
MASTER THESIS
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1. Introduction

1.1 Motivation
The information age, in which we now live, relies on computers and electronic de-
vices based on semiconductors. The discovery of semiconductors in 20th century
caused technological revolution from transistor to semiconductor laser. Semicon-
ductors now have many applications one of them are radiation detectors, which
can directly convert radiation to electric signal thus having superior energy reso-
lution compared to other radiation detectors like scintillators. Another advantage
is short charge collection time, which is affected by drift mobility and distance of
electrodes. The quality of the detector depends on its preparation and transport
properties of used material. An enormous effort was taken to understand the
principles of charge transport. Many approaches were found from which one uses
drift-diffusion equation in combination with continuity equation to model charge
transport. Standard experimental methods for testing radiation detectors such as
spectroscopic measurement gives only information about collected charge, which
is proportional to the energy of detected radiation and applied bias [1]. This type
of measurement gives no information about charge dynamics, which is needed
to distinguish the contribution of charge trapping and space charge effect. More
advanced method has to be used for investigation of the detector performance.

1.2 Transient Current Technique
One of the powerful methods to study charge transport in semiconductors is Tran-
sient Current Technique (TCT), which belongs to the family of Time-of-Flight
methods based on measuring current response of the semiconductor detector to
the external event (impact of alpha particle, electron, laser pulse, etc.) generat-
ing electron-hole (e-h) pairs near under the bombarded electrode [2]. Since TCT
gives a current dependence on time, much more information about charge trans-
port can be obtained. For example internal electric field, drift mobility, charge
collection efficiency (CCE) and parameters of trap levels. Laser-induced Tran-
sient Current Technique (L-TCT) is based on above band-gap laser pulse used
as an external source generating e-h pairs. Possibility of triggering on laser pulse
significantly decreases noise compared to untriggered sources like alpha particle.
L-TCT is the main method used in the experimental part of this thesis to obtain
detector transport properties.
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1.3 Basic properties of GaAs and CdZnTe
One of the materials suitable for radiation detection are Gallium Arsenide (GaAs)
and Cadmium Zinc Telluride (CdZnTe). GaAs is III-V compound semiconduc-
tor with direct band-gap, which crystallizes in zinc-blende structure (see figure
1.1). GaAs is studied for more than 40 years and has many applications such
as microwave frequency integrated circuits, solar cells and laser diodes [3]. The
preparation of high quality detector grade material was not possible until recently.
New semiinsulating chromium compensated GaAs single crystals suitable for ra-
diation detection recently appeared [4]. Selected properties of GaAs are shown
in table 1.1. CdZnTe is II-VI compound semiconductor with direct band-gap,
which crystallizes in zinc-blende structure (see figure 1.1). CdZnTe has chemical
formula Cd1−xZnxTe where x ≈ 0.1 for material used in this work). It is the state
of the art material for radiation detection because it has high atomic number
resulting in high probability of photoelectric effect, high density giving it high
absorption coefficient, high resistivity and wide band-gap, which allow CdZnTe
to operate at room temperature. Selected properties of CdZnTe are shown in
table 1.1.

Figure 1.1: Zinc-blende crystal structure

Table 1.1: Properties of GaAs and CdZnTe at room temperature [5].
Material GaAs Cd0.9Zn0.1Te
Atomic number 31, 33 48, 30, 52
Density (g/cm3) 5.32 6.2
Band-gap (eV) 1.43 1.5
e-h pair production energy (eV) 4.2 4.43
Resistivity (Ωcm) 108 1011

Electron mobility µe (cm2/Vs) 8000 1100
Hole mobility µh (cm2/Vs) 400 100
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1.4 The goal of this thesis
This thesis is focused on the development of fast and reliable method for char-
acterization of detector-grade material and the quality of prepared detectors.
Several authors have reported theoretical calculations for special configurations
of a detector with trap centers without space charge effects [6], [7], [8]. Examples
of analytic solution of drift-diffusion equation are shown in chapter 2. Analytic
solutions are important for the insight into properties of current waveforms and
for comparison with numerical methods. To study current waveforms of detector
with more than one trap level and space charge effects, numerical methods must
be used. Complete numerical solution of one dimensional (1D) drift-diffusion
equation and Poisson equation is given in [9]. These calculations are slow and
not useful for fast exploration of possible parameter values needed to fit experi-
mental data. In this thesis Monte Carlo (MC) simulation of 1D charge transport
is proposed. This simulation is based on the concept shown in [10]. Goal of this
thesis is to expand mentioned concept to include arbitrary internal electric field
profile, effects of diffusion, wavelength of excitation laser pulse and other parame-
ters (see chapter 3). Proposed MC simulation is verified using analytical solution
and applied to fit experimental L-TCT data for GaAs and CdZnTe detectors from
which transport parameters are found (see chapter 5).
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2. Theory

2.1 Charge transport equations
When treating the charge transport phenomena in semiconductor detectors it is
useful to start with the continuity equation

∂n

∂t
= 1

e
∇ · j⃗e + GR, (2.1)

where n is the concentration of electrons in the conduction band, e is the ele-
mentary charge, j⃗e is the electron current density and GR represents the electron
generation and recombination. Electron current density can be evaluated from
the drift-diffusion equation for constant temperature

j⃗e = enµeE⃗ + eDe∇n, (2.2)

where the first term is a drift part and the second is a diffusion part, µe is the
electron mobility, E⃗ is the electric field intensity and De is the diffusion coefficient
for electrons related to mobility by the Einstein relation

De = kBT
e

µe, (2.3)

where kB is Boltzmann constant and T is the absolute temperature [11]. Ana-
logical equations for holes can be found letting e→ −e, µe → −µh.

2.2 Assumptions
We assume throughout the all text that the detector is rectangular with two pla-
nar opposite electrodes with the distance L between them. Next assumption is
that the size of electrodes is much greater than L, which allows us to simplify cal-
culations by working only in one spatial dimension which is parallel with electric
field and labeled as x-coordinate. The irradiated area on the electrode is near its
center so the electric field is homogeneous across the area and perpendicular to
it. Described detector geometry is shown in figure 2.1.

Another assumption is that drift mobility µ is space and time independent.
Electrons are considered noninteracting and photogenerated charge is small so its
effect on the electric field is neglected. We use sign convention,

j⃗ = −jx̂, E⃗ = −E x̂, E = dϕ

dx
, (2.4)

where x̂ is the unit vector in the direction of x-axis, j⃗ is the current density,
j =

⏐⏐⏐⃗j⏐⏐⏐, E⃗ is the electric field intensity, E =
⏐⏐⏐E⃗ ⏐⏐⏐ and ϕ(x) is the electric potential

[12]. All formulas are calculated for electrons only, for holes analogical formulas
can be found. For the simplification of later used formulas we define the boxcar
function χ[0,x1](x)

χ[0,x1](x) = Θ(x)−Θ(x− x1) =

⎧⎨⎩1 0 ≤ x ≤ x1

0 otherwise,
(2.5)

6



where Θ(x) is the Heaviside unit step function

Θ(x) =

⎧⎨⎩0 x < 0
1 x ≥ 0.

(2.6)

x = Lx = 0
Cathode Anode

Ground

Laser pulse

E Electric field Ground

x = Lx = 0
Cathode Anode

Laser pulse

Bias

Bias

Figure 2.1: Left: Scheme of the detector with two planar electrodes which are
depicted with gold color. Right: 1D model of detector, where electrons and holes
can move only along x-axis. The vertical dimension is only for visualization of
electrons and holes.
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2.3 Shockley-Ramo theorem
A single carrier moving a distance ∆x between two parallel electrodes, in a di-
rection parallel to the electric field induces, at the electrodes, a charge ∆Q given
by [13]

∆Q = e
∆x

L
, (2.7)

where L is the distance between electrodes. The total induced current I(t) (also
called current waveform) is the time derivative of (2.7) summed over all drifting
carriers

I(t) = Q(t)v(t)
L

, (2.8)

where Q is the moving charge and v is the velocity of the moving charge. The
equation (2.8) is a special case of the Shockley-Ramo theorem [14] for the geom-
etry described in section 2.2. The equation (2.8) can be generalized for different
electrodes configuration [14].

2.4 Charge drift
If the electric field intensity is constant E(x) = E0, then the drift velocity v0 =
µeE0 is constant and if we neglect the charge generation-recombination GR = 0
and the diffusion De = 0, then from (2.1) and (2.2) we get simple one dimensional
transport equation

∂n(x, t)
∂t

= −v0
∂n(x, t)

∂x
. (2.9)

Solution of (2.9) is
n(x, t) = n0(x− v0t), (2.10)

where n0(x) is the initial charge distribution [15]. The expression in (2.10) simply
states that the initial electron cloud n0(x) moves with the constant drift velocity
v0. In this case no changes of electron cloud shape occur. Let’s assume the
detector with two planar opposite electrodes with the distance L between them.
In t = 0 sharply localized photogenerated electron cloud at the cathode (x = 0)
is

n0(x) = N0δ(x), (2.11)
where N0 is the initial number of electrons in the conduction band and δ(x) is
the Dirac delta function. The time evolution of n(x, t) is from (2.10)

n(x, t) = N0δ(x− v0t)χ[0,L](x), (2.12)

where boxcar function χ[0,L](x) represents charge collection at the cathode x = 0
and the anode x = L. Electron cloud n(x, t) drifts through the detector with its
center xC(t) = v0t moving with constant drift velocity, until the cloud arrives at
the collecting electrode xC(TR) = L in time TR called the default transit time,
which is defined by

TR = L

v0
= L

µeE0
= L2

µeU
, (2.13)

where U = E0L is the applied bias. The default transit time TR is used in all text
as comparative time even for detectors where the mentioned assumptions might
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not hold. We shall also define actual transit time tr or simply transit time, which
includes effects of varying electric field in the detector, detrapping phenomena
and diffusion, which might be different form TR. The total moving charge Q(t)
is given by

Q(t) = −e
∫

n(x, t)dx, (2.14)

and using (2.12) we get

Q(t) = −eN0χ[0,TR](t) = Q0χ[0,TR](t), (2.15)

where Q0 = −eN0 is the initial photogenerated charge. It is important to note
that the integral of the delta function δ(x− v0t) is nonzero for t ∈ [0, TR] (which
follows from TR = L/v0). The boxcar χ[0,TR](t) in (2.15) represents the collection
of charge in time domain. From the Shockley-Ramo theorem (2.8) using (2.13)
and (2.15) the current response to the electron cloud movement is

I(t) = Q(t)v0

L
= Q0

TR

χ[0,TR](t) = I0χ[0,TR](t), (2.16)

where I0 = Q0
TR

is the default current amplitude, which will be used through the
text to normalize current waveforms in graphs. The electron drift and normalized
current waveforms are illustrated in the figure 2.2. Initially in t = 0 the electron
cloud n0(x) ∝ δ(x) is the delta function and drifts in the constant electric field to
the anode x = L for time TR. Electron cloud (2.11) is a convenient approximation
of a localized electron cloud, which is near under the cathode and has the full
width at half maximum FWHM ≪ L. Current waveform (2.16) can be gener-
alized to include absorption profile of generating laser pulse, as a convolution of
solution for δ(x) (2.16) and Lambert-Beer law

Il(x) = Il0 exp (−αx) , (2.17)

where Il, Il0 is the light intensity and α is the absorption coefficient.

x

n

t = TRt = 0

Drift

xC(t) = v0t

E0

Electric field

xC = LxC = 0

Cathode Anode

U
Ground

Shockley-Ramo theorem

I(t) = Q(t)v(t)
L

0
0

Drift only
I/I0

1

t/TR1

Figure 2.2: Left: Scheme of the detector and the electron cloud. Electrons drift
through the bulk towards the anode with drift velocity v0 = µeE0. Left bottom:
Electron concentration at t = 0 and t = TR is represented by red Gaussian
approximation curve. Right: Normalized current waveform, which is related to
the motion of charge carriers via the Shockley-Ramo theorem.
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2.5 Charge transport with diffusion
In case of diffusion De ̸= 0, and if we neglect the charge generation-recombination
GR = 0, we get from (2.1) and (2.2) equation

∂n(x, t)
∂t

= −v0
∂n(x, t)

∂x
+ De

∂2n(x, t)
∂x2 . (2.18)

This equation is a special case of Einstein-Kolmogorov equation for Brownian
motion with constant diffusion coefficient and drift velocity [15]. The solution of
equation (2.18) is found by coordinate transform

X = x− v0t (2.19)
T = t. (2.20)

Partial derivatives in (2.18) can be rewritten using (2.19),(2.20) and the chain
rule to

∂

∂x
= ∂

∂X

∂X

∂x
+ ∂

∂T

∂T

∂x
(2.21)

∂

∂t
= ∂

∂X

∂X

∂t
+ ∂

∂T

∂T

∂t
, (2.22)

equation (2.18) becomes diffusion equation

∂n(X, T )
∂T

= De
∂2n(X, T )

∂X2 , (2.23)

which has Green’s function [15]

G(X, T ) =
( 1

4πDeT

)1/2
exp

(
− (X)2

4DeT

)
Θ(T ). (2.24)

Transforming Green’s function (2.24) backwards from X, T to x, t gives

G(x, t) =
( 1

4πDet

)1/2
exp

(
−(x− v0t)2

4Det

)
Θ(t), (2.25)

which is the final Green’s function for equation (2.18), where the second term is
the Gaussian function with its center x − v0t moving with constant velocity v0.
General solution of (2.18) is equal to a convolution of Green function G(x, t) and
initial electron cloud n(x, t) [15]

n(x, t) = G ∗ n0(x) =
∫ +∞

−∞
G(x− y, t)n0(y)dy. (2.26)

If the initial electron cloud is the delta function n0(x) = N0δ(x) then the solution
of (2.18) is the Green function itself since the delta function acts as identity in
convolution. Electron cloud is then

n(x, t) = N0 Θ(t)
( 1

4πDet

)1/2
exp

(
−(x− v0t)2

4Det

)
χ[0,L](x), (2.27)

10



where the boxcar function χ[0,L](x) represents the charge collection at the cathode
x = 0 and the anode x = L. The current is obtained in analogical way to section
2.4.

I(t) = Q0

TR

Θ(t)
( 1

4πDet

)1/2 ∫ L

0
exp

(
−(x− v0t)2

4Det

)
dx. (2.28)

Integral of the Gaussian function is the Error function defined as

erf (x) = 2√
π

∫ x

0
exp

(
−s2

)
ds. (2.29)

Error function is an odd function and is constrained by a pair of horizontal
asymptotes y = ±1, which is shown in the figure 2.3. With this function the
current (2.28) can be analytically computed

I(t) = Q0

TR

Θ(t)1
2

[
erf

(
L− v0t√

4Dt

)
+ erf

(
v0t√
4Dt

)]
. (2.30)

Center of the electron cloud xC = v0t moves with the velocity v0 = µeE0. The
electron cloud itself broadens, which is caused by diffusion. Diffusion smears the
transient edge but leaves the transit time tr same as the default transit time
TR, which correspond to arrival of the center of the electron cloud xC . The
transport and diffusion of electron cloud is illustrated in figure 2.4. The current
waveform (2.30) is similar to (2.16) for carrier drift, except the boxcar function
χ[0,TR](t) in (2.16) is replaced with the sum of two Error functions in (2.30). The
current waveform (2.30) is correct for t ≫ 0 when the electron cloud drifted to
the anode and is far from the cathode. For time t ≈ 0, some electrons might
diffuse to the cathode and recombine there. This effect can be included into the
model of surface recombination, which is described in section 2.9. Diffusion has
to be included to the analysis of all current waveforms for precise determination
of transport parameters (transit time, etc.). However, in the following sections,
diffusion will be neglected for simplification of the current waveform analysis, and
is included in Monte Carlo simulation presented in chapter 3.

x
0

1.0

−1.0

21−1−2 3−3

y 0.0

0.5

−0.5

erf(x)

Figure 2.3: Plot of the Error function.

11



t/TR1

I/I0

0
0

1

No Diffusion
Diffusion

x

n

t = 0
xC = 0

t = TR

xC = L
t = TR/2
xC = L/2

Drift n(x, t)

Figure 2.4: Left: Evolution of the electron cloud n(x, t). The red curve represents
the case with no diffusion and the blue curve is with diffusion. Right: Normalized
current waveforms for the detector with diffusion included (blue curve) or not
included (red curve).

2.6 Charge trapping and detrapping
One of the most critical factors influencing the performance of semiconductor de-
tectors is the presence of trapping centers resulting in decreasing collected charge
and dropping resolution of a detector. Trapping process is a process in which an
electron (hole) is captured by a center and then has a much greater probability
of being thermally re-emitted into the conduction (valence) band than of recom-
bining with a hole (electron) that is captured by the same center [16]. Therefore
when a uniform distribution of trapping centers is present inside the material,
trapping and detrapping processes can be described by the trapping time τT (av-
erage time when a carrier is free before it is trapped), and the detrapping time τD

(average time spent in the trap by a captured carrier before its release). Trapping
time and detrapping time are respectively defined as [13]

τT = 1
NT σcvth

, (2.31)

τD = 1
NCσcvth

exp
(

ET

kBT

)
. (2.32)

Here NT is the trap concentration, σc the capture cross section, vth the thermal
velocity of carrier, NC the effective density of states in the conduction band, ET

trap energy in the band-gap, kB is the Boltzmann constant and T is the absolute
temperature of the detector. We assume non-degenerate statistics and that most
of the traps remain empty, allowing a constant trapping and detrapping time to
be defined [7]. Processes of electron trapping and detrapping in band diagram
are depicted in figure 2.5
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EC

EV

Trapping Detrapping

τT τD

ET

Figure 2.5: Band diagram of electron trap with energy ET . Processes of trapping
and detrapping (marked with arrow) are characterized by the trapping time τT

and the detrapping time τD, respectively.

2.6.1 One shallow and one deep electron trap
Let’s assume the detector with one shallow and one deep electron trap level. The
trap level with smaller detrapping time is labeled with S and called the shallow
trap, in the sense that both trapping and detrapping time τT S, τDS are similar or
less TR thus repeated trap-detrap events can occur. The trap level with greater
detrapping time is labeled with D and called the deep trap, in the sense that
thermal release of captured carriers is not probable in a time interval equal to
TR, this means that τDD ≫ TR, where τDD is the detrapping time of the deep trap
level. The trapping time of the deep level is labeled τT D. Important processes of
electron trapping and detrapping are depicted in figure 2.6.

EC

EV

τDS/TR < 10
Shallow trap

τTS τDS

τDD/TR 1
Deep trap

τTD τDD

Figure 2.6: Band diagram with shallow and deep trap. Process of trapping and
detrapping (marked with arrow) are characterized by the trapping time τT S, τT D

and the detrapping time τDS, τDD respectively. In case of the deep trap, the
detrapping time τDD is much larger than the default transit time TR and thus
detrapping from deep trap is neglected.

Investigation of charge trapping and detrapping was done in [6] where current
transients were calculated using continuity equation and Poisson’s equation. Our
approach is different in direct use of kinetic equations for two level system, which
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leads to the solution in easier and more straightforward way. Similar approach
when only one trap center is present in the detector was shown in [16]. The
kinetic equations for two level model is given for t < TR by

dn

dt
= − n

τT S

+ nS

τDS

− n

τT D

(2.33)

dnS

dt
= n

τT S

− nS

τDS

(2.34)

dnD

dt
= n

τT D

, (2.35)

where n is the concentration of electrons in the conduction band, nS is the con-
centration of electrons in the shallow trap, nD is the concentration of electrons in
the deep trap. For time t > TR some electrons can be collected on the anode and
corresponding term must be added to (2.33) together with spatial dependence,
which will be shown in chapter 3. Sum of all three equations (2.33)-(2.35) gives:

d(n + nS + nD)
dt

= 0, (2.36)

which is a simple statement of conservation of electrons in the detector. Integra-
tion of (2.36) yields

n + nS + nD = const. = n0, (2.37)
where n0 is the initial concentration of electrons in the detector. Inserting (2.37)
into (2.33) gives

dn

dt
+ n

( 1
τC

)
= n0

τDS

− nD

τDS

, (2.38)

where
1
τC

= 1
τT S

+ 1
τT D

+ 1
τDS

. (2.39)

Differentiation of (2.38) with respect to time gives

d2n

dt2 + dn

dt

1
τC

+ dnD

dt

1
τDS

= 0, (2.40)

and substitution of (2.35) into (2.40) gives

d2n

dt2 + dn

dt

1
τC

+ n
1

τT DτDS

= 0. (2.41)

This is a second order linear homogeneous differential equation that has charac-
teristic equation

Λ2 + 1
τC

Λ + 1
τT DτDS

= 0. (2.42)

This characteristic equation has two roots given by the discriminant formula

Λ1,2 =
− 1

τC
±
√

1
τ2

C
− 4 1

τT DτDS

2 . (2.43)

Discriminant in (2.43) is equal to

1
τ 2

C

− 4 1
τT DτDS

= 1
τ 2

T S

+ 2
( 1

τT SτT D

+ 1
τT SτDS

)
+ 1

τ 2
T D

+ 1
τ 2

DS

− 2
τT DτDS

, (2.44)
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where the sum of last three terms in (2.44) is

1
τ 2

T D

+ 1
τ 2

DS

− 2
τT DτDS

=
( 1

τT D

− 1
τDS

)2
≥ 0, (2.45)

and thus the discriminant (2.44) is greater than 0, which implies two distinct
values of Λ in (2.43). The general solution of (2.41) is

n(t) = n0 [A exp (Λ1t) + B exp (Λ2t)] , (2.46)

where A and B are determined from initial conditions. In t = 0 there are no
electrons trapped nD(0) = 0 and nS(0) = 0, from (2.37) which implies n(0) = n0
we get equation

A + B = 1. (2.47)
From (2.38) for t = 0 with knowledge of nD(0) = 0 and from (2.46) it follows

A = 1
2

⎛⎝1 +
1

τDS
− 1

τt√
1

τ2
C
− 4 1

τT DτDS

⎞⎠ , (2.48)

where τt is defined by
1
τt

= 1
τT S

+ 1
τT D

. (2.49)

B is determined from

B = 1
2

⎛⎝1−
1

τDS
− 1

τt√
1

τ2
C
− 4 1

τT DτDS

⎞⎠ , (2.50)

It can be shown that ⏐⏐⏐⏐⏐⏐
1

τDS
− 1

τt√
1

τ2
C
− 4 1

τT DτDS

⏐⏐⏐⏐⏐⏐ < 1, (2.51)

from which A, B ∈ [0, 1]. It is also important that Λ1,2 < 0, which follows directly
from (2.43). Thus the solution (2.46) can be rewritten into more useful form

n(t) = n0

[
A exp

(
− t

τ1

)
+ B exp

(
− t

τ2

)]
, (2.52)

where τ1, τ2 are characteristic times, which are always positive and defined by

τ1 = − 1
Λ1

and τ2 = − 1
Λ2

. (2.53)

Solution in form (2.46) or (2.52) has always decreasing slope, which reflects the
loss of free charge due to trapping into the deep trap, which on the time scale
of TR doesn’t release electrons back to the conduction band. This solution fully
describes trapping and detrapping phenomena under mentioned conditions for
0 ≤ t ≤ TR. The concentration of electrons in the conduction band n(t) (2.52)
is connected to the current waveform I(t) via the Shockley-Ramo theorem (2.8)
and using (2.14) we get

I(t) = Q0

TR

[
A exp

(
− t

τ1

)
+ B exp

(
− t

τ2

)]
, (2.54)
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which is the desired current waveform for time 0 ≤ t ≤ TR. Normalized current
waveforms (2.54) of the detector with the shallow trap τT S/TR ≈ 1/4, τDS/τS ≈
1/10 and the deep trap τT D/TR ≈ 1/10 is depicted in figure 2.7. For time t >
TR some electrons can be collected on the detector anode and the system of
differential equations (2.33)-(2.35) must be changed, analytical solution does not
exist and Monte Carlo simulation can be used for current waveform analysis,
which is described in chapter 3.

t/TR1

I/I0

0
0

1 No Trapping
One shallow and
one deep trap

Figure 2.7: Normalized current waveform of the detector with one shallow and one
deep trap, which is the sum of two exponential decays (blue curve) and current
waveform for the detector without traps, which is a constant function (red curve).
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2.6.2 One deep electron trap
Let’s assume a detector with only one deep trap with trapping time τT D and no
detrapping (detrapping time τDD ≈ +∞) [16]. This allows us to write

GR = −n(x, t)
τT D

. (2.55)

If we neglect diffusion De = 0 then from (2.1) and (2.2) using (2.55) we get
transport equation with decay:

∂n(x, t)
∂t

= −v0
∂n(x, t)

∂x
− n(x, t)

τT D

. (2.56)

General solution of (2.56) n(x, t) is

n(x, t) = n0(x− v0t) exp
(
− t

τT D

)
Θ(t), (2.57)

where n0(x) = n(x, t = 0) is the initial charge distribution. This solution de-
lineates the fact of charge transport with losses due to trapping. The current
waveform is obtained in a similar way to the case with charge drift only (see
section 2.4), the only difference is that Q0 in (2.16) is replaced with

Q(t) = Q0 exp
(
− t

τT D

)
, (2.58)

from which
I(t) = Q0

TR

exp
(
− t

τT D

)
χ[0,TR](t), (2.59)

where the only difference from (2.16) is the exponential decay representing the
loss of charge due to trapping. The solution (2.59) can be also found as a special
case of solution (2.54) for the sample with one shallow and one deep trap in
subsection 2.6.1 by letting τT S → +∞. Illustration of current waveforms for
several values of τT D is shown in figure 2.8.

t/TR1

I/I0

0
0

1 τTD/TR 1
τTD/TR ≈ 2
τTD/TR ≈ 1
τTD/TR ≈ 1/2
τTD/TR ≈ 1/10

Figure 2.8: Normalized current waveforms of the detector with one deep trap.
The red curve is the limit example with no trappping for comparison with the
exponential decay of waveforms that ends at t = TR when the electron cloud is
collected.
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2.7 Electric field profile
The spatial dependence of the electric field intensity (electric field profile) inside
the detector is very important for charge transport since it directly affects the
drift velocity. In the most simplified case when the space charge density in the
detector ρ(x) = 0, the electric field profile is constant E(x) and space independent
inside the detector [17].

2.7.1 Constant space charge
When the the space charge density ρ(x) = ρ0 is constant in the whole detector,
the electric field E(x) can be easily calculated from the Gauss law∮

D⃗ · dA⃗ = Qs, (2.60)

where D⃗ = εrε0E⃗ is the electric displacement field, ε0 is the vacuum permittivity,
εr is the relative permittivity of used material and Qs is the charge inside the
closed surface over which we integrate. If we assume that the size of the detector
electrodes is much greater than the distance L between them, we can treat the
detector as one dimensional (x-axis). From this geometry, the electric field is
perpendicular to electrodes and the only nonzero contribution to the integral in
(2.60) is through electrodes. The electric field inside the detector (0 ≤ x ≤ L) is
then [17]

E(x) = (−x + L

2 ) eρ0

εrε0
, (2.61)

where we used our sign convention from section 2.2 that E⃗ = −E x̂. The figure
2.9 illustrates the detector and the internal electric field.

x

E

E Electric field

L0

Cathode Anode

U
Ground

ρSpace charge

eρ0L
2εrε0

− eρ0L
2εrε0

0

Figure 2.9: Scheme of the detector with constant space charge density and the
electric field profile in the detector (blue line).
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The equation (2.61) can be rewritten into

E(x) = E0 −
eρ0

εrε0
x = E0 − ax, (2.62)

where E0 is the electric field at x = 0 and a is the slope of the electric field

a = eρ0

εrε0
. (2.63)

The electric field field satisfies

U =
∫ L

0
E(x)dx. (2.64)

Initial constant space charge in the detector cannot be sustained without applied
bias (U = 0) at equilibrium and is neutralized [13]. If U > 0, the space charge
can be sustained at equilibrium, but wherever the electric field before equilibrium
is less than zero (the space charge screens out the bias completely), the inactive
layer is formed. Inactive layer is a region inside the detector where the electric
field is almost zero (small value of electric field is required from the continuity
equation). The space charge in the inactive layer is quickly compensated by the
free charge and at equilibrium the space charge disappears from this region [9].
The equation (2.62) has to be changed into equation

E(x) = max(E0 − ax, 0), (2.65)

which is valid even in presence of the inactive layer [18]. From (2.64) the value
of E0 can be found, which is dependent on the value of a for given bias U . Let’s
analyze the limit case when E(L) = 0 and nonzero for 0 ≤ x < L for given bias
U [19]. From (2.65) this happens when E0 − aML = 0. Using equation (2.64) we
get

aM = 2U

L2 , (2.66)

where aM is the slope of the electric field for which the inactive layer starts to
form. For a > aM inactive layer is formed and for −aM < a < aM there is nonzero
electric field in whole detector and no inactive layer exist inside the detector. For
a < −aM the inactive layer is under cathode. The position of inactive layer and
active region boundary W can be found from relation for bias U (2.64) to be

W =

⎧⎨⎩min(
√

2U
|a| , L) a > 0

max(L−
√

2U
|a| , 0) a < 0,

(2.67)

from which the width of the inactive layer is L−W for a > 0 and W for a < 0.
The aM and W are very important in the electric field analysis, which is shown
in the figure 2.10, where red curve represent the case when a = 0 and detector
has no space charge, green curve represents the case when a = aM = 2U/L2 and
inactive layer starts forming at W = L. For a > aM inactive layer appears W < L
(orange curve). For −aM < a < 0 the electric field is increasing (purple and cyan
curves). For 0 < a < aM the electric field is decreasing (orange, green and blue
curves). For a < −aM inactive layer appears under cathode and no electrons can
move though the detector since the inactive layer prevents it at x = 0 (purple
curve).
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x

E

0 LW

a = 0

a > 0
a = aM

a < 0

a < −aM

a > aM

L/2

x

ρ

0 LL
2

Inactive layer

W

Inactive layer

Figure 2.10: Left: Space charge densities for different values of a and the same
bias U . Right: Electric field profiles.

The current waveform will be derived in a similar way to [20]. The general kinetic
differential equation for electron position as a function of time is

v(t) = dx

dt
= ẋ(t) = µeE(x(t)). (2.68)

For linear electric field (2.65) for |a| < aM . The equation (2.68) has form

ẋ(t) = µe(E0 − ax), (2.69)

and has solution
x(t) = C exp (−µeat) + E0

a
, (2.70)

where C is determined from boundary condition x(0) = 0 from which C = −E0/a
and position x(t) is

x(t) = E0

a
(1− exp (−aµet)) . (2.71)

We assume here that the electron cloud arrives to the anode and is collected at
transit time tr . This is equivalent to x(tr) = L and from (2.71) using the relation
(2.64) for bias U = E0L−aL2/2 and definition of aM (2.66) the transit time tr is

tr = 1
aµe

ln
( E0

E0 − aL

)
= 1

aµe

ln
⎛⎝1 + aL2

2U

1− aL2

2U

⎞⎠ = 1
aµe

ln
⎛⎝1 + a

aM

1− a
aM

⎞⎠ , (2.72)

where aM = 2U
L2 is the maximum slope for which there is no inactive layer in the

detector. From the last term in (2.72) it is evident that the transit time is finite
for −aM < a < aM , infinite for a = aM , and is not well defined for a > aM since
the electron cloud never arrives to the anode because of the inactive layer. For
−aM ≤ a the inactive layer is under the cathode (x = 0) and the electron cloud
doesn’t move at all so the definition of the transit time has no sense. Transit
time tr > TR for a ̸= 0 and for a → 0 tr → TR = L

µeE0
, which is the default

transit time for the case with the constant electric field. From the knowledge of
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x(t), v(t) = ẋ(t), tr and Q(t) = Q0 (no trapping) we can use the Shockley-Ramo
theorem (2.8) to find the current waveform

I(t) = Q(t)v(t)
L

= Q0E0µe

L
exp (−aµet) χ[0,tr](t). (2.73)

This equation is also valid for a > aM with tr = +∞. To include one deep trap,
Q0 has to be replaced with Q(t) = Q0 exp (−t/τT D) in Shockley-Ramo theorem.
This leads to the current waveform in the final form

I(t) = Q(t)ẋ(t)
L

= Q0E0µe

L
exp

(
−(aµe + 1

τT D

)t
)

χ[0,tr](t). (2.74)

Analysis of current waveforms depending on transit time is shown in the figure
2.11, where the green curve represents the case when a = aM and the inactive
layer starts forming at W = L. For −aM < a < 0 the electric field is increasing
(orange curve) and transit time tr > TR. For 0 < a < aM the electric field is
decreasing (blue curve) and tr > TR. For a = 0 no space charge exist inside the
detector and tr = TR (red curve).

t/TR1

I/I0

0
0

1

a = aM

a > 0

x

E

L0
0

a = 0

Position Timex1

a < 0

a < 0

a = aM

a > 0

a = 0

tr = +∞

tr = TR

tr > TR

tr > TR

Figure 2.11: Left: Electric field for different values of a. Right: Normalized
current waveforms.

2.7.2 Linear space charge profile
Let’s assume a detector with linear profile of space charge density in the whole
volume, which corresponds to the electric field with variable slope a(x)

E(x) = E0 − a(x)x, (2.75)

where
a(x) = E0 − EL

L2 x, (2.76)

where E0 = E(0), EL = E(L). This gives us parabolic electric field

E(x) = E0 −
E0 − EL

L2 x2. (2.77)

Space charge density ρ is found from (2.77) using differential form of the Gauss
law, which is in our sign convention (see assumptions 2.2)

ρ(x) = −εrε0

e

dE(x)
dx

= 2εrε0

e

E0 − EL

L2 x. (2.78)
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Current waveform will be found in similar way to the case with constant space
charge in section 2.7.1 by solving the kinetic equation for electron cloud movement

ẋ(t) = µe

[
E0 −

E0 − EL

L2 x(t)2
]

. (2.79)

This differential equation has analytic solution

x(t) = L

√
E0

E0 − EL

tanh
(

µe

L

√
E0(E0 − EL) t

)
. (2.80)

From (2.80) using identity for hyperbolic tangent

d tanh(t)
dt

= 1− tanh2(t) = 1
cosh2(t)

, (2.81)

we get
ẋ(t) = µeE0

1
cosh2

(
µe

L

√
E0(E0 − EL) t

) . (2.82)

From (2.82) we directly get current waveform using the Shockley-Ramo theorem
(2.8)

I(t) = Q0E0µe

L

1
cosh2

(
µe

L

√
E0(E0 − EL) t

)χ[0,tr](t), (2.83)

where transit time tr is found from x(tr) = L. Normalized current waveforms,
space charge density and electric field are shown in figure 2.12, where red curve
corresponds to case when no space charge is present inside the detector EL = E0
and tr = TR. Blue curve corresponds to intermediate space charge EL ≈ E0/2 and
tr > TR. Green curve corresponds to the limit case when EL ≈ 0 and tr = +∞.
One deep trap can be included into (2.83) by replacing Q0 with Q0 exp (−t/τT D).
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Figure 2.12: Left top: Scheme of the detector with linear profile of space charge.
Right top: Current waveforms. Left bottom: Space charge density. Right
bottom: Internal electric field.

2.7.3 Region of constant space charge
If the space charge is not constant inside the detector the analysis is more compli-
cated. Let’s assume that we have a detector with region with no space charge in
interval x ∈ [0, x1] and constant space charge density for x ∈ [x1, L]. The current
waveform is comprised of two part corresponding to two regions in the detector.
First is drift in constant electric field and and has form

I1(t) = Q0E0µe

L
χ[0,TR1](t), (2.84)

where TR1 = x1/µeE0 is the transit time for the first region with constant electric
field. The second component corresponds to the electron cloud movement through
the region with constant space charge, which was discussed in subsection 2.7.1
and from (2.73) the contribution to current is

I2(t) = Q0E0µe

L
exp (−aµe(t− TR1)) χ[0,tr2](t− TR1), (2.85)

where tr2 is the transit time for the second region found from (2.72), where L is
replaced with L−x1 and a = E0−EL

L−x1
. Transit time for both regions is tr = TR1+tr2.

When we combine both contributions (2.84) and (2.85) we get the total current

I(t) = Q0E0µe

L

[
χ[0,TR1](t) + exp (−aµe(t− TR1)) χ[0,tr2](t− TR1)

]
. (2.86)

Normalized current waveforms, space charge density and electric field are shown
in figure 2.13, where red curve corresponds to case when no space charge is present
inside the detector EL = E0 and tr = TR. Blue curve corresponds to intermediate
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space charge EL ≈ E0/2 and tr > TR. Green curve corresponds to the limit case
when EL ≈ 0 and tr = +∞. Electric field E(x) is constant for x ∈ [0, x1] and
linear function of position for x ∈ [x1, L].

xL0
0

Position x1

Cathode Anode

U
GND

ρSpace charge

t/TR1

I/I0

0
0

1

EL = 0
EL ≈ E0/2
EL = E0

Time

x

E

L0
0

Position x1

ρ

Figure 2.13: Left top: Scheme of the detector with constant space charge den-
sity ρ in region x ∈ [x1, L]. Right top: Normalized current waveforms. Left
bottom: Space charge density. Right bottom: Internal electric field.
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2.7.4 Region of linear space charge
Let’s assume a detector with the region with no space charge in the interval
x ∈ [0, x1] and linear space charge density for x ∈ [x1, L]. The current waveform
comprises of two components corresponding to two regions in the detector, the
analysis is similar to subsection 2.7.3. The first component represents drift of
electrons in constant electric field and has form

I1(t) = Q0E0µe

L
χ[0,TR1](t), (2.87)

where the TR1 = x1/µeE0 is the transit time for the first region with constant
electric field. The second component corresponds to te electron cloud movement
through the region with linear space charge, which was discussed in subsection
2.7.2 and the contribution to current is equal to (2.83), where we replace L in
cosh with length of space charge region L− x1

I2(t) = Q0E0µe

L

1
cosh2

(
µe

L−x1

√
E0(E0 − EL) (t− TR1)

)χ[0,tr2](t− TR1), (2.88)

where tr2 is the transit time for the second region found from (2.80) using x(tr2) =
L − x1. Transit time for both regions is tr = TR1 + tr2. When we combine both
contributions (2.87) and (2.88) we get the total current

I(t) = I1(t) + I2(t). (2.89)

Normalized current waveforms, space charge density and electric field are shown
in figure 2.14, where red curve corresponds to case when no space charge is present
inside the detector EL = E0 and tr = TR. Blue curve corresponds to intermediate
space charge EL ≈ E0/2 and tr > TR. Green curve corresponds to the limit case
when EL ≈ 0 and tr = +∞. Electric field E(x) is constant for x ∈ [0, x1] and
parabolic function of position for x ∈ [x1, L].
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Figure 2.14: Left top: Scheme of the detector with linear space charge density ρ
in region x ∈ [x1, L]. Right top: Normalized current waveforms. Left bottom:
Space charge density. Right bottom: Internal electric field.

2.7.5 Space charge limited current
Square root dependence of the internal electric field naturally arises in case of
Space Charge Limited Currents (SCLC) [21]. This will be later shown in experi-
mental section. Formula for electric field can be expressed in form

E(x) =
√
E2

0 + b2 x

L
, (2.90)

where E0 is the electric field under cathode, L is the detector thickness and b is
parameter with dimension of electric field intensity that defines the steepness of
square root. Space charge density ρ is

ρ(x) = −εrε0

e

dE(x)
dx

= −εrε0b
2

2eL

1√
E2

0 + b2 x
L

. (2.91)

Using kinetic equation for electron

ẋ(t) = µeE(x(t)) = µe

√
E2

0 + b2 x(t)
L

. (2.92)

This differential equation has solution:

x(t) = µ2
eb

2

4L
(t + C)2 − E2

0
L

b2 , (2.93)

where C is determined from boundary condition x(0) = 0 from which

C = 2LE0

µeb2 (2.94)
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and position x(t) is

x(t) = µ2
eb

2

4L

(
t + 2LE0

µeb2

)2

− E2
0

L

b2 . (2.95)

The other condition for x(t) is that for transit time tr the electron cloud arrives
to the anode and is collected. This is equivalent to x(tr) = L. From (2.95) we
get

tr = 2LE0

µeb2

(√
b2

E2
0

+ 1− 1
)

. (2.96)

This expression is well defined since it is always nonnegative and for b → 0
tr → TR, which is expected since the electric field (2.90) is constant E(x) = E0
and for this case the transit time tr is equal to the default transit time TR (2.13).
From the knowledge of x(t), v(t) = ẋ(t), tr and assuming no trapping Q(t) = Q0
we can use the Shockley-Ramo theorem (2.8) to find the current waveform

I(t) = Q(t)v(t)
L

=
(

Q0µeE0

L
+ Q0µ

2
eb

2

2L2 t

)
χ[0,tr](t). (2.97)

The current waveform is linear function of time bounded by the boxcar function,
which is necessary to mark the transit time. Normalized current waveforms,
space charge density and electric field are shown in figure 2.15, where red curve
corresponds to case when no space charge is present inside the detector E0 = EL

and tr = TR. Blue curve corresponds to intermediate space charge E0 ≈ EL/2 and
tr > TR. Green curve corresponds to the limit case when E0 ≈ 0 and tr > TR.
The space charge density in (2.91) grows beyond any bound at x = 0 for E0 → 0.
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Figure 2.15: Left top: Scheme of the detector with space charge limit current.
Right top: Normalized current waveforms. Left bottom: Space charge density.
Right bottom: Internal electric field.

2.8 General space charge profile
The spatial dependence of the electric field intensity can be obtained from current
waveforms for the detector with general space charge profile and one deep trap
using the Shockley-Ramo theorem (2.8) and kinetic equation for electron (2.68),
from which

x(t) = L
∫ t

0

i(t′)
Q(t′)dt′. (2.98)

Using equation for charge trapping (2.58) we get

x(t) = L

Q0

∫ t

0
i(t′) exp

(
t′

τT D

)
dt′. (2.99)

Electric field is from (2.8) and (2.58)

E(t) = L

µe

I(t)
Q(t) = L

µe

I(t)
Q0

exp
(

t

τT D

)
, (2.100)

and the spatial dependence of electric field E(x) can be obtained from (2.99)
and (2.100). This method works if diffusion and detrapping processes are neg-
ligible [22], however from our experiments diffusion and detrapping need to be
included for correct evaluation of electric field inside the detector using Monte
Carlo simulations.
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2.9 Surface recombination
Surface recombination (SR) can be modeled by dividing the detector into a thin
surface layer with thickness xS ≪ L and the rest, which is treated as the bulk layer
(see figure 2.16). The SR is characterized by the surface recombination velocity
s, which defines the probability pbulk of charge carrier entering from surface layer
into the bulk [23]

pbulk

1− pbulk

= v

s
, (2.101)

where v is the charge carrier drift velocity in the surface layer. From (2.101) we
get

pbulk = v

v + s
. (2.102)

The initially photogenerated charge Q00 in the surface layer will be partially
recombined. Rest of the charge entering the bulk Q0 is

Q0 = Q00
v

v + s
. (2.103)

Surface recombination defined in this way only affects the photogenerated charge
and thus only amplitude of measured current waveform is decreased. If there is
constant internal electric field E(x) = E0 in the detector, the drift velocity v is
also constant v = µeE0 = µeU/L. This leads to the dependence of the initial
charge Q0 on bias U

Q0 = Q00
1

1 + sL
µeU

. (2.104)

This equation shows the saturation of initial charge Q0 to the value Q00 as the
bias U increases. The current waveform for the detector with one deep trap (see
subsection 2.6.2) is

I(t) = Q0µeU

L2 exp
(
− t

τT D

)
χ[0,TR](t). (2.105)

In case of SR the Q0 is replaced from (2.104). One method to recognize if the
surface recombination is present in the detector is to normalize each current
waveform by its bias. From (2.105) it is evident that after normalization, the
amplitude of current waveforms is bias independent in case of no SR and in
case with SR there is bias dependence of current waveform amplitude. Current
waveforms normalized by respective bias for detector without SR lie on each
other in overlapping intervals while for detector with SR current waveform have
different values. This can be used to recognize presence of SR in experiments. The
bias normalization of current waveforms is shown in figure 2.17, where current
waveform in case with SR has lower amplitude for given bias than in case without
SR (see dotted lines).
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Figure 2.16: Detector with surface layer and bulk. Initially photogenerated charge
Q00 is partially recombined and only part Q0 enters the bulk.
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Figure 2.17: Left Top: Normalized current waveforms for the detector without
surface recombination (SR). Right Top: Normalized current waveforms for the
detector with SR. Left bottom: Current waveforms normalized by respective
bias for detector without SR. Right bottom: Current waveforms normalized by
respective bias for detector with SR.
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3. Monte Carlo Simulation

3.1 Concept of Monte Carlo simulation
Theoretical calculation of current waveform based on current continuity equations
is rather complicated and analytical solution for time beyond TR exist only if one
trap level is present in the detector [10]. Other possibility to calculate current
waveform is to use a numerical method based on one dimensional Monte Carlo
(MC) simulation of the motion of photogenerated charge carriers under applied
electric field that is perpendicular to planar electrodes. Monte Carlo simulations
are widely used for carrier transport study [13]. In [24] comprehensive review of
MC simulation with detailed microscopic scattering mechanisms is shown. We use
simpler MC simulation based on more phenomenological concept shown in [10].
The goal is to expand mentioned concept to include arbitrary internal electric
field profile, effects of diffusion, wavelength of excitation laser pulse and other
parameters. Our concept of MC simulation based on [10] is shown in figure 3.1,
where each line represents time evolution of one carrier. Filled circles indicate
carriers in the free state and open circles indicate carriers that are trapped. At
each time step ∆t carriers drift toward the collecting electrode by distance ∆x =
v(x)∆t or remain trapped. The excess photogenerated carriers in the detector
are represented by N ”superparticles” where each superparticle represents several
thousands real carriers (electrons or holes).

t = 0 tk+1tktk−1

∆x = v(x)∆t

i = 1

i = N

Figure 3.1: Basic concept of Monte Carlo simulation.

The total amount of photogenerated charge in the detector is Q0, which gives the
charge of a superparticle

q = Q0

N
. (3.1)

We assume that these superparticles are not interacting with each other. The
detector is rectangular with two planar electrodes on opposite sides. Distance
between electrodes (detector thickness) is L. The detector is held under constant
bias U with electric field profile (intensity of electric field) E(x), which can be
an arbitrary function of position and is independent on time during simulation.
Position x is oriented from the cathode (x = 0) to the anode (x = L). The
described geometry is the same as the one used in assumptions (see figure 2.1 in
chapter 2).
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3.2 Initial distribution of carriers
At the beginning of the simulation (t = 0) the incoming laser pulse generates
all carriers with positions according to the Lambert-Beer absorption law for light
(2.17). Since we are generating exactlyN superparticles inside the detector [0, L],
the probability distribution of initial positions of carriers P(x) is then

P(x) = α exp (−αx)
1− exp (−αL)

χ[0,L](x), (3.2)

which is renormalized Lambert-Beer law (2.17), where α is the absorption coef-
ficient and χ[0,L](x) assures that P(x) is zero outside the detector where are no
generated carriers (this speeds up the random number generation of carrier by
eliminating tries outside the detector for small values of α). P(x) holds the norm
for probability distribution ∫ +∞

0
P(x)dx = 1. (3.3)

Figure 3.2 illustrates the scheme of the detector with photogenerated electron-
hole (e-h) pairs according to the Lambert-Beer law. The probability distribution
(3.2) is randomly sampled giving initial position for each carrier (details in section
3.5).

If the light is strongly absorbed (α · L ≫ 1), all carriers are generated near
under the cathode, one type of carriers is immediately collected and the other
type of carriers drifts through the bulk.

GroundBias

position

L
ig
h
t
in
te
n
si
ty

0
0

L

Detector
Detail

∼ exp(−αx)

Laser pulse

Figure 3.2: Top: Scheme of the detector with incident laser pulse generating e-h
pairs according to the Lambert-Beer law. Photogenerated electron-hole pairs are
separated by the electric field. Electrons drift into the bulk towards the anode and
holes drift to the cathode. Bottom: Intensity of light as a function of position.
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The initial time distribution of carriers is given by laser pulse duration and
shape. This distribution can be thought of in context of MC simulation as an ar-
bitrary function of time P(t) that holds norm for the time probability distribution∫ +∞

0
P(t)dt = 1. (3.4)

This states that a carrier will eventually be generated so there will be exactly N
superparticles after the end of the laser pulse. Simple example of the initial time
distribution of carriers is the boxcar function, which represents the square laser
pulse

P(t) = 1
tl

χ[0,tl](t), (3.5)

where tl is the duration of laser pulse. This probability distribution is randomly
sampled giving generation time for each carrier (details in section 3.5).

3.3 Carrier dynamics
At each calculation time step tk, the status of each carrier is determined by a
Monte Carlo technique based on repeated random sampling. Only three carrier
dynamics are possible [10]. First is that a carrier is drifting in the conduction
(valence) band toward the collecting electrode. Second possibility is that a carrier
is being trapped in the J-th trap level and third is that a carrier is being detrapped
from the K-th trap level. Direct transition between J-th and K-th trap level is
not assumed. This procedure is repeated until required duration of simulation is
reached.

3.3.1 Carrier drift
If the i-th carrier is free in time step tk then it drifts in the conduction (valence)
band toward the collecting electrode by distance

∆xi = µE(xi)∆t + u, (3.6)

where µ is the carrier mobility (µe for electrons and µh for holes), E(xi) is the
electric field at position of the i-th carrier xi, ∆t is the duration of simulation time
step and u is a small random offset with Gaussian distribution P(u) simulating
carrier diffusion

P(u) = 1√
4πD∆t

exp
(
− u2

4D∆t

)
, (3.7)

where D is diffusion coefficient given by Einstein relation (2.3). This probability
distribution corresponds to the shape of the carrier cloud that has spread due to
diffusion for time ∆t from initially δ(x) shape (see section 2.5). Repeatedly ap-
plied random offset u to every carrier at each time step results in carrier spreading
that approximates diffusion. If xi + ∆xi ≥ L or xi + ∆xi ≤ 0, carrier is collected
on electrode and don’t contribute to the simulation anymore. The electric field
E(x) is an arbitrary function of position given by space charge inside the detector
and holds

U =
∫ L

0
E(x)dx, (3.8)
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where U is the applied bias. Typically for constant space charge distribution in
the detector, E(x) is a linear function of position

E(x) = max(E0 − ax, 0), (3.9)

where E0 is the electric field under the irradiated cathode and a is the slope of
the electric field (for details see section 2.7).

3.3.2 Carrier trapping and detrapping
Second carrier dynamics is that a carrier is being trapped in J-th trap level
and third is that a carrier is being detrapped from the K-th trap level. Direct
transition between J-th and K-th trap level is not assumed. The probability
per unit time for a previously free carrier being trapped into J-th level is 1/τT J

where τT J is the trapping time of the J-th trap level [7]. The probability per unit
time for a carrier in the K-th trap level being released is 1/τDK where τDK is the
detrapping time of the K-th trap level. The trapping time can be interpreted as a
mean free time for which a carrier drifts in the conduction (valence) band before
it is trapped and the detrapping time is a mean time that a carrier spends in a
trap before it is released (see section 2.6). The total probability per unit time for
a previously free carrier being trapped 1/τT is equal to the sum of probabilities
for each trap level

1
τT

=
∑
J=1

1
τT J

. (3.10)

If a carrier is free at some point in time, the probability of its remaining free for
additional time step ∆t is

pF (∆t) = exp
(
−∆t

τT

)
, (3.11)

which follows from the definition of τT J resp. τT [7]. Using simulation time step
∆t≪ τT , we get from (3.11)

pF (∆t) = 1− ∆t

τT

. (3.12)

Probability of initially free carrier to be trapped pT in time ∆t is

pT (∆t) = 1− pF (∆t) = ∆t

τT

. (3.13)

Using (3.10) and (3.13)

pT (∆t) =
∑
J=1

∆t

τT J

=
∑
J=1

pT J(∆t), (3.14)

where
pT J(∆t) = ∆t

τT J

(3.15)

is the probability of initially free carrier to be trapped into the J-th trap in time
∆t. Analogically for a carrier trapped in the J-th trap level the probability of it
being detrapped pDJ in time ∆t is

pDJ(∆t) = ∆t

τDJ

. (3.16)
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For the description of trapping and detrapping phenomena, two trap level model
[10] with one shallow and one deep trap is usually used. In this work we also
follow this model (see subsection 2.6.1), where the shallow trap is labeled with
index J = S and trapping (detrapping) time is τT S, τDS. The deep trap is labeled
with index J = D and trapping (detrapping) time is τT D, τDD. Equations (3.13)
and (3.16) will be used in calculation of trapping and detrapping probabilities in
time step ∆t (more details in section 3.5).

3.4 Electric current
At each time step tk the current I(tk) is calculated according to the Shockley-
Ramo theorem (see section 2.3)

I(tk) =
N∑

i=1

q∆xi

L∆t
, (3.17)

where ∆xi is the distance that i-th carrier drifts in the time step tk and q is charge
of a superparticle (see (3.1)). If a carrier is trapped then its ∆xi = 0 and this
carrier doesn’t contribute to the current.

3.5 Overview of algorithm
In this section a pseudo-code of the described MC simulation will be shown. For
this purposes the i-th carrier (superparticle) is characterized by its position xi

and its state si. Carrier can be in one of the three possible states:

1. Waiting for generation - The carriers are generated in time according to
probability distribution P(t) describing the duration and shape of the laser
pulse (see (3.5)).

2. Free - drifting in conduction (valence) band
3. Trapped - trapped in the J-th trap level

The MC simulation pseudo-code is shown in Algorithm 1. The procedure Sim-
ulation starts with calling procedure Initialization where for each carrier
the initial position xi is randomly sampled from probability distribution P(x)
from the Lambert-Beer law (3.2) using inverse transformation method [25]. From
the duration and shape of the laser pulse the i-th carrier is generated in the ki

simulation step, which is randomly sampled from P(t) (3.5) using inverse trans-
formation method. The simulation step ki when the i-th carrier is generated can
be though of as a waiting time, which is decreased by 1 in every time step until it
is 0, then the carrier is generated and can drift or be trapped in J-th trap level.
These informations can be conveniently recorded into the state of the i-th carrier
si, which is summarized in

si =

⎧⎪⎪⎨⎪⎪⎩
ki > 0 if a carrier is waiting ki steps before generation
0 if a carrier is in the free state
−J < 0 if a carrier is trapped in J−th trap level.

(3.18)
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From the value of si the charge dynamics are decided in procedure Step where
first is checked whether the carrier is inside the detector and is not collected
on electrode. After that if the carrier is waiting to be generated (si > 0), si is
decreased by 1. If the carrier is free (si = 0), it is randomly decided whether
it stays free or becomes trapped according to probabilities shown in figure 3.3,
where trapping probabilities for two trap levels and the probability that the car-
rier remains free are represented by line segments. Random real number r is
uniformly generated in the interval [0, 1] (see procedure Random) and the state
si is assigned according to the line segment in which r lies (see procedure Get-
Trap). If r lies in red segment, carrier is trapped in J = 1 trap level and si = −1.
If r lies in blue segment, carrier is trapped in J = 2 trap level and si = −2. If r
lies in green segment, carrier is free and si = 0.

0 1

pT1 pT2

pT = pT1 + pT2

pF

random number in [0,1]r

Figure 3.3: The line segments represent probabilities of carrier trapping into J-th
trap level pT J and probability of being in the free state pF . The total probability
of trapping into any trap level is pT = pT 1 + pT 2 for two trap levels.

If the carrier becomes free, it drifts, this is done by calling procedure Drift,
which updates the position xi of the i-th carrier according to (3.6). If the carrier
is trapped in J-th trap level (si = −J < 0), it is randomly decided whether the
carrier stays trapped or becomes free according to the probability pDJ .

This described carrier dynamics in procedure Step is called for each carrier,
after calculating carrier dynamics in simulation step the current is calculated from
equation (3.17).
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Algorithm 1 Monte Carlo
1: procedure Simulation
2: Initialization() ◃ Initialize simulation
3: for k ← 1, kmax do ◃ For each time step tk

4: for i← 1,N do ◃ Loop through all N carriers
5: Step(i) ◃ Call time step procedure
6: end for
7: CalcCurrent() ◃ Calculate current of all free carriers
8: end for
9: end procedure

10: procedure Initialization
11: for i← 1,N do ◃ Loop through all N carriers
12: xi ← random sample of P(x) ◃ see Lambert-Beer law (3.2)
13: si ← random sample of P(t) ◃ see Laser pulse shape (3.5)
14: end for
15: end procedure
16: procedure Step(i) ◃ Time step procedure of i-th carrier
17: if xi ∈ [0, L] then ◃ Check if carrier is not collected
18: if si > 0 then ◃ Is carrier waiting before its generation?
19: si ← si − 1 ◃ decrease time steps si before generation
20: else if si = 0 then ◃ Is carrier in free state?
21: if Random() < pT then ◃ Will be carrier trapped?
22: si = GetTrap() ◃ Set carrier into trapped state
23: else
24: Drift() ◃ Carrier is now free and can drift
25: end if
26: else if si < 0 then ◃ Is carrier in trapped state?
27: J ← −si ◃ get the index of trap level J from si

28: if Random() < pDJ then ◃ Will be carrier free?
29: si = 0 ◃ Set carrier into free state
30: end if
31: end if
32: end if
33: end procedure
34: procedure Random
35: Generates a random real number uniformly in [0, 1]
36: end procedure
37: procedure GetTrap
38: Randomly selects trap according to probability distribution described in
39: section 3.5 and returns negative index of trap (-1 for the first trap level
40: and so on).
41: end procedure
42: procedure Drift ◃ Updates position of i-th carrier xi by ∆x from (3.6)
43: xi ← xi + µE(xi)∆t + u
44: end procedure
45: procedure CalcCurrent
46: Calculates current from equation (3.17)
47: end procedure
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3.6 Visualization of the MC simulation
Visualization of the MC simulation is developed to see carrier trajectories, which
helps us to understanding the connection between electric current and carrier
cloud evolution. While it is possible to just show electric current as an output
of the simulation, one would lose the information about carrier cloud shape.
Since this MC simulation is 1D all carriers can move only on horizontal x-axis.
For visualization we will offset each carrier in vertical y-axis to better see its
trajectory. This will have no other purpose, vertical position of carrier has no
effect on simulation what so ever. We will also use carrier concentration calculated
from the distribution of carriers in space. The carrier concentration is normalized
to see its details. Visualization of the MC simulation is shown in figure 3.4.

Ground

U

x

n

Time evolution

x = 0 x = L
AnodeCathode

t = 0 t = tk

t = 0 t = tk

Figure 3.4: Top: Visualization of the carriers (red circles) in the detector at time
t = 0 and t = tk. Carriers can only move in horizontal direction (1D simulation).
Vertical dimension is used only for carrier visualization. At t = 0 all carriers are
generated under left electrode. At simulation step tk the carrier cloud has evolved
and moved to right. Bottom: Normalized carrier concentration at time t = 0
and t = tk.
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3.7 Shallow trap approximation beyond TR

If there is only one shallow electron trap in the detector, analytical solution of
current waveform for 0 < t < TR can be found similarly to the case with two
trap levels studied in section 2.6.1 by setting τT D → +∞, from which τ1 = +∞,
τ2 = τe, A = τe/τDS, B = τe/τT S. The current waveform (2.54) can be then
rewritten in more convenient form

I(t) = Q0

TR

[
τe

τDS

+ τe

τT S

exp
(
− t

τe

)]
, (3.19)

where τe is defined as
1
τe

= 1
τT S

+ 1
τDS

. (3.20)

Time τe is the mean time that in which the electron cloud thermalizes with the
shallow trap. The current waveform (3.19) has two components. The first is
the equilibrium term representing constant current. The second term represents
filling of the shallow level that was initially empty. The current waveform (3.19)
was shown in [16] where the detector with one trap level was studied. Analytical
solution derived using probability calculations was shown in [7].

For t > TR due to the collection of electrons on the anode, the analytical
current waveform (3.19) is not valid. We need to change (2.33) to

dn

dt
= − n

τT S

+ nS

τDS

− n

τT D

− µE0An(L, t), (3.21)

where A is the area of the anode, n is the concentration of electrons in the
conduction band and E0 = U

L
is the constant electric field inside the detector.

The last term in (3.21) represents the flux of electrons escaping the detector
n(L, t) = 0 for 0 ≤ t < TR (no electrons are collected before TR) and in this
case no analytical solution exist for t > TR [16]. To find solution for t > TR

numerical approach such as MC simulation has to be used or approximations
have to be made, which were mentioned in [16]. Deeper analysis is needed to
understand various effect of shallow trap. In the following two subsections two
approximations of current waveforms for t > TR will be proposed, discussed in
detail and compared with MC simulation.
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3.7.1 Trap controlled mobility
Concept of trap controlled mobility was introduced in theoretical work [7] and
in experimental works [26],[8]. Current waveforms with trap controlled mobility
and trap controlled diffusions were not shown in cited papers, therefore current
waveforms are discussed in detail in this subsection. Let’s start with the Cen-
tral limit theorem, which in our model states that when carriers undergo many
trapping and detrapping events the overall shape of the electron cloud that was
initially of an arbitrary shape will have the Gaussian function shape [27]. This
allows us to make several simplifications and find the solution beyond the default
transit time TR. We shall assume that an electron spends on average time tf in
the free state moving with mobility µe and spends time ttr in the trapped state
not moving. Then we define the effective electron mobility µeff

µeff = µe
tf

tf + ttr

, (3.22)

which summarizes the fact that electron moves on average only for time tf in
total time interval tf +ttr, which effectively reduces its mobility µe to the effective
mobility µeff by the ratio

tf

tf + ttr

. (3.23)

The trapping time of shallow trap τT S can be interpreted as a mean time for
which an electron is in free state and the detrapping time τDS is a mean time
which an electron spends trapped. This leads to relation tf = τT S and ttr = τDS

and when put in (3.22)
µeff = µe

τT S

τT S + τDS

. (3.24)

With this effective mobility we can define the effective transit time T ′
R by replacing

µe in (2.13) with µeff

T ′
R = TR

τT S + τDS

τT S

. (3.25)

During time t happen on average η(t) trapping and detrapping events, which is

η(t) = t

τT S + τDS

. (3.26)

Average trapping/detrapping event chain is shown in the figure 3.5. Because
of trapping and detrapping phenomena, electrons move on average more slowly
and measured mobility and transit time no longer correspond to the microscopic
electron mobility and default transit time but rather to their effective values.
Central limit theorem gives us the value of the final variance of the Gaussian
distribution σ2

η after η random events to be [27]

σ2
η = ησ2, (3.27)

if we know the elemental variance σ2 of the underlying random process, which is
in our case trap/detrap event and η(t) is the number of trap/detrap events in the
time t. The mean time that it takes electron cloud to thermalize with the shallow
trap is τe (see its definition (3.20)), which is very important in the Central limit
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η(t) = t
τTS+τDS
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Trap/Detrap Events

τTS + τDS

Figure 3.5: Illustration of the average trapping/detrapping event chain. Filled
circle indicates an electron in the free state, open circle indicates an electron in
the trapped state. During time t happen on average η(t) trapping and detrapping
events.

theorem because τe can be viewed as the standard deviation in the elemental
process of trapping and detrapping in the time domain. This can be transformed
to the spatial domain by relation x = v0t, where v0 = µeE0 = L/TR, from which
σ2 = v2

0τ 2
e . Since the Central limit theorem says that the final distribution Pη(x, t)

is Gaussian
Pη(x, t) = 1√

2πσ2
η

exp
(
−(x− veff t)2

2σ2
η

)
(3.28)

where the centroid of the Gaussian electron cloud moves with the effective drift
velocity veff = µeffE0 and ση is the standard deviation

σ2
η = ησ2 = v2

0τ 2
e t

τT S + τDS

, (3.29)

where η is from (3.26). The electron concentration n(x, t) is found similarly to
the discussion of the detector with diffusion in section 2.5

n(x, t) = N0 Θ(t)Pη(x, t)χ[0,L](x) (3.30)

By comparison of (3.30) using (3.29) with the equation for diffusion (2.27) we get
the effective diffusion constant Deff

Deff = v2
0τ 2

e

τT S + τDS

= v2
0

(τT SτDS)2

(τT S + τDS)3 . (3.31)

Effective diffusion constant Deff is dependent on electric field through v0 = µeE0
and can be distinguished from ordinary diffusion coefficient De, which is given
by the Einstein relation (2.3) and is independent on electric field. The electron
concentration n(x, t) is analogical to (2.27), where the diffusion constant De is
replaced by Deff and drift velocity v0 is replaced by veff

n(x, t) = N0 Θ(t)
(

1
4πDeff t

)1/2

exp
(
−(x− veff t)2

4Deff t

)
χ[0,L](x). (3.32)
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Current waveform is similar to (2.30)

I(t) = Q0

T ′
R

Θ(t)1
2

⎡⎣erf
⎛⎝L− veff t√

4Deff t

⎞⎠+ erf
⎛⎝ veff t√

4Deff t

⎞⎠⎤⎦ . (3.33)

The current waveform (3.33) is valid for t≫ τT S + τDS, from which η → +∞ and
Central limit theorem is fulfilled. With (3.33) the analytical current waveform
(3.19) can be extended beyond TR into

I(t) = Q0

TR

Θ(t)
[

τe

τDS

+ τe

τT S

exp
(
− t

τe

)] 1
2

⎛⎝erf
⎛⎝L− veff t√

4Deff t

⎞⎠+ 1
⎞⎠ , (3.34)

where we used for t → 0 the analytical current waveform (3.19) and for t → T ′
R

we used the trap controlled mobility approximation (3.33) with

lim
t→+∞

erf
⎛⎝ veff t√

4Deff t

⎞⎠ = 1. (3.35)

Current waveform (3.34) was tested using MC simulation. In figure 3.6, there is
shown an example of carrier cloud evolution for τT S/TR ≈ 1/100 and normalized
current waveforms for several values of τT S for fixed τDS/τT S = 2, from which the
effective transit time is T ′

R = 3TR. The trap controlled mobility approximation
shows good agreement with MC simulation for τT S/TR < 100 (blue curve repre-
sents both MC simulation and mentioned approximation, which are identical, the
same holds for green curve). These curves have a characteristic plateau around
t = TR with height, which is found from (3.19) divided by I0 when t→ +∞

τe

τDS

= τT S

τT S + τDS

. (3.36)

For τT S/TR > 1/30 the trapping is not strong enough (there are to few trapping
and detrapping events) to fulfill the Central limit theorem and approximation
fails (orange curve representing MC simulation differs significantly from black
curve representing mentioned approximation for same parameters). Red curve
is normalized current waveform for the detector with no trapping, which has
tr = TR.

It is important to point out that the value of detrapping time τDS does not
affect the validity of this approximation, because with increasing value of τDS

the trap just holds the carriers longer, which increases the effective transit time
T ′

R, but does not change the number of trapping/detrapping events that happen
before particle leaves the sample η(T ′

R) (see (3.26)), which depends on trapping
time

η(T ′
R) = TR

τT S

. (3.37)
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Figure 3.6: Top: MC simulation of the electron cloud evolution in the detector
with the shallow trap at three different times. Bottom: Normalized current
waveforms. Monte Carlo simulation is labeled MC and trap controlled mobility
approximation is labeled Approx.
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3.7.2 Approximation of a weak shallow trap
In case of τT S/TR > 1 majority of carriers are not trapped and rest of them are
trapped mostly only once. This leads to effective separation of carriers into two
groups. The first group are carriers that are never trapped and arrive to the anode
in time TR and they don’t contribute to current for time t > TR. The second
group are carriers that are trapped at least once, and then are re-emitted into
the conduction band, only these carriers contribute to the current for t > TR.
The initially free carriers are being trapped effectively generating exponential
distribution of trapped electrons, which wait on average detrapping time τDS

in the trap and lag behind free electrons. The probability of detrapping has
exponential distribution (see subsection 3.3.2) and thus as trapped electrons are
detrapped, they generate exponential distribution of detrapped electrons. When
the never trapped electrons leave the detector at t = TR, the current sharply falls
to the value corresponding to the motion of the detrapped electrons for t > TR.
The contribution to current from detrapped carriers can be found from current
waveform of exponential electron cloud, which is discussed in appendices (see
equation (A.6)). The current waveform comprises of two components

I(t) = I1(t)χ[0,TR](t) + I2(t− TR) Θ(t− TR), (3.38)

where I1(t) is the analytical solution (3.19) valid for t < TR

I1(t) = Q0

TR

[
τe

τDS

+ τe

τT S

exp
(
− t

τe

)]
, (3.39)

and I2(t) is the current of detrapped electrons valid for t > TR

I2(t) = [I1(TR)−∆I] exp
(
− t

τb

)
, (3.40)

where ∆I is the current from carriers that are never trapped at t = TR given by

∆I = Q0

TR

exp
(
− TR

τT S

)
. (3.41)

Current waveform (3.38) has a discontinuity at t = TR which is caused by col-
lection of never trapped carriers and equal to ∆I. Parameter τb in (3.40) is the
effective decay time of current from detrapped electrons defined by

τb = τDS + 1
2

TR

τT S

τDS, (3.42)

where τDS is the average time that a carrier spends in the shallow trap and
TR/τT S is the average number of trapping events occurring during the traversal
of the detector (see equation (3.37)). The last term in (3.42) represents the
average lag of trapped electrons in shallow trap.
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The MC simulation of the electron cloud evolution in the detector with one
shallow trap τT S/TR ≈ 1, τDS/τT S ≈ 1/10 and in the detector without traps is
shown in figure 3.7, where the electron cloud only drifts in the detector with-
out traps while in the detector with one shallow trap the electron cloud consists
of never trapped electrons and detrapped electrons (see the tail of the electron
cloud in left bottom part). The normalized current waveform of shallow trap ap-
proximation (3.38) (labeled Approx), which is identical to the normalized current
waveform obtained from MC simulation (labeled MC ) has discontinuity ∆I at
t = TR from collection of never trapped electrons. The contributions of never
trapped electrons (black curve) and detrapped electrons (green curve) are also
shown.
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Figure 3.7: Left top: MC simulation of the electron cloud evolution in detector
without traps at time t = 0 and t = tk with normalized electron concentration
(red curve). Left bottom: MC simulation of the electron cloud evolution in
detector with the shallow trap at time t = 0 and t = tk with normalized electron
concentration (blue curve). Right bottom: Normalized current waveforms.
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Current waveform (3.38) was tested using MC simulation. In figure 3.8,
there are shown normalized current waveforms for several values of τT S for fixed
τDS/τT S = 1. The weak shallow trap approximation shows good agreement with
MC simulation for τT S/TR > 1, where relatively large discontinuity ∆I is present
(blue curve represents both MC simulation and mentioned approximation, which
are identical. The same holds for green curve). For τT S/TR < 1 the trapping is to
fast (shallow trap is no longer weak, current discontinuity disappears ∆I → 0 and
electron cloud thermalizes with the trap), approximation fails and MC simula-
tion is needed to obtain correct current waveform. (orange curve representing MC
simulation differs significantly from black curve representing shallow weak trap
approximation for same parameters). Red curve is normalized current waveform
for the detector with no trapping, which has tr = TR.

It is important to point out that the value of detrapping time τDS does not
affect the validity of this approximation, because with increasing value of τDS

the trap just holds the carriers longer, which increases the effective transit time
T ′

R, but does not change the number of trapping detrapping events that happen
before particle leaves the sample, which depends on trapping time η(T ′

R) = TR

τT S

(see equation (3.26)).
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Figure 3.8: Current waveforms for the detector with one shallow trap for several
values of τT S with discontinuity ∆I at t/TR = 1. Monte Carlo simulation is
labeled MC and the weak shallow trap approximation is labeled Approx.
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3.7.3 Current waveform analysis
With the knowledge of two approximations that were discussed in previous sub-
sections we can analyze current waveforms of the detector with one shallow trap.
This discussion is based on [16]. Normalized current waveforms of the detector
with one shallow trap for several values of τT S and fixed τDS/τT S = 2 (from which
T ′

R/TR = 3) are shown in figure 3.9, where except the red curve (limit with no
trapping) all other curves have initial high-current spike at short times, which
corresponds to the drift of free electrons with microscopic mobility that is much
larger than the effective (trap-controlled) drift mobility with which electrons move
when they reach thermal equilibrium with shallow trap (orange and light green
curve), these current waveforms have the characteristic plateau around t = TR,
its height is given by constant term in (3.19) and have effective transit time T ′

R,
this is when the trap controlled mobility approximation of electron cloud can be
used (see subsection 3.7.1). The blue, dark green and purple curves show (unlike
orange and light green curve) discontinuity in current ∆I at t/TR = 1 caused
by collection of significant amount of electrons that are never trapped, which are
moving with drift velocity proportional to the microscopic drift mobility rather
the effective drift mobility, this is when the weak shallow trap approximation can
be used (see subsection 3.7.2). For t/TR < 1 analytical solution (3.19) can be
used. MC simulation or approximations must be used for t/TR > 1. MC simula-
tion allows to obtain current waveforms for any parameters of shallow trap. Since
the detector doesn’t have deep trap, all photogenerated carriers will eventually
be collected, the total collected charge

Qc =
∫ +∞

0
I(t)dt = Q0, (3.43)

which is independent on shallow trap parameters (in figure 3.9 all current wave-
forms have the same integral). When the initial distribution of carriers is not a
delta function or when surface recombination is present, the current spike might
not be visible in current waveform and to find current waveform MC simulation
is needed.
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Figure 3.9: Normalized current waveforms of detector with shallow trap.
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4. Experiment

4.1 Spectroscopic measurements
Radiation detectors most often work in the pulse mode, in which the detec-
tor records each individual quantum of radiation that generated e-h pairs inside
the detector [1]. Accumulation of many events is needed for pulse processing.
Each impact of radiation quantum creates current burst, which is integrated into
charge Q and amplified in charge sensitive pre-amplifier, producing voltage step
Vmax proportional to Q. The voltage step is reshaped and again amplified by
shaping amplifier, which converts the voltage step with variation δV into Gaus-
sian with its center Vmax with the full width at half maximum FWHM = δV .
The output of the shaping amplifier is then processed in multi-channel analyzer
(MCA) and recorded in computer. Detector has two opposite planar electrical
contacts. Scheme of the spectroscopic measurement is shown in figure 4.1. Ex-
perimental setup consists of shielding vacuum chamber (to prevent loss of energy
of radiation source), in-house created preamplifier based on Amptek A250 pream-
plifier, shaping amplifier Ortec 671, multi-channel analyzer Ortec MCA easy, high
voltage source Iseg SHQ 122M and computer with in-house created program for
complex spectra evaluation. The detector is placed inside the vacuum chamber
with the radiation source pointing at the cathode. Spectroscopic measurements
for strongly absorbed radiation are often evaluated using Hecht equation

Q(U) = Q0
µeτU

L2

[
1− exp

(
−L2

µeτU

)]
, (4.1)

where Q0 is the initial radiation generated charge, U is the applied bias and τ is
the lifetime of electrons, which is in the context of the detector with deep trap
equal to τT D. Equation (4.1) is the special case of Hecht equation for one-carrier
type (electrons) [28]. For given bias U the charge collection efficiency CCE is
defined as

CCE(U) = Q(U)
Q0

. (4.2)

48



Incident
radiation

Bias U
Charge sensitive

pre-amplifier
Shaping
amplifier

MCA

Vmax

δV

C
ou

n
ts

V
ol

ta
ge Vmax

δV

VoltageTime

Figure 4.1: Scheme of the setup for radiation spectra measurement.

4.2 Laser-induced Transient Current Technique
Laser-induced Transient Current Technique (L-TCT) is based on above band-gap
laser pulse illumination, where the light is strongly absorbed. The laser pulse is
used as an external source generating electron-hole (e-h) pairs near under the
illuminated electrode, e-h pairs are separated by electric field and drift toward
corresponding electrodes. Detector has two planar opposite electrodes (same
geometry is used in spectroscopic measurements). Electron movement induces
electric current through the collecting electrode, which is amplified using current
sensitive amplifier and measured on digital sampling oscilloscope. Possibility of
triggering on laser pulse significantly decreases noise compared to untriggered
sources like alpha particle, since many events need to be accumulated for pulse
processing. We can also use additional illumination of cathode or anode using
continuous LED with 660 nm wavelength to generate additional space charge to
study space charge limited current. This LED is otherwise turned off. Scheme of
the simplified L-TCT setup is shown in figure 4.2. In our configuration positive
bias is applied to the illuminated electrode, and generated holes are immediately
collected while electrons drift though the whole bulk material. Experimental
setup consists of above band-gap pulsed laser diode (660 nm wavelength, 300 mW
maximum pulse peak power, 1 ns pulse width as FWHM), which is powered by
Picosecond Lab pulse generator with repetition rate (1 Hz− 100 kHz), high fre-
quency voltage amplifier (L–3 Narda–Miteq AM–1607–3000) and ultrafast digital
sampling oscilloscope (LeCroy WaveRunner 640Zi, 40 Gs/s, resolution up to 11
bits, 4 GHz bandwidth, DC input impedance). For more detail of setup see [29].
In-house made bias switching unit is used for generation of bias pulses, which are
synchronized with laser pulse using function generator (AFG3252, sampling rate
2 GS/s). Laser pulse delay after the rise time of bias pulse can be varied, which
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allows observing formation of space charge inside the detector. Depolarization
time, that is the time when no bias is applied on the detector, is needed, for
depolarization of the detector. Scheme of the laser pulse and bias pulse relative
position is shown in figure 4.3. Measured current waveforms are systematically
distorted by the transfer function of used electronic circuit. Deconvolution pro-
cedure is used to obtain original current waveforms. Details of the deconvolution
procedure are discussed in [29].
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Figure 4.2: Scheme of the L-TCT setup.
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Figure 4.3: Scheme of the bias pulsing.
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5. Results and discussion

5.1 Detector preparation
Detectors prepared from semi-insulating (SI) GaAs and CdZnTe single crystals
were used in this work. Chromium compensated SI GaAs was prepared from
the Liquid Encapsulated Czochralski material in Tomsk State University, Russia,
using the diffusion of chromium evaporated on the surface of the detector. SI
CdZnTe was prepared by the high pressure Bridgman technique. The dimension
of the GaAs detector was 4 mm× 4 mm× 0.5 mm while for CdZnTe was 5 mm×
5 mm × 1.46 mm. Electrical contacts on GaAs detector were prepared using
sputtering technique while on CdZnTe detector electrical contacts were prepared
by electroless deposition from aqueous solution of gold chloride.

5.2 Spectroscopic measurements
Spectroscopic measurement setup is described in detail in section 4.1. Radiation
source of α-particles 241Am (Energy of main line 5480 keV, radioactive activity
8.4 kBq) was used for measurement. Only signal of electrons is measured for
both GaAs and CdZnTe detectors, since in case of holes no signal was detected.
Collected charge is proportional to the position of the channel with maximum
counts. Measured α-spectra for GaAs detector are shown in figure 5.1, where
in the inset the position of the maximum of each spectrum (fitted by the Gauss
function) is plotted against the corresponding bias. This dependence is fitted by
the Hecht equation (4.1). It is clearly seen in figure 5.1, that the fit does not
correctly represent measured dependence, because the presence of plasma effect
screens of the external electric field, which results in (e-h) pair recombination
[30]. Measured α-spectra for CdZnTe detector are shown in figure 5.2, where in
the inset the position of the maximum of each spectrum is plotted against the
corresponding bias. This dependence is fitted by the Hecht equation (4.1). In case
of CdZnTe detector Hecht equation correctly describes measured dependence with
typical saturation of collected charge. From Hecht equation we get for CdZnTe
detector µτ = 2.0 · 10−3 cm2/V. To evaluate more charge transport parameters
of GaAs and CdZnTe detectors L-TCT will be used.
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Figure 5.1: Pulse height spectra of α−source 241Am for GaAs detector. Inset:
Bias dependence of collected charge and Hecht equation fit.

Figure 5.2: Pulse height spectra of α−source 241Am for CdZnTe detector. Inset:
Bias dependence of collected charge and Hecht equation fit.
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5.3 Laser-induced Transient Current Technique
L-TCT measurement setup was described in section 4.2. Current waveforms only
for electrons were measured, since no signal of holes was detected. Detector
itself is kept in dark during measurement and only dark current flows through
the detector. Size of the laser pulse illuminated area on the anode is about
3 mm2 and detector walls without electrodes were shielded by mask to prevent
unintentional illumination. Neutral density filter was used to attenuate laser
pulse intensity to prevent a disturbance in electric field so the laser pulse acts
as a probe. Measurements for GaAs and CdZnTe detectors were done with DC
and pulsed bias (pulsing period 20ms, laser pulse delay 100µs and bias pulse
width 5ms). Details about laser pulse and bias pulse synchronization are shown
in section 4.2.

5.3.1 GaAs
Bias dependence of current waveforms for GaAs detector with pulsed bias together
with MC simulation (labeled MC) are shown in figure 5.3, where electric field de-
picted in the inset, was determined using MC simulation described in chapter 3.
Laser pulse delay 100µs after the rise time of bias pulse is short enough so the
detector is still unpolarized. It was found that observable detector polarization
occurs for the laser pulse delay longer than 150µs. In unpolarized detector, where
the space charge density ρ(x) = 0 the internal electric field is constant (see section
2.7). Bias pulsing is needed to separate contributions of electric field and trap-
ping phenomena to the current waveform and for correct evaluation of transport
parameters. Bias dependence of current waveforms normalized by corresponding
bias is shown in figure 5.4, where it is clearly seen that current waveforms lie
on each other in overlapping intervals, from which we can conclude that GaAs
detector does not have surface recombination (for details see section 2.9). From
bias dependence of current waveforms for unpolarized detector (with pulsed bias)
with knowledge of that no surface recombination occurs, detector transport pa-
rameters, which are shown in table 5.1, were obtained from MC simulation. One
shallow trap with trapping/detrapping time τT S = 250 ns, τDS = 40 ns and one
deep trap with trapping time τT D = 150 ns, respectively were evaluated from MC
simulation. Detrapping time of the deep trap τDD cannot be determined from
measured current waveforms since τDD ≫ TR and on the time scale of TR no
detrapping from the deep trap occurs for all values of applied bias. MC simula-
tion shows excellent agreement with measured current waveforms. Shallow trap
in GaAs with τT S = 250 ns, τDS = 40 ns can be classified as a weak shallow trap,
which causes tail of the current waveform beyond TR (see subsection 3.7.2). Eval-
uated electron drift mobility from MC simulation is µe = 3625 cm2/Vs while the
mobility evaluated directly from (2.13), where TR is replaced with transit time tr

(taken from rise edge of current waveform to the inflection point of falling edge)
is (µe)tr = 3510, which is less than µe evaluated form MC simulation, which is
caused by the shallow trap that extends transit time and thus decrease measured
mobility from transit time (µe)tr.
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Figure 5.3: Bias dependence of current waveforms of GaAs detector using pulsed
bias. Inset: Internal electric field.

Figure 5.4: Bias dependence of current waveforms normalized by respective bias
of GaAs detector using pulsed bias. Inset: Internal electric field.
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Table 5.1: Detector transport parameters from MC simulation.
Material GaAs CdZnTe
L (cm) 0.05 0.146
Q0 (fC) 130 47
µe (cm2/Vs) 3625 1050
De (cm2/s) 92 26
τT D (ns) 150 2000
τDD (ns) ≫ TR ≫ TR

τT S (ns) 250 13
τDS (ns) 40 1.1

Hecht eqaution can be applied to the bias dependence of collected charge
(equal to the time integral of current waveform) for the unpolarized detector
with pulsed bias to obtain µτ product. This is shown in figure 5.5, where the
dependence of the collected charge on applied bias is shown with Hecht relation
in inset. Hecht equation in this case (unlike in case of spectrscopic measure-
ments with α−particles) correctly fits the measured dependence. Determined
(µτ)LT CT = 5.9 · 10−4cm2/V, which can be compared with parameters obtained
from MC simulation of current waveforms (µe = 3625 cm2/Vs and trapping time
of the deep trap τT D = 150 ns) to get µeτT D = 5.4 · 10−4cm2/V, which is a
good agreement and demonstrates that individual transport parameters can be
obtained from L-TCT.

Figure 5.5: Bias dependence of collected charge calculated from current wave-
forms of GaAs detector using pulsed bias. Inset: Bias dependence of collected
charge and Hecht equation fit.
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Measured current waveforms for GaAs detector with DC bias are shown in fig-
ure 5.6, where electric field (shown in inset) was evaluated from MC simulation
using the same parameters, which were previously obtained from MC simula-
tion of measurement with pulsed bias. Slope of the electric field is increasing
with increasing bias without observable saturation in the measured bias interval.
Maximum of the electric field is for all bias values approximately in the center
of the detector. In our L-TCT setup higher values of applied bias make current
waveform transit time too short and used electronic circuit starts to oscillate,
which prevents measurement.

Figure 5.6: Bias dependence of current waveforms of GaAs detector using DC
bias. Inset: Internal electric field.
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Dependence of the current waveform shape on the laser pulse delay for GaAs
detector with applied bias 30 V is shown in figure 5.7, where red curve represents
current waveform of unpolarized detector and other curves represent detector
with space charge. MC simulation is depicted by black dashed curves and is
shown for unpolarized detector and for maximally polarized detector. MC sim-
ulation shows excellent agreement with measured waveforms. Internal electric
field (shown in the inset) is constant for unpolarized detector (red curve) and for
polarized detector electric field has increasing profile from cathode to the center
of the detector, after which the electric field decreases to the anode. This electric
field profile might be explained by variable conductivity in the detector material,
which cannot be verified using only L-TCT and other measurements have to be
used.

Figure 5.7: Dependence of the current waveform shape on the laser pulse delay
for GaAs detector with applied bias 30 V. Inset: Internal electric field.
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To demonstrate the detector with space charge limited current (SCLC), L-
TCT with probing pulsed laser diode together with additional continuous above
band gap LED was used. Continuous LED illumination of the detector cathode
induces SCLC, which is described in subsection 2.7.5. Current waveforms are
shown in figure 5.8, where red resp. blue curve represents current waveform with
resp. without LED illumination of the detector with pulsed bias 15V. Internal
electric field is depicted in the inset. SCLC produces square root electric field
profile inside the detector, which was fitted using MC simulation (blue curve).
MC simulation closely matches the measured current waveforms and shows ap-
plicability of our SCLC model.

Figure 5.8: Current waveforms of GaAs detector with pulsed bias equal to 15V
and additional LED illumination of cathode. Inset: Internal electric field.
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To demonstrate formation of inactive layer in the detector, the continuous
LED was used to illuminate detector anode. Measured current waveforms are
shown in figure 5.9, where red resp. blue curve represents current waveform with
resp. without LED illumination of the detector with pulsed bias 15V. Internal
electric field is depicted in the inset. MC simulation was applied using previously
determined parameters to find the internal electric field profile for the case of
anode illumination. LED illumination creates additional e-h pairs under anode,
which are separated in the electric field. Electrons are immediately collected by
the anode while holes drift into the bulk. These holes produce positive space
charge that creates inactive layer under the anode and simultaneously attracts
electrons from cathode into the bulk causing negative space charge in the rest of
the detector. Generated space charge produces the electric field profile shown in
the inset of figure 5.9.

Figure 5.9: Current waveforms of GaAs detector with pulsed bias equal to 15V
and additional LED illumination of anode. Inset: Internal electric field.

59



5.3.2 CdZnTe
Bias dependence of current waveforms for CdZnTe detector with pulsed bias to-
gether with MC simulation (labeled MC) are shown in figure 5.10, where the
electric field (depicted in the inset) was determined using MC simulation de-
scribed in chapter 3. Laser pulse delay 100µs after the rise time of the bias pulse
is short enough so the detector is still unpolarized. It was found that observable
detector polarization occurs for the laser pulse delay longer than 500µs. In un-
polarized detector, where the space charge density ρ(x) = 0, the internal electric
field is constant (see section 2.7). Bias pulsing is needed to separate contributions
of electric field and trapping phenomena to the current waveform and for correct
evaluation of transport parameters.

Bias dependence of current waveforms normalized by corresponding bias is
shown in figure 5.11, where it is clearly seen that current waveforms lie on each
other in overlapping intervals, from which we can conclude that CdZnTe de-
tector does not have surface recombination (for details see section 2.9). From
the bias dependence of current waveforms for unpolarized detector with knowl-
edge that no surface recombination occurs, detector transport parameters, which
are shown in table 5.1, were obtained from MC simulation. One shallow trap
with trapping/detrapping time τT S = 13 ns, τDS = 1.1 ns and one deep trap
with trapping time τT D = 2000 ns were evaluated from MC simulation. Detrap-
ping time of the deep trap τDD cannot be determined from measured current
waveforms since τDD ≫ TR and on the time scale of TR no detrapping from
the deep trap occurs for all values of applied bias. MC simulation shows excel-
lent agreement with measured current waveforms. Shallow trap in CdZnTe with
τT S = 13 ns, τDS = 1.1 ns causes trap controlled mobility, which reduces electron
drift mobility µe to effective mobility µeff (see subsection 3.7.1). Evaluated elec-
tron drift mobility from MC simulation is µe = 1050 cm2/Vs while the effective
mobility calculated from (3.24) is µeff = 970 cm2/Vs. The electron mobility
evaluated directly from transit time using (2.13), where TR is replaced with tran-
sit time tr (taken from rise edge of current waveform to the inflection point of
falling edge) is (µe)tr = 980 cm2/Vs, which is very close to the effective mobility,
which is expected, since the measured transit time corresponds to the effective
transit time T ′

R rather than TR (for details see subsection 3.7.1). Trap controlled
mobility also causes trap controlled diffusion with effective diffusion coefficient
Deff (see its definition (3.31)), which is proportional to the square of the applied
bias and for bias 100V is Deff = 38 cm2/s while ordinary diffusion coefficient
De = 26 cm2/s is bias independent and is obtained from Einstein relation (2.3).
The effective diffusion is greater than ordinary diffusion for bias 100V . This trap
controlled diffusion is the main proof of the presence of shallow trap, because the
falling edge of the current waveform is broadened much more than without shal-
low trap. It is important to point out that the transfer function of the electronic
circuit (mainly the high frequency limit of the circuit) can produce similar effect
of current waveform edge broadening. This does not have measurable effect in
our used L-TCT setup.
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Figure 5.10: Bias dependence of current waveforms of CdZnTe detector for several
values of pulsed bias. Inset: Internal electric field.

Figure 5.11: Bias dependence of current waveforms normalized by respective bias
of CdZnTe detector using pulsed bias. Inset: Internal electric field.
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Hecht eqaution can be applied to the bias dependence of collected charge cal-
culated from integral of current waveform for the unpolarized detector with pulsed
bias to obtain µτ product. This is shown in figure 5.12, where the dependence
of the collected charge on applied bias is shown with Hecht relation in the inset.
Hecht equation in this case correctly fits the measured dependence. Determined
(µτ)LT CT = 1.9 · 10−3cm2/V can be compared with parameters obtained from
MC simulation of current waveforms (µe = 1050 cm2/Vs and trapping time of
the deep trap τT D = 2 µs) to get µeτT D = 2.1 · 10−3cm2/V. From spectroscopic
measurements we evaluated (µτ)α = 2.0 · 10−3cm2/V. All evaluated µτ prod-
uct for CdZnTe detector show good agreement, which further demonstrates the
possibility to obtain transport parameters from L-TCT.

Figure 5.12: Bias dependence of collected charge calculated from current wave-
forms of CdZnTe detector using pulsed bias. Inset: Bias dependence of collected
charge and Hecht equation fit.
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Measured current waveforms for CdZnTe detector with DC bias are shown in
figure 5.13, where electric field (shown in inset) was evaluated from MC simulation
using the same parameters, which were previously obtained from MC simulation
of measurement with pulsed bias. Internal electric field has linear profile and
position independent space charge is present in the detector (see subsection 2.7.1).
Slope of the electric field is increasing from a10V = 180 V/cm2 for bias 10V
to a100V = 870 V/cm2 which saturates around 50V and does not increase in
the measured bias interval. Bias dependent positive space charge density ρ is
calculated from (2.63) with use of εr = 10 for CdZnTe and is for bias 10V ρ10V =
1.0 · 109 cm−3 and for 100V ρ100V = 4.8 · 109 cm−3. This space charge can be
completely removed using puled bias.

Figure 5.13: Bias dependence of current waveforms of CdZnTe detector using DC
bias. Inset: Internal electric field.
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Comparison of current waveforms of CdZnTe detector with pulsed and DC
bias 30V is shown in figure 5.14, where red curve represents current waveform of
unpolarized detector and blue represents polarized detector with space charge.
MC simulation is depicted by black dashed curves and is shown for unpolarized
and polarized detector. MC simulation shows excellent agreement with measured
waveforms. Internal electric field (shown in the inset) is constant for unpolarized
detector (red curve) and for polarized detector electric field has decreasing linear
profile from cathode to the anode (blue curve).

Figure 5.14: Current waveforms of CdZnTe detector with pulsed and DC bias
equal to 30V. Inset: Internal electric field.
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6. Conclusion
This thesis is focused on the study of charge transport in semiconducting radiation
detectors. In theoretical part charge transport with diffusion is studied using
continuity equation and drift-diffusion equation, from which the current waveform
is calculated. Analytical solution of current waveforms for the detector with one
shallow and one deep trap up to default transit time TR is derived directly from
kinetic equations for two level system. Effects of electric field on the charge
transport are studied. Theoretical current waveforms for the detector with linear
space charge density, region with constant space charge density, region with linear
space charge density and for the detector with space charge limited current are
derived together with exact profiles of electric field. Simple method to recognize
the presence of surface recombination in the detector from the bias dependence of
current waveforms normalized by corresponding bias is proposed. If the detector
has surface recombination, normalized current waveforms do not lie on each other
in overlapping intervals. This method is used in the experimental part and from
the proposed method was found that studied GaAs and CdZnTe detectors do not
have surface recombination.

Monte Carlo simulation including effects of diffusion, arbitrary electric field
profile, two trap levels and initial distribution of carriers according to the absorp-
tion law and laser pulse shape is proposed to describe current waveforms. Pseudo-
code of MC simulation is presented. Two approximations of current waveforms
beyond TR for the detector with one shallow trap are derived. First approxima-
tion is for the shallow trap with the trapping time much smaller than TR. Shallow
trap causes trap controlled mobility, and effectively decreases carrier drift mobil-
ity and creates effective diffusion. Second approximation is for a weak shallow
trap in which the trapping time is much larger than TR. In this case some carriers
are trapped/detrapped only once and rest of them are never trapped. Carriers
separation into two groups produces discontinuity in current waveform at time
TR, after which exponential decay of current occurs. Applicability of these ap-
proximations is tested using MC simulation and discussed.

In experimental part GaAs and CdZnTe detectors are tested using spectro-
scopic measurements with α−particles. In GaAs detector strong plasma effect
prevents µτ product evaluation while in CdZnTe detector plasma effect is negli-
gible and (µτ)α = 2 · 10−3 cm2/V is found. L-TCT technique is used with pulsed
bias, which completely removes the space charge in both GaAs and CdZnTe de-
tectors. From current waveforms of unpolarized detector transport parameters
are evaluated using MC simulation. Excellent agreement of measured data and
MC simulation of current waveforms is found for both types of detectors. Using
evaluated parameters of unpolarized detector electric field profiles of polarized
detector with DC bias are found. In GaAs detector increasing electric field pro-
file from the cathode to the center of the detector, after which the electric field
decreases to the anode is found. This electric field profile might be explained
by variable conductivity in the detector material, which cannot be verified us-
ing only L-TCT and other measurements have to be used. In CdZnTe detector
linear electric field profile decreasing from the cathode to the anode is found.
This profile is caused by the presence of constant positive space charge inside the
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whole detector at all applied DC biases. Electron drift mobility, initial photo-
generated charge, trapping/detrapping time of shallow trap and trapping time of
deep trap were also evaluated using MC simulation of L-TCT current waveforms
for GaAs and CdZnTe detectors. Some transport parameters can also evaluated
from spectroscopic measurements for CdZnTe detector while for GaAs detector
transport parameter cannot be evaluated. In CdZnTe detector (µτ)LT CT product
evaluated from L-TCT measurements and (µτ)α product evaluated from spectro-
scopic measurements are the same. This further proves the usefulness of L-TCT,
from which more transport parameters can be evaluated than from spectroscopic
measurements.

In GaAs detector the effects of space charge limited currents are demonstrated
using above bandgap LED illumination of detector cathode. Formation of the in-
active layer (where electric field is almost zero) using LED illumination of detector
anode is also demonstrated.

In future study, temperature dependence of current waveforms could be used
to evaluate all parameters of traps, such as capture cross section, trap energy
and concentration. Laser pulse mapping with various wavelength illumination
of detector electrode can be used to study spatial dependence of space charge,
transit time and charge collection. MC simulation is planned to be extended with
carrier-carrier coulomb interaction.
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A. Appendix

A.1 Exponential electron cloud
Let’s assume the exponential charge distribution

n(x, t) = n0

xd

Θ(t) exp
(

x− v0t

xd

)
Θ(v0t− x)χ[0,L](x), (A.1)

where v0 = µeE0 is the drift velocity, xd is the characteristic length of electron
cloud and the term Θ(v0t − x) represents the front of the electron cloud. The
charge distribution (A.1) is a solution of one dimensional transport equation (2.9).
The exponential electron cloud is shown in figure A.1. The current waveform can
be obtained from the Shockley-Ramo theorem (2.8) in analogical way to section
2.4

I(t) = Q0

TR

Θ(t) 1
xd

∫ L

0
exp

(
x− v0t

xd

)
Θ(v0t− x)dx. (A.2)

Using substitution y = x− v0t, dy = dx we get∫ L−v0t

−v0t
exp

(
y

xd

)
Θ(−y)dy. (A.3)

From (A.3) the current waveform is

I(t) = Q0

TR

Θ(t)
[
exp

(
min(L− v0t, 0)

xd

)
− exp

(−v0t

xd

)]
. (A.4)

x

n
E0 Electric field

0 L

Drift

n(x, t)

Figure A.1: Exponential electron cloud.

It is convenient to define τd
xd

L
= τd

TR

, (A.5)

where τd is the characteristic time of the exponential electron cloud that corre-
sponds to its characteristic length xd. Equation (A.5) comes from equation for
constant drift velocity x = v0t. Equation (A.4) can be further rewritten using
equation (A.5) and v0 = L/TR into

I(t) = Q0

TR

Θ(t) exp
(
− t

τd

) [
exp

(
min(1, t/TR)

τd/TR

)
− 1

]
. (A.6)
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From (A.6) it is evident that for time t > TR the argument of the second exponen-
tial function in (A.6) is time independent and current waveform is exponentially
decaying. Normalized current waveforms are shown in figure A.2, where red curve
corresponds to the current waveform (2.16) of the delta function electron cloud
and blue curve corresponds to the exponential electron cloud (A.6).

t/TR1

I/I0

0
0

1

2 3 4

Exponential Electron Cloud

∼ exp(−t/τd)

Delta Electron cloud

Figure A.2: Example of a normalized current waveform of the sample for initial
delta function electron cloud (red curve) and exponential electron cloud (blue
curve). Since there is no trapping total area under both curves is equal.
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