape the field to 2 dimensions, useful for PCA etc.

reshape_flat_field reshape flattened field to its original shape

get_data_of_precise_length selects the data either from starting or ending date,
such that they have the exact length given as integer

get_annual_data converts daily or monthly data into annual means or sums

get_monthly_data converts daily data into monthly means or sums

average_to_daily averages sub-daily values into daily means

interpolate_into_finer_temporal_resolution interpolates data to finer res-
olution

subsample_spatial subsamples the data onto given grid

smoothing_running_avg smooths the time series using running average

plots_FFT_spectrum estimates and plots the power spectrum using Welch method

temporal_filter filters the data using low-, high-, or bandpass, or bandstop filters

spatial_filter filters the data in spatial sense with weights

interpolate_spatial_nans interpolates data with spatial NaNs

pca_components estimates the PCA (EOF) [Hannachi et al., 2007] components of geo-
data, able to estimate VARIMAX rotation, and also works with spatial NaNs (e.g.
sea surface temperatures which are masked)

invert_pca inverts the PCA and returns the original data, also suitable for modelling
as the Principal Components time series could be different (e.g. modelled) than
obtained from the original data

anomalise removes the seasonal/annual cycle from the data, the climatology period
can be passed as parameter

get_seasonality removes the seasonality both in mean and standard deviation (as
anomalise)
save_field saves the entire DataField using cPickle bin format

get_parametric_phase computes the phase of analytic signal using parametric
method
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wavelet performs continuous complex wavelet transform with selected central period
quick_render plots the filled contours of the data onto map using the latitude and
longitude fields in the data.

All of the aforementioned methods of the DataField class has a number of parameters
and it is beyond the scope of this appendix to list them all. Potential user of the package
will easily find them in the source code or in the examples that accompany the package.

SurrogateField class (in surrogates.py)

This class holds the spatio-temporal field and can construct surrogates. Since it inherits
all the properties and methods from the DataField class, statistical testing using
surrogate data is convenient. Typical usage of SurrogateField would be as follows

python

import pyclits as clt

from pyclits.surrogates import SurrogateField

from datetime import date

# load Prague SAT station data

prg = clt.data_loaders.load_station_data ('Prague_ECA_TG.txt',
date(1770,1,1), date(2016,1,1),
anom=False, to_monthly=False)

# init empty SurrogateField

surr = SurrogateField()

# deseasonalise the data

mean, var, trend = prg.get_seasonality(detrend=True,
base_period=[date(1981,1,1), date(2010,12,31)])

# copy deseasonalised data to SurrogateField

surr.copy_field(prg)

# return seasonality to original data

prg.return_seasonality (mean, var, trend)

# construct e.g. AAFT surrogates

surr.construct_fourier surrogates(algorithm="'AAFT")

# add seasonality to surrogate data

surr.add_seasonality(mean, var, trend)

Deseasonalising the data as done on lines 11 and 12 in the code above is necessary, since
algorithms for generating surrogate data have problems with replicating such strong cy-
cles as seen in temperature data (recall sec. and references therein). After copying
the field into SurrogateField class instance (line 14 in the code example above), the
original data is stored as SurrogateField.original_data. Then, generated sur-
rogate data are stored in SurrogateField.data, hence all the methods as described
in the previous section works on generated surrogate data and not on the original
data. If the SurrogateField holds spatio-temporal 3-dimensional field, the methods
for constructing surrogate data will construct surrogates for all the grid points. The
SurrogateField class offers following methods (in addition to the methods provided
by DataField):
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construct_fourier_surrogates constructs Fourier Transform surrogates [ /ieiler
et al., 1992, and is able to construct also amplitude adjusted FT and iterative
amplitude adjusted FT

construct_multifractal_surroagtes constructs multifractal surrogates [|Palus,
2008]

prepare_AR_surrogates prepare for generating AR surrogates by selecting an opti-
mal order of AR model per grid point, fitting the model and estimating residuals

construct_surrogates_with_residuals constructssurrogate datafrom AR model
by random shuffling the residuals

amplitude_adjust_surrogates performs amplitude adjustment to already cre-
ated surrogate data.

All the methods for constructing surrogate data has optional parameter pool, and in
the case that multiprocessing Pool (e.g. from pathos.multiprocessing package) is
provided, the generation of surrogates is done in parallel.

EmpiricalModel class (in empirical_model.py)

This class also inherits from DataField class and, besides storing and operating on
a spatio-temporal field, is able to fit and then integrate a statistical model based on
the idea of linear inverse models. The model is coded according to |Kondrashov et al.
[2005] and tested on the same dataset as used in the paper. The typical example of
using this model with comments on each step is given in example that accompanies the
packageathttps://github.com/Jjajcayn/pyclits/blob/master/examples/
8-empirical_model.py. However, I will describe the general approach of to build
such model.

The model operates on empirical orthogonal functions (EOFs) of the spatio-temporal
data field, where their respective Principal Components (PCs) are modelled via extend-
ing the ideas of linear inverse models (LIMs) [Penland and Sardeshmukh,[1995|]. The model
carries multiple levels (three by default), where in the first level the PCs themselves are
modelled using (non)linear inverse model, then, in the second level, the residual from
the first one is modelled linearly, and so on until the final level. The residuals in the last
level should be white in time, and only allowed to exhibit spatial correlation between
grid points. Additional levels may, and should, be added until the last level’s residual
is white in time. After fitting the respective linear coefficients in the inverse models,
the model is integrated by starting in the last level with white noise and feeding it to
the trained inverse model, and subsequently using its result as a residual in the upper
level. Finally, the first level result of the integration is the modelled PCs, which are then
combined with EOFs to yield the modelled spatio-temporal field we started with.

The class offers various settings and upgrades to the general approach mentioned
above. Before fitting the model, it is recommended to remove the low-frequency vari-
ability from the data in order to suppress drifting of the EOFs in time. This is done by
running boxcar mean over 50 years and subtracting first 5 EOFs from the data, leaving
the not-so-low frequency variability untouched. Afterwards, the data are anomalised,
decomposed into some number of EOFs and their respective PCs are fitted to the suite
of inverse models. By default, the first level is nonlinear, with quadratic nonlinearity.
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For the actual fitting, user may choose among four regression algorithms (partial least
squares, linear least squares, linear least squares with L2 regularization, or Bayesian
ridge model). The integration of the fitted model can be run parallel or single thread,
and with three types of noise (described in the example and source code). The user has
an option to plot the diagnostics of the model, that is the first four moments (mean, vari-
ance, skewness, and kurtosis), integral correlation time scale, autocorrelation, and kernel
density estimate. All the plots show these variables in data, and 97.5"and 2.5"percentile
of the distribution from the modelled data. The reconstructed modelled spatio-temporal
fields, as well as the model itself, can be saved on the disk for further use.

ssa_class class (in ssa.py)

This class is somewhat by its own, and has no connection via inheritance to other classes
inthe package. This classis able to hold the 2-dimensional data, and can perform singular
spectrum analysis (SSA) [|Vautard and Ghil,[1959]. By default, function run_ssa performs
a multi-channel version of SSA (M-SSA) and is written according to|Groth and Ghil|[2011)].
The result of such analysis is the eigenvalues of the problem, the oscillatory modes (also
called components) — in fact, they are the eigenvectors of the lagged covariance matrix,
the principal components (i.e. the time series), and so-called reconstructed components,
which are the sum of M components got from the SSA decomposition, where M is the
embedding window.

The class is also able to perform a varimax rotation on M-SSA eigenvectors with two
options: first is to apply the basic orthomax rotation [Kaiser, 1958|, while the second
is to apply so-called structured varimax rotation [|Portes and Aguirre, 2016]. One of the
problems with SSA analysis is usually the discrimination of the actual data components
from the noise components. |Groth and Ghil [2015] uses for this problem the Monte Carlo
SSA, which computes n realisations of stochastic AR(1) process fitted to the data and
then compares the eigenvalues from this “surrogates” to the eigenvalues from the actual
data in order to separate noise from the signal. Finally, the class is prepared to run
also the enhanced Monte Carlo SSA, according to Palus and Novotna [2004], where the
dynamics of individual modes are also taken into an account.

Other functions
Apart from the basic classes, the package comes with a number of convenience function
useful for various analysis of (not only) climate data. All the functions are listed below:

load_station_data (indata_loaders.py) loader for station data

load_NCEP_data_monthly (in data_loaders.py) loader for NCEP/NCAR reanalysis
monthly data [|[Kalnay et al., 1996]

load_NCEP_data_daily (indata_loaders.py)loader for NCEP/NCAR reanalysis daily
data [Kalnay et al.,|1996]

load_ERA_data_daily (indata_loaders.py)loader for ERA-40/ERA-Interim daily data
[Dee et al., [2011]]

load_ECA_D_data_daily (in data_loaders.py) loader for ECA&D European analysis
data [Haylock et al.,2008|]

load_enso_index (in data_loaders.py) loader for various ENSO indices
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cross_correlation (in functions.py) computes cross-correlation with lag

kdensity_estimate (in functions.py) estimates the kernel density, using sklearn
package

detrend_with_return (infunctions.py) removes the linear trend in the data, ignores
NaNs and returns the trend

partial_corr (in functions.py) computes partial correlation

get_haar_flucts (in functions.py) computes the Haar fluctuations, inspired by |Love-
joy and Schertzer|[2013]]

get_time_series_condition (in mutual_inf.py) returns time series shifted in a de-
sired way with forward lag 7, backward lag n and dimension of conditioning,
ideal for computing (conditional) mutual information

mutual_information (inmutual_inf.py)estimates the mutual information using equidis-
tant or equiquantal binning [|Hlavackova-Schindler et al., 2007

knn_mutual_information (inmutual_inf.py)estimates the mutual information using
the k-nearest neighbours algorithm [Kraskov et al., |2004]

cond_mutual_information (in mutual_inf.py) estimates the conditional mutual in-
formation using equidistant binning, equiquantal binning, or Gaussian estimate
using eigenvalues of the correlation matrix

knn_cond_mutual_information (in mutual_inf.py) estimates the conditional mu-
tual information using the k-nearest neighbours algorithm [Frenzel and Pompe,
2007

get_p_vals (in surrogates.py) returns one- or two-tailed p-values with respect to sur-
rogate testing

bonferroni_test (in surrogates.py) runs a Bonferroni multiple testing procedure
[Dunn|, [1958|], written by Martin Vejmelka

fdr_test (in surrogates.py) runs a False Discovery rate multiple testing procedure
[|Benjamini and Hochberg, 1995], written by Martin Vejmelka

holm_test (insurrogates.py) runs a Holm—Bonferroni multiple testing procedure [|[Holm1,
1979|], written by Martin Vejmelka

get_single_x_surrogate (in surrogates.py) returns a single surrogate from given
time series, instead of a x one of the following can be used: FT for Fourier Trans-
form surrogates, AAFT for amplitude adjusted FT surrogates, IAAFT for iterative
amplitude adjusted FT, MF for multifractal surrogates, and AR for autoregressive
surrogate of desired order.

morlet (inwavelet_analysis.py) returns a Morlet mother wavelet as a function of Fourier
frequency

paul (in wavelet_analysis.py) return a Paul mother wavelet as a function of Fourier
frequency

DOG (inwavelet_analysis.py) return a Derivative of Gaussian mother wavelet as a function
of Fourier frequency

continuous_wavelet (in wavelet_analysis.py) computes a wavelet transform of the
vector.
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A.2 Supplement to[Iime scales of the European sur-
face air temperature variability

In this appendix, the reader might find additional figures relating to chapter 4 —
iscales of the European surface air temperature variability|, not needed to fully compre-
hend the main text, however, they pose as a supplementary block to the overall puzzle.

A.2.1 [Evaluating the effect of cross-scale interactions|(sec.4.3)

In this section, additional figures studying the annual cycle and its relationships with
8-year cycle are shown. In the main text, the figure from Prague — Klementinum station is
given (Fig.[4.13), here additional stations with the sufficiently long uninterrupted record
are shown. The list of used stations, with their temporal span, is given in Table
Spatial locations of all used stations are rendered in Fig.

station country temporal span

Stockholm SWE 1/1/1756 -1/1/2016
Prague — Klementinum (@4 1/1/1775-1/1/2016
Zagreb — Gric HR 1/1/1861-1/1/2016

Quickborn (Kruzer Kamp) DE 1/1/1891-1/1/2016

Hamburg DE 1/1/1891-1/1/2016
Orenburg RU 1/1/1886-1/1/2016
St. Petersburg RU 1/1/1881-1/1/2016
CET Central England UK 1/1/1881-1/1/2016
Bamberg DE 1/1/1879-1/1/2016
Potsdam DE 1/1/1893-1/1/2016

TaBLe A.1.| Summary of stations from which the daily average surface air tempera-
ture was used in the analysis. All station metadata and surface air temperature data
compiled by |Klein Tank et al.|[2002]], downloaded from ecad.eul

Please note, that in Fig. the location of CET is only approximate as Central
England Temperature is representative of a roughly triangular area of the UK enclosed
by Lancashire, London, and Bristol [rmetoffice.gov.uk].
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Fic. A.2.| Spatial locations of stations used in the analysis. The stations are listed
in Table Location of CET is only approximate as Central England Temperature
“is representative of a roughly triangular area of the UK enclosed by Lancashire, London, and

Bristol” [metoffice.gov.uk]]. Here is shown an arithmetic average of coordinates of the
three cities.

A.2.2 IConditional means of the annual amplitude|(sec. 4.3.1))

Here, the effect of 8-year cycle on the amplitude of annual cycle (AAC) is investigated
in a similar fashion as was for the Prague — Klementinum station (recall sec. and
tigures therein) for other stations compiled by the ECA&D. Stations used in this analysis
were the same as in Table[A.T| (recall that their spatial locations are depicted in Fig.[A.2).
The conditional means of the AAC are shown in Figs. [A.5 [A.6, and [A.7] As seen
from the figures, the overall change within the full period of available data is between
0.29°C for CET time series and 0.87°C for Potsdam station. From the variability of these
results, we suspect that the effect, having the temporal variability also possesses spatial
variability. From the premature observations, the spatial variability appears to have an
approximately east-west gradient with the higher overall change due to the 8-year cycle
(hence the effect of the cycle itself is stronger) in the eastern part of Europe. Later, we will
try to confirm this hypothesis by estimating the effect on gridded data from Europe. As
with the case of Prague — Klementinum station (Fig. [.14), here we also observe that the
effect is variable in the temporal sense and, again, seem to fluctuate around the overall
value, sometimes being lower, sometimes higher.
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Fic. A.4.| Same as Fig. but for stations (A) CET — Central England Temperature,
UK; (B) Bamberg, DE; and (C) Potsdam, DE.

A.2.3 (Overall temperature variability in the 8-year cycle|(sec.4.3.2

The effect of 8-year cycle on the overall temperature variability, represented by the surface
air temperature anomalies data (SATA), is further studied here. In addition to studying
this effect in Prague — Klementinum station (Fig. [4.16), here 9 additional stations from
the ECA&D data set are studied (stations listed in Table. and their spatial locations
depicted in Fig.[A.2). The conditional means of SATA, dependent on the phase of 8-year
cycle, ¢gyr(t) are shown in Figs.|A.8,|A.9} and |A.10} In the case of overall variability, the
highest effect can be seen in St. Petersburg with the difference between the maximum
and minimum bin at 1.43°C, while the lowest effect in, again, seen in CET — Central
England Temperature record at 0.58°C level. Similarly, as in the case of conditional
means of AAC from all stations, the effect has profound variability both in a temporal
and spatial sense. The temporal variability can be seen from panels B and C in the
respective figures, where two distinct periods are taken in order to estimate the effect of
the 8-year cycle. Again, this effect seems to fluctuate around the overall value, and this
will be studied later using the temporal windows analysis. As for the spatial variability
of the effect, note again approximately east-west gradient with a stronger effect in the
eastern part of Europe. Although this effect seems to be variable both in space and time,
the basic properties of the influence holds — that is the cold bins tend to be located in
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Fic. A.5.| Conditional means for the amplitude of annual cycle (AAC), Alyr(t), for the
(top) Stockholm, SWE; (middle) Zagreb — Gric, HR; and (bottom) Quickborn (Kruzer
Kamp), DE SAT data within the period (A) full (depends on station); (B) 1 January 1914
to 31 December 1961; and (C) 1 January 1962 to 31 December 2009, conditioned on the
phase of the 8-year cycle, ¢sy.(t), divided into 8 equidistant bins. Note, that each bin
represents approximately 1 year of the 8-year cycle.
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the beginning and the end of the 8-year cycle, while the warm bins tend to occupy the
middle of the cycle, however, some fluctuations from this rule exist.

A.2.4 [Temporal variations in the effect of the 8-year cycle
(sec.4.3.3)

The temporal variations of the effect of the 8-year cycle on both, the amplitude of annual
cycle and the overall temperature variability represented by the surface air temperature
anomalies (SATA) was studied in the Prague — Klementinum station data (Figs. -
4.24). Here, 9 additional stations from the ECA&D data set are studied (stations listed
in Table. and their spatial locations depicted in Fig. and subsequently plotted
in Figs.[A.1T]-

In all of the 9 studied stations, the effect of 8-year cycle is somewhat different for AAC
and SATA. As an example, consider Stockholm station (Fig. [A.11): the effect on AAC
peaked in the first half of the 19%century and then with the same intensity in the middle
of 20!century. On the other hand, the effect on SATA fluctuated a lot around a mean
of approximately 1.4°C with rather high variance. Moreover, the significance patterns
differ, for AAC the effect is usually statistically significant during its peaks and during
the whole 20century, while for SATA the significance is spread during the whole period
almost uniformly. Nevertheless, we might conclude that for the Stockholm station the
effect of the 8-year cycle onto faster temporal variability is quite large, up to 1.4°C for
AAC and 2°C for overall variability represented by SATA.

The picture of the effect of 8-year cycle for other stations is similar to the Stockholm
one — the maxima for the effect differ in AAC and in SATA, as well as the significance
patterns. However, we can conclude that the effect on both the AAC and SATA seem
rather stronger in the last century (with an exception of CET station, Fig. and
usually statistically significant, at least for the last couple of temporal windows. The
weakest effect of the 8-year cycle on AAC is attributed to the CET — Central England
Temperature time series, as well as the weakest effect on SATA. Since CET is the west-
ernmost station in our compiled data set, we hypothesise that the effect indeed exhibits
an east-west gradient. This hypothesis is further supported by observing the German
stations (Figs.|A.13} [A.14} |A.18] and [A.19), where the effect on both the AAC and SATA
peaks at approximately 1.2°C and 1.8°C, respectively. Finally, studying the easternmost
stations — St. Petersburg and Orenburg (Figs. |A.15 and |A.16) yield the highest effect
both in AAC (peak at 1.5°C) and in SATA (up to 2.6°C). The hypothesis of an east-west
gradient is further studied in gridded temperature analysis data.

A.2.5 [Seasonal effects of the 8-year cycle|(sec. 4.3.5)

In addition to studying the seasonal effect of the 8-year cycle in Prague — Klementinum
station (recall Fig. in the main text, the 9 complementary stations from ECA&D
data set are studied as well (stations are listed in Table and their spatial locations

rendered in Fig.[A.2)), with the respective results plotted in Figs. -
All of the additional studied stations follow the same seasonal pattern as Prague —
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Fic. A.8.| Conditional means for the surface air temperature anomalies (SATA) for the
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ORENBURG AAC - 27 significant | 5000AR ENBURG SATA - 42 significant | 5000AR
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Klementinum station, that is considerably elevated effect of the 8-year cycle onto overall
temperature variability in the winter seasons (December through February, panels A
in Figs. —[A.24), ranging from approximately 2°C in the case of CET — Central
England Temperature in the UK to the maximum slightly exceeding 6°C in the case of
Russian stations St. Petersburg and Orenburg.

Contrarily, in the other seasons than winter, the effect of the 8-year cycle is relatively
weaker, any many cases the decrease is about 50%. Also, as expected the statistical
significance patterns are different — in the winter season roughly a half of the total
record per station exhibit statistically significant effect of the 8-year cycle, while in other
seasons the effect is well reproduced by the surrogate data, and therefore is probably
the result of another type of interactions than cross-scale coupling.

Our final observations relate to the east-west gradient of the strength of the effect.
In the previous sections, we noted that eastern stations exhibit larger effect of the 8-
year cycle both on AAC and SATA than western stations. Now it also appears that the
difference between seasons (e.g. compare DJF and JJA plots) is larger in the eastern
stations than in the western ones. Consider e.g. CET — Central England Temperature
seasonal effect (Fig. panels E — H) as the westernmost station, where the difference
between DJF plot and other seasons is roughly 0.5°C. On the other hand, the easternmost
station such as St. Petersburg and Orenburg, both RU, exhibit far stronger seasonal effect
— the DJF differences between warm and cold bins reach up to 6°, while in the other
seasons the difference peaks slightly over 3°C and usually is even lower. This makes
the seasonal dependence much stronger than in the western stations. In conclusion, the
east-west gradient appears first of all in the strength of the effect itself, being stronger
in eastern Europe, and secondly, in the seasonal dependence where in the west the
dependence is low, and the effect in various seasons is more-or-less constant, and in the
east where the effect of the 8-year cycle heavily depends on the season. The hypothesis
of an east-west gradient in the effect of the 8-year cycle is further supported when
estimating the effect on the gridded data set, see Figs. and

A.3 Supplement tolComplex dynamics and extremes
in F1 Nifio / Southern Oscillation

A.3.1 CMIP5 additional information

For the study of cross-scale interactions in the El Nifio/Southern Oscillation phe-
nomenon, also the modelled time series from coupled ocean-atmosphere global circula-
tion models within the Coupled Model Intercomparison Project Phase 5 (CMIP5) were
considered (see sec. . We used in total 89 ZOthcentury historical realisations (runs)
from 15 different models, the number of runs from a particular model is summarised in
Table[A2l

For each run from the CMIP5 modelling suite, the phase synchronisation, phase-
phase causality, and phase-amplitude causality were estimated using the framework
described in sec. Firstly, for each run, we measured the similarity between the
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Fic. A.20.| Temporal evolution of the effect of 8-year cycle on the surface air temper-
ature anomalies (SATA) in the Stockholm, SWE daily SAT for (A) winter, DJF, season;
(B) spring, MAM, season; (C) summer, JJA, season; and (D) winter, DJF, season. The
differences between minimum and maximum SATA conditional means (thick black
curve), tested against 5000 FT surrogates (the means over the surrogate distribution
as thinner grey curve; the 95"percentile of the distribution is plotted using light grey
curve, connected with the mean by grey filling). Windows with statistically significant
differences are marked with black dots, plotted in the middle of the window of the
effective length 36.86 years.
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Fic. A.21.| Same as Fig. but for Zagreb — Gric, HR station (A — D) and for

Quickborn (Kurzer Kamp), DE station (E — H).
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RU station (E — H).
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Fic. A.23.| Same as Fig. but for St. Petersburg, RU station (A — D) and for CET
— Central England Temperature, UK station (E — H).
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Fic. A.24.| Same as Fig. but for Bamberg, DE station (A — D) and for Potsdam,
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# | model acronym | no. runs

1. | CCSM4 6

2. | CNRM-CM5 10

3. | CSIRO-Mk3-6-0 10

4. | CanESM2 5
5. | GFDL-CM3 5
6. | GISS-E2-Hpl 6
7. | GISS-E2-Hp2 5
8. | GISS-E2-Hp3 6
9. | GISS-E2-Rp1l 6
10. | GISS-E2-Rp2 6
11. | GISS-E2-Rp3 6
12. | HadGEM2-ES 5

13. | IPSL-CM5A-LR 6

14. | MIROC5 4

15. | MRI-CGCM3 3

TasLe A.2.| Coupled Model Intercomparison Project Phase 5 (CMIP5) 20! century
simulations considered in this thesis.

observed and simulated wavelet spectra using root-mean-square distance and Pearson’s
correlation, with zero distance and unit correlation indicating the perfect match. The
observed and simulated causal maps were compared using, once again, the standard
Pearson’s correlation coefficient, as well as the so-called Adjusted Rand Index (ARI). Both
measures were computed for the pairs of interaction maps (observation vs. individual
simulation) filled with ones or zeros depending on whether the significant interaction
between the processes of different time scales was identified or not. The ensemble means
of these measures are depicted in Fig. while the values for all 89 individual runs
are presented in Table
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spectrum synch. P-P caus. P-A caus.
model run L1 rms | corr. || corr. | ARI || corr. | ARI || corr. | ARI
0 255.83 | 3350 | 0.46 || 0.34 | 0.29 || 0.25 | 0.21 | -0.01 | -0.01
1 206.09 | 2644 | 0.68 || 0.24 | 0.21 || 0.13 | 0.11 | 0.02 | 0.02
2 239.06 | 31.44 | 040 || 0.19 | 0.16 || 0.26 | 0.23 | -0.00 | -0.00
R

‘S»% 3 213.64 | 27.15 | 0.50 || 0.19 | 0.13 || 0.21 | 0.18 | -0.01 | -0.01

c?
4 163.10 | 2297 | 0.77 || 0.25 | 0.20 || 0.21 | 0.17 || 0.04 | 0.04
mean || 21555 | 2830 | 0.56 || 0.24 | 0.20 || 0.21 | 0.18 || 0.01 | 0.01
std 35.42 418 | 0.15 || 0.06 | 0.06 || 0.05 | 0.05 || 0.02 | 0.02
0 226.32 | 30.89 | 0.73 || 0.25 | 0.22 || 0.09 | 0.08 | 0.07 | 0.06
1 369.12 | 55.57 | 0.40 || 0.04 | 0.03 || 0.06 | 0.05 | -0.03 | -0.03
2 370.19 | 57.13 | 042 | 0.02 | 0.01 || 0.03 | 0.03 || -0.04 | -0.03

&

QQ\) 3 359.84 | 4720 | 0.35 || 0.01 | 0.01 || 0.05 | 0.04 || 0.00 | 0.00
© 4 338.64 | 50.35 | 0.37 || -0.03 | -0.03 || 0.06 | 0.05 || 0.02 | 0.01
mean || 332.82 | 4823 | 045 || 0.06 | 0.05 || 0.06 | 0.05 || 0.00 | 0.00
std 60.87 | 1048 | 0.16 || 0.11 | 0.10 || 0.02 | 0.02 || 0.04 | 0.04
0 298.44 | 37.25 | 053 || 0.26 | 0.21 || 0.14 | 0.12 || 0.01 | 0.01
1 319.19 | 4498 | 0.22 || 0.11 | 0.09 || 0.13 | 0.12 | -0.04 | -0.04
2 29496 | 37.56 | 049 | 0.20 | 0.17 || 0.05 | 0.04 | -0.02 | -0.02
{5}25? 3 329.87 | 44.67 | 0.19 | 0.22 | 0.18 || 0.13 | 0.11 || -0.03 | -0.03
Q\%% 4 231.76 | 3094 | 040 || 0.13 | 0.11 || 0.14 | 0.12 || 0.01 | 0.01
5 219.36 | 30.13 | 0.57 || 0.10 | 0.09 || 0.09 | 0.07 || 0.04 | 0.04
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spectrum synch. P-P caus. P-A caus.
model run L1 rms | corr. || corr. | ARI || corr. | ARI || corr. | ARI
mean || 28226 | 3759 | 0.40 || 0.17 | 0.14 || 0.11 | 0.10 || -0.01 | -0.00
std 45.96 6.40 | 0.16 || 0.06 | 0.05 || 0.04 | 0.03 || 0.03 | 0.03
0 336.96 | 45.19 | 0.53 || 0.26 | 0.22 || 0.21 | 0.18 | 0.00 | 0.00
1 146.18 | 18.81 | 0.81 || 0.20 | 0.16 || 0.20 | 0.17 || 0.01 | 0.01
& 2 332.06 | 43.50 | 0.27 | 0.16 | 0.13 || 0.05 | 0.05 || -0.00 | -0.00
é&‘b 3 360.31 | 49.07 | 042 | 0.19 | 0.16 || 0.16 | 0.14 || 0.01 | 0.01
&
4 27513 | 4098 | 040 || 0.18 | 0.15 || 0.14 | 0.12 || 0.03 | 0.02
mean || 290.13 | 3951 | 049 | 0.20 | 0.17 || 0.15 | 0.13 || 0.01 | 0.01
std 86.35 | 11.94 | 0.20 || 0.04 | 0.03 || 0.06 | 0.05 || 0.01 | 0.01
0 30546 | 4699 | 0.36 || 0.24 | 0.20 || 0.25 | 0.21 || 0.04 | 0.03
1 267.36 | 36.56 | 0.46 || 0.28 | 0.22 || 0.26 | 0.23 || 0.01 | 0.01
2 266.40 | 34.66 | 029 || 0.22 | 0.19 || 0.21 | 0.19 | 0.00 | 0.00
@«b& 3 307.34 | 42.73 | 0.21 | 0.15 | 0.13 || 0.14 | 0.12 || -0.04 | -0.03
(}\f%% 4 287.15 | 3897 | 0.25 || 0.04 | 0.03 || 0.15 | 0.13 || -0.01 | -0.01
5 299.09 | 40.12 | 0.23 || 0.12 | 0.10 || 0.14 | 0.12 | 0.04 | 0.03
mean || 288.80 | 40.00 | 0.30 || 0.17 | 0.15 || 0.19 | 0.17 || 0.01 | 0.01
std 18.39 442 | 0.09 || 0.09 | 0.07 || 0.05 | 0.05 || 0.03 | 0.02
0 15093 | 19.67 | 0.77 || 0.24 | 0.20 || 0.21 | 0.18 || -0.01 | -0.01
1 15093 | 19.67 | 0.77 || 0.23 | 0.20 || 0.19 | 0.16 || -0.01 | -0.01
2 233.87 | 3148 | 0.60 || 0.28 | 0.24 || 0.14 | 0.12 || -0.01 | -0.01
&
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spectrum synch. P-P caus. P-A caus.
model run L1 rms | corr. || corr. | ARI || corr. | ARI || corr. | ARI
3 165.82 | 24.14 | 0.65 || 0.20 | 0.16 || 0.13 | 0.11 || -0.03 | -0.02
4 223.57 | 3095 | 0.53 || 0.20 | 0.16 || 0.10 | 0.09 | -0.03 | -0.03
5 211.45 | 28.78 | 0.53 || 0.30 | 0.26 || 0.21 | 0.18 | -0.00 | -0.00
mean || 18943 | 2578 | 0.64 || 0.24 | 0.20 || 0.16 | 0.14 || -0.02 | -0.01
std 37.81 539 | 0.11 || 0.04 | 0.04 || 0.05 | 0.04 || 0.01 | 0.01
0 263.73 | 3643 | 0.24 || 0.20 | 0.17 || 0.15 | 0.12 || 0.04 | 0.03
1 195.15 | 26.74 | 0.56 || 0.17 | 0.15 || 0.19 | 0.17 || -0.00 | -0.00
2 296.74 | 38.06 | 0.20 || 0.18 | 0.15 || 0.20 | 0.18 | 0.06 | 0.05
@Qé» 3 182.57 | 26.23 | 0.65 || 0.15 | 0.12 || 0.19 | 0.17 || 0.01 | 0.01
C}%% 4 202.83 | 27.79 | 053 || 0.15 | 0.13 || 0.14 | 0.12 || 0.04 | 0.04
5 179.12 | 25.07 | 0.65 || 0.13 | 0.11 || 0.12 | 0.10 || -0.03 | -0.02
mean || 220.02 | 30.05 | 047 || 0.16 | 0.14 || 0.17 | 0.14 || 0.02 | 0.02
std 48.55 566 | 0.20 || 0.02 | 0.02 || 0.04 | 0.03 || 0.03 | 0.03
0 202.88 | 25.05 | 0.59 || 0.14 | 0.11 || 0.18 | 0.16 | 0.00 | 0.00
1 345.19 | 4250 |-0.04 | 0.22 | 0.19 || 0.22 | 0.19 | 0.03 | 0.03
2 167.37 | 23.75 | 0.70 || 0.20 | 0.17 || 0.23 | 0.20 || 0.02 | 0.02
@e& 3 24136 | 31.25 | 032 || 0.26 | 0.22 || 0.15 | 0.13 || 0.01 | 0.01
C;\’%% 4 22462 | 3269 | 039 || 0.12 | 0.10 || 0.23 | 0.20 || 0.04 | 0.03
5 193.89 | 24.10 | 0.66 || 0.18 | 0.15 || 0.18 | 0.15 || -0.02 | -0.02
mean || 22922 | 29.89 | 044 | 0.19 | 0.16 || 0.20 | 0.17 || 0.01 | 0.01
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spectrum synch. P-P caus. P-A caus.
model run L1 rms | corr. || corr. | ARI || corr. | ARI || corr. | ARI
std 62.27 726 | 028 || 0.05 | 0.05 || 0.03 | 0.03 || 0.02 | 0.02
0 32343 | 53.66 | 0.13 | -0.01 | -0.01 || -0.00 | -0.00 || -0.02 | -0.01
1 218.69 | 33.73 | 0.66 || 0.19 | 0.14 || 0.09 | 0.07 | 0.02 | 0.02
é&?% 2 546.59 | 99.96 |-0.15 | -0.06 | -0.05 || -0.01 | -0.01 || 0.03 | 0.02
Q@bo 3 201.72 | 28.16 | 0.77 || -0.05 | -0.04 || -0.05 | -0.04 | -0.03 | -0.02
mean || 322.61 | 53.88 | 0.35 || 0.02 | 0.01 || 0.01 | 0.01 || 0.00 | 0.00
std 158.72 | 32.61 | 0.44 || 0.12 | 0.09 || 0.06 | 0.05 || 0.03 | 0.02
0 245.36 | 36.88 | 0.67 || 0.00 | 0.00 || -0.03 |-0.02 || 0.00 | 0.00
1 228.21 | 39.03 | 0.45 | -0.03 | -0.02 || -0.01 | -0.00 | -0.03 | -0.03
2 117.71 | 14.95 | 091 || -0.06 | -0.05 || -0.02 | -0.02 || -0.02 | -0.01
S
Dl 3 220.38 | 29.35 | 0.50 || 0.06 | 0.04 || -0.01 | -0.01 || 0.01 | 0.01
o
6%\)/ 4 164.27 | 21.44 | 0.78 || 0.01 | 0.00 || 0.03 | 0.03 || 0.01 | 0.01
5 199.99 | 26.35 | 0.88 || -0.03 | -0.02 || 0.08 | 0.07 || -0.01 | -0.01
mean || 19599 | 28.00 | 0.70 || -0.01 | -0.01 || 0.01 | 0.01 || -0.01 | -0.00
std 47.37 9.15 | 0.19 || 0.04 | 0.03 || 0.04 | 0.04 || 0.02 | 0.01
0 743.84 | 99.74 | 0.82 || 0.20 | 0.16 || 0.10 | 0.08 || 0.05 | 0.04
1 983.79 | 150.34 | 0.15 || 0.25 | 0.21 || -0.01 | -0.01 || -0.01 | -0.01
. 2 705.02 | 92.86 | 0.85 || 0.27 | 0.22 | -0.01 | -0.01 || -0.02 | -0.02
®$oo 3 1013.64 | 148.17 | 0.53 || 0.17 | 0.13 || -0.03 | -0.02 || 0.03 | 0.03
4 538.51 | 7442 | 0.55 || 0.18 | 0.13 || -0.00 | -0.00 | -0.00 | -0.00
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spectrum synch. P-P caus. P-A caus.
model run L1 rms | corr. || corr. | ARI || corr. | ARI || corr. | ARI
mean || 79696 | 113.11 | 0.58 || 0.21 | 0.17 || 0.01 | 0.01 || 0.01 | 0.01
std 19995 | 34.28 | 0.28 || 0.04 | 0.04 || 0.05 | 0.04 || 0.03 | 0.02
0 49499 | 68.81 | 0.06 || -0.04 | -0.03 || -0.03 | -0.02 || 0.00 | 0.00
& 1 22248 | 3043 | 0.79 || 0.00 | 0.00 || 0.04 | 0.03 || 0.09 | 0.08
Q}QOC 2 150.15 | 23.49 | 0.79 || 0.17 | 0.14 | -0.02 | -0.01 || -0.00 | -0.00
> mean || 289.21 | 4091 | 0.55 || 0.04 | 0.04 || -0.00 | -0.00 || 0.03 | 0.03
std 181.84 | 24.41 | 042 || 0.11 | 0.09 || 0.04 | 0.03 || 0.05 | 0.04
0 306.30 | 41.79 | 0.83 || 0.15 | 0.13 || 0.19 | 0.16 || 0.00 | 0.00
1 320.18 | 46.14 | 0.74 || 0.16 | 0.13 || 0.26 | 0.21 | 0.07 | 0.06
2 333.52 | 47.07 | 0.57 || 0.11 | 0.09 || 0.12 | 0.10 || 0.00 | 0.00
§\% 3 215.04 | 26.69 | 097 || 030 | 0.25 || 0.24 | 0.21 | 0.02 | 0.02
C’O 4 297.87 | 4997 | 0.78 || 0.17 | 0.15 || 0.18 | 0.15 | 0.00 | 0.00
5 39794 | 5547 | 0.84 || 0.09 | 0.07 || 0.41 | 0.36 || -0.01 | -0.01
mean || 311.81 | 4452 | 0.79 || 0.16 | 0.14 || 0.23 | 0.20 || 0.01 | 0.01
std 59.24 9.84 | 0.13 || 0.07 | 0.06 || 0.10 | 0.09 || 0.03 | 0.02
0 337.05 | 43.68 | 0.04 || 0.21 | 0.18 || 0.25 | 0.22 || -0.01 | -0.01
1 319.58 | 4220 | 0.14 || 0.27 | 0.23 || 0.19 | 0.16 | 0.02 | 0.01
2 296.14 | 37.78 | 0.09 || 0.17 | 0.14 || 0.21 | 0.17 | -0.00 | -0.00
3 28590 | 3743 | 0.15 || 0.15 | 0.12 || 0.13 | 0.10 | -0.02 | -0.02
4 285.07 | 39.34 | 031 || 0.17 | 0.13 || 0.24 | 0.19 || 0.06 | 0.05
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spectrum synch. P-P caus. P-A caus.
model run L1 rms | corr. || corr. | ARI || corr. | ARI || corr. | ARI
5 156.01 | 20.67 | 0.75 || 0.14 | 0.12 || 0.25 | 0.21 || -0.00 | -0.00
6 282.05 | 39.05 | 0.10 || 0.19 | 0.16 || 0.25 | 0.22 | -0.02 | -0.02
7 235.25 | 28.30 | 0.46 | 0.12 | 0.08 || 0.17 | 0.14 | 0.02 | 0.02
8 326.29 | 4256 |-0.02 | 0.21 | 0.18 || 0.17 | 0.14 || -0.02 | -0.02
9 253.06 | 3393 | 033 || 0.14 | 0.10 || 0.19 | 0.17 | -0.03 | -0.03
mean || 271.04 | 3570 | 0.26 || 0.18 | 0.14 || 0.20 | 0.17 || -0.00 | -0.00
std 51.74 711 | 024 || 0.05 | 0.04 || 0.04 | 0.04 || 0.03 | 0.02
0 188.47 | 26.30 | 0.66 || -0.01 | -0.01 || 0.07 | 0.06 || 0.10 | 0.09
1 266.38 | 33.23 | 0.37 || 0.12 | 0.10 || -0.01 | -0.00 || -0.01 | -0.01
2 155.07 | 20.38 | 0.77 || -0.02 | -0.01 || 0.01 | 0.01 || -0.02 | -0.01
3 158.04 | 23.95 | 0.68 || 0.01 | 0.01 || 0.03 | 0.02 || -0.02 | -0.02
4 153.50 | 20.97 | 0.76 || 0.01 | 0.01 || 0.03 | 0.03 || 0.04 | 0.03
@Q’@ 5 14696 | 20.43 | 0.79 || 0.04 | 0.04 || 0.08 | 0.07 || -0.01 | -0.01
Cé\eo 6 29490 | 4098 | 0.70 || -0.05 | -0.04 || 0.02 | 0.01 || 0.02 | 0.01
7 231.63 | 33.85 | 0.36 || 0.00 | 0.00 || 0.13 | 0.11 | 0.02 | 0.02
8 189.17 | 23.66 | 0.71 || 0.03 | 0.02 || 0.04 | 0.03 || 0.02 | 0.02
9 252.70 | 3198 | 0.45 || 0.02 | 0.02 || 0.04 | 0.03 || -0.01 | -0.01
mean || 205.37 | 27.72 | 0.62 || 0.02 | 0.01 || 0.04 | 0.03 || 0.00 | 0.00
std 56.79 746 | 0.18 || 0.05 | 0.04 || 0.04 | 0.03 || 0.02 | 0.02
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TaBLE A.3.| Measures of similarity between observed Nifio 3.4 time series and mod-
elled within the CMIP5 framework. The first three columns reflect similarity of the
spectra using L1 distance, L2 distance (root-mean-square, rms), and Pearson’s corre-
lation (corr.), then two columns measuring the similarity of phase synchronisation
(synch.) maps (corr. and adjusted rand index — ARI) and the same measures for
phase-phase causality (P-P caus.), and phase-amplitude causality (P-A caus.) maps.
The ensemble means for the models also shown in Fig.
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