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rozr̊ustal.
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Abstract

Thanks to numerous large-scale sequencing projects, the number of discovered genomic
variants is increasing. The key step in analyzing the variant data is the functional
annotation, since it helps researchers and clinicians to categorize, filter and prioritize
the variants for further research. This thesis discusses five commonly-used variant
consequence predictors, offers advice on how to use them and briefly goes through
the algorithms they employ. Moreover, various data formats as well as the human
reference genome and different genome annotations are described in the thesis. The
correctness of the reference is of great importance as all the predictors rely on it. This
thesis highlights some situations in which the results given by different predictors can
vary. All the tests were made using the Ensembl gene annotation (release 92) and the
GRCh38 reference assembly.

Keywords: variant consequence predictors, functional annotation, ANNOVAR, VEP,
Haplosaurus, BCFtools/csq, SnpEff, predictors comparison
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Abstrakt

Dı́ky mnohým rozsáhlým sekvenačńım projekt̊um se množstv́ı nalezených genomických
variant stále zvyšuje. Kĺıčovým krokem v analýze těchto dat je jejich funkčńı ano-
tace, jež pomáhá varianty kategorizovat, filtrovat a prioritizovat pro daľśı výzkum.
Tato práce seznamuje s pěti běžně použ́ıvanými programy pro určováńı d̊usledk̊u vari-
ant, poskytuje rady, jak je použ́ıvat, a stručně představuje algoritmy, které použ́ıvaj́ı.
Mimo to jsou zde popsány r̊uzné datové formáty, genomové anotace a lidský referenčńı
genom. Správnost reference je velice d̊uležitá, neboť na ńı spoléhaj́ı všechny programy.
Práce upozorňuje na určité situace, ve kterých se výsledky z r̊uzných programů mohou
navzájem lǐsit. Pro všechny testy byla použita Ensembl genová anotace (release 92) a
referenčńı genom GRCh38.

Kĺıčová slova: programy pro určováńı d̊usledk̊u variant, funkčńı anotace, ANNO-
VAR, VEP, Haplosaurus, BCFTools/csq, SnpEff, srovnáńı programů
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1. Introduction
1.1 What are genomic variants?

‘Reference genome’ is a collection of nucleotide sequences representing genomic infor-
mation of a species (see chapter 2 for more information). Nucleotide sequences present
in an individual typically differ from the reference at many sites; these are called ‘ge-
nomic variants’. According to the 1000 Genomes Project [1], a typical human genome
differs from the reference genome at 4.1 million to 5 million sites.

We distinguish many types of variants. They can be small-scale or large-scale and
can have very different impact on the phenotype.

Single nucleotide polymorphisms (SNPs) are, as the name suggests, changes in only
one nucleotide. We distinguish transitions (purine changes to purine or pyrimidine to
pyrimidine) and transversions (purine to pyrimidine or vice versa). These small-scale
variations are the most common variants in the human genome; 84.7 million out of
88 million variants identified in the 1000 Genomes Project were SNPs [1]. Although
SNPs are very small, they can hit genes and cause changes in the protein sequence.
Moreover, they can be located at important sites such as promoters or splice sites and
most importantly, they can result in premature stop codon. Therefore, they are an
important source of variation among individuals [2].

So called ‘indel’ is a common term for both insertions (adding one or more bases
into the sequence) and deletions (deleting one or multiple bases). More than 99.9 % of
all variants comprise of SNPs and short indels [1].

Structural variations affect larger regions of the genome and they are typically
formed by rearrangements of the genome. A CNV (copy number variant) is defined
as ‘a DNA segment that is 1 kb or larger and present at variable copy number in
comparison with a reference genome’ by Redon et al. [3]. Although structural variants
are not as common (an estimated number is 2,100 to 2,500 per genome), they can affect
∼20 million bases of human genome sequence [1].

A ‘non-synonymous’ variant results in a codon change which alters the protein
sequence. If the codon changes but encodes the same amino acid, the variant is called
‘synonymous’. A ‘nonsense’ mutation results in a premature stop codon. There are
also ‘stop-loss’ and ‘frameshift’ variants, which usually have high impact on the protein
sequence. Frameshift means that the open (translational) reading frame was disrupted
by an indel such that the number of inserted or deleted bases was not a multiple of
three [4].

1.2 Variant consequence prediction

Thanks to extensive large-scale whole-exome and whole-genome sequencing
projects such as 1000 Genomes [1], NHLBI-ESP [5] or UK10K [6], the amount of pro-
duced variation data is increasing. However, the exact functional impacts of most of the
discovered variants remain unknown and manual examination of such a huge amount of
data would be practically impossible; therefore, computational approaches are needed.

Variant annotation is a key step in sequencing data analysis. It is a process of as-
signing functional information to the variants [7]. Knowing the funcional consequences
allows scientists and clinicians to categorize, filter and prioritize the variants for further
analysis, for example to discover potential disease-causing mutations, to find new drug
targets, to identify cancer driver mutations or to use the information in evolutionary
studies. Incorrect predictions can result in an important disease-related variant being
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Figure 1.1: Consequence terms used by the Ensembl database and the Variant Ef-
fect Predictor. The diagram shows the locations of consequences in the transcript
structure. Adapted from the Ensemble database. Retrieved 20-07-2018 from https:
//www.ensembl.org/info/genome/variation/prediction/predicted_data.html

overlooked or a harmless variant being marked as deleterious. [8, 9].
A fundamental step in the annotation process is to decide which part of the tran-

script the variant hits. Figure 1.1 shows the locations of consequences relative to the
transcript structure. In general, we are more interested in the coding sequence (CDS)
variants, since they can alter the amino acid sequence. Nevertheless, other parts of
transcript are still important, for example for splicing or regulation, and they should
be well-annotated as well [7].

If the variant hits a coding transcript, it is further analyzed which part of the
transcript it overlaps. It can be an intronic or a UTR variant; in that case it is usually
not inspected further. If the variant is exonic, the coding effects such as synonymous
or missence amino acid replacement, frameshifts or stop codon gaining and loss are
analyzed.

Variations in splice sites are usually very severe and it is therefore important to
recognize them. Most tools regard variants in the first two bases of the intron as ‘splice
donor’ variants and those in the last two bases as ‘splice acceptor’ variants. However,
sometimes it is possible to change the number of bases on the boundaries that will be
taken into account (this is the case of ANNOVAR [10] or SnpEff [11]). Most tools also
consider ‘splice region’ variants. Those are defined as ‘a sequence variants in which
a change has occured either within 1-3 bases of the exon or 3-8 bases of the intron’,
according to the Sequence Ontology [12].

1.2.1 Consequence description

Each tool has its list of terms used for the functional consequence description. Different
tools can recognize different types of consequences. To give an example, ANNOVAR
[10] uses the term splicing for both splice acceptor variant and splice donor variant
used by the VEP [13], but it does not consider splice region variant. On the other
hand, it distinguishes between frameshift insertions, deletions and block substitutions,
while other tools report only frameshift.

It is standard to use the Sequence Ontology terms for describing the consequences.
The Sequence Ontology (SO) [12] is a structured vocabulary and provides a consistent
standardized set of terms and relationships. It simplifies the exchange of information
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among different sources. For instance, the term CDS is clearly defined as ‘a contigu-
ous RNA sequence which begins with, and includes, a start codon and ends with, and
includes, a stop codon’, and thus there is no need to discuss whether the stop codon is
a part of the CDS or the 3’ UTR. The advantage is that the terms are very computer-
friendly; they contain underscores instead of spaces and the numbers and symbols are
spelled out in most cases [12].

The terms are ordered hierarchically. All the terms describing the variants are under
the sequence variant term (see figure 1.2).

Figure 1.2: Relationship tree for the Sequence Ontology term UTR variant
(SO:0001622 ). Adapted from the Sequence Ontology browser. Retrieved 18-07-2018
from http://www.sequenceontology.org/browser/current_svn/term/SO:0001622

1.3 Limitations of predictors

Most of the commonly used variant consequence predictors (such as VEP [13], SnpEff
[11], ANNOVAR [10], VAAST 2.0 [14]) can only analyze variants separately and they do
not take into account phased haplotypes data, which is commonly accessible these days.
Not considering the compound effect of more variants can cause incorrect predictions
(see figure 1.3). The so called ‘haplotype-aware consequence calling’ can solve the
problem [15]. There are some tools that can handle the haplotype information, for
instance BCFtools/csq [15], COPE [16] or Haplosaurus [17]. Selected predictors are
described in chapter 4.

In some cases the variant consequence can be unambiguous. Genes often have more
different transcripts (isoforms) and besides that, genes can overlap at a given position in
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the genome. Therefore, it is not uncommon that the variant overlaps more transcripts
and thus has more consequences. Software tools solve this complication differently;
they can prioritize the consequences and report the most severe one or they return
multiple annotations (for each overlapped transcript). However, typical pipelines are
not prepared to handle a single variant with more consequences [7].

The variant prediction strongly depends on the genome annotation. Each annota-
tion has (more or less) a different set of transcripts; it is therefore unsurprising that the
predicted consequences can vary when using different gene annotations. Indeed, this
statement was confirmed by McCarthy et al. in their research [7]. However, it is not
clear-cut what the “best” annotation is.

For all those reasons, the variant consequence prediction can sometimes be complex
and poses significant challenges.

Figure 1.3: Incorrect predictions when not considering the compound effect. (A)
Two SNPs together result in a stop codon. (B) A frameshift restoring variant. The
AAs change is much less severe when considering the compound effect. Adapted from
BCFtools/csq: haplotype-aware variant consequences [15].
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2. Genome data representation
2.1 Reference genome

The term ‘genome’ can be defined in several ways in biology; in the following text,
‘genome’ stands for the genetic material present in a cell of a certain species. In case
of the human, the haploid genome consists of 22 autosomal chromosomes, plus X and
Y chromosomes and mitochondrial DNA.

The chromosomes are represented as linear nucleotide sequences. The most com-
monly used methods to sequence a genome are high-throughput sequencing methods
(also known as NGS). However, despite rapid development of NGS techniques, it is
not possible to obtain a sequence of the whole chromosome all at once. The sequences
must be fragmented and shorter (hundreds of bases long) fragments are then sequenced
separately; we obtain so called ‘reads’. They are put together into contiguous longer
sequences called ‘contigs’, that are ordered and cover the chromosome sequence [18].

The reference genome sequence can be understood as a ‘template’ representing
genomic nucleotide sequence of a species. For most species including human, it is not a
sequence of a single individual; it is rather a ‘mosaic’ created from sequences of many
genomes to represent the biggest possible number of genes, transcripts and proteins
present in population.

The reference is used in many genomics projects; its up-to-dateness and accuracy
is therefore highly important [19].

2.1.1 Human reference genome

The Human Genome Project (HGP) [20] was established in 1990 and its goal was to
create a complete and accurate human genome sequence. In 2001, the International
Human Genome Sequencing Consortium (IHGSC) provided a draft sequence [21], which
had certain drawbacks. There were approximatelly 150,000 gaps in the sequence (in
highly repetitive regions of the genome, centromeres and telomeres) and about 10 % of
euchromatic genome was omitted [22].

In 2007, The Genome Reference Consortium [23] was founded with purpose of im-
proving and maintaining the reference genome sequences of selected species (currently
human, mouse, zebrafish and chicken). The Consortium consists of five major bioin-
formatics institutions:

• Wellcome Sanger Institute [24]
• The McDonnell Genome Institute at Washington University (MGI) [25]
• The European Bioinformatics Institute (EBI) [26]
• The National Center for Biotechnology Information (NCBI) [27]
• The Zebrafish Model Organism Database [28]

Genome assembly

To represent more complex parts of the genome, a robust model was introduced by
GRC; this model is called ‘genome assembly model’ [29]. It is able to represent so called
‘alternative loci’. To fully represent some regions, it may be necessary to produce more
than one sequence; this can be the case of large-scale structural variations or regions
with high population diversity, such as the MHC region [30].
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So far, there were two so called ‘major releases’ of the reference human genome
assembly; the first one in February 2009 (GRCh37) and the second one (GRCh38) in
December 2013. In addition to that, there are more frequent (quarterly for human) ‘mi-
nor releases’ which does not change genomic coordinates, but release ‘patches’, contig
sequences meant to add information to the assembly. There are two types of patches;
‘fix’ patches correcting errors in the assembly, and ‘novel’ patches representing new
alternate loci. [31]

The latest human genome assembly is GRCh38.p12 (patch 12) released in December
2017, adding 70 fix and 70 novel patches. Next update is planned for summer 2018.
Thanks to incessant and long-lasting work on the human genome reference sequence,
is is now of a high-quality. Nevertheless, there are still 875 gaps in the current version
of the assembly [23]. Those are represented with letter ‘N’ in chromosomal sequence.

All released assemblies are publicly and freely available on the GRC website [23]
and can be displayed in a ‘friendly’ graphical way in various genome browsers (UCSC
[32], Ensembl [33]).

2.2 Genome annotations

The aim of the genome annotation is to identify locations of key genomic features,
such as genes, transcripts, coding regions or regions important for regulation, and
thus to create a kind of a ‘genome map’. This annotation is the fundamental step in
interpretation of the genome reference sequences, and as more and more scientists rely
on it, the quality assurance is of great importance [34, 35].

Genome annotations are provided using different methods and resulting in data sets
that are similar but certainly not the same. For high-quality finished genomes, such as
the human or the mouse genome, manual annotation is needed to obtain high-accuracy
data sets [35].

2.2.1 RefSeq

Reference Sequence (RefSeq) [36] database is a curated collection of linked genome,
transript and protein sequence records built and maintained by NCBI. Records are
derived from the data available in the GenBank database [37], but in contrast with
GenBank, the RefSeq database is non-redundant. The goal is to maintain a set of
stable, well-annotated and quality checked records; those records may thus contain
additional information integrated from multiple resources, including functional features
annotation, cross-references or informative nomenclature [36, 38].

For the purpose of annotation and quality evaluation, a significant number of tests
is applied to all of the RefSeq records. Those quality assurance tests are designed
to identify possible annotation problems like single exon genes, invalid stop and start
codons, stop codons in CDSs, low-complexity sequences, CDSs shorter than 100 AAs
etc. Test failure does not always mean that the record is necessarily incorrect; there
are for instance some CDSs shorter than 100 AAs. However, they help to prioritize
records for manual curation [38].

Every record has its accesion number which consists of a prefix followed by 6 or
9 numbers and a version number. The prefix indicates the type of the feature (M
for mRNA, R for RNA, P for protein) and tells whether it is a model RefSeq record
(letter X; generated through the annotation pipeline and not manually curated) or a
known RefSeq record (letter N; curated). For instance, prefix NM refers to a known
protein-coding transcript [36]. More on RefSeq accession format, pipelines and other
information can be found in The NCBI Handbook [39].
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RefSeq is made publicly available and can be accessed via Entrez, BLAST,
MapViewer or other NCBI tools. All data can be downloaded via the FTP proto-
col from the NCBI website [40]. A comprehensive FTP release is provided every two
months, while updates and new records are released daily [41].

2.2.2 Ensembl gene annotation

Ensembl [42] provides gene annotations for selected vertebrate genomes using the En-
sembl Gene Annotation system. This system is based on the alignment of biological
sequences, such as cDNA, known protein sequences, or ESTs (expressed sequence tags)
and the whole process is automatized, and thus it provides a fast way to annotate
vertebrate genomes [43].

For some species, namely human, mouse, rat, zebrafish and pig, the Ensembl gene
set is merged with HAVANA manual curration [44] to produce the final gene set. In case
of human and mouse genome, the terms ‘Ensembl annotation’ and ‘GENCODE anno-
tation’ are reffering to the same gene set [35, 45]. GENCODE annotation is described
below.

Annotated features are assigned a stable Ensembl identifier. The ID comprises an
‘ENS ’ prefix followed by a species prefix, feature type prefix and 11 numbers. For exam-
ple, ‘ENSMUSG’ prefix reffers to a mouse gene. Complete list of Ensembl prefixes can
be found at https://www.ensembl.org/info/genome/stable_ids/prefixes.html.
The ID is followed by a dot and a version number which increases when a change
in the feature happens [46].

Final gene sets and source code for the Ensembl Gene Annotation system are
publicly and freely available on the Ensembl website. New releases are provided ap-
proximately every three months. Data can be downloaded via the Ensembl FTP site
(ftp://ftp.ensembl.org/pub/) or accessed programatically through the Perl API [47]
or the REST server [48]. [35]

2.2.3 GENCODE

GENCODE project aims to provide a highly accurate annotation of the human and
the mouse genome. The process of annotation is very complex and includes automatic
computational analysis by the Ensembl annotation system, manual annotation by the
HAVANA group [44] and experimental validation (for example using RT-PCR-seq) [49],
[50].

Every locus and transcript has a status assigned; possible values are ‘known’, ‘novel’
and ‘putative’. ‘Known’ loci are represented in the HGNC database [51] and the RefSeq
database [38], whereas ‘novel’ and ‘putative’ are not. ‘Novel’ loci are well supported
by evidence while ‘putative’ loci have less extensive evidence [49].

The GENCODE data can be accessed in the UCSC genome browser [32]; it is also
the default data set used in the Ensembl database [42]. Current and archived releases
can be downloaded directly from the GENCODE website [52] using the FTP protocol.
There are two main data sets — the Comprehensive gene annotation, containing all
the transcripts, and the Basic gene annotation, which is a subset of the Comprehensive
set and contains only full-length protein-coding transcripts [45].
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3. Data formats
3.1 Generic Feature Format Version 3

The GFF3 format allows representation of genomic features in a readable, easily un-
derstandable and processable way, in contrast to relational database models. It is
commonly used for the gene annotations. It is a tab-delimited format with 9 columns,
where every line represents one genomic feature:

• seqid – ID of an object for establishing the coordinate system in which the current
feature is located (for example chromosome number of name)

• source – source that generated the feature. Typically a database, a project or a
software

• type – type of the feature described by a Sequence Ontology term [12] or an
accession number

• start – start coordinate of the feature relative to the object in the first column.
• end – end coordinate of the feature relative to the object in the first column.
• score – score of the feature, i.e. E-value for sequence similarity features
• strand – orientation of the genomic feature, which can be either on the forward

strand (+) or the reverse strand (-) (forward strand is the strand of the reference
sequence).

• phase – it is required for features of type ‘CDS’ to set the reading frame. Phase
‘0’ indicates that the reading frame starts at the same position as the feature
starts; for phase ‘1’, the first base is skipped and the first codon starts at the
second position of the feature. For phase ‘2’, the first two bases are skipped. For
CDSs on the antisence strand, the phase is counted from the end

• attributes – semicolon-separated list of attributes described as tag=value. The
list of possible attribute tags is available at
https://github.com/The-Sequence-Ontology/Specifications/blob/master/
gff3.md

If a field is undefined for a feature, a dot is filled in instead. Nonetheless, at least
the seqid, type, start and end fields should be always defined.

Complete format specification can be found in the Sequence Ontology GitHub
repositary [53].

3.2 FASTA

FASTA is a simple text format used for representation of nucleotide or amino acid
sequences. There can be more sequences (i.e. all chromosomes of a genome) included
in one file; every record begins with a one-row description introduced by a ‘>’ symbol,
followed by the sequence itself. Empty lines are not allowed in a FASTA file. There
is not a strict specification for the first (description) line format, and thus different
programs or institutions can have different requirements (if it is obligatory, identifiers
usage, etc.) [54, 55].
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3.3 Fai index

The Fai index format faidx enables faster and more effective access to FASTA files.
The index file is a text file where every row contains a description of a FASTA sequence
in the corresponding FASTA file. The tab-delimited columns are:

• sequence ID
• sequence length
• offset within the corresponding FASTA file (number of characters to the sequence

first base)
• number of bases on a row
• number of bytes on a row, including the new line

Obviously, it is necessary to have the FASTA file accuratelly formatted according
to the given description in the index file [56].

3.4 Human Genom Variation Society notation

In 2000, the Human Genome Variation Society (HGVS) [57] proposed a stable, consis-
tent and comprehensive nomenclature for the genomic variants description, which has
been accepted internationally.

All variants are described relatively to the reference sequence; the definition is
meaningless without the reference. Therefore, every variant should be described as
reference:variant, for example NM 004006.2:c.3G>T.

It is hard to say which reference sequences should be used and it remains an object
of discussion. It is possible to use the genomic sequence, which is easy to work with
- for example, there are not problems with alternative transcripts. However, a coding
DNA reference sequence is often preferred in practice, because it is much easier to tell
where in the CDS the variant is located (intron, exon, UTR, stop codon etc.). The
HGVS recommends usage of a Locus Reference Genomic sequence (LRG) [58] or a
RefSeq sequence [36].

Variants are described as Prefix.PositionChange. For instance, c.1524G>A means
substitution of G to A at position 1524, reffering to the given reference. The prefix
informs about the reference sequence: ‘c’ is used for coding DNA, ‘g’ for genomic DNA,
‘n’ for non-coding DNA, ‘m’ for mitochondrial DNA, ‘r’ for RNA and ‘p’ for protein.
If the variant concerns more bases, both start and end positions are given, separated
by an underscore. For an insertion, positions of bases surrounding the inserted bases
are given; to give an example, c.1485 1486insCCTG is the insertion of four nucleotides
between bases at positions 1485 and 1486 [59].

Detailed specification of more complex, large-scale structural variants is available
on the HGVS website: http://varnomen.hgvs.org/.

3.5 Variant Call Format

Variant Call Format (VCF) is a text format used for storage and description of genomic
variants. VCF was developed for the 1000 Genomes Project [1], but it was further used
by other large-scale projects [60] such as UK10K [6], dbSNP [61] or NHLBI Exome
Project [5]. Nowadays it is the standard for the variants description, and although it
was developed for human variations, its flexibility exceeds the original intent.
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It is possible to store millions of variants for thousands of samples (individuals) in
a single VCF file. The important advantage is the possibility of representation of com-
plex structural variants, such as large indels, CNVs, tandem duplications, transposonal
sequence insertions, inversions etc.

VCF is divided into three parts - a meta-information section, a header line and
variant records, each on a separate line.

Meta-information lines are prefixed with a ‘##’ and must be in format
key=value. These lines contain information about the VCF version, the reference se-
quence, the file creation date etc. Moreover, it can define format of the data lines in
more detail, for instance tags for the genotype data description. Filters can be defined
in this section as well; data lines that comply with the filter are skipped [62].

The header line is prefixed with a ‘#’ and it names the 8 obligatory columns:

• CHROM – chromosome ID according to the reference genome
• POS – reference allele position in the reference sequence. Variants should be

sorted by their position in increasing order
• ID – unique ID (for example dbSNP identifier)
• REF – reference allele
• ALT – alternate allele or a comma separated list of alternate alleles
• QUAL – ‘Phred-scaled quality score’ telling the ALT allele quality
• FILTER – semicolon-separated list of codes of filters that failed. If the record

passed, the ‘PASS’ value is filled in
• INFO – additional information about the record. A semicolon separated list

where each field is in the ‘key=value’ format

If the genotype information is present, there is the 9th ‘FORMAT’ column plus
as many columns as there are samples. The ‘FORMAT’ field specifies format of the
genotype information. It is a colon-separated list of keys such as ‘GT’ (genotype),
‘DP’ (read depth), ‘HQ’ (haplotype quality) or ‘GQ’ (genotype quality). The ‘GT’
field is compulsory and it tells what alleles are present in the sample. A ‘0’ indicates
the reference allele, ‘1’ means the first alternate allele etc. For diploid calls there are
two numbers separated by a ‘|’ symbol for phased genotypes (where we can distinguish
which of the two homologous chromosomes the each allele belongs to) or a ‘/’ for
unphased genotypes.

All the fields in the data lines are tab-separated and their order and count must
correspond to the header line format. The missing values are represented by a dot [62].

The problem of the VCF file is its inefficiency for large amounts of variants in large-
scale projects. It is a text file and therefore takes a lot of space (hundreds of GB) and
its processing can be very slow. For this reason, there is BCF (Binary Variant Call
Format) and its processing is much more efficient [60, 62].
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3.6 Ensembl default

The default format used for the genomic variants description in the Ensembl database
[42]. It is in the whitespace-separated format with five compulsory columns; the sixth
column is not obligatory:

• chromosone number or name
• start position of the variant
• end position of the variant
• list of alleles separated by a ‘/’; the reference allele is the first one
• strand; ‘+’ for forward and ‘-’ for reverse strand
• variant identifier; when not provided, it is constructed from given coordinates

and alleles [63]

3.7 Annovar input

This format is required as an input by ANNOVAR, the variant consequence predictor
described hereinafter. It is a simple text format with every line describing a genomic
variant with five whitespace-delimited fields:

• chromosome number
• start position of the reference allele
• end position of the reference allele
• reference allele
• alternative allele

It is possible to add additional information in other columns. A dash indicates
missing allele (in case of insertion or deletion) and ‘0’ can be given instead of the
reference allele, if the information is not available. This format can represent insertions,
deletions and substitutions (SNPs or block) [10, 64].
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4. Genomic variants consequence
predictors
4.1 Ensembl Variant Effect Predictor

The Variant Effect Predictor (VEP) is a tool provided by Ensembl [42]. It is used
internally in the Ensembl database for annotation of newly-imported variants, and
additionally, it can be used for variant consequence prediction, variant analysis and
prioritization of user-supplied data. It supports annotation of most types of variant
types in both coding and non-coding regions.

The main drawback is that it annotates every variant separatelly, not considering
the compound effect. Nonetheless, a new tool called Haplosaurus was introduced in
2016 and it can process whole-transcript haplotype sequences. The tool is described
in the following section. The VEP is open-source and free to use and it is actively
maintained and further developed [13].

4.1.1 Usage

The most user-friendly and easiest way to learn working with the VEP is the VEP
Web, an online tool available at https://www.ensembl.org/Tools/VEP. The user fills
in the form, enters the variant data and alters various options, submits the query and
waits until the job is finished. The VEP Web is more suitable for less experienced users
and smaller analysis [65].

To make full use of the VEPs functionality, the best way is to use the VEP Perl
script. Download and installation instructions are available at http://www.ensembl.
org/info/docs/tools/vep/script/index.html. The script works the most efficiently
in “offline mode”, using a local cache of annotation files (Ensembl annotation [35] or
RefSeq [36], both available for GRCh38 and GRCh37). Those can be downloaded
automatically when running the installer script. More options and settings can be used
compared to the VEP Web. Moreover, the input file size is completelly unlimited (for
the VEP Web, the limit is 50 MB which is around two million lines in VCF file) [13].

Another way to use the VEP is via the REST API [48] which is accessible from any
programming language. It returns basic variant annotations in JSON format which is
simple for parsing.

4.1.2 Input

The input can be in various formats; it can be a list of variant IDs or descriptions
in HGVS notation. Another option is to provide a VCF file or the Ensembl default
formatted file. Those formats can represent selected structural variations; recognized
values are ‘INS’, ‘DEL’, ‘DUP’ and ‘TDUP’ [63].

4.1.3 Output

The first output file is a HTML file with statistics and summary (number of overlapped
transcripts, filtered out variants count, percentage of variants in the non-coding regions
etc.). The second output file is in the TSV format by default; other possibilities are
JSON, GVF [66] or VCF (annotation is in the ‘INFO’ column).

The consequence for each alternative allele and each overlapped genomic feature is
written on a separate row [65].
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Variant consequences are described by the Sequence Ontology terms [12]. If the
amino acid sequence is modified by the variant, the VEP is able to provide pathogenicity
predictor scores such as SIFT [67] or PolyPhen-2 [68].

The output files in VCF or TSV format can be filtered out using the
filter vep script. It can filter out known variants, variants in non-coding regions,
variant with SIFT score less than 0.1, not located in the first exon etc. [65]. Detailed
instructions for filtering the results are available at https://www.ensembl.org/info/
docs/tools/vep/script/vep_filter.html.

4.1.4 Algorithm

The VEP algorithm code is part of the Ensembl API which is written in Perl and de-
pends on the BioPerl API [69]. Time-critical parts are programmed in the C program-
ming language. Comprehensive documentation of the Ensembl API is freely available
[70].

First of all, the input file is processed; the Ensembl default format can be directly
converted into a VariationFeature object. For variants in the HGVS notation, the
genomic coordinates based on the reference sequence must be resolved. VCF is pre-
processed, because the VCF and the Ensembl default format representation of the
variants can differ. For instance, VCF requires to add one base before an indel to
the alleles. The variant position is therefore shifted by one position compared to the
Ensembl default.

The input variants are read into a memory buffer which is thereafter processed by
more subprocesses, each having its own part of the data. All the results are merged
together and sorted before returning the output.

Every variant goes through a quality-control process. For example, it checks
whether the alleles match the coordinates, or whether the reference allele matches
the reference genome sequence. Incorrect variants are not processed.

The genomic loci overlapped by the variants are separated to 1 Mb regions and
a memory cache with transcripts and regulatory features is created for each region.
Therefore, it does not have to be loaded repeatedly for each variant. For each tran-
script, the information about intron-exon structure, UTR, coding regions and translated
regions is cached in the same manner later in the process.

A VariationFeatureOverlap object represents an overlap between an input vari-
ant and a genomic feature. A particular sub-class of that class is created for each
overlap that was found; TranscriptVariation, RegulatoryFeatureVariation and
MotifFeatureVariation are the possible subclasses.

A TranscriptVariationAllele (a VariationFeatureOverlapAllele subclass)
object is a child class of the TranscriptVariation, representing an allele of the variant.
For each TranscriptVariationAllele object, the consequences are evaluated using a
set of predicate functions. These functions are built to decide certain conclusions about
the variant. To give an example of a predicate: “Does this variant change the protein
coding sequence?” If the answer is ‘True’, an OverlapConsequence object representing
the consequence type is assigned to the TranscriptVariationAllele. One variant can
have more OverlapConsequence objects assigned and because of that, the consequence
with the highest priority can be selected at the end.

In purpose of speeding up the computation, there are also pre-predicate checks
deciding which predicates need to be computed. For instance, we do not need to
compute the amino acid sequence change for an intron variant.

Computed VariationFeatureOverlapAllele objects with predicted consequences
are then processed for output. The filters (according to given input parameters) are
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applied in this place. The plugin modules are executed at this stage as well. There-
fore, the plugins work with the prepared output, but can alter it before it is writ-
ten to the file. Most plugins modify only information in the last column (‘Extra’)
of the output; however, it is possible to modify the output line in any manner. The
Bio::EnsEMBL::Variation::Utils::BaseVepPlugin modul is recommended to im-
plement new plugins [13, 70].

4.2 Haplosaurus

Haplosaurus is a tool provided by Ensembl [42] and can be downloadabed at http:
//www.ensembl.org/info/docs/tools/vep/script/index.html together with VEP.
The advantage of Haplosaurus is that it is able to compute the compound effect of
more variants and predict consequences for haplotypes.

The tool is implemented in the Ensembl database in the transcript haplotypes
view [71]. In this view, we see a list of haplotypes originated from the 1000 Genomes
Project and their relative frequency in population. A haplotype is expressed as a list
of variations.

4.2.1 Usage

The haplo script is a command line tool and it shares most of the functionality with
the VEP; most arguments are the same and it is possible to use the same local cache
of the gene annotations.

Haplotype frequencies observed in the 1000 Genomes Project can be assigned using
the --haplotype frequencies flag [17].

4.2.2 Input

The only supported input format is a phased VCF file with data for at least one sample
[17].

4.2.3 Output

The default format is a tab-delimited file, however, it is possible to get a JSON output
using --json. The fields are as follows:

• transcript ID
• haplotype name in HGVS notation representing differences to the reference
• flags for CDS haplotype
• protein name in HGVS notation
• flags for protein haplotype
• frequency data
• contributing variants
• sample:count that exhibits this haplotype

4.2.4 Algorithm

A pair of haplotype sequences is created for each transript overlapping the variant.
The haplotypes are constructed according to the phased genotype data in the VCF file.
The haplotype sequences are translated to the protein sequences and compared to the
reference [17].
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4.3 ANNOVAR

ANNOVAR is another command line tool for genomic variants annotation. The most
important functionality is so called gene-based annotation; it determines which genes
the variant overlaps and it decides the consequences for each transcript. Besides, it is
possible to perform filter-based annotation to look through a variation database (i.e.
dbSNP [61] or 1000 Genomes Project data CITACE [1]) and determine if the variant
is present there. Moreover, filter-based annotation can be performed to find important
genomic regions (predicted transcript factors binding site, conserved regions, conserved
RNA secondary structures etc.) overlapping with the variant [10].

4.3.1 Usage

The usage of ANNOVAR is simple; all the scripts are downloadable from
http://annovar.openbioinformatics.org/en/latest/user-guide/download/ and
it is free to use for non-commercial purposes. The scripts are written in Perl and they are
accessible from the command line without any installation. It only needs to download
database files with reference sequences and annotations; the annotate variation.pl
script with the --downdb argument should be used for this purpose.

The most important functionality is the annotate variation.pl script. We can
choose the type of the annotation (--geneanno, --regionanno,
--filter), the type of reference data (refGene, ensGene) and their location on the
disc, the version of the reference genome assembly (hg18 (GRCh37) is the default) and
the input file with variants.

Another possibility is to use the table annovar.pl script. Its output is a tab-
delimited file with detailed variant annotation. For example, it is possible to get SIFT
[67] or PolyPhen-2 [68] score or a genetic disorder associated with the gene. Another
advantage is that it is able to perform more types of annotations at the same time or to
use different gene annotations [10]. The script internally uses annotate variation.pl,
so the results should be the same; the main advantage is having more annotations in
one file together.

4.3.2 Input

The annotate variation.pl script can process only the ANNOVAR input format
which means we need to convert other types of formats to this default one. There
is the convert2annovar.pl script that does the work for us; it can convert several
formats including VCF.

When using the table annovar.pl script, a VCF file can be provided with the
--vcfinput argument. Nevertheless, the script calls the same conversion script stated
above.

Unlike VCF, the ANNOVAR input format cannot represent more complex variants,
but only indels and substitutions. Having more samples in one VCF file is problematical
as well; only the data for the first sample are written to the converted file. We can
change this behaviour by the --allsample argument; in that case a separate file is
created for each sample [64].

4.3.3 Output

The gene-based annotation returns two files as an output, named after the input file
with extensions .variant function and .exonic variant function.
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The first file contains a line for every variant in the input file. Two columns are
added at the beginning of the input line. The first column tells which part of the tran-
script the variant hits (exonic, splicing, UTR5, downstream, intergenic,...). Only the
term with the highest priority is stated; that can be changed by the --separate argu-
ment. The second column contains the name of the overlapped gene, or alternatively
a comma-separated list of genes. If no gene is hit, then the two neighboring genes and
their distance is stated.

The second output file annotates only variants marked as ‘exonic’. In the first
column, there is the variant line number. The second column tells the functional con-
sequences. The third column contains the gene name, the transcript ID and described
change of the transcript (with --hgvs argument it will be given in the HGVS nomen-
clature [59]).

The coding change.pl script is needed to get the modified amino acid sequence.
[64]

4.3.4 Algorithm

Firstly, the count of lines in the input file determines whether multithreading will be
used. According to the autors observations, multithreading is beneficial if there is more
than one million variants.

The type of the annotation is decided by the given argument and the corresponding
function is called: annotateQueryByGeneThread, annotateQueryByRegionThread, or
filterQueryThread. If multithreading is allowed, the input variants are distributed
among the threads.

Therefore, the annotateQueryByGeneThread is called for the gene annotation.
Firstly, the genome annotation files are parsed, then the input is parsed and checked for
correctness by the detectInvalidInput function and the
processNextQueryBatchByGeneThread processes a block of variants. For each vari-
ant it is decided whether it is intra- or intergenic and whether it is an upstream or
downstream variant. Moreover, for variants inside genes it is determined if it hits an
intron, an exon, a UTR or a splice site.

The annotateExonicVariantsThread is called for exonic variants. The FASTA
sequence is loaded and, according to the amino acid sequence modification, it is decided
whether the reading frame changed, whether a stop codon was gained or lost or whether
it was a synonymous or nonsynonymous mutation [72].

4.4 BCFtools/csq

BCFtools is a set of utilities for variant calling and handling the VCF and BCF files.
The BCFtools/csq command runs a fast and efficient haplotype-aware consequence
predictor which can make use of known phased haplotype data and predict effects of
compound variants. The program is written in the C programming language and it is
very fast and efficient [15, 73].

Compared to the VEP or SnpEff, it does not offer such a rich functionality (such as
reporting known variants, predicting pathogenicity scores etc.), but it is more focused
on correct classification of nearby variants in known phase and interpretation of their
compound effect.

There is also a possibility to run localized predictions with only one variant at a
time when using the --local-csq option [73].
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4.4.1 Usage

The BCFtools package download and installation instructions can be found at http:
//www.htslib.org/download/. The package internally uses HTSlib [74] which is dis-
tributed as a separate package or together with the BCFtools package and needs to be
installed before installing BCFtools.

There is no need to build any database cache. Instead, the user supplies a reference
genome sequence in the FASTA format (using -f or --fasta-ref options), a genome
annotation in the GFF3 format (-g, --gff-annot) and a VCF file with input variants.

4.4.2 Input

The only possible input format is the VCF (or BCF). It should contain phased haplotype
information; nevertheless, if the phase is unknown, the --phase option can be used to
determine how to handle unphased heterozygous genotypes [73].

4.4.3 Output

The predicted effects are written to the ‘INFO’ field (the eight column) of the input file
using the ‘BCFQ’ tag. A comma-separated list of overlapped transcript annotations in
the following format is given:

• Consequence type
• Gene name
• Ensembl transcript ID
• Biotype
• Strand (+/-)
• Amino acids change
• DNA change (list of corresponding variants)

The annotations for variants downstream to a stop codon are prefixed
with a ‘∗’.

If the variants have compound effect, one of them has the full annotation assigned
and the other ones are referenced with the position of the annotated one. For instance,

BCSQ=missense|CLASP1|ENST00000545861|-|1174P>1174L|
|122106101G>A+122106102G>A

BCSQ=@122106101

In this example, two variants (at positions 122106101 and 122106102) change the
same codon. The second annotation gives the reference to the first one instead of the
full annotation.

There can be many samples in the VCF file which means there are also different
haplotypes and it makes the representation of the consequences more complicated.
Consequences for each haplotype are written to the ‘FORMAT’ field for each sample
as a bitmask of indexes. The bitmask can be translated into a readable format using
the BCFtools/query command. For instance, the command

bcftools query -f’[%CHROM\t%POS\t%SAMPLE\t%TBCSQ\n]’ csqOutput.vcf

prints consequences for all the haplotypes in separate columns. For more informa-
tion see the BCFtools manual [73].
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4.4.4 Algorithm

The first thing is parsing the gene annotations in the GFF3 file. Each transcript has a
gene assigned as a parent and all the CDSs, exons and UTRs have the corresponding
transcripts assigned. Then the search for overlapping regions (CDSs, UTRs, exons or
general transcripts) is performed.

Overlapped transcripts are kept on a heap data structure. A haplotype tree is built
for each transcript according to the genotype information in the phased VCF file. The
nodes correspond to the VCF records and each node has as many child nodes as there
are alleles in the record. Therefore, the leaves of the tree represent different haplotypes
and the internal nodes represent haplotypes with the same ‘prefix’ shared by multiple
samples.

When all the variants in the transcript are processed, the transcript is spliced and
the consequences are decided [15].

4.5 SnpEff

SnpEff (an abbreviation of ‘SNP effect’) is a variant annotation and effect prediction
tool, which can annotate thousands of variants per second. The tool is open source and
freely available. The code is written in Java and it is platform independent. Beside
the functional effect prediction, it supports many annotations, such as loss of function
(LOF) and nonsense-mediated decay (NMD) predictions or assigning the SIFT [67]
or PolyPhen-2 [68] scores. It produces variant annotations in HGVS notation [59].
SnpEff can also perform non-coding and regulatory annotations, but the corresponding
databases must be available.

4.5.1 Usage

The download and installation are very easy. The ZIP file can be downloaded from
http://snpeff.sourceforge.net/download.html and all that is needed to do is to
unzip the file.

SnpEff requires a database to produce the annotations. The database data are
downloaded and installed automatically when doing predictions for the first time and
there is no need to do it manually in most cases. However, it is possible to build custom
databases from supplied GFF/GTF and FASTA files in case there is not a pre-build
one that would suit the users needs. Detailed instructions for building the databases
are available in the online documentation [75].

4.5.2 Input

VCF is the strongly recommended input format, since it is a standard format used by
other software packages [11].

4.5.3 Output

SnpEff supports TXT and VCF output formats. However, VCF is the default one and
it is highly recommended to use it.

The annotations are added to the ‘INFO’ field (the eight column) of the VCF file
using the ‘ANN’ tag. If there are more genes or transcripts affected by the variant,
and therefore there is more than one annotation, all of them are reported, separated
by commas.

Each annotation consists of 16 sub-fields separated by a ‘|’. The sub-fields are:
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• alternative allele
• predicted effect – Sequence Ontology terms by default
• impact – HIGH, MODERATE, LOW or MODIFIER
• gene name
• gene ID
• feature type (transcript, motif, miRNA, etc.)
• feature ID
• transcript biotype (coding, non-coding i.e.)
• exon (intron) rank / total number of exons (introns)
• variant described in HGVS notation
• protein change (if any) in HGVS notation
• position in cDNA / cDNA length
• position in CDS / CDS length
• position in protein sequence / protein sequence length
• distance to feature (i.e. for upstream variants, distance to closest gene)
• errors, warnings and information

The consequences are described by the SO terms [12] by default.
A file with summary and statistics (number of known variants,

transitions/transversions ratio, percentage of exon variants etc.) is created as well.
Since calculating the statistics can take a lot of time, it is recommended to disable it
by the -nostats argument when it is not needed [11].

The output can be modified by filters. Some of them are pre-implemented, but
custom output filters can be supplied as well, using SnpSift filters [76]. SnpSift is a
toolbox that can be downloaded together with SnpEff and allows to manipulate the
annotated files.

4.5.4 Algorithm

Firstly, SnpEff needs to load the binary database stored by SnpEff as compressed
serialized objects. It takes some time but after it is loaded, SnpEff is very effective.

When loading a database, SnpEff builds a data structure which can, given any
interval or point, efficiently find all overlapping intervals. For each contig in the genome
assembly, an ‘interval tree’ is built. It is a binary tree data structure where each
node stores a center point and all intervals overlapping the center, sorted by beginning
and end positions. The node has a pointer to another node containing all intervals
completely to the left of the center, and another one for those to the right. Moreover,
to reduce the number of intervals, a hash is built of those interval trees, indexed by
chromosomes; this data structure is called an ‘interval forest’ [11].

The genome statistics are calculated at this point. After building the data structure
for efficient interval search, the input file is parsed and the overlapping genomic regions
are found for each region. If those regions include an exon, the coding consequences
are calculated.

SnpEff supports multithreading, but it is not used by default and it must be switched
on by the -t argument. Size for splice sites is 2 by default and the default upstream
and downstream size is set to 5kb, but these settings can be changed [11].
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5. Practical part – Comparison
of the predictors
5.1 Objectives of the practical part

• to create a set of tests (variants represented in VCF files) that can help to test
predictors in various situations

• to discuss the results of the tests and compare annotations given by five selected
variant effect predictors

• to highlight situations in which the prediction of consequences can be problematic

5.2 Methods

Using the Ensembl genome browser (release 92), a transcript sequence was manually
examined to create test cases with variants located in various parts of the transcript and
causing diverse consequences. Emphasis was put on problematic regions such as exon-
intron boundary, CDS-UTR boundary or stop and start codons. Compound variants
were tested as well.

The annotations were made with the Ensembl transcripts set (release 92, 05-04-
2018) and the GRCh38.p12 reference genome assembly. Some variants were encoutered
in real data and some were made-up to cover various cases that could possibly happen.
Five different variant consequence predictors were used for annotations:

• VEP, v92.5
• Haplosaurus, v92.5
• ANNOVAR, version 2018Apr16
• BCFtools/csq, bcftools-1.9 + htslib-1.9
• SnpEff, version 4.3T

Installation of the programs was made according to the documentations. For VEP
and Haplosaurus, the database cache was created automatically together with the in-
stallation, using the

ftp://ftp.ensembl.org/pub/release-92/variation/VEP/
/homo sapiens vep 92 GRCh38.tar.gz

file from the Ensembl FTP site. The GFF3 file and FASTA reference sequence for
BCFtools/csq were also downloaded from the Ensembl FTP site:

ftp://ftp.ensembl.org/pub/release-92/fasta/homo sapiens/dna/
/Homo sapiens.GRCh38.dna.chromosome.22.fa.gz

ftp://ftp.ensembl.org/pub/release-92/gff3/homo sapiens/
/Homo sapiens.GRCh38.92.chromosome.22.gff3.gz

SnpEff builds the binary database automatically when doing the predictions for the
first time. It downloaded the files from

http://downloads.sourceforge.net/project/snpeff/
/databases/v4 3/snpEff v4 3 GRCh38.92.zip
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ANNOVAR downloads the files from the UCSC Table Browser [32]. Following
the instructions in the documentation, the GENCODE V28 Comprehensive data set
(wgEncodeGencodeCompV28 UCSC table) was downloaded using the
annotate variation.pl script with the --downdb option. GENCODE V28 (version
28, 05-04-2018) corresponds to the Ensembl 92 annotations.

The downstream and upstream regions were taken as 5 kb regions adjacent to the
transcription start site and transcription end site. The size 5 kb was set by default in
VEP and SnpEff. The default for ANNOVAR is 1 kb, but this was changed by the
--neargene option. BCFtools/csq and Haplosaurus do not annotate upstream and
downstream regions. The splice site size was set to 2 bases by default for all the tools.

Following commands in listings 5.1 – 5.2 were used for the annotations:

# The annotate_variation .pl script cannot process VCF input. We need to
convert it first:

perl " $annovarPath "/ convert2annovar .pl --format vcf4 " $vcfFilePath " >
avinput .txt

# We are performing gene -based annotation (-- geneanno ) with the Ensembl
gene annotation and hg38 ( GRCh38 ) reference genome .

# All functional consequences ( rather than just the most important one)
are printed out when using the --separate option .

perl " $annovarPath "/ annotate_variation .pl --geneanno --dbtype ensGene
--buildver hg38 --neargene 5000 --separate avinput .txt
" $annovarPath "/ humandb /

Listing 5.1: ANNOVAR

# The variant processing is much faster with --cache and --offline . The
cache can be downloaded throught the installer .

# --vcf causes that the output is written in VCF format
# --regulatory allows looking for overlaps with regulatory features
# --no_stats disables generating a statistics file
perl " $vepPath "/vep --cache --offline --vcf --input_file " $vcfFilePath "

--regulatory --species homo_sapiens --no_stats

Listing 5.2: VEP

# The variant processing is much faster with --cache and --offline . The
cache can be downloaded throught the installer .

perl " $vepPath "/haplo --cache --offline --input_file " $vcfFilePath "
--species homo_sapiens

Listing 5.3: Haplosaurus

" $bcftoolsPath "/ bcftools csq -f " $FASTAPath " -g " $GFF3Path "
" $vcfFilePath "

Listing 5.4: BCFtools/csq

# The java parameter -Xmx4g is used to increase the memory available to
the Java Virtual Machine to 4G.

# To perform regulatory annotations , a regulatory database needs to be
build. The instructions are available in the documentation
(" Building databases : Regulatory and Non - coding "). The -reg option
specifies the regulation track to use.

# --nostats disables generating a statistics file
java -Xmx4g -jar " $snpeffPath "/ snpEff .jar GRCh38 .92 " $vcfFilePath " -reg

Predicted_promoter -nostats

Listing 5.5: SnpEff
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5.3 Results

105 VCF test files were made and all of them were annotated by the predictors. The
results were compared with the expected consequences and a table with comparisons
and commentaries was created. The table and the VCF files are available on the
attached CD.

The predictors all worked well for uncomplicated variants, such as intergenic vari-
ants, intron variants, UTR variants, missense and synonymous SNPs, frameshifts and
inframe indels. Intergenic, upstream and downstream variants are not reported by
BCFtools/csq for its low importance. Haplosaurus does not annotate any variants out-
side the CDSs. Only VEP and SnpEff can do regulatory and non-coding annotations
(ANNOVAR can find overlapped regulatory regions when performing the region-based
annotation).

There are differences in consequence terms used by different predictors. Both VEP
and SnpEff use the Sequence Ontology terms. BCFtools/csq uses SO as well, but omits
the word ‘variant’ (so it uses for example intron instead of intron variant). ANNOVAR
and Haplosaurus have their own sets of terms. The latter often reports only the change
in the transcript/protein sequence instead of a consequence term.

There can be differences in the types of consequences that are recognized. For exam-
ple, SnpEff is the only one that reports the exon loss variant and only VEP reports the
NMD transcript variant. ANNOVAR does not consider the splice region variant at all.
Haplosaurus uses the stop change term for both stop gained and stop lost variants. AN-
NOVAR does not distinguish between splice donor variant and splice acceptor variant
and uses the term splicing for both of them. ANNOVAR reports wholegene when the
whole start codon was deleted (but not if there is only a change in the start codon).
There are even more differences and the lists of the used terms can be found in the
programs documentations.

Handling structural variants is much more complex and can be very limited when
working with the discussed tools. It is recommended to rather use a specialized tool,
such as AnnotSV [77]. ANNOVAR can identify previously reported structural variants
when doing the region-based annotation. BCFtools/csq and Haplosaurus skip struc-
tural variants. VEP and SnpEff can annotate basic structural variants. VEP currently
recognizes four values written in the “SVTYPE” INFO field in VCF: INS(insertion),
DEL(deletion), DUP(duplication) and TDUP(tandem duplication).

Next sections describe some of the encountered problems.

Stop codon gained

Some tools had problems with the stop gained variant and reported frameshift instead.
An example is pictured in figure 5.1.

REF
R

A G G T A C C A G 
Y Q

ALT
R

A G G T A  -  - A G 
STOP

Figure 5.1: 2 bp deletion in the stop gained deletion test creates a new stop codon.
All the tools except for VEP returned frameshift variant instead of stop gained.
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Stop codon retained

There can be situations when the stop codon is changed, but it is either changed into
a different stop codon, or it is shifted because of an indel. The tools should return
the stop retained variant, or the synonymous SNV variant in case of ANNOVAR. This
consequence is much less severe than the stop lost.

The tools work well in the simple cases, such as a SNP in a stop codon (see test
stop retained SNP). Nevertheless, it gets complicated even with simple indels. In the
example in figure 5.2, the situation is not so complex, but only VEP seems to return
the right output (see table 5.1)

REF
EXON 3' UTR

T T T A A T T G T G 

ALT
EXON 3' UTR

T T T A -  -  -  G T G 

Figure 5.2: 3 bp deletion in the stop retained deletion test changes the stop codon,
but a new one is created. Stop codons are highlighted in both sequences.

ANNOVAR frameshift deletion
VEP stop retained variant & 3 prime UTR variant

SnpEff stop lost & conservatice inframe deletion
& 3 prime UTR variant

BCFtools/csq stop lost & 3 prime utr
Haplosaurus XXX

Table 5.1: The stop retained deletion test results. Only VEP recognized the re-
tained stop codon.

The example in the figure 5.3 shows situation where only BCFtools/csq and VEP
correctly identify the stop retained variant, but in addition, all the five predictors report
frameshift, which is incorrect because the translation ends with the newly created stop
codon.

REF
EXON 3' UTR

T T T A A T T G T G 

ALT
EXON 3' UTR

T T T A G A T T G T G 

Figure 5.3: The stop retained insertion test. The insertion of ‘G’ creates new stop
codon. No frameshift.

In the stop lost insertion test, BCFtools/csq returned wrong output -
stop retained instead of stop lost.

Whole exon deletion

It is hard to say what consequence should be reported when the whole exon is deleted.
The best option seems to be the exon loss variant, because it describes the situa-
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tion the best, but it is only used by SnpEff. However, even SnpEff does not report
exon loss variant when the first or the last codon is deleted. The reason could be that
the stop lost and start lost variants have higher priority (see the last exon deletion
and first exon deletion tests). In the last exon deletion test, ANNOVAR should
be able to report stoploss.

Retained splice sites and ambiguous representation of variants in border
regions

In the example pictured in figure 5.4, the same alternate sequence was obtained by
insertions at two different sites. The resulting sequence is the same and thus the
predicted consequences should be the same for both variants.

REF
EXON INTRON

A C T G G T A C 

EXON INTRON
A C T G G T G T A C 

EXON INTRON
A C T G G T G T A C 

ALT 1

ALT 2

Figure 5.4: The same alternate sequence was obtained in two tests: (a) ALT 1:
splice donor retained insertion 2 and (b) ALT 2: splice region insertion.
The inserted bases are highlighted.

However, the results differ, because the variant is treated as a splice region variant
in the first case and as a CDS variant in the second one (see table 5.2). Only SnpEff
seems to treat both variants equally.

ALT 1 ALT 2
ANNOVAR splicing & intronic frameshift insertion

VEP splice region variant
& intron variant

frameshift variant
& splice region variant

SnpEff splice region variant
& intron variant

splice region variant
& intron variant

BCFtools/csq splice region synonymous & splice donor
Haplosaurus XXX frameshift & indel

Table 5.2: Different consequences predicted for the same alternate sequence.

However, it is hard to say which consequence should be expected. It is likely that
the splicing would not be disrupted, as the splice site technically did not change. In that
case, frameshift variant would be the most suitable. However, splicing is a complicated
process and a change in sequence near splice site could cause some problems. Therefore,
the information about the splice region change should not be completelly omitted on
the output. Maybe the splice region variant & frameshift variant would be the best
option in this case.

Similar situations can be seen in other pairs of tests:

• splice acceptor retained 1 and splice acceptor retained 2

• splice acceptor retained 3 and splice acceptor retained 4
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If a splice site retained term existed, it would be an easy solution. The consequence
would be less severe than splice acceptor and splice donor variants, but different from
the splice region variant.

It seems that SnpEff takes the retained splice site sequences into notice and re-
ports splice region variant instead. See the splice donor retained insertion and
splice donor retained deletion tests as an example.

Start codon

Start codon loss is very severe, because the translation cannot start at the site and
the protein sequence will be changed. ANNOVAR does not report the start lost con-
sequence at all. It uses wholegene, but only if the whole start codon was deleted.

If there is a change in the stop codon, but it is retained, the start retained conse-
quence should be reported. However, it seems that only VEP should be able to use this
term and it did not use it correctly in any test. All the predictors except for SnpEff
seem to have problem in this situation. As an example, see figure 5.5.

REF

ALT

C A G A T G T G 
5' UTR EXON

    C A G A T G G T G
5' UTR EXON

Figure 5.5: The start codon retained insertion 1B test. An insertion of ‘G’ does
not change the start codon. All the predictors correctly report frameshift. However,
VEP and BCFtools also report start lost variant, which is incorrect.

An interesting situation, when the start codon changes into a stop codon, is pictured
in figure 5.6. The predicted consequences can be found in table 5.3. ANNOVAR
incorrectly predicted the stopgain variant, because the translation cannot start, so the
stop codon is unimportant. Other tools correctly reported the start lost variant, but
reported frameshift as well, which would be odd in this case, as we do not know where
the translation starts.

REF

ALT

A C C A T G A G 
5' UTR EXON

A C C  - T G A G 
5' UTR EXON

Figure 5.6: The start to stop deletion test. The start codon changed into a stop
codon.

ANNOVAR stopgain
VEP frameshift variant & start lost
SnpEff frameshift variant & start lost
BCFtools/csq frameshift & start lost
Haplosaurus XXX

Table 5.3: The start to stop deletion test results.
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Effects of compound variants

Out of the five tools, only BCFtools/csq and Haplosaurus can decide the consequences
of compound variants. While BCFtools/csq handles most types of consequences, Hap-
losaurus is intended for the haplotypes only, and thus it resolves only variants in CDSs
and ignores intergenic, intronic or splice site variants. However, it does not handle
even variants overlapping the boundaries (exon-intron, exon-UTR) and it can result in
missing annotation of the CDS. For instance, a stop codon loss is not reported because
the variant goes beyond the boundary (see the stop lost deletion test). Another ex-
ample is the whole exon deletion; it certainly concerns the CDS, but Haplosaurus does
not annotate it. See the middle exon deletion test - the whole exon is deleted, but
the splice sites are not changed, and Haplosaurus still does not annotate this variant.

REF
EXON 3' UTR

T T T A A T T G T G 

VAR 1
EXON 3' UTR

T T T A G T T G T G 

VAR 2
EXON 3' UTR

T T T G A T T G T G 

COMPOUND
EXON 3' UTR

T T T G G T T G T G 

Figure 5.7: The SNP+SNP stop loss test. Two SNP variants change the stop codon
and are annotated as stop retained variant when treated separately. Nevertheless, the
correct consequence is the stop codon loss. The compound variant is correctly handled
by BCFtools/csq and Haplosaurus.

Haplosaurus was correct in all the tests with compound variants. BCFtools/csq was
correct in most cases, but there were two tests in which the wrong consequence was
returned. The first one was the indel+indel splice region exonic frame restored
test. A four base deletion together with a two base deletion should result in a frame
restoring variant. For unknown reason, BCFtools/csq treated the variants separately
and the resulting consequence was frameshift. Both deletions were located in ex-
onic splice regions; maybe this could be the issue, because otherwise BCFtools/csq
can recognize the restored frameshift variant without problem (as an example, see
indel+indel different exon frame restored). Another incorrect prediction given
by BCFtools/csq can be seen in figure 5.8.

REF

ALT

C A G A T G T G G C G G G G G A G 
5' UTR EXON

C A G A T  -  -  -  -  -  G  -  -  -  -  A G 
5' UTR EXON

Figure 5.8: The indel+indel start codon retained frame restored test. Two dele-
tions result in a 9 base frame restoring deletion and the start codon retains. BCFtools
returns frameshift & start lost variant. The reason is that it thinks the variants overlap
and it skips the second deletion.
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Conclusion
Variant consequence predictors have an important role in variant annotation pipelines
and are of great help in many studies. However, the computational variant consequence
prediction is not as simple as it seems. The existing variant consequence predictors are
not faultless in all situations and the results should not be trusted blindly, as the
predictions can sometimes be incorrect or incomplete. A possible solution is to use
different tools and compare the results. In some cases (usually for variants located on
the exon-intron boundaries, exon-UTR boundaries or in stop and start codons), the
correct consequence is not obvious. These variants could be reported as problematic
on the output and they could be further examined manually. This solution might be
better than having an incorrect prediction which causes an important variant not to be
noticed. When working with haplotype data, a tool that is able to handle compound
variants should be used, since the differences in the predictions can greatly differ. As a
follow-up to this thesis, it could be useful to create even larger set of test cases to cover
all the situations that could possibly happen, and to invent an algorithm that would
solve the problems encountered in this thesis.
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List of Abbreviations
AA Amino acid
API Application Programming Interface
BLAST Basic Local Alignment Search Tool
CDS Coding sequence
CNV Copy number variation
COPE Context-Oriented Predictor
dbSNP Database for Single Nucleotide Polymorphisms
EBI European Bioinformatics Institute
ENCODE Encyclopedia of DNA elements
EST Expressed sequence tag
FASTA Fast alignment
FTP File Transfer Protocol
GFF3 Generic Feature Format Version 3
GRC Genome Reference Consortium
GTF Gene Transfer Format
GVF Genome Variation Format
HAVANA Human and Vertebrate Analysis and Annotation
HGNC HUGO Gene Nomenclature Committee
HGP Human Genome Project
HGVS Human Genome Variation Society
ID Identifier
IHGSC International Human Genome Sequencing Consortium
JSON JavaScript Object Notation
LOF Loss of function
LRG Locus Reference Genomic sequence
MGI McDonnell Genome Institute at Washington University
MHC Major histocompatibility complex
NCBI National Center for Biotechlonogy Information
NGS Next generation sequencing
NHLBI National Heart, Lung and Blood Institute
NHLBI-ESP NHLBI Exome Sequencing Project
NMD Nonsense-mediated decay
PolyPhen Polymorphism Phenotyping
RefSeq Reference Sequence
REST Representational State Transfer
RT-PCR Reverse transcription polymerase chain reaction
SIFT Scale-invariant feature transform
SNP Single nucleotide polymorphism
SnpEff SNP effect
SO Sequence ontology
TSV Tab-Separated Values
TXT Text file
UCSC University of California, Santa Cruz
UTR Untranslated region
VAAST Variant Annotation, Analysis and Search Tool
VCF Variant Call Format
VEP Variant Effect Predictor
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A. Attachments
The attached CD contains two attachments:

A.1 VCF files

Folder with all the VCF files that were used as test cases for comparing the annotations.

A.2 Annotation results table

Table with results of the tests and their comparison with the expected consequence.
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