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Autor: Lukáš Polcar
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Introduction
The theory of dynamical systems, more commonly known as the chaos theory, is a
relatively modern branch of mathematics which is applicable in many areas. Orig-
inally it was developed as a tool to study nonlinear systems in physics, especially
in the context of classical mechanics. Actually, it has turned out that linear sys-
tems represent but tiny fraction of real physical and mathematical world, which
indicates that in nature chaotic behaviour is a rule rather than an exception.
The most intuitive aspect of chaos is a sensitive dependence on initial conditions,
nowadays mainly popular from meteorology, but already for long known from the
Newtonian gravity (the three-body system).

In this thesis, we will study several dynamical systems whose unperturbed
configuration space is given by gravitational field of a black hole. Although we
will partially resort to a (pseudo-)Newtonian treatment, it is clear that such
an extreme strong-field object can only be properly described within Einstein’s
general theory of relativity which describes gravity geometrically as a curvature
of spacetime. This theory – as opposed to Newton’s theory – is non-linear, so
one can expect that the dynamical systems which appear there will be even more
prone to chaos.

According to the black-hole uniqueness theorems, every isolated stationary
black hole in an otherwise regular asymptotically flat space-time is given by the
Kerr-Newman solution, i.e., it is axially symmetric, it has a horizon of spheri-
cal topology and it is fully characterized by at most four parameters (of which
physically relevant are three – mass, angular momentum and electric charge,
and astrophysically only the first two). One of “miraculous” properties of the
Kerr-Newman geometry is that (electro-)geodesic motion of test particles is com-
pletely integrable, so there is no room for chaos there. However, actually any
perturbation of the Kerr-Newman geometry – typically due to the presence of
some additional matter around – destroys this integrability (even if the pertur-
bation keeps all the symmetries of the original space-time, namely stationarity,
axisymmetry and reflectional symmetry). This feature, also surviving in the non-
rotating, Schwarzschild or Reissner-Nordström case, is due to the existence of
an unstable periodic (spatially circular) orbit and the attached homoclinic orbit.
Such a situation is of course very interesting for theoretical study, but is is also im-
portant astrophysically, because almost all evidence for real black holes acquired
so far is a consequence of their interaction with matter and fields around.

The only setting where one can hope to be able to treat, as an exact solution
of Einstein’s equations, the space-time of a black hole surrounded by an addi-
tional source, is just the stationary (even better static) and axially symmetric
case. Fortunately, as results of gravitational attraction and centrifugal repulsion,
the accretion inflows onto compact objects, which fuel many extremely energetic
astrophysical sources (active galactic nuclei, X-ray binaries, gamma-ray bursts),
are supposed to be roughly axially symmetric, and in first approximation they
are also treated as quasi-stationary (their accretion time is much longer than the
orbital period).

In this thesis we will resort to the simplest, static case, and will specifically
study the free motion of test particles around a Schwarzschild black hole per-
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turbed by either an inverted Morgan-Morgan thin disc or a Bach Weyl ring.
Although the title of the thesis involves the Schwarzschild black hole, we will
also study the same problem in the space-time of an extreme Reissner-Nordström
black hole encircled by a Majumdar-Papapetrou ring. In that system, both the
black hole and the ring are (extremally) charged, so there is an electromagnetic
field around, but the dynamics of neutral particles is similar to the first, un-
charged system. (Extremally charged bodies are not physically relevant, but the
Majumdar-Papapetrou ring has, surprisingly, much more reasonable properties
than the Bach-Weyl ring. In any case, we wanted to also study a different system
in order to see how robust are the results obtained for the first one.)

We will study the above systems using two very different analytical methods
which should theoretically be able to predict the occurrence of chaos without
solving the equations of motion. The first method is the geometric criterion
of chaos which builds on the fact that geodesics tend to diverge on surfaces of
negative Gauss curvature: it consists in calculation of eigenvalues of a certain
matrix given by the Riemann curvature tensor. The validity of this criterion is
often being questioned, so it will be interesting to test it on our systems against
numerical integration of the geodesic equation.

The main focus of this thesis is on the Melnikov method. In contrast to the
geometric criteria, this method is rather well established, namely it is based on
mathematical theorems. It attempts to determine whether the system exhibits
the so called homoclinic chaos. This type of chaos occurs when an unperturbed
system possesses a homoclinic orbit (also called separatrix) that breaks up under
a perturbation, leading to the formation of a very complicated structure called
homoclinic tangle. Such a circumstance can be “diagnosed” by the analytically
computed Melnikov function: only in that case the latter has simple zero points.
Again, we will compare the results of the Melnikov method will numerics.

The thesis is structured as follows: the first two chapters bring a necessary
theoretical background, with chapter one summarizing the basic concepts of the
chaos theory and chapter two dealing with static and axisymmetric (specifically,
Weyl) spacetimes. The third chapter describes the geometrical criterion and
confronts its predictions with numerical simulations. The fourth chapter does the
same for the Melnikov method. Application of the methods to both the above
black-hole systems is an original work; the main contribution of the thesis is a
necessary re-formulation of the Melnikov method, which has been found thanks
to a canonical transformation to the suitable action-angle variables.
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1. Basics of the chaos theory
In this chapter I will briefly describe basic concepts and methods of the chaos
theory which will be used in our study of the perturbed black hole system.
Let us consider a system with a finite number of degrees of freedom which is
described by a system of N ordinary differential equations:

ẋ = F (x, t), x ∈ X ⊂ RN . (1.1)
The continuous time evolution described by this equation can also be understood
as a mapping of the space of states X on itself: f t : X → X, x(t) = f t(x), as it
is in the discrete case:

xn+1 = F (xn, n), x ∈ X ⊂ RN . (1.2)
Chaos in a dynamical system is often being introduced in terms of sensitive
dependence on initial conditions or exponential divergence of nearby trajectories
but there is actually no universally accepted definition. One of popular definitions
of chaotic behaviour is due to Devaney [1989]:

Definition 1. Let X be a metric space. A continuous map f : X → X is said
to be chaotic on X if:

1. f is topologically transitive, i.e., for every two open subsets U1, U2 ⊂ X
there exists a finite time t such that f t(U1) ∩ U2 ̸= ∅.

2. Periodic points are dense in X: for every x ∈ X and ε > 0 there exists a
periodic point p: ∥x− p∥ < ε.

3. f is sensitively dependent on initial conditions on X, i.e., if there exists
ε > 0 such that for each point x ∈ X and δ > 0 arbitrary small, there exists
point y: ∥x− y∥ < δ and a finite time t such that ∥x(t) − y(t)∥ > ε.

This definition is analogous for the systems with discrete evolution. It is interest-
ing to remark that Banks et al. [1992] showed that for continuous f the sensitive
dependence on initial conditions is a consequence of the first two points of the
definition.

In the following parts concerning the chaos theory we follow mostly the books
by Lichtenberg and Lieberman [1983,1992] and Wiggins [2000].

1.1 Hamiltonian systems and canonical
transformations

From now on we will discuss systems that are Hamiltonian which means that our
space of states X is the phase space and a point in X is described by a set of
n canonical coordinates qi and also by an equal number of conjugated canonical
momenta pi. The dynamics is encoded in the Hamilton function H(qi, pi, t), with
the evolution equations (1.1) now taking the form of Hamilton’s equations:

q̇i = ∂H

∂pi

, ṗi = −∂H

∂qi

, (1.3)
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or, in a more compact form,

ẋ(t) = JDH(x, t), (1.4)

where x = (q,p) and

J =
(

0 I
−I 0

)
.

If we wish to transform coordinates on phase space while preserving the struc-
ture of Hamilton’s equations (1.3), we have to perform the so called canonical
transformation and here we will specifically use the technique of generating func-
tion F which relates the old momenta (qi, pi) with the new ones (q̄i, p̄i). There
are four types of generating functions but for our purposes we will stick to the
generating function of the second type F2(qi, p̄i, t). The transformation equations
then read

pi = ∂F2

∂qi

, (1.5a)

q̄i = ∂F2

∂p̄i

, (1.5b)

H̄(q̄i, p̄i, t) = H(qi, pi, t) + ∂

∂t
F2(qi, p̄i, t). (1.5c)

Setting the new hamiltonian H̄ = 0 and denoting S ≡ F2, equation (1.5c) leads
directly to the Hamilton-Jacobi equation

H(qi,
∂S

∂qi

, t) + ∂S

∂t
= 0. (1.6)

For a hamiltonian that is not an explicit function of time, the Hamilton-Jacobi
equation takes the form

H(qi,
∂S

∂qi

) = E. (1.7)

1.2 Integrable systems and action-angle
coordinates

Integrable systems represent a small but significant subset of dynamical systems.
To introduce them we first need the concept of integral of motion. A function on
phase space I(qi, pi) is an integral of motion if it is conserved along a trajectory,
I(qi(t), pi(t)) = constant. If this condition reduces the effective dimension of the
phase space by one, then I(qi, pi) is called isolating integral of motion.

If a system with N degrees of freedom possesses N independent isolating
integrals of motion I1, . . . , IN , then the system is called completely integrable. By
independent we mean that their pairwise Poisson brackets vanish, {Ii, Ij} = 0.

Integrable systems have many interesting properties. One of them is that
the time-independent Hamilton-Jacobi equation (1.7) becomes separable, which
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enables us to perform canonical transformation to the so-called action-angle co-
ordinates. We search the solution of (1.7) in the form

S =
N∑

i=1
Si(qi, α1, . . . αN), (1.8)

where αi are the new momenta p̄i, and also α̇i = 0. Equation (1.7) then splits
into N equations

Hi(qi,
∂Si

∂qi

) = αi, i = 1, . . . N. (1.9)

This set of equations can be solved by quadrature, and from the knowledge of
the generating function S we can use equations (1.5a) and (1.5b) to perform the
canonical transformation.

Momenta αi are integrals of motion, but we will pass to a more useful set
of integrals called actions Ji which are uniquely related to αi by functions αi =
αi(Jj), in addition we assume that the motion in the phase space is bounded.
The momenta called actions are then defined by

Ji = 1
2π

∮
pidqi = 1

2π

∮ ∂Si(qi,α)
∂qi

dqi, (1.10)

where the integration is taken along a complete time period of the motion. Thus
after the canonical transformation we obtain a hamiltonian which is a function
of actions Ji only, H = H(J). The corresponding Hamilton equations are then
trivial as is their solution,

Ji = constant,
θi = ωit+ βi,

(1.11)

where the coordinates θi conjugated to the actions Ji are called angles and are
periodic, θi ∈ (0, 2π).

Fixing the values of Ji now confines the motion to a subset of the original phase
space X. If in addition this subset is compact and connected, it can be shown that
it is diffeomorphic to the N -dimensional torus TN which is parametrized by the
angles θi. This is the statement of the Liouville-Arnold theorem which is described
in more details in Wiggins [2000] . The constants ωi are frequencies of the motion.
If the ratios of all possible pairs of frequencies are rational ( ωi

ωj
∈ Q ∀ i, j), the

motion is periodic and we speak of a resonance (the corresponding torus is called
the resonant torus). In the nonresonant case the trajectories densely fill the
invariant torus and the motion is called quasiperiodic.

Another important feature of completely integrable systems is that they do
not exhibit chaotic behaviour. The phase space consists only of the invariant tori
and all trajectories are regular.

Despite the fact that the integrable systems are rare, they are often used to
approximate real processes within perturbation theory. If an integrable system is
subject to a sufficiently small perturbation, then under certain conditions some of
the invariant tori are preserved (the nonresonant ones), therefore regular motion
is still present in some regions of the phase space, although the system is not
integrable any more, this is the result of the KAM theorem which is described in
Wiggins [2000].
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Figure 1.1: Illustration of an invariant torus (Merritt [1999]).

1.3 Numerical methods
In this section we will briefly discuss some tools that are often used in the nu-
merical study of dynamical systems, the first being the Lyapunov exponents.
Lyapunov exponents quantitatively describe the rate of divergence of two nearby
trajectories. The exact definition is (under some assumption such as compactness
of X)

σ(x0,w) = lim
t→∞

lim
d(0)→0

1
t

ln d(x0, t)
d(x0, 0) , (1.12)

where d = ∥w∥, w being a deviation vector between two close trajectories in
the phase space. This vector is a solution of variational equations which can be
obtained by linearization of equations (1.1):

dw

dt = DF (x(t))w, (1.13)

where DF is the Jacobian matrix of F .
The Lyapunov exponent thus characterizes the evolution of the deviation vec-

tor w along trajectory x(t). In fact we may consider, as the deviation vector, any
of N vectors ei that form a basis in the phase space, and consequently obtain
N Lyapunov exponents σi. The trajectories are often said to be chaotic if at
least one of the Lyapunov exponents is positive. Regular trajectories lying on the
invariant tori have all σi = 0, for more details see Wiggins [2000] or Lichtenberg
and Lieberman [1983,1992] .

Though the Lyapunov exponents are a widely used indicator of chaos, there are
other quantities which characterize deviations of nearby trajectories, one of them
being MEGNO (mean exponential growth of nearby orbits) which was introduced
by Cincotta and Simó [2000]. MEGNO is defined as

Y (t) = 2
t

t∫
0

ḋ(s)
d(s)s ds. (1.14)

It is also useful to define the mean value of MEGNO,

Ȳ (t) = 1
t

t∫
0

Y (s) ds. (1.15)
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The nature of a trajectory is given by the asymptotic behaviour of its averaged
MEGNO. Writing this as

Ȳ (t) ≈ at+ b as t → ∞, (1.16)

then for a chaotic trajectory b = 0 and a is proportional to the Lyapunov exponent
σ; in the case of quasiperiodic motion a = 0 and b = 2, but the constant b may
differ in some special situations of regular motion: for example, for a periodic
trajectory one has b < 2.

The last method discussed here are Poincaré sections. Consider a system of
two degrees of freedom which has an integral of motion I(q1, q2, p1, p2). Then
p2 can be expressed as p2 = p2(q1, q2, p1), moreover we can reduce the effective
dimension of the phase space even further by choosing a surface of section Σ
given by equation PΣ(q1, q2, p1) = 0. Each time the trajectory crosses the surface
of section, a point is recorded, so the continuous evolution becomes a discrete
mapping f : Σ → Σ.

Figure 1.2: A trajectory intersecting a surface of section (from Coppo and Rougier
[2012]).

The Poincaré section method is mostly used for a bounded motion and the
section Σ is chosen so that the trajectories cross it repeatedly; one of natural
choices of the surface is to set q2 = constant. The Poincaré section of a regular
trajectory significantly differs from the chaotic one. Regular trajectories are con-
fined to the invariant tori whose intersections with a surface of section results in
continuous curves (which are present in the center of figure 1.3). In the special
case of a periodic orbit the section consist only of a finite set of points. On the
other hand, intersections of a chaotic trajectory densely fill out the correspond-
ing Poincaré section, creating stochastic regions in the Poincaré map (which are
marked by red in figure 1.3).

1.4 Homoclinic chaos
In this final part of the first chapter I will briefly indicate how some particular
structure in the phase space affects the dynamics in its vicinity. This topic is
discussed in much more detail in Wiggins [2000]. The basic results in this area
are due to Poincaré, Birkhoff and lastly Smale who devised a famous chaotic map
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Figure 1.3: Example of a Poincaré section.

known as the Smale horseshoe and showed its relation to the dynamics near the
so called homoclinic points.

Smale horseshoe (see figure 1.4) is a discrete mapping of a unit square on R2,
f : D → R2. The square is stretched, folded and finally laid on itself while some
points leave the original square, so we are left with f(D)∩D which is represented
by two vertical rectangles on each side of the square D. Similarly, the mapping
f−1 can be defined as depicted in figure 1.4.

(a)

(b)

Figure 1.4: Two vertical rectangles correspond to f(D) ∩ D (a) and horizontal
ones to f−1(D) ∩D (b) (from Wiggins [2000]).

After repeatedly applying f , we get
N⋂

n=0
fn(D) which results in getting 2N vertical

strips as can be seen in figure 1.5. This can be repeated over and over (and also
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in the reversed direction of mapping) until we get an invariant set of points which

never leave the square D under the mapping f : Λ =
∞⋂

n=−∞
fn(D). The set Λ is an

invariant set of f and it can be shown that it is chaotic in nature. Additionally,
a point p ∈ Λ can be represented uniquely by an infinite sequence of numbers
si ∈ {0, 1},

p ↦→ s = {. . . s−n . . . s−1.s0 . . . sn . . .}, (1.17)

where si is defined as f i(p) = Hsi
(H0 and H1 are the horizontal rectangles in

figure 1.4). The assignment of a point to an infinite sequence s is also unique.
The evolution of p is then just a shift of its infinite sequence,

f(s) = {. . . s−n . . . s0.s1 . . . sn . . .}. (1.18)

From (1.17) we can deduce that f has two fixed points ({. . . 00.0 . . .} and
{. . . 11.1 . . .}) and an infinite number of periodic orbits of arbitrary long period
(for example {010.101} ). This abstract mapping which uses two numbers {0, 1}
can be generalized to an N -symbol dynamics.

The most important property of this mapping is that it satisfies all three
conditions of definition (1) and therefore it is chaotic. Without a rigorous proof
we can look, for example, at the second condition which demands that periodic
points are dense in X. In Λ each point can be approximated by a periodic point
as closely as we want since we have periodic orbits of arbitrarily long period and
thus the periodic points are dense in Λ. Similarly we can have two points with
sequences s and s̃ with si = s̃i for i up to some very large N but for N itself we
have sN ̸= s̃N . So we have two points very close to each other which however
after fN are mapped into different rectangles (one point to H0 the other to H1),
which indicate sensitive dependence on initial conditions.

Figure 1.5: Second (left) and third (on the right) application of the mapping f .
Reproduced from Wiggins [2000].

One would certainly ask what is the relation between the Smale chaotic map
and the dynamics in classical (Hamiltonian) mechanics. The answer is that the
link between the two lies in the concept of homoclinic points (orbits). Consider
for simplicity a one-degree-of-freedom system described by hamiltonian H(q, p, t)
which is periodic in time (t ∈ (0, T )); this makes the phase space effectively
three-dimensional. Then we take a surface of section Σ which turns the continuous
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evolution into discrete mapping. Denoting x(t) := (q(t), p(t)) we define x0 = x(t0)
for some t0 ∈ (0, T ) and subsequently xn = x(t0 + nT ). The mapping can now
be written in the common form xn+1 = f(xn).

Next we make two key assumptions about f : Σ → Σ:

1. f possesses an unstable (hyperbolic) fixed point p,

2. stable and unstable manifold W s(p) and W u(p) intersect transversally.

The term fixed point obviously means f(p) = p and by hyperbolic or unstable
we mean that the Jacobian matrix Df(p) has no eigenvalue with zero real part.
The fixed point p corresponds to a periodic orbit with period T in the original
three-dimensional phase space.

Finally we define stable and unstable manifolds and homoclinic points:

Definition 2. Let f : Σ → Σ possesses a hyperbolic fixed point p. We define:

1. Stable manifold W s to a hyperbolic fixed point p is a set W s(p) = {x ∈
Σ, fn(x) → p as n → ∞}.

2. Unstable manifold W u to a hyperbolic fixed point p is a set W u(p) = {x ∈
Σ, fn(x) → p as n → −∞}.

3. A point x is a homoclinic point if x ̸= p and x ∈ W s(p) ∩W u(p).

Both asymptotic manifolds are represented as continuous curves in the sec-
tion Σ and two-dimensional surfaces in the original phase space X. As for the
homoclinic points, if there is one homoclinic point, then there exist infinitely
many of them. This is a trivial consequence of the definition. The trajectory
corresponding to a homoclinic point is called the homoclinic trajectory.

Figure 1.6: A homoclinic tangle (W s and W u intersect transversally). Left figure
is reproduced from Sander and Yorke [2015],while the right one is from Lichten-
berg and Lieberman [1983,1992].

Let us get back to the assumptions. In the second one transverse intersections
are mentioned, by that we mean that for the sum of tangent spaces of the two
manifolds it holds TxW

s + TxW
u = TxX, the point x is then called transverse

homoclinic point.

11



The set of all transverse homoclinic points is often called the homoclinic tangle
and it has a very complicated structure (figure 1.6) since as we approach the
hyperbolic fixed point we encounter more and more intersections. In fact the
behaviour of the points in a close neighbourhood of homoclinic points is very
similar to that of the points from the invariant set Λ of the Smale horseshoe
which can be described by the infinite sequences of zeros and ones. The message
of the previous sentence can be precisely stated as the Smale-Birkhoff homoclinic
theorem:

Theorem 1.4.1 (Smale-Birkhoff homoclinic theorem). Let f : R2 → R2

be a Cr (r ≥ 1) diffeomorphism satisfying assumptions 1 and 2. Then there
exists an integer n ≥ 1 such that fn has an invariant Cantor set on which it is
topologically conjugate to a full shift of N symbols.

The theorem implies that in a close neighbourhood of a transverse homoclinic
point the dynamics is chaotic; the whole derivation (proof) can be found in Wig-
gins [2000]. The horseshoe-like dynamics is illustrated in figure 1.7.

Figure 1.7: Horizontal strips mapped on themselves by a diffeomorphism fn (from
Wiggins [2000]).

To conclude the first chapter we make one important remark. The knowledge
of existence of the transverse homoclinic orbits (points) does not tell how large the
chaotic area in the phase space is. Instead we can only tell that chaotic regions are
formed close to the homoclinic points and especially close to the unstable periodic
orbit. Thus the motion sufficiently far from the whole homoclinic structure may
remain completely regular (see Lichtenberg and Lieberman [1983,1992]). In fact
in the near-integrable systems (integrable systems with a small perturbation)
with homoclinic tangle, the chaotic regions are typically located only in a small
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region close to the unperturbed separatrix (see section 4.1.) surrounded by KAM
tori which actually fill most of the phase space (see figure 1.8).

Figure 1.8: Homoclinic tangle confined in a small region surrounded by invariant
KAM tori (Lichtenberg and Lieberman [1983,1992]).

The concept of transverse homoclinic intersection is central to the so called
Melnikov’s method which will be discussed in chapter 4.
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2. Weyl spacetimes
In this chapter some basic properties of the Weyl spacetimes will be discussed with
focus on the solutions of Einstein equations describing a static (and charged) black
hole and infinitesimally thin discs or rings. More details on the general theory
can be found in the book by Griffiths and Podolský [2009] while the particular
solutions can be found in article by Semerák and Suková [2010].

2.1 Weyl metric
Weyl metrics represent a family of static and axisymmetric exact solutions of
Einstein equations. A general form of the Weyl metric is

ds2 = −e2ν(ρ,z)dt2 + e2λ(ρ,z)−2ν(ρ,z)(dρ2 + dz2) + ρ2e−2ν(ρ,z)dφ2. (2.1)

It is expressed in cylindrical-like coordinates called Weyl coordinates: z, t ∈ R,
ρ ∈ (0,∞) and φ ∈ (0, 2π), where ρ = 0 is the axis of symmetry. The symmetries
of the metric are equivalent to the existence of two Killing vector fields, ξ(t) = ∂t

and ξ(φ) = ∂φ. The metric is determined solely by two functions: ν(ρ, z) and
λ(ρ, z). Vacuum Einstein equations with zero cosmological constant (Rµν = 0)
reduce to

ν,ρρ + 1
ρ
ν,ρ + ν,zz = 0, (2.2)

λ,ρ = ρ
[
(ν,ρ)2 + (ν,z)2

]
, λ,z = 2ρν,ρν,z. (2.3)

Equation (2.2) is just the Laplace equation in cylindrical coordinates which is
linear and thus allows superposition of solutions exactly like in Newton’s theory
of gravity. The metric function ν plays the role of the Newtonian gravitational
potential. Knowing ν, one can compute λ from equation (2.3) with a supplemen-
tary condition λ = 0 on the axis (see Griffiths and Podolský [2009] and Semerák
and Suková [2010]).

The function ν can be taken from the Newton theory, but the corresponding
complete solution (2.1) is often not a straightforward relativistic equivalent of
its Newtonian counterpart. For example, taking the Newtonian solution for the
particle of mass M located at the origin (ν = −M√

ρ2+z2
) and inserting it, together

with the corresponding λ into the general form of the metric (2.1) leads to the
Curzon-Chazy solution which is quite different from the expected Schwarzschild
solution. Similarly, there are several Newtonian potentials that lead to a flat
Minkowski spacetime (Griffiths and Podolský [2009]).

In the following parts we mention several specific Weyl-class solutions on
whose backgrounds we will then study the motion of test particles.
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2.2 The Schwarzschild solution
The Schwarzchild solution is one of the most famous solutions of the Einstein
equations and also the first that can describe a black hole. It is a vacuum spher-
ically symmetric solution with a single parameter M representing mass of the
source. In the Weyl coordinates, the two metric functions read

ν(ρ, z) = 1
2 ln

(
d1 + d2 − 2M
d1 + d2 + 2M

)
, λ(ρ, z) = 1

2 ln
(

(d1 + d2)2 − 4M2

4d1d2

)
,

(2.4)
where d1,2 =

√
ρ2 + (z ∓M)2. Schwarzschild solution is often expressed in the

spherical-type (Schwarzschild) coordinates (t, r, θ, φ) as

ds2 = −
(

1 − 2M
r

)
dt2 + 1

1 − 2M
r

dr2 + r2(dθ2 + sin2 θ dφ2). (2.5)

The coordinate transformation between the Schwarzschild and Weyl coordinates
reads

ρ =
√
r2 − 2Mr sin θ, z = (r −M) cos θ. (2.6)

The Weyl coordinates are useful for superposition of the Schwarzschild centre
with an additional source (e.g. ring/disc) while the spherical-type coordinates
are more suitable for example for some manipulations with hamiltonian which
will be performed in chapter 4.

The metric (2.5) has two singularities, the first being a curvature singularity
at r = 0 and the other is a coordinate one at r = 2M which corresponds to
a null hypersurface known as the event horizon. The Schwarzschild coordinates
do not cover the entire spacetime manifold. The solution can be maximally
extended using the Kruskal-Szekeres coordinates which also eliminate the horizon
singularity. The Weyl coordinates describe even smaller part of the spacetime –
the part above the horizon (r > 2M), since it is a static region in contrast to the
black hole itself. In Weyl coordinates the horizon is represented as a finite rod
on the axis (ρ = 0, |z| < M).

The motion of test particles around the Schwarzschild centre (e.g. a black
hole) is different from the classical case. Famous is the perihelion precession of
bound orbits but for us a more important feature is the existence of an unstable
periodic orbit with a degenerate homoclinic orbit connected to it. These orbits
are not present in the classical Kepler problem and may lead to a homoclinic
chaos under perturbation (chapter 4).

The Schwarzschild black hole can be approximated using a pseudo-Newtonian
potential in such a way that it reproduces some of its features (e.g. the homoclinic
orbit) which would otherwise be lost if one reverted back to the Newton gravity.
One such example is the Paczyński-Wiita (PW) potential which has the form

VP W (r) = − M

r − 2M . (2.7)

Another example is the Nowak-Wagoner (NW) potential

VNW (r) = −M

r

(
1 − 3M

r
+ 12M2

r2

)
. (2.8)
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The PW potential approximates the relativistic solution better then the NW
potential nevertheless for our purposes the Nowak-Wagoner potential will be more
useful in chapter 4. Witzany et al. [2015] studied the pseudo-Newtonian poten-
tials with perturbations due to additional sources including comparisons with the
motion in a fully relativistic system.

2.3 Inverted Morgan-Morgan disc
Inverted Morgan-Morgan (M-M) discs are a family of infinitely thin discs obtained
by Kelvin transformation from the original M-M disc which have non-zero density
for ρ ∈ (0, b) in the equatorial plane (b is the disc radius). Inverting the disc with
respect to ρ = b, one still gets a solution of Laplace equation but this time with
ρ ̸= 0 for ρ ∈ (b,∞). In our computations we will only study the first disc of the
family with Newtonian density dependence

ω = 2mb
π2ρ3

√
1 − b2

ρ2 , ρ > b, z = 0, (2.9)

where m is the total mass of the disc. The first metric function ν is

ν(ρ, z) = − m

π(ρ2 + z2) 3
2

⎡⎣(2ρ2 + 2z2 − b2ρ
2 − 2z2

ρ2 + z2

)
arccot

(√Σ − (ρ2 + z2 − b2)
2(ρ2 + z2)

)

−(3Σ − 3b2 + ρ2 + z2)

√Σ − (ρ2 + z2 − b2)
8(ρ2 + z2)

⎤⎦
(2.10)

where Σ =
√

(ρ2 + z2 − b2)2 + 4b2z2.
The second metric function is known, analytically, for the disc alone, but not

for its superposition with Schwarzschild, so we will have to find it numerically at
each point.

Finally it is worth mentioning that due to having an infinitely thin disc the
derivative ∂ν

∂z
at the points where the disc is located (equatorial plane) has dis-

continuity (jump) which may greatly affect the motion of test particles.

2.4 Bach-Weyl ring
Bach-Weyl ring is a counterpart of the Newtonian circular ring. The metric
function ν is just the Newtonian potential for a ring in the equatorial plane,

ν(ρ, z) = − 2mK(k)
π
√

(ρ+ b)2 + z2
, (2.11)

.
where K(k) is the elliptic integral of the first kind,

K(k) =

π
2∫

0

dφ√
1 − k2 sin2 φ

, k =
√

4ρb
(ρ+ b)2 + z2 .
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Despite the fact that the solution describes ”ordinary” ring in the Newton
theory, its relativistic counterpart has some rather strange properties. For ex-
ample, distance to the ring from a point in its interior (ρ < b) is infinite while
from outer regions (ρ > b) it is finite. Also the proper time of flight to the ring
is infinite for a point in the interior (for details see Semerák [2016]). This is an
example that a solution which looks like a ring in cylindrical-like coordinates can
have unexpected geometrical features.

2.5 The Majumdar-Papapetrou solutions
In the following, we will (also) consider solutions named after Majumdar and
Papapetrou which form a subclass of the Weyl solutions. It is a class of electro-
vacuum solutions where the sources of the gravitational and electromagnetic field
are extremally charged.

For the Majumdar-Papapetrou solutions of the Einstein-Maxwell equations,
the second metric function is identically zero, λ = 0. The metric (2.1) can thus
be rewritten using the lapse function N = eν ,

ds2 = −N2dt2 +N−2(dx2 + dy2 + dz2), (2.12)

given by
1
N

= 1 +
n∑

i=1

Mj

|r⃗ − r⃗i|
. (2.13)

The corresponding EM potential reads

Aµ = (±N, 0, 0, 0).

The solution described by (2.13) can be interpreted as a superposition of n ex-
tremally charged static black holes with masses Mi and charges Qi ( |Qi| = Mi)
which are held in equilibrium since the electrostatic and gravitational forces can-
cel each other. The metric (2.12) is expressed in Cartesian-like coordinates which
are related to the cylindrical-like coordinates in the same way as in the Euclidean
space.

The simplest solution in this class is a single black hole located at the origin.
The lapse function is then

1
N

= 1 + M√
ρ2 + z2 . (2.14)

This is the extreme Reissner-Nordström black hole which can be described using
spherical-like coordinates as

ds2 = −
(

1 − M

r

)2

dt2 + 1
(1 − M

r
)2 dr2 + r2(dθ2 + sin2 θ dφ2). (2.15)

The coordinate transformation is similar to (2.6),

ρ = (r −M) sin θ, z = (r −M) cos θ. (2.16)
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The extreme Reissner-Nordström black hole has some similarities to the
Schwarzschild solution. It possesses one degenerate horizon at r = M but the
region inside (the black hole itself) is static and the singularity is time-like in
contrast to the Schwarzschild space-like singularity. The extremal Reissner-
Nordström black hole also has a degenerate homoclinic orbit connected to an
unstable periodic orbit.

If we arrange many such extreme black holes to a circle with radius b and
make a continuous limit, we still obtain a solution of the field equations – the
Majumdar-Papapetrou ring (MP ring), given by

1
N

= 1 + 2mK(k)
π
√

(ρ+ b)2 + z2
. (2.17)

The solution is expressed using the elliptic integral and the variable k as in
the Bach-Weyl ring case. Though seeming rather artificial, this ring has more
reasonable properties than the Bach-Weyl ring, mainly the distances and times
of flight are finite no matter from which direction we approach the ring (Semerák
[2016]). Thus this ring seems more realistic than the BW ring, which is also the
reason why we will study the motion of test particles around it.

To conclude this section, we would like to mention that performing super-
position within the Majumdar-Papapetrou class of solutions is trivial (see the
expression for the lapse function (2.13)) which allows to combine the extreme
Reissner-Nordström black hole with the MP ring in the following chapters. The
electromagnetic four-potential (2.12) will not be important since we will consider
neutral test particles.

2.6 Motion in the Weyl spacetime
Free test particles (i.e. particles interacting only with the gravitational field) in
general relativity are moving along the so called geodesics which generalize the
concept of straight lines from the Euclidean space to a curved spacetime.

In this thesis we will only deal with time-like geodesics which can be para-
metrized using proper time τ . For a given affine connection, the geodesic x(τ)
can be found by solving the geodesic equation:

d2xµ

dτ 2 + Γµ
νρ

dxν

dτ
dxρ

dτ = 0. (2.18)

In the Weyl spacetimes, the existence of the two Killing vectors leads to the
conservation laws and thus allows us to reduce the dimension of the phase space.
Specifically, the quantities conserved along geodesics are the projections of the
particle four-momentum pµ on the respective Killing fields,

ξµ
(t)pµ = pt = −E, ξµ

(φ)pµ = pφ = Lz. (2.19)

They represent the particle energy and azimuthal angular momentum with re-
spect to infinity. Thanks to these two integrals of motion and the normalization
of the four-momentum (pµpµ = −m2

0) the 8-dimensional phase space is reduced
to three dimensional one described by coordinates (r, θ, pr) or (ρ, z, pρ).
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Many systems in classical mechanics can be described using the Hamiltonian
formulation. Hamiltonian of a freely falling particle with rest mass m0 in general
relativity is:

H = 1
2m0

gµν(xα)pµpν . (2.20)

The corresponding Hamilton equations for the variables (xµ, pν) are in fact
the geodesic equations (2.18). The Hamiltonian formulation will play a key role
in chapter 4.
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3. Geometric criterion of chaos
The geometric criteria of chaos were the central topic of my bachelor thesis and
because of that it will be covered here only briefly and the main focus will be on
numerical tests of this method.

3.1 Description of the method
The geometric criterion is an analytical method attempting to find a connection
between the motion of test particles in a given spacetime and the curvature of that
spacetime. It attempts to study the motion in a gravitational system by plotting
a map of unstable regions and based on how much of the accessible region they
occupy it concludes whether the dynamics is regular or chaotic.

Our main reference is the article by Sota et al. [1996] which also deals with
vacuum Weyl spacetimes. We have also used some insights into this method from
Szydlowski [1994].

Consider two nearby geodesics connected by an infinitesimal deviation vector
nµ. Then the time evolution of this vector along a geodesic is governed by the
geodesic deviation equation

D2nµ

dτ 2 = −Rµ
νρσu

νnρuσ. (3.1)

This equation tells us that the relative acceleration of two close point particles is
proportional to the curvature which is represented by the Riemann tensor on the
right-hand side. The deviation vector can be chosen so that it is orthogonal to
the four-velocity, nµu

µ = 0.
Assume we have an orthonormal basis {eµ

(ν)} (uµ = eµ
(0)) that is parallel-

propagated along our geodesic (
Deµ

(ν)
dτ

= 0). Then in this basis the equation for
vector nµ = n(i)eµ

(i) takes the form

d2n(i)

dτ 2 = −R(i)
ν(j)σu

νn(j)uσ. (3.2)

Thus we have expressed the geodesic deviation equation in the basis {eµ
(ν)} replac-

ing the absolute derivative with the total derivative with respect to the proper
time. We can continue by transforming the equation to a gradient form

d2n(i)

dτ 2 = −grad(i)
n Vu(n), (3.3)

where the gradient is defined as grad(i)
n = ∂

∂n(i) (we do not have to distinguish
between upper and lower indices since the basis is orthonormal, n(i) = n(i)). The
function Vu(n) can be called potential and it is a quadratic form in n,

Vu(n) = 1
2R(i)ν(j)σn

(i)uνn(j)uσ = 1
2R(n, u, n, u). (3.4)

In this way the geodesic deviation equation can be thought of as an equation for a
fictitious particle moving in the potential Vu(n). If Vu(n) behaves like a potential
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well, then the two neighbouring particles converge (more precisely the fictional
particle would oscillate in the well), whereas if it is more like a potential hill, then
the particles diverge from each other exponentially.

The behaviour described above is only local as the potential Vu(n) changes
along the geodesic since it depends on the four-velocity uµ and also on the space-
time coordinates xµ so the evolution of the deviation vector is rather complicated.
As already mentioned, the potential is a quadratic form and to determine its be-
haviour we have to investigate the eigenvalues of the corresponding matrix A(i)

(j):

Vu(n) = 1
2n(i)A

(i)
(j)n

(j), A
(i)

(j) = R
(i)

ν(j)σu
νuσ. (3.5)

It is clear that the 3 × 3 matrix A has three eigenvalues, but they depend on
the four-velocity uµ which we do not know as it requires solving the equations
of motion. We would like to obtain some information solely from the curvature
represented by the Riemann tensor which leads to a bivector formalism.

Let us define an antisymmetric tensor

Sµν = nµuν − uµnν . (3.6)

This tensor (bivector) has six independent components and can be written as a
column vector. This allows us to use the (anti)symmetries of the Riemann tensor
to rewrite it as an 6 × 6 matrix on the space of bivectors in such a way that

R(n, u, n, u) = Rµνρσn
µuνnρuσ = 1

4RµνρσS
µνSρσ = RABS

ASB, (3.7)

where the index A = 1 . . . 6 is related to the Weyl coordinates as S1 = Stρ,
S2 = Stz and so on, and the matrix RAB corresponds to the Riemann tensor in
the same way. We can now search for a solution of the eigenproblem

RA
BS

B = κSA. (3.8)

There are in total six eigenvalues κi of the Riemann-tensor matrix and it can be
shown that up to some factor they are identical to the eigenvalues of the matrix
A for some fixed four-velocity uµ. This gets us back to our original problem of
motion in the potential (3.5) and allows us to find eigenvalues of A independently
of the four-velocity.

In this thesis we will apply the above method to the vacuum Weyl space-
times (Schwarschild + BW ring/MM disc) and subsequently to the electrovacuum
Majumdar-Papapetrou solution (extreme RN black hole + MP ring). The sum
of the eigenvalues κi is proportional to the scalar curvature which is zero in both
vacuum and electrovacuum spacetimes, so we have

6∑
i=1

κi = 0. (3.9)

Now, if we compute the Riemann tensor for a general Weyl metric (2.1), we find
that RA

B is a block-diagonal matrix,

R =
(
R1 0
0 R2

)
. (3.10)
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In the vacuum case it is even simpler (see Sota et al. [1996]) since R1 = R2 and
therefore there are only three independent eigenvalues. Hence, we have three
eigenvalues whose sum is equal to zero. If an eigenvalue is negative, its respective
eigenvectors oscillate. If an eigenvalue is positive, the particles can diverge from
each other. Thanks to their sum being zero, we can either have two negative
eigenvalues and one positive, or two positive eigenvalues and one negative. The
latter case can be called unstable region as geodesics tend to diverge from each
other there. There are only two types of unstable regions since it turns out
that the first of the eigenvalues is always positive which stems from the explicit
calculation of the eigenvalues. So the two regions can be denoted as (+ + −) and
(+ − +) and the map of the two regions simply means plotting the inequalities
κ2(xµ) > 0 for (++−) and κ3(xµ) > 0 for(+−+). The presence of these unstable
regions should make the motion in the system chaotic according to this geometric
criterion.

Similar but slightly more difficult is the application to the electrovaccuum
spacetime. In that case R1 ̸= R2, but by plotting the regions κi > 0 it turns
out that the regions κ1 > 0 and κ4 > 0 nearly coincide; the same can be said for
κ2 > 0 and κ5 > 0, and also for the last pair κ3 > 0 and κ6 > 0. Thus we can
ignore the eigenvalues κ4, κ5 and κ6 and be left with only three eigenvalues whose
sum is approximately equal to zero and the mapping of the unstable regions is
effectively the same as in the vacuum spacetimes.

When applying this criterion, a problem may arise due to the difficulty of
finding the second metric function λ(ρ, z) for the superposition of a black hole with
a disc/ring. Fortunately, the function λ only appears in an exponential function
which sits in front of the whole expression for the eigenvalue, and therefore it does
not affect the sign of the eigenvalue. And the derivatives of λ can be expressed
using the derivatives of ν according to equation (2.3).

Finally, let us mention yet another possible look at the geodesic deviation
equation (3.1). This equation shows how the deviation vector connecting two
infinitesimally close geodesics evolves in time. On the level of the phase space,
this is described by the variational equation (1.13). These two equations are
thus equivalent, actually there is a simple connection between them. Denoting
ξ = dn

dτ
= ṅ, ξ ∈ R3 and using the 3 × 3 matrix A defined above and the unit

matrix I, the variational equation can be written using a block matrix(
ṅ

ξ̇

)
=
(

0 I
−A 0

)(
n
ξ

)
. (3.11)

The matrix has six eigenvalues which can be expressed using the eigenvalues of
the Riemann tensor matrix (3.8), namely they are given by ±√

κi, i = 1 . . . 3. Di-
vergence of the orbits can only occur for a positive eigenvalue while the negative
leads to a harmonic oscillation as the eigenvalues of the variational-equation ma-
trix are imaginary. Thus our eigenvalue analysis is the same as in any mechanical
system described by the set of ordinary differential equations (1.1).
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3.2 Testing the geometric criterion
As we have seen the outcome of the geometric criterion is the ”prediction” map of
unstable regions. The map has to be overlapped with the allowed region, because
an unstable region outside the allowed region cannot affect the motion of test
particles.

The allowed region can be found using the effective potential. The normal-
ization of four-velocity in the Weyl metric can be rewritten as

gρρ(uρ)2 + gzz(uz)2 = e−2ν(ρ,z)(E2 − Veff(ρ, z)) ≥ 0, (3.12)

where the effective potential reads

Veff(ρ, z) = e2ν(ρ,z)
(

1 + (Lz)2

ρ2e−2ν(ρ,z)

)
. (3.13)

Thus plotting the inequality E2 − Veff(ρ, z) ≥ 0 yields the allowed region in the
Weyl coordinates. The allowed region in the spherical-like coordinates can be
obtained by the transformations (2.9) or (2.16).

The predictions of the geometric criterion will be compared to the numerical
simulations of geodesics. For this purpose we use the code by Miroslav Žáček.
From the data obtained by this code we compute the MEGNO chaotic indicator
and plot the Poincaré sections of our orbits using the scripts by Petra Suková.
The surface of section is always the equatorial plane (θ = π

2 ) and so the reduced
phase space depicted in the Poincaré sections will be described by the coordinates
(r, ur). Each Poincaré section corresponds to a set of fixed parameters: the
disc/ring mass m and radius b, and geodesic integrals of motion E and Lz. All
particles start in the equatorial plane but with different coordinates (r, ur). The
map of unstable regions will be plotted in the Weyl coordinates. The orbits in
the Poincaré sections are coloured (from blue to red) according to their reached
value of MEGNO.

We start with the extreme Reissner-Nordström black hole surrounded by the
Majumdar-Papapetrou ring. To be more precise we will study how the Poincaré
section and the unstable-region map change with the particle energy. This is
shown in figure 3.1. In this series we can see both types of unstable regions
(marked by orange and blue) and the allowed region (red). For low energies most
of the allowed region is occupied by unstable regions. The allowed region grows
with energy while the unstable regions remain the same. This should lead to
diminution of chaotic regions in the Poincaré sections. This actually happens
in the series of figures 3.1, though not as significantly as we would expect (for
example in the last figure (l)).

Another series (figure 3.2) illustrates the dependence of the geodesic dynamics
on the ring radius b for the superposition of the Schwarzschild black hole and the
Bach-Weyl ring. Here the connection between the unstable maps and the Poincaré
section is more pronounced. As the radius grows, the unstable regions leave the
allowed region which eventually splits into two parts (figure 3.2 (i)) with one part
completely free of any unstable region while the other almost coinciding with
one of unstable regions. This perfectly corresponds to the Poincaré sections on
the right (3.2 (j)) where the region on the left is filled by smooth curves (tori
intersections) while the other contains only a chaotic sea.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Unstable-regions maps and Poincaré sections for the extreme RN
black hole with the MP ring. The dependence on energy is shown (m = 0.5M ,
b = 20M , Lz = 3.75M).

It thus seems that the geometric criterion works quite well, which means that
it can predict the existence of chaotic regions. Similar results can be obtained
for a series with changing mass of the ring/disc. A more complete analysis of
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(g) (h)

(i) (j)

(k) (l)

Figure 3.1: continuation

the parameter dependence can be found in my bachelor thesis and so I will not
discuss it further here.

We have not studied the case with the inverted Morgan-Morgan disc in detail
yet, but it seems that the geometric criterion is not as effective as in the case of
ring perturbations. One of the ”counterexamples” is depicted in figure 3.3: the
unstable region is completely outside of the allowed region and yet we can clearly
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Unstable-region maps and Poincaré sections for the Schwarzschild
black hole surrounded by the Bach-Weyl ring (m = 0.5M , E = 0.94, Lz =
3.75M). The dependence on the ring radius is shown.

see some chaotic orbits marked by the orange color in the corresponding Poincaré
section.

The probable explanation of this failure of the geometric criterion is the fact
that the particles cross the disc where the metric has discontinuous derivatives.
We shall come back to this issue later.
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(g) (h)

(i) (j)

Figure 3.2: continuation

(a) (b)

Figure 3.3: Unstable-region maps and Poincaré sections for the Schwarzschild
black hole surrounded by the first inverted Morgan-Morgan disc (m = 0.5M ,
b = 20M , E = 0.953, Lz = 3.75M).
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Poincaré sections actually are not a sufficient tool to properly test the geo-
metric criterion. As was already mentioned, the idea behind the criterion is that
geodesics passing through the unstable regions diverge from each other. So the
unstable regions should affect only those geodesics which pass through them while
other geodesics should remain regular. To test this properly I used the scripts
by Petra Suková to compute the MEGNO indicator and also my own code which
records the proper time spent by a particle in the unstable regions. This enables
one to test whether our understanding of the local interaction with the unstable
regions is correct. We first give some examples of particular geodesics and then
we will sum up the whole criterion by plotting a graph of dependence of MEGNO
MG on the time τ spent in the unstable regions. For τ we can use absolute time
spent inside the unstable regions τin or a ratio of this time relative to the entire
time of simulation, τrel = τin

τtot
. Another option is the number of passages through

the unstable regions. We observe that the use of all these options leads more or
less to the same results.

Figure 3.4 shows the cases in which the criterion predicts regular or chaotic
dynamics accurately. Most of the chaotic orbits were passing through the unstable
regions regularly and their MEGNO grew steadily. Some regular orbits also spent
certain time in the unstable regions but it was generally less than in the chaotic
case.

(a) (b)

Figure 3.4: Poincaré sections: (a) chaotic orbit (MG = 41.44, τrel = 0.0285), (b)
regular orbit (MG = 1.39, τrel = 0).

An interesting case are orbits which start in the part of spacetime with no
unstable regions but then, after some time, move to the part with unstable re-
gions. An example of such a geodesic can be seen in figure 3.5 showing the map of
unstable region (a), the dependence of MEGNO on time and the Poincaré section
before (c) and after entering the unstable region (d). In the Poincaré section the
orbit first produces a smooth curve, while after it enters the unstable region, it
starts filling the plot densely, which supports the validity of the geometric crite-
rion. This is also in accordance with the sudden growth of MEGNO in figure 3.5
(b).

It thus seems that the geometric criterion works quite well, however there are
some orbits that contradict it. One of them can be seen in figure 3.6. It is clearly
a regular orbit, but the MEGNO asymptotics indicates that it is probably close
to some hyperbolic orbit (MG = 3.054). In spite of that, this orbit spends quite
some time in the unstable region, even longer than the orbit in figure 3.4 (a)
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(a) (b)

(c) (d)

Figure 3.5: Map of unstable regions (a) and evolution of MEGNO (b) for orbit
before (c) and after entering the unstable region (d).

which is described by the same set of parameters (and integrals of motion).

Figure 3.6: Poincaré section corresponding to a regular orbit with MG = 3.054,
τrel = 0.0323.

The cases when the geometric criterion fails are often (not always) those
of regular trajectories where however the averaged MEGNO asymptotics is a
constant deviating from the value of 2, which is typical for quasiperiodic motion.
These orbits should be close to the resonant or hyperbolic torus according to the
MEGNO theory (see article by Maffione et al. [2011]). So it may be that these
particular structures in the phase space are unaffected by the presence of unstable
regions.

What we can add is to summarize the results of the method for the MP and
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BW ring in a single figure. We would naturally expect that the reached value
of MEGNO should grow with time spent in the unstable regions. The resulting
figure 3.7 gives us the answer. The MEGNO indeed grows with the number of
passages, but there exist orbits with very long time spent in the unstable region
and simultaneously very low MEGNO. These are the orbits already mentioned
above (figure 3.6).

So the final conclusion based on all simulations I have performed is that for
the superposition of the Schwarzschild black hole and the BW ring and also for
the superposition of the extreme RN black hole and the MP ring the repetitive
passages through the unstable regions is necessary for the geodesic to be chaotic.
Thus in this case the geometric criterion is a necessary (but not sufficient) condi-
tion for the chaos to appear. There is however no rigorous proof for any of these
assertions.

Figure 3.7: Dependence of MEGNO on the number of passages through the
unstable regions in case of the superposition of a black hole and the BW/MP
ring.

We shall now pass to the superposition with the Morgan-Morgan disc. As we
have seen in the Poincaré section 3.3, in this case the geometric criterion even
fails to be a necessary condition for chaos to emerge. Motivated by conjecture
that this disagreement is due to disc crossings, we check a different correlation:
instead of computing the time spent in the unstable regions, we will count how
many times the particle passed through the disc located in the equatorial plane.
This correlation indeed turned out to work better (such as in the case of figure 3.3
where the geometric criterion predicts completely regular dynamics), but neither
it can predict the onset of chaos reliably. For instance in figure 3.8 almost all
geodesics pass through the disc, but the Poincaré section is still mostly filled with
the ”regular” tori intersections.

In the map 3.8 (a) we can see a very small blue unstable region which the
geodesics almost never enter. Nevertheless, there is a chaotic orbit near the
boundary of the allowed region with the reached value of MEGNO equal to 31.11,
thus neither the geometric criterion nor the disc-passage counts is successful.
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(a) (b)

Figure 3.8: Map of unstable regions (a) and Poincaré section (b) for the su-
perposition of the Schwarzschild black hole and the first inverted MM disc
(m = 0.5M ,b = 19.493M , E = 0.98, Lz = 3.75M).

The summary of the results for the Morgan-Morgan disc is depicted in figure
3.9 where the two different methods are compared while the data from the series
in figure 3.8 are not included. Thus despite the failure in the case of the figure
3.8 (b) the counting of the number of disc crossings Ndisc predicts the appearance
of chaos better than the geometric criterion.

(a) (b)

Figure 3.9: The dependence of MEGNO on the number of crossings through the
disc (a) and on the relative time spent in unstable regions (b).

Thus the final statement about our numerical results is that for the superposi-
tion of a black hole and a ring the geometric criterion is a necessary condition for
the onset of chaos while for the superposition with the inverted Morgan-Morgan
disc the criterion fails when the particles are crossing the disc.

It is important to point out that even the chaotic geodesics mostly spend
only about one to five percent of proper time in the unstable regions, which is
a surprisingly small fraction. To uncover more information, one would have to
solve the variational equations to see how the deviation vector behaves inside the
unstable region and after leaving it. This would enable us to find a difference
between chaotic geodesics and the regular orbits which repeatedly pass through
the unstable regions.

The most disproving result for the geometric criterion would be the case of an
allowed region completely covered by the unstable region , yet still with regular
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dynamics. Such a case I have not encountered. On the contrary, the results seen
in figures 3.1 (b) and 3.2 (j) are in accordance with the prediction of the method.
The basic idea behind the criterion, the local influence of the unstable regions, is
best supported by the orbit in figure 3.5.

Let us add that there are several versions of the geometric criterion. Some
of them use the curvature eigenvalues, while others perform some averaging over
velocities leading to a quantity proportional to the scalar curvature (this cannot
be used in our systems since it is identically zero).

Recently the criterion has been mostly applied in classical mechanics where
the motion takes place in an effective manifold (see for example Saa [2004] or
Stránský and Cejnar [2015]) Only few articles deal with relativistic systems like
the aforementioned Sota et al. [1996].

Overall, most of the authors question the viability of the geometric criteria,
often showing numerous counterexamples. At the same time, it is known that
there is a connection between curvature of the configuration manifold and chaos
(see Ramasubramanian and Sriram [2001]). The results of this thesis support
such conclusions. These results do not exclude the possibility that a reliable
(analytical) chaos criterion can be found in the future at least for a certain type
of dynamical systems.
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4. Melnikov’s method
In this chapter I will apply the Melnikov method to our perturbed black-hole
system and after that I will confront the analytical results of the method with
numerical simulations. The application of the method to our system is not as
straightforward as it is in most articles concerning Melnikov’s method. But before
the computation itself we first summarize the (classical) Melnikov method.

4.1 Classical formulation of Melnikov’s method
Melnikov’s method is an analytical perturbative technique used to detect trans-
verse homoclinic orbits. The method is based on measuring the distance between
stable and unstable manifolds of a hyperbolic fixed point. The distance is pro-
portional to the so called Melnikov function (or Melnikov integral) which can
be evaluated without solving the equations of motion of the full perturbed sys-
tem. The potential existence of transverse homoclinic points leads directly (via
the Smale-Birkhoff theorem) to the horseshoe-like dynamics which is chaotic (see
chapter 1). A detailed discussion of the Melnikov theory may be found in Wiggins
[2000].

We start by making some assumptions on our system which will be similar
to those in section 1.4., but here we first have to separate the integrable part
described by the hamiltonian H0 and a perturbation by H1 (neither of these two
parts have to be hamiltonian but in our case they will be).

So consider a one-degree-of-freedom system with hamiltonian in the form

H(q, p, t, ε) = H0(q, p) + εH1(q, p, t) + O(ε2), (4.1)

where ε > 0 is a fixed parameter sufficiently small. The hamiltonians H0 and
H1 may for example be obtained by linearisation of H in ε. The phase space is
then three-dimensional and we assume that H1 is a periodic function of time with
period T and that the total hamiltonian H is at least a C2 function. Denoting
x := (q, p), we further assume:

1. H0 possesses a hyperbolic fixed point P0 connected to itself by a homoclinic
orbit x0(t) = (q0(t), p0(t)), lim

t→±∞
x0(t) = P0.

2. The interior of the homoclinic orbit ΓP0 = W s(P0) ∩W u(P0) ∪ {p0} is filled
with a continuous family of periodic orbits xα(t) with period Tα, where
α ∈ (−1, 0) , lim

α→0
xα(t) = x0(t) and lim

α→0
Tα = ∞.

As we can see for the unperturbed system described by an autonomous hamil-
tonian H0, the stable and unstable manifolds coincide along a certain orbit:

W s(P0) = W u(P0) = {x0(t), t ∈ R}.

This orbit x0(t) which leaves the fixed point P0 at t = −∞ and arrives to P0 at t =
∞ is called degenerate homoclinic orbit (sometimes also homoclinic connection
or separatrix). The two-dimensional phase space of the unperturbed hamiltonian
H0 is depicted in figure 4.1.
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Figure 4.1: A degenerate homoclinic orbit surrounding an area filled with period
orbits (from Asano et al. [2016]).

The degenerate homoclinic orbit x0(t) plays a central role in the Melnikov the-
ory since it is the integration path along which we shall integrate and, therefore,
it is necessary to find x0(t) in a closed form, i.e. expressed using elementary func-
tions. Another important remark is that both the asymptotic manifolds coincide
at the degenerate homoclinic orbit and so there is no transverse intersection and
therefore no chaotic horseshoe-like dynamics in the unperturbed system.

In order to get chaotic dynamics, the homoclinic tangle needs to be formed.
This may happen after the system is perturbed. If the perturbation is sufficiently
small for some ε > 0 then the unstable periodic orbit is preserved (γ(t) → γε(t))
as are its stable and unstable manifolds which however no longer coincide. The
separatrix is broken but we do not know yet if there are some transverse inter-
sections of W s

ε (γε(t)) and W u
ε (γε(t)). To verify whether transverse intersections

occur we need to measure distance between the two manifolds along the unper-
turbed homoclinic orbit, which is the idea of the Melnikov method.

A point in the full three-dimensional phase space can be described by a set
of three coordinates (x, φ(t)), x = (q, p), where φ ∈ (0, 2π) and φ(t) = ωt + φ0.
The unperturbed periodic orbit then may be parametrized as γ(t) = (P0, φ(t)) =
(P0, ωt+φ0) and the degenerate homoclinic orbit, now two-dimenional homoclinic
manifold, is parametrized as Γγ(t0, φ0) = (x0(−t0), φ0) (figure 4.2).

(a) (b)

Figure 4.2: Parametrization of the unperturbed homoclinic manifold Γγ (a) and
normal vector to Γγ (b). Reproduced from Wiggins [2000].

We can define normal vector to Γγ at any point using the fact that Γγ is a
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surface of constant energy (H0 = constant) (figure 4.2):

π =
(
∂H0

∂q
(x0(−t0)), ∂H0

∂p
(x0(−t0)), 0

)
= (DH0(x0(−t0)), 0). (4.2)

As in chapter 1 we can make a surface of section for some fixed value of
φ0 getting the discrete dynamics (figure 4.3). We can now finally define the
distance between two points (xs

ε, φ0) ∈ W s
ε and (xu

ε , φ0) ∈ W u
ε measured along

the unperturbed homoclinic manifold Γγ (see figure 4.3),

d(t0, φ0, ε) = DH0(x0(−t0)) · (xs
ε − xu

ε )
∥DH0(x0(−t0))∥ . (4.3)

It has the form of scalar product whose sign depends on the mutual orientation
of the asymptotic manifolds.

The points (xs
ε, φ0) and (xu

ε , φ0) lie on the intersection of the straight line de-
fined by the normal vector with the respective manifold. However, the intersection
with W s

ε (W u
ε ) may not be unique, in fact there can be infinitely many of them

for some given point of Γγ (figure 4.3 (b)), but the points (xs
ε, φ0) and (xu

ε , φ0)
are defined uniquely. The point (xs

ε, φ0) ∈ π ∩W s
ε (γε(t)) is the closest to γε(t) in

terms of positive time of flight on W s
ε (γε(t)), i.e., for all t > 0, (xs

ε(t), φ(t))∩π = ∅
and (xs

ε(0), φ(0)) = (xs
ε, φ0). The point lying on the unstable manifold is defined

in the same way, just with the opposite direction of time evolution.

(a) (b)

Figure 4.3: Projection of the asymptotic manifolds on a surface of section (from
Wiggins [2000]).

We can now measure the distance d(t0, φ0, ε) for every t0 ∈ R, φ0 ∈ (0, 2π),
but, as we can see, to compute the distance, the knowledge of xs

ε and xu
ε is

required which is equivalent to the knowledge of the full (perturbed) dynamics.
Nevertheless, we will assume the perturbation is sufficiently small to permit the
Taylor expansion of d(t0, φ0, ε), which leads to an easily computable quantity
called Melnikov’s function (or integral). In the first order we have:

d(t0, φ0, ε) = d(t0, φ0, 0) + ε
∂d

∂ε
(t0, φ0, 0) + O(ε2), (4.4)

where the zero-order term drops out since the unperturbed asymptotic manifolds
coincide, so we are left with

d(t0, φ0, ε) = ε
M(t0, φ0)

∥DH0(x0(−t0))∥ + O(ε2), (4.5)
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where the function M(t0, φ0) is the Melnikov function defined as

M(t0, φ0) = DH0(x0(−t0)) ·
(
∂xs

ε

∂ε
− ∂xu

ε

∂ε

)
. (4.6)

From (4.6) we can immediately see that for ε sufficiently small: d(t0, φ0, ε) =
0 ⇔ M(t0, φ0) = 0. Thus finding the intersections of the asymptotic manifolds is
equivalent to finding zeros of the function M(t0, φ0).

Performing several ”clever” manipulations (see Wiggins [2000]), one can ex-
press the Melnikov function in the form of an integral,

M(t0, φ0) =
∞∫

−∞

{H0, H1}(x0(t), ωt+ ωt0 + φ0)dt. (4.7)

From this form one can deduce that varying t0 is equivalent to changing φ0, so
we can simply replace ωt0 +φ0 → t0 and the Melnikov function is then a function
of just one variable,

M(t0) =
∞∫

−∞

{H0, H1}(x0(t), t+ t0)dt. (4.8)

This is an integral of the Poisson bracket of H0 with H1 along the unperturbed
homoclinic orbit. The Melnikov function is obviously periodic, with the same
period T as H1: M(t0 + T ) = M(t0).

The connection between the Melnikov function and the existence of transverse
homoclinic points can be stated in the following theorem:

Theorem 4.1.1. Suppose there exists t̄0 ∈ ⟨0, T ⟩ such that

1. M(t̄0) = 0,

2. dM
dt0

(t̄0) ̸= 0.

Then for ε > 0 sufficiently small W s
ε (γε(t)) and W u

ε (γε(t)) intersect transversally.
Moreover, if M(t̄0) ̸= 0 for all t̄0 ∈ ⟨0, T ⟩, then W s

ε (γε(t)) ∩W u
ε (γε(t)) = ∅.

While the first condition in 4.1.1 obviously means that the asymptotic man-
ifolds intersect, the second one (dM

dt0
(t̄0) ̸= 0) is equivalent to the transversality

of the intersection. Together both conditions can be summarized as ”M(t0) has
simple zeros”. The second condition is thus necessary; one of the situations when
it does not hold is the case when M(t0) = 0 identically, which means that the
degenerate homoclinic orbit is preserved under the given perturbation.

Therefore, to apply the Melnikov method, we first need to solve the unper-
turbed equations of motion in order to find the degenerate homoclinic orbit x0(t),
and after that we compute the Poisson bracket between the two hamiltonians and
evaluate the Melnikov function M(t0). If M(t0) has simple zeros, then W s and
W u intersect transversally and we can conclude that the dynamics close to the
original separatrix is chaotic. If there are no simple zeroes, then the homoclinic
chaos does not occur.

However, we will see it is not straightforward to apply the method to our
system of a black hole perturbed by an additional source.
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4.2 Pseudo-Newtonian versus relativistic
approach

In the second chapter we have seen that while the first metric function ν super-
poses linearly the second one (λ) does not (see equations (2.2) and (2.3)). It is
actually difficult to find λ for the superposition of a Schwarzschild black hole and
a ring or a disc. That is the reason why I decided to apply the method to the
pseudo-Newtonian system first. On the other hand, for the superposition of the
extreme Reissner-Nordström black hole and the Majumdar-Papapetrou ring we
can follow a fully relativistic treatment.

In the pseudo-Newtonian hamiltonian the Schwarzschild black hole will be
approximated by the Nowak-Wagoner potential VNW (2.8), and the potential of
the ring or disc will simply be given by the first metric function which we denote
as ν1. The pseudo-Newtonian hamiltonian describing a particle of mass m0 then
takes the form

H(r, θ, pr, pθ, pφ) = p2

2m0
+m0VNW (r) +m0ν1(r, θ), (4.9)

where p2

2m0
is the classical kinetic term. To apply the Melnikov method we first

need to separate the perturbation from the fully integrable unperturbed part of
H, i.e. to write

H(r, θ, pr, pθ, pφ) = H0(r, θ, pr, pθ, pφ) +mH1(r, θ), (4.10)

where the unperturbed hamiltonian H0 reads

H0(r, θ, pr, pθ, pφ) = 1
2m0

[
p2

r + 1
r2

(
p2

θ +
p2

φ

sin2 θ

)]
+m0VNW (r) (4.11)

and the perturbation hamiltonian is

H1(r, θ) = m0

m
ν1(r, θ). (4.12)

The small perturbation parameter ε is in our hamiltonian the mass of a ring or
a disc m which we assume to be sufficiently small relative to the black-hole mass
M . The metric function ν1 is actually proportional to the ring/disc mass and so
the perturbation hamiltonian H1 does not depend on m.

We have chosen the Nowak-Wagoner potential, because it is the only pseudo-
Newtonian potential for which I was able to find the explicit form of the homo-
clinic orbit.

To conclude the part on pseudo-Newtonian approach, we would like to make an
important remark regarding coordinates. The functions ν1 are given in the Weyl
coordinates (see chapter 2) and so they need to be transformed into spherical-like
coordinates and for this purpose we use the relativistic transformation relation
(2.6) even though we now work effectively in the Euclidean space.

The relativistic version of our problem is slightly more difficult. As already
mentioned in chapter 2, the hamiltonian is described by expression (2.20) that
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we need to linearize in the ring/disc mass to get the hamiltonian separated to H0
and H1. The Taylor expansion of (2.20) gives

H = 1
2m0

(
gµν(m = 0) +m

∂gµν(m = 0)
∂m

+ O(m2)
)
pµpν =

= 1
2m0

g(0)µνpµpν +m
1

2m0
g(1)µνpµpν + O(m2) =

= H0(r, θ, pt, pr, pθ, pφ) +mH1(r, θ, pt, pr, pθ, pφ) + O(m2).

(4.13)

The first-order term in the expansion of the contravariant metric tensor can also
be expressed using the covariant metric. Assuming that our (Weyl) metric is
diagonal, we have

gµν = 1
g

(0)
µν

+m
−g(1)

µν

(g(0)
µν )2

+ O(m2). (4.14)

This form of expansion will be used in the following sections.
The unperturbed hamiltonian H0 describes the black hole itself. For the

Schwarzschild black hole (2.5) we get

H0 = 1
2m0

[
− 1

1 − 2M
r

p2
t +

(
1 − 2M

r

)
p2

r + 1
r2

(
p2

θ +
p2

φ

sin2 θ

)]
, (4.15)

and similarly for the extreme Reissner-Nordström black hole (2.15)

H0 = 1
2m0

[
− 1(

1 − M
r

)2p
2
t +

(
1 − M

r

)2

p2
r + 1

r2

(
p2

θ +
p2

φ

sin2 θ

)]
. (4.16)

We thus have all the hamiltonians necessary for computing the Melnikov func-
tion, but before we can do that we first need to reformulate the Melnikov method
as well as transform the canonical coordinate in our hamiltonians.

4.3 Modification of Melnikov’s method
Comparing the hamiltonians (4.10) and (4.13) with the assumed form of hamilto-
nian (4.1) required for the Melnikov method, we immediately see that they differ
considerably. First there is no time dependence in our perturbations which de-
scribe static discs/rings. And second, we have way too many degrees of freedom
in our system while (4.1) is only a one-degree-of-freedom hamiltonian.

Solution to these problems can be found in Holmes and Marsden [1983] where
the authors considered a hamiltonian in the form

H(q, p, ψ, J) = H0(q, p, J) + εH1(q, p, ψ, J) + O(ε2). (4.17)

This does not explicitly depend on time and describes a two-degree-of-freedom
system. The idea behind the reformulation of the Melnikov method lies in the
replacement of time by another coordinate ψ ∈ (0, 2π) which is periodic while
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the role of the hamiltonian will now be played by its conjugated momentum J .
As in the original formulation, we assume that H0 possesses a hyperbolic fixed
point P0 in the reduced phase space described by x = (q, p) and a degenerate
homoclinic orbit (x0(t)) connected to the fixed point ( lim

t→±∞
x0(t) = P0) for some

fixed value of J . The relation between ψ and time t in the unperturbed system
is from the Hamilton equations,

ψ̇ = Ω(x, J) = ∂H0

∂J
(x, J). (4.18)

Solving this differential equation allows to parametrize the homoclinic orbit by ψ
and subsequently rewrite the evolution in terms of this new variable.

The motion in the perturbed system is confined to the energy hypersurface
H(x, ψ, J) = h, and this equation has to be invertible in order to express J =
J(x, ψ, h) with h fixed. Thus we have a new ”hamiltonian” J and the Melnikov
function can be rewritten according to Holmes and Marsden [1983]

M(ψ0) =
∞∫

−∞

1
Ω(x0(ψ), J)

{
H0,

H1

Ω

}
(x0(ψ), ψ + ψ0, J)dψ. (4.19)

The Poisson bracket is computed only in the variable x while the momentum J
is kept fixed. If the system has only one homoclinic orbit for some value of J ,
then fixing J is equivalent to fixing the energy surface h = H0(x0(ψ), J).

The original theorem (4.1.1) is then modified for the hamiltonian (4.17) (for
details see Holmes and Marsden [1983]) into

Theorem 4.3.1. Consider a hamiltonian in the form (4.17) and assume that, for
some fixed value of J , H0(x, J) has a homoclinic orbit connected to a hyperbolic
fixed point, and that Ω(x0(ψ), J) > 0. Then if M(ψ0) has simple zeros and
ε > 0 is sufficiently small, the system (4.17) has transverse homoclinic orbits
(the asymptotic manifolds intersect transversally) on the energy surface H = h,
where h = H0(x0(ψ), J).

The important part of this theorem is the statement about the energy surface.
By energy we mean any integral of motion of the complete hamiltonian H which
in our case is the energy E (pt) and the z-component of the angular momentum
Lz (pφ). So fixing these integrals of motion and a homoclinic orbit (if it exists for
some E and Lz) automatically fixes the value of J . It may thus happen that for
some values of E and Lz there is no homoclinic orbit and therefore no homoclinic
chaos in the perturbed system.

Getting back to the perturbed black hole, we know that due to the existence
of two integrals of motion E and Lz we reduced our system to two degrees of
freedom with coordinates (r, θ). In the (r, pr) subspace, we have the homoclinic
orbit (x in (4.17)) but the angular coordinate θ cannot play the role of ψ since its
conjugate momentum pθ is not an integral of motion in the unperturbed system
(H0 depends on θ).

In order to have the hamiltonians in the form (4.17), we need to pass to a new
set of coordinates on the phase space, i.e. to perform a canonical transformation:

(θ, pθ) → (ϑ, Jϑ).
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As we have said, it is necessary for Jϑ to be an integral of motion and this can
be satisfied if Jϑ is an action variable (see chapter 1). By comparing our pseudo-
Newtonian and relativistic hamiltonians, (4.13), (4.15) and (4.16), we can see
that they include a common part containing the variable θ,

L2 := p2
θ +

p2
φ

sin2 θ
. (4.20)

Denoting this structure by L2 is natural since it can be interpreted as a square
of the total angular momentum. The variable L is an integral of motion and this
allows to compute the action variable Jϑ using the definition (1.10)

Jϑ = 1
2π

∮
pθ dθ = 1

2π

θmax∫
θmin

√
L2 −

p2
φ

sin2 θ
dθ + 1

2π

θmin∫
θmax

−

√
L2 −

p2
φ

sin2 θ
dθ. (4.21)

The integral is taken over the whole period of motion between two turning points
which are determined by pθ = 0. Thus from (4.20) we have θmin = arcsin pφ

L
and

θmax = π − arcsin pφ

L
.

From chapter 1 we know that the Hamilton-Jacobi equation of the unper-
turbed system is separable (equation (1.7)), which implies pθ = ∂Sθ

∂θ
and allows

to compute Jϑ,

Jϑ = 1
π

θmax∫
θmin

√
L2 −

p2
φ

sin2 θ
dθ = 1

π

θmax∫
θmin

∂Sθ

∂θ
(θ, L, pφ) dθ. (4.22)

The primitive function of
√
L2 − p2

φ

sin2 θ
reads, up to some constant,

Sθ= 1
2 arctan

(
L2 cos θ+L2−pφ

2

pφ

√
−L2(cos θ)2+L2−pφ

2

)
pφ+ 1

2 arctan
(

L2 cos θ−L2+pφ
2

pφ

√
−L2(cos θ)2+L2−pφ

2

)
pφ−

− arctan
(

L cos θ√
−L2(cos θ)2+L2−pφ

2

)
L.

(4.23)

Taking the limits to the turning points, we get the action variable

Jϑ = 1
π

lim
θ→θmax

Sθ − 1
π

lim
θ→θmin

Sθ = 1
π

(
− π

4 pφ − π

4 pφ + π

2L
)

−

− 1
π

(
π

4 pφ + π

4 pφ − π

2L
)

= L− pφ

. (4.24)

We can see that it is indeed an integral of motion. To find its conjugated coordi-
nate ϑ, we can use the transformation equation (1.5b),

ϑ = ∂Sθ

∂Jϑ

(θ, pφ, Jϑ) = ∂Sθ

∂L
(θ, pφ, L). (4.25)

The only coordinates that we are transforming are θ and pθ, and that is the
reason we do not care about other parts of the generating function S and we can
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manage with only Sθ. Inverting equation (4.25), we can express θ as a function
of ϑ, and so the final transformation relations are

θ = π − arccos
⎛⎝tanϑ

L

√ L2 − pφ
2

(tanϑ)2 + 1

⎞⎠ , L = Jϑ + pφ. (4.26)

Having obtained the transformation relations, we can finally express our hamil-
tonians in terms of these new variables. For example, the unperturbed pseudo-
Newtonian hamiltonian now takes the form

H0(r, pr, Jϑ, pφ) = 1
2m0

(
p2

r + (Jϑ + pφ)2

r2

)
+m0VNW (r). (4.27)

The result is similar for the relativistic hamiltonians since they also contain the
angular- momentum part (Jϑ+pφ)2

r2 .
So now we have H0 which does not depend on an angular coordinate while

the angular momenta Jϑ and pφ ( Lz) are treated on equal footing. As for the
perturbation, the variable θ is replaced by ϑ in H1 using (4.26). The complete
hamiltonian after the transformation then reads

H(r, ϑ, pr, Jϑ) = H0(r, pr, Jϑ) +mH1(r, ϑ, pr, Jϑ) + O(ε2). (4.28)

In this formula we ignored the additional momenta pφ and pt since they are just
parameters like the disc/ring radius. Thus we have succeeded in transforming
our hamiltonians to the form (4.17), where ϑ plays the role of ψ.

Before passing to another section, I would like to remark that the term ∂S
∂t

in
the hamiltonian transformation equation (1.5c) gives only a constant and that is
why we have omitted it in (4.27) and (4.28). The other point is that while Jϑ is an
action variable, the pair (ϑ, Jϑ) does not constitute the action-angle coordinates,
because H0 still depends on r. Nevertheless for our purposes it is important that
the Hamilton equations in (ϑ, Jϑ) are equivalent to those expressed in (θ, pθ).

4.4 Homoclinic orbits
In order to compute the Melnikov integral we first need to find the integration
path which is the (degenerate) homoclinic orbit (separatrix). From now on we
will use notation E := −pt, Lz = pφ, and to eliminate the particle mass m0 we
introduce renormalized quantities e := E

m0
, l := L

m0
and so on.

Let us start from the pseudo-Newtonian Schwarzschild black hole described
by the Nowak-Wagoner potential. We need to solve the equations of motion to
find the orbit which asymptotically approaches the fixed point in both directions
of time. We will use the effective-potential method. From the pseudo-Newtonian
hamiltonian H0 = E we get

1
2v

2
r = e−

[
l2

2r2 − M

r

(
1 − 3M

r
+ 12M2

r2

)]
= e− Veff(r) ≥ 0. (4.29)
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First thing we need is the location of the unstable circular orbit. We find it
by solving the equation dVeff

dr
(r) = 0. The zero point closer to the origin is the

hyperbolic fixed point,

rhyp = 6M2 + l2 −
√

−108M4 + 12M2l2 + l4

2M . (4.30)

Energy of the homoclinic orbit is the same as that of the unstable hyperbolic
orbit and so e = Veff(rhyp). The expression for e is rather long and it is useless to
present it here. The choice of the energy level is depicted in figure 4.4 and the
homoclinic orbit is seen to exist only for some values of l (we will get back to this
problem later).

Figure 4.4: NW effective potential (red) and energy level corresponding to the
homoclinic orbit (green).

We will proceed by introducing the variable u := 1
r

and then we will use a
common trick by writing

vr = dr
dt = du

dϑ
dr
du

dϑ
dt = du

dϑ

(
− 1
u2

)
l

r2 = −ldudϑ, (4.31)

which puts the equation of motion (4.29) into the form(
du
dϑ

)2

= 2 e

l2
− u2 + 2 Mu (12M2u2 − 3Mu+ 1)

l2
. (4.32)

This can be further simplified using the product form of the right-hand side,(
du
dϑ(ϑ)

)2

= k(u(ϑ) − uhyp)2(u(ϑ) − umax) (4.33)

where uhyp = 1
rhyp

, umax = 1
rmax

and rmax corresponds to the maximal radius
the particle can reach (i.e. the turning point). Like the energy, the quantities
k and umax are some functions of M and l which we do not show here since the
expressions are too long.

Equation (4.33) can be solved in a closed form

u(ϑ) = (uhyp − umax) tanh2
(

1
2
√
k(uhyp − umax)ϑ

)
+ umax. (4.34)
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The homoclinic orbit is parametrized so that u(0) = umax (the turning point) and
u(ϑ → ±∞) = uhyp which are the properties we would expect from a homoclinic
orbit. The homoclinic orbit is depicted in figure 4.5 where we can see how it looks
like in the equatorial plane of the configuration space. The motion is planar and
can be described using polar coordinates r = 1

u
and φ = ϑ.

Figure 4.5: A polar graph of the homoclinic orbit (4.34) of the NW potential
(red), also showing the unstable circular orbit (green).

Now we turn to the relativistic case. For the Schwarzschild black hole the
result surprisingly has the same form as (4.34) but with different coefficients. The
coefficients even have simpler form than those of the pseudo-Newtonian black hole
and so we can write them down here:

uhyp = l +
√

−12M2 + l2

6Ml
, umax = l − 2

√
−12M2 + l2

6Ml
, k = 2M. (4.35)

This result had already been obtained by Bombelli and Calzetta [1992] but we
recomputed it with our result differing from theirs by rescaling the variable u by
the factor of 2M . So we see that in this feature the Nowak-Wagoner potential
represents the black hole reasonably even though the coefficients differ.

We shall now proceed to the extreme Reissner-Nordström black hole, dis-
cussing the computation in more details than in the Schwarzschild case. To
obtain the effective-potential equation we will use the hamiltonian (4.16). Using
again the trick (4.31) (with replacement t → τ) and the fact that along a geodesic
H0 = −1

2m0, we have (
du
dϑ

)2

= e2 − (1 −Mu)2 (l2u2 + 1)
l2

, (4.36)

where again u = 1
r
. In contrast to the Schwarzschild black hole, the right-hand

side is a polynomial of the fourth order which has three stationary points (figure
4.6): one is the usual stable circular orbit, another one is the searched unstable
periodic orbit. The third stationary point of the effective potential is located
at the horizon r = M with Veff(r = M) = 0 and it is a minimum. The stable
circular orbit on the horizon would necessarily have pt = 0, which due to the
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Figure 4.6: Effective potential of the extreme Reissner-Nordström black hole (red)
and the energy level corresponding to the homoclinic orbit (green).

four-momentum normalization implies pi = 0. So the circular orbit on r = M
could be interpreted as that of an infinitely redshifted photon.

As in the previous case we, we fix the energy by e = Veff(rhyp) and rewrite the
equation (4.36) as

(
du
dϑ(ϑ)

)2

= −M2(u(ϑ) − uhyp)2(u(ϑ) − umax)(u(ϑ) − uin), (4.37)

where uin is the turning point located inside the black hole (see figure 4.6). Hence
we conclude that our homoclinic orbit is located in the interval u ∈ (umax, uhyp),
or equivalently r ∈ (rhyp, rmax). Due to the inequality umax ≤ u ≤ uhyp, the
minus sign in front of M2 is cancelled and thus equation (4.37) holds without any
seeming inconsistency. Expressions for the turning points are still quite simple,

uhyp = l +
√

−8M2 + l2

4Ml
(4.38)

and

umax/in =
3
4 l − 1

4

√
−8M2 + l2 ∓ 1

2

√
l2 +

√
−8M2 + l2l

lM
. (4.39)

Finally, solving the equation (4.37) with the condition that umax is the turning
point of the homoclinic orbit, we have

u(ϑ) = uhyp + 2β
uin + umax − 2uhyp + (uin − umax) cosh

(√
−M2βϑ

) (4.40)

where β = (uin − uhyp) (umax − uhyp). This is the (degenerate) homoclinic orbit
of the extreme Reissner-Nordström black hole. We can again see that u(ϑ →
±∞) = uhyp. The spatial representation (polar graph) of the homoclinic orbit is
depicted in figure 4.7.

Thus we have all the necessary ingredients prepared to compute the Melnikov
function.
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Figure 4.7: The homoclinic orbit of the extreme Reissner-Nordström black hole
in the physical space (red) with the unstable circular orbit shown (green).

4.5 Calculation of the Melnikov function
To evaluate the Melnikov function, we first need to compute the Poisson brackets
in variables (r, pr) which are part of the modified definition of the Melnikov func-
tion (4.19). Another necessary component is the unperturbed angular frequency
Ω which has the same form in the pseudo-Newtonian and in the relativistic case:

Ω(r, J) = ∂H0

∂Jϑ

= 1
m0

Jϑ + Lz

r2 = l

r2 . (4.41)

For simplicity of notation, we will from now on work with l = 1
m0

(Jϑ + Lz)
instead of Jϑ. We will first find the Melnikov function for the pseudo-Newtonian
hamiltonian (4.10) whose unperturbed part is given by (4.11) and H1 = m0

m
ν1.

The function ν1 has to be transformed to the spherical coordinates using (2.6).
The Poisson brackets are then

{
H0,

H1

Ω

}
= ∂H0

∂r

∂

∂pr

(
H1

Ω

)
− ∂H0

∂pr

∂

∂r

(
H1

Ω

)
= − pr

m0

(
r2

l

∂H1

∂r
+ 2H1

r

l

)
(4.42)

and thus the complete integrand reads

1
Ω

{
H0,

H1

Ω

}
= −vr

r3

l2

(
2H1 + r

∂H1

∂r

)
. (4.43)

Performing the canonical transformation:

H1(r, θ) → H1(r, ϑ, L, Lz)

which we derived in previous sections (see equation (4.26)), inserting the homo-
clinic orbit (r(ϑ), vr(ϑ)) into (4.43) and integrating along the homoclinic orbit
gives us the pseudo-Newtonian Melnikov function,

M(ϑ0) =
∞∫

−∞

(−vr(ϑ))r
3(ϑ)
l2

[
2H1(r(ϑ), ϑ+ϑ0)+r(ϑ)∂H1

∂r
(r(ϑ), ϑ+ϑ0)

]
dϑ, (4.44)
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where the relation between the homoclinic orbit u(ϑ) we computed (equation
(4.34)) and (r(ϑ), vr(ϑ)) is obviously

r(ϑ) = 1
u(ϑ) , vr(ϑ) = −ldu(ϑ)

dϑ .

The resulting Melnikov function M(ϑ0) is expressed with the explicit dependences
of the integrand on variables ϑ and ϑ0, but the dependence on the fixed parameters
l and lz is omitted for brevity.

In the pseudo-Newtonian description, H1 represents either the inverted MM
disc (2.10) or the BW ring (2.11) surrounding the Schwarzschild black hole. We
shall now continue with the relativistic Melnikov function whose derivation is
slightly more complicated.

Our relativistic perturbation hamiltonian H1 is given by (4.13) and (4.14),

H1 = 1
2m0

[
− g

(1)
tt

(g(0)
tt )2

E2 − g(1)
rr

(g(0)
rr )2

p2
r − g

(1)
θθ

(g(0)
θθ )2

(
L2 − L2

z

sin2 θ

)2

−
g

(1)
φφ

(g(0)
φφ )2

L2
z

]
, (4.45)

where we have already eliminated pθ using (4.20). The metric also has to be trans-
formed to the spherical-like coordinates according to the relation (2.6) or (2.16)
(for the Reissner-Nordström black hole and MP ring). And before computing
the Poisson brackets we perform the canonical transformation θ = θ(ϑ, L, Lz)
(relation (4.26)).

Recalling the original definition of the Melnikov function (equation (4.5)), we
see that it is a part of the linear term in the expansion of the distance between
the asymptotic manifolds, or, in other words, we measure the distance in the
O(m) approximation. Consequently inside the Melnikov function we raise and
lower indices using only the unperturbed metric, for example

pr = g(0)
rr p

r + O(m).
The term containing g(1)

rr would then contribute to the distance expansion as
O(m2) and thus we neglect it there.

The Poisson brackets taken in (r, pr) are

{
H0,

H1

Ω

}
= ∂H0

∂r

1
Ωg

(1)rr pr

m0
− g(0)rr pr

m0

( 1
Ω
∂H1

∂r
+ 2r

l
H1

)
=

= ur
[
∂H0

∂r

r2

l

(−g(1)
rr

g
(0)
rr

)
−
(
r2

l

∂H1

∂r
+ 2r

l
H1

)] (4.46)

and the complete integrand reads

1
Ω

{
H0,

H1

Ω

}
= −ur r

3

l2

[
r
∂H0

∂r

g(1)
rr

g
(0)
rr

+ 2H1 + r
∂H1

∂r

]
. (4.47)

Inserting one of the above derived relativistic homoclinc orbits and integrating
along it leads to the relativistic Melnikov function

M(ϑ0) =
∞∫

−∞

{
(−ur)r

3

l2

[
r
∂H0

∂r

g(1)
rr

g
(0)
rr

+2H1+r∂H1

∂r

]}
(r(ϑ), ur(ϑ), ϑ+ϑ0)dϑ. (4.48)
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Dependencies of the integrand are written behind the curly bracket while the
dependence on the fixed parameters l and lz is not explicitly shown. As in the
previous case the homoclinic orbit is expressed using the variable u(ϑ), where

r(ϑ) = 1
u(ϑ) , ur(ϑ) = dr

dτ (ϑ) = −ldu(ϑ)
dϑ , pr = m0g

(0)
rr u

r.

The Melnikov integrals (4.44) and (4.48) may now be evaluated numerically
and we shall see that they indeed have simple zero points.

4.6 Results and their numerical verification
We can now plot the Melnikov functions and investigate their dependence on
parameters. I will present here the results for the pseudo-Newtonian superposi-
tion of the Schwarzschild black hole and the inverted Morgan-Morgan disc or the
Bach-Weyl ring, and for the extreme Reissner-Nordström black hole surrounded
by the Majumdar-Papapetrou ring.

The Melnikov functions will be plotted on the interval (0, π) as they are pe-
riodic with period π. Although the functions are rather complicated and cannot
be expressed in a closed form, their plots are surprisingly simple: they mostly
exhibit a very sine-like behaviour as can be seen in figure 4.8a, while the shape
shown in figure 4.8b is much less frequent.

(a) (b)

Figure 4.8: (a) Extreme RN black hole with the MP ring (b = 15M, l = 3M, lz = 0).
(b) Pseudo-Newtonian Schwarzschild black hole with the inverted MM disc (b = 6M, l =
2.5M, lz = 1M).

The Melnikov function M(ϑ0) depends on three fixed parameters which can
scale with the black hole mass M . Apart from the ring/disc radius b being
the obvious constant of the system, we have the z-component of the angular
momentum lz and the total angular momentum l (we again work with normalized
quantities). The angular momentum l selects one particular homoclinic orbit, but
it is not an integral of motion of the complete system. (The angular momentum
l can be exchanged for the energy e which also uniquely determines a homoclinic
orbit, but for now we will use l.)
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The first parameter we will investigate is lz. Changing this quantity while
having b and l fixed has the same effect on the Melnikov function, no matter
which of our gravitational sources we consider. Since lz is just a component of
the angular momentum vector with magnitude l we have lz ∈ ⟨0, l⟩ (we use only
positive lz). If lz approaches l, Melnikov-function amplitude decreases before
finally becoming identically zero,

lim
lz→l

M(ϑ0) = 0.

Such a result is not unexpected. For lz = l the motion is confined to the equatorial
plane which is the plane of the disc/ring. From the point of view of this equatorial
plane, spherical symmetry is not broken by perturbation and the complete system
is independent of ϑ, so for a small perturbation the degenerate homoclinic orbit
is preserved (W s and W u coincide along it).

The dependence of Melnikov functions on lz is plotted in figure 4.9. For the
relativistic extreme RN black hole with MP ring the results are practically the
same.

(a) (b)

Figure 4.9: Dependence of M(ϑ0) on lz for pseudo-Newtonian Schwarzschild black
hole with the inverted MM disc (b = 20M, l = 2.6M) (a) and with the BW ring with
the (b = 20M, l = 2.5M) (b).

We can conclude that M(ϑ0) has maximum amplitude for lz = 0, which
however does not have much importance since the only significant result is the
existence of zero points.

Another parameter we can change is the ring/disc radius b. With growing
radius the amplitude of M(ϑ0) drops down before finally becoming zero. This is
a consequence of the fact that the perturbation H1 gradually vanishes,

lim
b→∞

H1 = 0 ⇒ lim
b→∞

M(ϑ0) = 0.

This result clearly stems from the fact that a ring/disc cannot affect the motion
around a black hole from which it is infinitely far away. Setting b = ∞ is thus
equivalent to an unperturbed system and therefore the degenerate homoclinic
orbit remains unchanged, which leads to M(ϑ0) = 0.
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The opposite limit is b → 0. To evaluate the Melnikov function for b = 0 we
first need to find how our perturbations look in this case. The simplest case is
the Majumdar-Papapetrou ring whose lapse function N (2.17) reduces to that of
the extreme Reissner-Nordström black hole (2.14). So in total we are left with a
RN black hole of double mass at the centre which again leads to lim

b→0
M(ϑ0) = 0.

The first metric functions ν(ρ, z) of the inverted MM disc and of the BW ring
have the same limit,

lim
b→0

ν(ρ, z)BW/MM = − m√
ρ2 + z2 .

This corresponds to a point particle located at the origin (its relativistic coun-
terpart would be the Curzon-Chazy metric). So one would expect preservation
of the spherical symmetry and thus vanishing of the Melnikov function. This
actually happens, but only if we perform the transformation between cylindrical
and spherical coordinates using the Euclidean relations

ρ = r sin θ z = r cos θ.

If we use the relativistic relations (2.6) instead, we get a non-zero M(ϑ0) with
its typical sine-like behaviour. So we see that choosing the right coordinate
transformation can be rather tricky. In this particular situation we interpret the
sources in a Newtonian fashion which means that we assume the space to be flat
and so the Euclidean transformation relation turns out to be more adequate.

The dependence of the Melnikov function on radius b can be seen in figure
4.10.

(a) (b)

Figure 4.10: Radius dependence of M(ϑ0) for pseudo-Newtonian Schwarzschild black
hole with the inverted MM disc (l = 2.5M, lz = 1M) (a), and for the extreme RN black
hole with the MP ring (l = 3M, lz = 1M) (b).

Before continuing the study of parameter dependences, we should address
a problem which occurs when one changes the radius of the ring/disc. While
integrating the expression given by Poisson brackets, it may happen that the
integration path (homoclinic orbit) crosses the equatorial plane exactly where
the ring or disc is located, which is however a singular place of our perturbations
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(and their derivatives). The Melnikov functionM(ϑ0) thus becomes discontinuous
for some values of ϑ0, actually the method may potentially break down in such

(a) (b)

Figure 4.11: Two graphs of different M(ϑ0) with discontinuities, obtained for corre-
sponding the extreme RN black hole with the MP ring. The jumps are commented in
the main text.

a case. However, the function still has zero points and in their neighbourhood
it is continuous (figure 4.11), so this could lead to the existence of transverse
homoclinic points anyway. This point needs further study for sure.

The last parameter we have not discussed yet is the total angular momentum l
(which can be replaced by either Jϑ or the energy e). This dependence is actually
the least interesting since the amplitude of M(ϑ0) simply increases with l (figure
4.12) ranging within its respective interval (see below).

Figure 4.12: The dependence of M(ϑ0) on the total angular momentum l for
pseudo-Newtonian Schwarzschild black hole with the inverted MM disc (b =
10M, lz = 1M)

As we have seen, for all the values of the parameters (with some special excep-
tions like lz = l) the Melnikov function M(ϑ0) has simple zero points which proves
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the existence of transverse homoclinic orbits and therefore chaotic behaviour in
their vicinity. We can guess that the results would be the same for the relativistic
superposition.

Now an obvious question arises: Does the existence of zero points of M(ϑ0)
lead to the conclusion that even for a very small perturbation the dynamics turns
chaotic for every value of the parameters? The answer is obviously no, as the
degenerate homoclinic orbit (which splits under perturbation) exists only for some
values of the parameters and that is what we will discuss now.

If we take a look at the relations for the (coordinate) radius rhyp of the unstable
circular orbit (relations (4.30), (4.35) and (4.38)), we can notice that it contains
square root of some argument which is positive only for some range of l. This
allows us to determine the minimal value of the angular momentum (lmin) for
which there exists the unstable circular orbit (we express l in units of M thus
eliminating the dependence on the black-hole mass).

For the (degenerate) homoclinic orbit to exist, an additional condition must
be fulfilled: there has to be a turning point which corresponds to the maximal
distance rmax. For our effective potential this means

Veff(rhyp) ≤ lim
r→∞

Veff(r).

The equality in this equation corresponds to the maximal value lmax, for l > lmax
the unstable circular orbit still exists but there is no homoclinic orbit connected to
it so, to summarize, the homoclinic orbit exists for l ∈ (lmin, lmax⟩. The conditions
on l can be converted to the conditions on e and lz which in contrast to l are
integrals of motion of the perturbed system. The energy of the homoclinic orbit
is uniquely given by the angular momentum, e = e(l), so the energy condition
can be written as e ∈ (emin, emax⟩ with emin = e(lmin) and emax = e(lmax). It is
easy to deduce that emax = Veff(r → ∞).

By the particle energy e, the geodesics in the unperturbed system can be
divided into three groups independently of their angular momentum:

1. e < emin: Geodesics which always end in the black hole and cannot reach
infinity (or come from there).

2. e ∈ (emin, emax⟩: Bound orbits and also geodesics that end in the black hole.
These also cannot exist at asymptotic radii.

3. e > emax: Geodesics that can arrive to or from infinite r. These geodesic
may end in the black hole or be reflected by the potential barrier.

We can expect that the same behaviour occurs in the perturbed system pro-
vided that the perturbation is small enough. As expected, only the second of the
cases above leads to chaotic dynamics since only in that case there are bound
orbits separated from the infalling orbits by a separatrix (homoclinic orbit) that
splits into the asymptotic manifolds after perturbation. The three different situ-
ations are depicted in figure 4.13.

The condition for the other integral of motion lz is natural. As lz ≤ l, the
z-component of angular momentum must satisfy lz ≤ lmax. If this condition does
not hold true, then l > lz > lmax, which is in contradiction with l ∈ (lmin, lmax⟩.
On the other hand if lz < lmin, then the other components of angular momentum
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(a) (b) (c)

Figure 4.13: Pseudo-Newtonian effective potential of the Schwarzschild black hole
with energies satisfying e < emin (a), e ∈ (emin, emax⟩ (b), e > emax(c).

can still add up to l belonging to the required interval (as we have seen above, it
is in fact necessary that lz ̸= l). The intervals of l and e for which there exists a
homoclinic orbit can be seen in table 1.

Table 1: conditions for existence of homoclinic orbits
potential Nowak-Wagoner Schwarzschild extreme RN black hole

interval of l (
√

6M,
√

8
√

3−6M) (2
√

3M, 4M) (2
√

3M, 1
2

√
22+10

√
5M)

interval of e (− 1
18 , 0) ( 2

3
√

2, 1) ( 3
8

√
6, 1)

Therefore the final conclusion of the Melnikov method for our system of a
perturbed black hole reads:

On the hypersurface given by e ∈ (emin, emax⟩ and lz ∈ ⟨0, lmax) there exist
transverse homoclinic orbits in whose neighbourhood the system exhibits a chaotic
behaviour.

The final part of this chapter will be dedicated to the numerical verification
of the results obtained by this analytic method. For that purpose we shall again
use the code by M. Žáček.

We will test the method on the superposition of an extreme RN black hole with
the MP ring, as it is the only fully relativistic system for which we have computed
the Melnikov function. To find some chaotic orbits, we need to properly choose
values of the integrals of motion. We fix the values as e = 0.942809 and lz = 1M .
One can check that these values indeed fall within the intervals given in table 1.

We start with the unperturbed system containing only the extreme Reissner-
Nordström black hole. We choose an orbit close to the separatrix whose Poincaré
section can be seen in figure 4.14. It is a smooth curve as we would expect
for a regular orbit. In the unperturbed system the bound orbits are strictly
separated from the infalling orbits by the separatrix. What does happen if we
add a perturbation in the form of the MP ring? We set a small perturbation mass
m = 0.01M and again check the orbits close to the original separatrix, especially
focusing on the points close to the unstable periodic orbit. The resulting Poincaré
section of one such orbit is plotted in figure 4.15, with the neighbourhood of the
unstable fixed point displayed in more detail in part (b) of 4.15 and also in figure
4.16 where three close orbits are shown.
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(a) (b)

Figure 4.14: Poincaré section of an orbit around an unperturbed extreme RN
black hole close to the separatrix (a) and its detail close to the fixed point (b)
(with e = 0.942809, lz = 1M).

(a) (b)

Figure 4.15: Poincaré section of an orbit (e = 0.942809, lz = 1M) around the
extreme RN black hole perturbed by the MP ring (m = 0.01M) close to the
original separatrix (a) and in detail (b).

(a) (b)

Figure 4.16: A detailed look at the dynamics of 3 different orbits (e = 0.942809,
lz = 1M) close to the unstable periodic orbit in the system of the extreme RN
black hole perturbed by the MP ring with m = 0.01M .
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It is evident that the geodesics densely fill a certain area in the Poincaré section
confirming their chaotic nature. But for our answer to be complete we have to
find how far from the unperturbed separatrix the chaotic behaviour persists.

In figure 4.17 we can see that if we do not focus on the neighbourhood of
the separatrix, we do not notice any sign of chaotic dynamics. In fact the whole
inner part of the Poincaré section is filled with smooth curves of regular bound
orbits. The blank part of the allowed region in 4.17 corresponds to the orbits
plunging into the black hole. So between the bound-orbits region and the infalling
orbits there is a thin chaotic layer (figures 4.15 and 4.16) at the place where the
unperturbed separatrix was located.

A very similar result was obtained by Aslanov [2015] who studied a very
different system (tow of space debris by a tether) and also numerically verified
his results obtained by the Melnikov method.

Thus we have shown that the only chaotic behaviour in the system of a black
hole and a small perturbation has homoclinic origin and that the chaotic re-
gions are concentrated in a small part of some hypersurfaces in the phase space.
Otherwise the dynamics in this nearly integrable system remains regular.

Figure 4.17: Bound orbits in the system of an extreme RN black hole perturbed
by the MP ring with parameters m = 0.01M , e = 0.942809, lz = 1M .

Before the end of this chapter let me add some remarks concerning the Mel-
nikov method. The standard Melnikov method has numerous generalizations,
for example to the case when neither the unperturbed system nor the perturba-
tion are Hamiltonian in nature. This allows applications to dissipative systems
(drag forces, friction,...); some examples are given in Wiggins [2000]. There is
also a generalization where the integral is taken along a heteroclinic orbit. Most
importantly, there exists a generalization to higher degree-of-freedom systems
(see Gruendler [1985]) which are much more complicated. They for example re-
quire a complete solution of the variational equation of the unperturbed system
along the homoclinic orbit, which is mostly impossible to find analytically. For-
tunately, I have managed to avoid any higher-dimensional generalization thanks
to the canonical transformation.

Concerning the application of this method in general relativity, there have
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been at least three articles involving the perturbation of the Schwarzschild black
hole. The first was the relativistic version of the classical Hill problem Moecker
[1992]. The article by Santoprete and Cicogna [2002] used uniform electric and
magnetic fields as perturbations. In these two articles the authors used different
modification of the one-degree-of-freedom Melnikov method.Finally in the article
by Bombelli and Calzetta [1992] it is the gravitational waves what plays the
role of a perturbation, and the classical formulation of the method is used. The
perturbed motion in this case remains planar, so the authors did not need to deal
with the problem of multiple degrees of freedom.
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Conclusion
Motivated by theoretical interest as well as accreting black holes in astrophysics,
we have studied time-like geodesic dynamics in the space-time of a static black
hole perturbed by a ring or a disc using two analytical methods and subsequently
confronted their results with numerical simulations.

The first method, the geometric criterion which should indicate the tendency
to chaos on the basis of properties of the Riemann tensor, turned out to play the
role of a necessary condition for the appearance of chaos in the system of a black
hole encircled by a ring. For a black hole surrounded by a disc, the criterion is
neither suffcient nor necessary. We have conjectured that such a failure may arise
due to the particles’ repeated crossing of the (infinitely thin, thus non-smooth)
disc which may possibly lead to chaos even without any contribution from a
“diverging” region. Replacing the quantifiers based on the geometric criterion by
the number of disc crossings really leads to better results, but there are some
situations when this estimate also fails. Therefore, although there is definitely
a connection between geodesic dynamics and the configuration-space geometry,
the curvature criterion tested in this thesis is not always a reliable indicator of
chaos, which is also the conclusion that most authors support.

The other method considered was that by Melnikov. This concentrates on
the homoclinic chaos caused by break-up of a homoclinic orbit due to the per-
turbation. In order for the Melnikov method to be applicable to our systems, we
have made a canonical transformation of the respective hamiltonians. For all our
systems the Melnikov function was found to have simple zeros which is the proof
that the transverse homoclinic orbits exist in the phase space, which in turn leads
to the creation of a chaotic layer in the neighbourhood of the location where there
originally (before perturbation) was a separatrix. In agreement with the Melnikov
theory, for a small perturbation the chaotic orbits only occur in a small part of
some hypersurfaces in the phase space given by integrals of motion for which
the degenerate homoclinic orbit (separatrix) exists. The results of the Melnikov
method were verified numerically in the electro-vacuum Majumdar-Papapetrou
space-time generated by an extreme Reissner-Nordström black hole encircled by
an extremally charged ring. It can be expected that for superpositions with the
Schwarzschild black hole the results would be similar.

In my opinion the most important contribution of the thesis is the usage of
canonical transformation which permitted to rewrite the hamiltonian to the form
required by the Melnikov method. This approach could actually be applied to a
central field with any axially symmetric perturbation, and it is quite simple in
comparison with the generalizations of the method to more degrees of freedom
used by other authors.
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