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Introduction

When actuaries in a non-life insurance company estimate insurance liabilities,
they usually use chain ladder method, if it is possible. Other widely used meth-
ods are probably Bornhuetter-Fergusson method or overdispersed Poisson model.
These and many other methods have usually one thing in common: estimation
of liabilities is based on aggregate data into development triangles. Generally,
all aggregate methods are relatively easy to implement and they are quite un-
derstandable. On the other hand, aggregate methods have many disadvantages,
namely chain ladder method appears in many articles, where its weaknesses are
described.

We briefly mention here few problems with chain ladder method, but some
of these problems are related to different methods as well and our list is non-
exhaustive. Firstly, one of the assumptions of chain ladder is independence of
cumulative claims of different accident years. This assumption can be violated
for example by change of laws, here is worth to mention the new civil code
effective since January 2014 in the Czech Republic, which affected some claims
retrospectively. Secondly, development triangles can be affected by a calendar
year effect because of changes in the internal rules and RBNS reserve might be set
differently in various years. Thirdly, chain ladder can be easily affected by expert
judgment, e.g. by excluding some ratios in calculation of development factors,
which are calculated as weighted average of (not excluded) ratios. Finally, two
different development triangles can be constructed: the first one is paid triangle
which contains paid amounts and the second one is incurred triangle containing
paid amounts and RBNS reserve development. In many cases these triangles
provide very different results and it must be decided which result should be chosen
as final.

The thesis is focused on a different approach. Instead of using aggregate data
we try to use individual claims developments to describe a selected part of one line
of business by a probability distribution. This is done by splitting the problem
into four parts, which are estimated separately. The selected part of the line of
business can be then described in terms of occurence process generating claims,
delay in notification, times between events and finally, payments. One of the
advantages of this approach is a limitation of expert judgment, because we can
influence only data used for estimation and such decisions should be appropriately
justified. Another influence on results is choice of the most suitable distribution
in respective parts, however, all choices can be based on an objective criterion,
e.g. comparison of maximized likelihoods.

Chapter 1 deals with the theoretical part, which justifies and explains usage
of a claim-by-claim model. We derive formally all needed distributions as prob-
ability densities, which is one of contributions of the thesis. Theory described in
literature is full of informal notation and derivations and it is not an easy task to
understand it, especially for readers who are new in this topic. Notation in the
thesis is not completely consistent, it can slightly differ chapter by chapter, but
everything should be clear within context. Nevertheless, for a better orientation,
we attach a list of notation to the end of the thesis.

Chapter 2 describes few necessary adjustments to the theoretical part in or-
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der to overcome insufficiencies of our data. Estimation is based on maximum
likelihood theory and final estimates are selected based on the largest maximized
likelihood. A simplification concerning amounts of payments is used, specifically
they are treated as independent and identically distributed random variables.
This simplified part of the model could be improved for example by considering
a dependence on previous payments.

Chapter 3 explains our simulation algorithm and describes the practical re-
alization in software R. We discuss obtained results and compare them with es-
timates obtained by chain ladder method. Results based on chain ladder can
lead to an estimate of distribution of claims reserve via bootstrap and we can
compare volatility of two different methods. It can be easily noticed that our
claim-by-claim model implies smaller volatility, which is probably caused by more
information used for estimation.

The most important parts of our source code can be found in Appendix. They
are attached to ilustrate our practical realization of estimation and simulation in
more detail, but note that the overall code with many additional analyses is
several times longer. Because all chapters are now briefly described, we can move
to the first chapter.
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1. Theoretical Part

1.1 Nonhomogeneous Poisson Process

Before we define marked Poisson process, we quickly review a generalization
of homogeneous Poisson process, since a great part of marked Poisson process
is based on nonhomogeneous Poisson process. In case of further interest see for
example Ross (2010, pp. 312–345), where you can find all relevant definitions,
derivations, proofs and many examples.

Definition 1. Counting process {Nt, t ≥ 0} is said to be nonhomogeneous Pois-
son process with intensity function λ(t), t ≥ 0, if the following holds true:

1. N0 = 0;

2. {Nt, t ≥ 0} has independent increments;

3. P [Nt+h −Nt ≥ 2] = O(h);

4. P [Nt+h −Nt = 1] = λ(t)h+ O(h);

for all t ≥ 0 and h > 0.

The function O(h) in Definition 1 has its usual meaning, i.e. it satisfies

lim
h→0+

O(h)

h
= 0.

For t ∈ [0,+∞] we define a cumulative hazard function

Λ(t) =

∫ t

0

λ(s) ds,

which determines expected values of increments, as we can see in Theorem 1,
where properties of nonhomogeneous Poisson process are summarized. The first
two statements relate only to the process {Nt, t ≥ 0}. From a practical point of
view, we assume that Λ(∞) is finite.

Theorem 1. Let {Nt, t ≥ 0} and {Mt, t ≥ 0} be independent nonhomogeneous
Poisson processes with respective intensity functions λ(t), µ(t), t ≥ 0. The fol-
lowing then holds:

1. For all t ≥ 0, h > 0 random variable Nt+h−Nt follows Poisson distribution
with parameter Λ(t+ h)− Λ(t).

2. Let Ti be time of the ith event, then for 0 ≤ t1 < . . . < tn <∞ we have

lim
(h1,...,hn)→(0+,...,0+)

P
[
Ti ∈ [ti, ti + hi) for all i=1, . . . , n, Tn+1 =∞

]
h1 · · ·hn

=

= e−Λ(∞)

n∏
i=1

λ(ti). (1.1)
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3. If N∗t = Nt + Mt, then {N∗t , t ≥ 0} is nonhomogeneous Poisson process
with intensity function λ(t) + µ(t). Given that at time t occured an event,
it belongs to process {Nt, t ≥ 0} with probability

λ(t)

λ(t) + µ(t)
.

Proof. In the following paragraph we will proof only the second part of Theorem 1
(the other properties are proven in already mentioned Ross (2010)), since it will be
used later to derive slightly more complex densities. To determine the probability
inside the limit, we need to use the first property of nonhomogeneous Poisson
process in Theorem 1, i.e. probability that there is no event during time interval
[a, b) is equal to

e−[Λ(b)−Λ(a)] .

Further, Definition 1 states that probability of having one event in time interval
[a, a+ h) is

λ(a)h+ O(h).

We realize that the event, we are interested in, can be equivalently reformulated
in the following way: there is no event during [0, t1), one event during [t1, t1 +h1),
no event during [t1 +h1, t2), one event during [t2, t2 +h2) and so on until one event
during [tn, tn + hn) and no event during [tn + hn,+∞). Using the independence
of increments and already mentioned properties we rewrite the probability inside
the limit (for tn+1 =∞) as

e−Λ(t1)

n∏
i=1

[λ(ti)hi + O(hi)] e−[Λ(ti+1)−Λ(ti+hi)]

and after dividing by h1 · · ·hn and evaluating the limit we get the declared result.

1.2 Marked Poisson Process

1.2.1 Notation

In this subsection we introduce several random variables, which together form
a marked Poisson process. The notation and theory is mostly based on Norberg
(1993), Norberg (1999) and Merz and Wüthrich (2008, pp. 369–377). We consider
a homogeneous part of a line of business of an insurance company with a risk
exposure per time described by a nonnegative function w(t), t ≥ 0. The exposure
rate w(t) may be thought of as a simple measure of volume of the business, e.g.
number of policies in force or earned exposure.

We assume that claims arise at times T1, T2, . . . (accident dates) and no claims
occur simultaneously. Claims can be sorted in ascending order with respect to
the accident dates, so that the ith claim occurs at time Ti. Number of claims
incurred prior to time t ≥ 0 can be written as

Nt =
∑
i≥1

I(Ti ≤ t),
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where I() is an indicator function equal to one, when its argument holds true and
zero otherwise, i.e.

I(Ti ≤ t) =

{
1, if Ti ≤ t,

0, otherwise

and total number of claims is

N = lim
t→∞

Nt.

Note that accident times {Ti, i ∈ N} determine process {Nt, t ≥ 0} and vice versa,
because time of the ith event is simply

Ti = inf{t ≥ 0: Nt ≥ i}.

We assume that {Nt, t ≥ 0} is a nonhomogeneous Poisson process with a non-
negative intensity function w(t)λ(t), t ≥ 0. To justify the last assumption, we
could imagine that occurences of claims on each insurance contract follow a non-
homogeneous Poisson process with a nonnegative intensity function λ̃(t), t ≥ 0,
where λ̃(t) is equal to λ(t), when t belongs to a time interval when a selected con-
tract is in force, and zero otherwise. This means that all insurance contracts are
risk homogeneous (with respect to occurences of claims) and claims can occur only
during the lifetime of the contract. A usual assumption would be independence of
the occurence processes, therefore we could use the third part of Theorem 1 and
the assumption is justified. Moreover, the first part of Theorem 1 states that the
total number of claims follows Poisson distribution with parameter Λ(∞), where

Λ(t) =

∫ t

0

w(s)λ(s) ds, t ≥ 0, (1.2)

so the total number of claims is finite with probability one.
Of course, the company receives a notification about a claim (incurred at

a nonnegative time T ) at a nonnegative time S with the nonnegative delay
U = S − T . Then the claim is closed at a time S + V , where V is a waiting
time until a claim settlement after the notification. There are some individual
payments within interval [S, S + V ] described by a process

C = {C(v), 0 ≤ v ≤ V }.

Finally, Z = (U,C) is a mark describing the settlement process. A claim can be
now described as pair (T, Z). Note that marks can contain even more information
about claims, e.g. case estimate. If we denote Z as a space of possible claims
developments of Z, then claim (T, Z) is a random element in set C = [0,∞)×Z.

1.2.2 Payment Process

In this subsection we are interested in a probability distribution of the pay-
ment process of a selected claim. To describe the distribution, we will assume
that increments of events are independent, hence we will work here with a slightly
modified Poisson process. We will also assume that the payment process is inde-
pendent of time of occurence and delay, or in other words, the claims handling
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does not change over time. These assumptions are here due to simplifications, so
that we are able to derive some properties more formally; nevertheless, they will
be applied consistently in the thesis.

The modification lies in considering more types of events, e.g. a payment and
a settlement with a payment. We will be referencing to these types of events
as events of type 1 and 2. Times of events since their notification are random
variables V1, V2, . . . and these random variables with types of events determine
number of payments Ñ within a selected claim, because an occurence of event 2
means that the claim is closed. It would be much better to work with a third
type of event: settlement without a payment. However, this type of event is not
taken into account, which will be explained in the next chapter.

We assume that each type of event occurs in accordance with a nonhomoge-
neous Poisson process with intensity function µj(t) for t ≥ 0 and j = 1, 2. We
define cumulative hazard functions

Mj(t) =

∫ t

0

µj(s) ds, t ∈ [0,+∞], j = 1, 2

and overall cumulative hazard function M(t) = M1(t) + M2(t). Moreover, we
assume that these processes are independent. Probability that no event occurs
during time interval [a, b) is due to the independence equal to product of proba-
bilities

2∏
j=1

P
[
No event of type j occurs during [a, b)

]
=

2∏
j=1

e−[Mj(b)−Mj(a)], (1.3)

which can be rewritten as
e−[M(b)−M(a)] . (1.4)

Now we are able to work with time occurences and types of events. We define
number of payments as

Ñ =
∞∑
k=1

I(Vk <∞),

i.e. Ñ is number of events with a finite time. Using the same principle as
in the proof of Theorem 1, we get (for n = 1, 2, . . . and nonnegative values
v1, . . . , vn, h1, . . . , hn)

P
[
Ñ = n, Vk ∈ [vk + hk), for all k = 1, . . . , n

]
=

= e−M(v1)

{
n−1∏
k=1

[µ1(vk)hk + o(hk)] e−[M(vk+1)−M(vk+hk)]

}
[µ2(vn)hn + o(hn)]

and after dividing by product h1 · · ·hn and evaluating a limit of the last expres-
sion, where (h1, . . . , hn) tends to (0+, . . . , 0+), we end up with density

fÑ,V1,...,Vn(n, v1, . . . , vn) = e−M(vn)

[
n−1∏
k=1

µ1(vk)

]
µ2(vn). (1.5)

The last expression describes density of some (not specified) n payments at times
v1, . . . , vn and settlement at time vn. We assume that the times of events are
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positive numbers in ascending order, otherwise the density would be (formally)
zero.

A small detour from our topic, which might clarify some ambiguities: if we
wanted to proove that we really work with a density in equation 1.5 (not taking
into account our derivation, which proves it as well), we have to verify that

∞∑
n=1

∫ ∞
0

∫ vn

0

. . .

∫ v2

0

fÑ,V1,...,Vn(n, v1, . . . , vn)dv1 . . . dvn−1dvn = 1

holds, i.e. we have to integrate and sum the density from equation 1.5 over all
possible values. The equation above nicely illustrates that fÑ,V1,...,Vn is a joint
density and not a conditional density. We will not discuss the verification in
detail, we will just state necessary steps. Firstly, we need to calculate n− 1 inner
integrals (using integration by parts) and obtain as a result

Mn−1
1

(n− 1)!
.

Secondly, we interchange the sum and the remaining integral and this leads us to∫ ∞
0

e−M2(vn) µ2(vn)dv = 1− e−M2(∞) = 1,

because

M2(t) =

∫ t

0

µ2(s)ds =

∫ t

0

f2(s)

1− F2(s)
ds = log

(
1

1− F2(t)

)
and this quantity tends to infinity as t→∞.

Now we return back to the topic at hand, because we are finally getting
to the desired density of the payment process. To simplify the situation, we
treat payments as independent and identically distributed (iid) random variables
P1, P2, . . . with a common density function fP and independent of the rest of
the payment process. To derive the density of the payment process, we will use
the well-known formula between joint and conditioned density for two random
variables

fX,Y (x, y) = fX|Y (x|y)fY (y).

In our case, X would be paid amounts and Y times and types of events, therefore
the density of the payment process can be written as

fC(c) = e−M(vn)

[
n−1∏
k=1

µ1(vk)

]
µ2(vn)

[
n∏
j=1

fP (pj)

]
,

where C = (Ñ , V1, . . . , VÑ , P1, . . . , PÑ) and c = (n, v1, . . . , vn, p1, . . . , pn). For
completeness, we state possible values of all these variables: n = 1, 2, . . . and
v1, . . . , vn, p1, . . . , pn are nonnegative values. Furthermore, v1, . . . , vn are assumed
to be in increasing order, since they correspond to times of events. Note that the
density above is again a joint density, in this case for number of events, times of
events and payments (it is not a conditional density as it might seem due to the
complexity of notation).
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When we compare information contained in C here and in the process C from
the previous subsection, we conclude they contain almost equivalent information.
There might be a difference in time of settlement, because in the above described
approach claims can be closed only with a payment, but in reality it can happen
later without any payment. This simplification is a consequence of taking into
account only events of type 1 and 2, therefore from now on we will consider the
payment process C.

1.2.3 Distribution of Claims Process

For a moment, we return to equation 1.1, where we introduced a density of
number of claims and times of occurence. We substitute function λ(t)w(t) for
function λ(t) and therefore we simply write the density in form

[Λ(∞)]n

n!
e−Λ(∞) n!

n∏
i=1

w(ti)λ(ti)

Λ(∞)
, (1.6)

where Λ(t) is correspondingly defined in 1.2. In this case, n = 0, 1, . . . and
t1, . . . , tn are nonnegative values in increasing order. In a special (and unrealistic)
case n = 0 we follow a convention that an empty product is equal to one. This
form of density provides us a useful interpretation for simulations: number of
claims N follows Poisson distribution with finite mean Λ(∞) and when number of
claims N = n is given, times of occurence form an ordered sample with a common
density for times of occurence

fT (t) =
w(t)λ(t)

Λ(∞)
, t ≥ 0. (1.7)

For the interpretation we used the well-known formula for density of order statis-
tics and it means that we derived a conditional density of times of occurence
when number of claims N = n is given.

Considering only one claim, we can write its density function as

fT,Z(t, z) = fZ|T (z|t)fT (t),

where fZ|T (z|t) is a conditional density of delay U and payment process C, which
we discussed in the previous subsection, when time of occurence T = t is given.
To derive a density of all claims together, we need to append fZi|Ti(zi|ti) for each
claim to the product in 1.6. Before we do it, we summarize necessary assumptions
in a definition. Notice that we will use a simpler notation fZ|t(z) instead of the
previous notation fZ|T (z|t).

Definition 2. Marked Poisson process with a nonnegative intensity function
w(t)λ(t), t ≥ 0, and position-dependent marks is process denoted by

{(Ti, Zi), i = 1, . . . , N} ∼ Po
(
w(t)λ(t), fZ | t

)
,

where accident dates {Ti, i ∈ N} are determined by nonhomogeneous Poisson
process {Nt, t ≥ 0} with the intensity function w(t)λ(t), and marks Zi = ZTi ∈ Z
satisfy the following assumptions:
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1. {Zt, t ≥ 0} is a family of random elements in Z that are mutually indepen-
dent;

2. {Zt, t ≥ 0} is independent of process {Nt, t ≥ 0};

3. Marks conditioned by accident date Z |T = t have density fZ | t(z), z ∈ Z.

Based on Definition 2 we can derive a joint density of all claims together (i.e.
number of claims and their developments) from equation 1.6 as

fN,T,Z(n, t, z) =
[Λ(∞)]n

n!
e−Λ(∞) n!

n∏
i=1

w(ti)λ(ti)

Λ(∞)
fZ|ti(zi),

where T = (T1, . . . , TN), Z = (Z1, . . . , ZN) and t, z are simply lowercase versions
of length n (marks z1, . . . , zn are elements of Z and the rest attains the same
values as in equation 1.6). Note that in this notation number of claims N is
also indirectly contained in T as its length, because TN+1 is considered equal to
infinity. Another possibility of writing the last equation is

fN,T,Z(n, t, z) = P [N = n]n!
n∏
i=1

fT (ti)fZ|ti(zi),

which has again a useful interpretation: we can generate number of claims N ,
then generate times of occurences with marks and sort such claims in ascending
order with respect to the generated times of occurence.

1.2.4 Division of Claims

Although we derived the distribution of all claims, we cannot work directly
with the density fN,T,Z(n, t, z), because we can observe only reported claims.
A very natural division of claims brings four groups: settled (S), reported but not
settled (RBNS), incurred but not reported (IBNR) and not incurred claims. The
last group of claims refers to future periods and is covered by unearned premium
reserve (UPR). This reserve is usually calculated on a pro rata temporis basis
(per policy).

Our main interest lies in IBNR and reported claims. If τ is the present mo-
ment, then we can define these groups more formally. Marks of settled claims
incurred at time t is a set

ZS
t = {z ∈ Z : t+ u+ v ≤ τ} ,

marks of RBNS claims incurred at time t is a set

ZRBNS
t = {z ∈ Z : t+ u ≤ τ < t+ u+ v} ,

marks of IBNR claims incurred at time t is a set

Z IBNR
t = {z ∈ Z : t ≤ τ < t+ u} ,

and finally marks of not incurred claims incurred at future time t is a set

ZUPR
t = {z ∈ Z : t > τ} .
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We introduce marks of reported claims (incurred at time t) as a set

ZR
t = ZS

t ∪ ZRBNS
t = {z ∈ Z : t+ u ≤ τ} .

In the following theorem, we can imagine an arbitrary finite division, but we will
consider only one division G = {R, IBNR, UPR} referring to the sets defined
above. For each g ∈ G we consider a component process

{(T gi , Z
g
i ), i = 1, . . . , N g}, (1.8)

where the random variables above are constructed in a straightforward way: pro-
cess counting g-claims is

N g
t =

∑
i≥1

I(Ti ≤ t, Zi ∈ Zg),

times of occurence are
T gi = inf(t ≥ 0 : N g

t ≥ i)

and marks are Zg
i = ZT g

i
.

Theorem 2. Let G be a finite division of claims, such that for each t ≥ 0 holds∑
g∈G

P [Z ∈ Zgt |T = t] = 1. (1.9)

Then component processes in 1.8 are independent and for each g ∈ G holds

{(T gi , Z
g
i ), i = 1, . . . , N g} ∼ Po

(
λg(t), f gZ | t

)
,

with
λg(t) = w(t)λ(t)P [Z ∈ Zgt |T = t]

and

f gZ | t(z) =
fZ | t(z)

P [Z ∈ Zgt |T = t]
I(z ∈ Zgt ).

Proof. Because of the assumption 1.9, the density fN,T,Z(n, t, z) can be rewritten
in a form ∏

g∈G

{
[Λg(∞)]n

g

ng!
e−Λg(∞) ng!

ng∏
i=1

λg(tgi )

Λg(∞)
f g
Z | tgi

(zgi )

}
, (1.10)

where

Λg(t) =

∫ t

0

λg(s) ds,

it is mostly about reindexing all quantities with respect to their categories. From
equation 1.10 follows the independence and the statement that the component
processes follow marked Poisson processes.

Theorem 2 states that g-claims occur with the original intensity multiplied
by the probability that a claim incurred at a time t is in a category g. Similarly,
the distribution of the marks is determined by the conditional distribution of the
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marks, given that it is in a category g. This result is a usual property of Poisson
process.

To determine distributions of reported and IBNR claims we apply Theorem 2.
For reported claims, we need to calculate probability that a claim incurred at
a time t ≤ τ has been already reported. Such a probability is simply

P [T + U ≤ τ |T = t] = P [U ≤ τ − t |T = t] = FU |t(τ − t),

where FU |t is a conditional cumulative density function of delay U , when time of
occurence T = t is given. This means that reported claims occurences have an
intensity function

λR(t) = w(t)λ(t)FU |t(τ − t)
and the marks have a density

fR
Z | t(z) =

fZ|t(z)

FU |t(τ − t)
I(u ≤ τ − t).

Using the complementary probability, IBNR claims occurences have an intensity

λIBNR(t) = w(t)λ(t)
[
1− FU |t(τ − t)

]
I(t ≤ τ)

and the marks have a density

f IBNR
Z | t (z) =

fZ|t(z)

1− FU |t(τ − t)
I(t ≤ τ < t+ u).

For completeness, not incurred claims occurences have an intensity

λUPR(t) = w(t)λ(t)I(t > τ)

and the marks have a density

fUPR
Z | t (z) = fZ | t(z)I(t > τ).

Note that sum of the last three mentioned intensities is, indeed, equal to the
original intensity w(t)λ(t).

To sum up, the density of observed claims is simply the same formula as in
1.10, only without the first product and there is R instead of g. Specifically, the
density is

fRN,T,Z(n, t, z) =
[ΛR(∞)]n

n!
e−ΛR(∞) n!

n∏
i=1

λR(ti)

ΛR(∞)
fR
Z | ti(zi),

where the upper index R is omitted for the number of claims, the times of oc-
curence and their marks, since from the context their category is obvious. The
last equation still includes few redundant terms and it can be simplified back to

e−ΛR(∞)

n∏
i=1

λR(ti)f
R
Z | ti(zi), (1.11)

where the last density in the product can be further rewritten as

fR
Z | ti(zi) = fU | ti(ui)fC | ti,ui(ci) = fU | ti(ui)fC(ci),

because we assume that the payment process C depends neither on time of oc-
curence nor delay.
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2. Practical Part

This chapter describes and summarizes all estimated parameters and detailed
discussion about appropriateness of accepted decisions is included as well to point
out advantages and weaknesses. We start with delay distribution, then we deal
with occurence process of claims, times between payments and finally payments
distribution. While the previous part was theoretical and quite general, this part
deals with specific problems arising from data characteristics and some necessary
adjustments are formulated.

First of all we briefly describe data which we use in following sections. The
data contain some information about motor third party liability (MTPL) line of
business prepared by Czech Insurers’ Bureau for educational purposes and are
collected from all member insurance companies. Two important parts of MTPL
are material damage (MD) and bodily injuries (BI), whose reserves are often
calculated separately due to their apparently different nature, as it can be seen
in the next subsections. We omit annuities from the analysis, because they have
very different nature compared to material damage and bodily injuries and they
contain less observations.

Since the data are available only for noncommercial purposes, we do not attach
them to the thesis. However, in case of interest, they can be obtained for example
via Czech Insurer’s Bureau (contact RNDr. Petr Jedlička, Ph.D.) or via Charles
university, faculty of mathematics and physics (contact RNDr. Michal Pešta,
Ph.D.). For such a case, we attach our source code as an appendix, which can be
copied from electronic version of the thesis and everything can be replicated.

The data consist of two files: claims settlements (payments) and RBNS reserve
development. Each row of claims settlements contains ID, type of insurance
liability, date of insurance accident, date of notification, date of payment and
paid amount. RBNS reserve development differs in the last two columns, because
there are contained date of change and change of RBNS reserve. All dates are in
range from January 1, 2000 to December 31, 2015. The data have relatively good
quality, only few rows are additionaly excluded, because of inconsistencies like
notification before occurence or date of payment before notification or occurence.
In the end we have 47 111 rows for material damage payments, 12 364 rows
for bodily injuries payments, 155 500 rows for material damage RBNS reserve
changes and 36 978 rows for bodily injuries RBNS reserve changes.

2.1 Delay Distribution

Prior to any analysis, our expectation regarding delay distribution would be
a presence of a decreasing trend, i.e. more recent claims are usually reported after
a shorter period of time, because of a continuous development of technologies
and easier reachability of insurers. After a simple inspection of our data we can
immediately conclude that we should not leave out the effect of occurence time
on delay. This is indicated by a simple linear regression or a comparison of mean
delays in available years. This leads us to a two-stage estimation: we estimate
trend in the first stage and then we estimate conditional distribution of delay,
which is described below.
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We choose the trend for simplicity as a smooth two-parametric function, which
would sufficiently capture the decreasing trend of expected value. One possible
choice is for example an exponential trend

E [U |T = t] = a bt

and another choice might be a logarithmic trend

E [U |T = t] = a+ b log(t),

we will be choosing from these two parametrizations. Parameters a, b are un-
known and we estimate them in R using function nls() for estimation by its
default nonlinear least squares method. It is very important to note that the
estimation is performed only on years prior to 2015, because mainly in the last
year are not included all observations yet, especially the larger ones. Time t = 0
is set as December 31, 1999 and time is measured in days. Trend for material
damage is estimated on 35 856 claims and for bodily injuries on 5 259 claims.

A simple comparison of residual sum of squares indicates that the exponential
trend is more suitable in both cases. We can also calculate R squared to back up
our choice. We replicate calculation of R squared from linear regression based on
total sum of squares and residual sum of squares, specifically

R2 = 1− SSres
SStot

= 1−
∑

i(ui − fi)2∑
i(ui − ū)2

,

where ui is ith observation, ū is arithmetic mean and fi is smoothed value of ui
(either by the exponential or the logarithmic trend). In case of bodily injuries
R squared is indeed larger for the exponential trend (3.26 % against 2.67 % for
the logarithmic trend), but for material damage we get lower R squared for the
exponential trend (2.94 % against 2.98 % for the logarithmic trend). Nevertheless,
the difference of R squared for the exponential trend is negligible and it also lacks
the natural interpretation from linear regression and furthermore, it is related to
quality of predictions, therefore we choose in this case the exponential trend as
well.

Estimated parameters for the chosen exponential trend can be found in Ta-
ble 2.1. The first parameter a has a meaning of an initial expected value of delay
at time t = 0 and the second parameter b explains by how much the expected
value decreases by one day. For comparison, annual decrease for material damage
is approximately 7.5 % and for bodily injuries almost 4 %. A graphical repre-
sentation of the mentioned trends can be found in Figure 2.1. We can see that
the linear and exponential trends are quite similar and significantly better than
the logarithmic trend, which is much steeper in the first year and such a decrease
is not very reasonable. This is of course another reason for our choice of the
exponential trend.

The second stage starts with a transformation of observed delays. We will use
a shorter notation Ut instead of U |T = t to better explain this stage. We assume
that random variable Ut is related to the initial delay U0 via a transformation

Ut =
E [U |T = t]

E [U |T = 0]
U0 = btU0, (2.1)
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Material damage SD Bodily injuries SD
a 130.223906 2.065000 291.004888 9.256000
b 0.999784 0.000007 0.999847 0.000012

Table 2.1: Estimated parameters and their standard deviations (SD) of exponen-
tial trend of delay
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Figure 2.1: Observed delays of notification (dots) with linear trend (red line),
exponential trend (green curve) and logarithmic trend (black curve)

which means that Ut has cumulative density function

FUt(u) = P[U ≤ u |T = t] = P[btU ≤ u |T = 0] = FU0(b
−tu)

and density function is obviously

fUt(u) = b−tfU0(b
−tu). (2.2)

Because the parameter b is now considered to be known, estimation of delay distri-
bution is reduced to more simple estimation of parameters of fU0 , where observed
values ut are transformed through multiplication by b−t. Such transformation
has an advantage that the transformed data form a continuous random sample,
opposed to the starting random sample, which has rather a discrete nature. Few

1st Qu. Median Mean 3rd Qu. SD
Material damage Observed 13.0 32.0 71.9 77.0 119.3

Transformed 25.7 56.3 130.0 134.1 223.9
Bodily injuries Observed 23.0 78.0 187.7 293.0 234.9

Transformed 36.4 116.5 281.6 438.8 352.5

Table 2.2: Comparison of observed and transformed delay (in days)
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Distribution Log likelihood Test statistic DF Critical value
Lognormal -214 295.40 449.58 47 64.00

MD Weibull -217 125.60 4 431.31 47 64.00
Gamma -218 310.80 48 502.50 47 64.00

Burr -241 525.90 NA NA NA
Lognormal -35 769.19 799.52 47 64.00

BI Weibull -35 750.43 709.47 47 64.00
Gamma -35 802.88 812.20 47 64.00

Burr -39 626.91 NA NA NA

Table 2.3: Logarithmic likelihoods and results of (chi-squared) goodness-of-fit
tests for delay distributions

Parameter Estimate Standard deviation
Material damage µ 4.05578 0.00666

(lognormal distribution) σ 1.28842 0.00471
Bodily injuries shape a 0.75504 0.00799

(Weibull distribution) scale b 210.71940 4.49735

Table 2.4: Estimated parameters of delay distributions

descriptive statistics and a comparison between observed and transformed values
of delays are summarized in Table 2.2. Transformed delays are strictly greater
than observed values and they have larger standard deviation (SD).

To choose properly fU0 we estimate and compare Burr (this distribution rep-
resents a heavy-tailed distribution), gamma, Weibull and lognormal distribution
(light-tailed distributions). Estimation is carried out in R using package MASS
and function fitdistr(), which provides maximum likelihood estimates. Note
that we excluded zero delays from data, because the chosen distributions can
be estimated on positive values only. Number of such observations is relatively
small (approximately 0.2 % for material damage and much less for bodily in-
juries), therefore we consider their influence negligible. Number of observations
for estimation is 37 411 for material damage and 5 443 for bodily injuries. Based
on the largest likelihood (see Table 2.3) we choose lognormal distribution for ma-
terial damage and Weibull distribution for bodily injuries as the most suitable
distribution for the transformed delays, estimated values of parameters can be
found in Table 2.4.

Table 2.3 also shows results of performed goodness-of-fit tests, which we will
briefly discuss here. We calculated 50 categories (so that each category contains
a reasonable number of observations) for each distribution based on estimated
quantiles, which provides us a division for a chi-squared test. Then we calculate
the classical chi-squared test statistic

χ2 =
50∑
i=1

(Oi − Ei)2

Ei
,

where Oi is number of observations in ith category and Ei is expected number
for ith category, in this case one fiftieth (1/50) of the total number of observa-
tions. We observe that both selected distributions also minimize chi-squared test
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Figure 2.2: Comparison of histograms of transformed delays and estimated den-
sity functions

statistic, but all test statistics are too large. However, even a small violation of
the null hypothesis is significant with large number of observations, therefore in
our case we could have expected prior to any analysis that all p-values will be
numerically zeroes. This could be overcome by testing the null hypothesis on
a subsample, but this is very dependent on more randomness (the divisions are
already based on estimates). From this reason, goodness-of-fit tests do not seem
to be appropriate here as a decision rule, because all distributions are formally
rejected and that is why we would rather recommend a graphical analysis. Note
that goodness-of-fit tests were not calculated for Burr distribution, because this
distribution is inappropriate for its small logarithmic likelihood and a graphical
comparison of histograms and estimated densities supports this as well.

For completeness, density of lognormal distribution is

f(u) =
1√

2πσu
exp

{
−(log u− µ)2

2σ2

}
, u > 0,

density of Weibull distribution is

f(u) =
α

β

(
u

β

)α−1

exp

{
−
(
u

β

)α}
, u > 0,

density of gamma distribution is

f(u) =
ap

Γ(p)
up−1 exp {−au} , u > 0

and finally density of used Burr distribution is

f(u) = ck
uc−1

(1 + uc)k+1
, u > 0
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and all parameters are positive values. A graphical comparison of estimated
densities with histograms can be found in Figure 2.2. We can see that the log-
normal distribution for material damage is very similar to the histogram, while
the Weibull distribution for bodily injuries is slightly different. It can be seen
that the histogram for bodily injuries is almost flat from 300 to 700 days and
a similar flatness can be observed in the original data before transformation as
well. This suggests that more complex model might be needed for bodily injuries
delays, but for simplicity we will consider Weibull distribution sufficient.

2.2 Occurence Process

In this section we estimate intensity function of the underlying nonhomo-
geneous Poisson process for occurence of claims. The basic idea is inspired by
Antonio and Plat (2014), which is discussed here in more detail. The estimated
delay distributions are considered known and fixed and for intensity function λ(t)
we use a piecewise constant specification. More specifically, we choose division

0 = d0 < d1 < . . . < dm = τ,

where τ is a time difference (in days) between December 31, 2015 and Decem-
ber 31, 1999 and m is a positive integer number. We assume that the exposure
function w(t) is also a piecewise constant function and it has the same division
as λ(t). Note that such assumption is not very restrictive in case of earned expo-
sure. For t ∈ (dj−1, dj] the intensity function λ(t) is equal to λj and the exposure
function w(t) is equal to wj for all j = 1, . . . ,m.

To derive an estimate of λ(t), we recall equation 1.11 and realize that its
likelihood is

e−ΛR(∞)

n∏
i=1

λR(ti) = e−ΛR(∞)

n∏
i=1

λ(ti)w(ti)FU |ti(τ − ti),

where n is number of observations and since the exposure function and the delay
distribution are considered known, they can be excluded from the product above.
Observed number of reported claims in the jth interval is

N(j) =
n∑
i=1

I
(
ti ∈ (dj−1, dj]

)
for j = 1, . . . ,m and with this notation we rewrite the likelihood to

m∏
j=1

λ
N(j)
j exp

{
−λjwj

∫ dj

dj−1

FU |t(τ − t) dt

}
.

It is straightforward that the logarithmic likelihood is

m∑
j=1

N(j) log(λj)−
m∑
j=1

λjwj

∫ dj

dj−1

FU |t(τ − t) dt (2.3)
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Figure 2.3: Estimated intensity of occurence processes for material damage and
bodily injuries

and by setting the first derivatives to zero we get a formula for maximum likeli-
hood estimates

λ̂j =
N(j)

wj
∫ dj
dj−1

FU |t(τ − t) dt

for all j = 1, . . . ,m.
Note that in this set-up we actually do not need the exposure function. It is

because we can rewrite the estimate (using also transformation in equation 2.1)
to

λ̂jwj =
N(j)∫ dj

dj−1
FU0(

τ−t
bt

) dt
(2.4)

and because only product λ̂jwj is needed in all calculations, the exposure rate
can be omitted and we do not need to evaluate it. We can also consider the
overall intensity function as λ(t) without w(t) in the first place and with the
piecewise constant specification the same estimate, as on the right-hand side of
equation 2.4 is derived as maximum likelihood estimator. In any case, the right-
hand side of equation 2.4 can be interpreted as intensity function of the whole
selected part of line of business. However, with a parametric form of λ(t) the
exposure function would matter and it would have an influence on estimation of
the intensity function.

To obtain the estimate of λ(t) we must choose a width of the division and as
it could be expected, it will somehow affect the results. It is not quite clear at
first whether months, quarters or years should be chosen and how large will be
the influence of the choice. However, we realize that with maximum likelihood
estimates we can again compare logarithmic likelihoods in equation 2.3 and choose
our estimate accordingly. Based on the comparison we choose month intervals in
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Figure 2.4: Estimated intensity of IBNR claims occurence for material damage
and bodily injuries in years 2014 and 2015

both cases for material damage and for bodily injuries. We work here with 37 502
observations for material damage and 5 450 observations for bodily injuries.

Figure 2.3 shows estimated piecewise constant intensities of occurence pro-
cesses. The intensities show that there might be a seasonal effect and we observe
a slight decrease in last few years. Interpretation of the piecewise constant inten-
sity is quite straightforward, for example in December 2015 approximately 5.85
material damage claims are expected to occur per day and similarly in December
2015 approximately 1.15 bodily injuries claims are expected to occur per day. Or
more precisely, number of claims occured in one day has Poisson distribution with
parameter 5.85 in case of material damage in the last month of 2015 and 1.15
in case of bodily injuries in 2015. Figure 2.4 shows estimated intensity of IBNR
claims occurence in the last two years. We remind that equation 1.7 implies that
the intensity also determines density, which will be later used for generating times
of occurence for IBNR claims, it only needs to be properly scaled.

Integration of the estimated intensities gives us an expected number of IBNR
claims, we only need to evaluate∫ τ

0

λIBNR(t) dt,

where τ is number of days between December 31, 2015 and December 31, 1999.
Using function integrate() in R we get approximately 219 expected IBNR claims
for material damage and 106 for bodily injuries. Influence of different choices of
division does not seem to be very large when we compare expected number of
IBNR claims for different divisions. We can also compare these numbers with
chain ladder method, so that we can somehow assess the estimated quantities.
Completed triangles of numbers of material damage and bodily injuries claims are
in Table 2.5 and Table 2.6. We used a shorter development history, because with
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0 1 2 3 4 5 6 7
2006 2 477.0 3 033.0 3 056.0 3 064.0 3 065.0 3 065.0 3 065.0 3 065.0
2007 2 512.0 3 018.0 3 046.0 3 049.0 3 055.0 3 055.0 3 055.0 3 055.0
2008 2 723.0 3 195.0 3 232.0 3 238.0 3 239.0 3 239.0 3 239.0 3 239.0
2009 2 135.0 2 525.0 2 554.0 2 561.0 2 562.0 2 562.0 2 562.0 2 562.0
2010 2 034.0 2 404.0 2 460.0 2 474.0 2 474.0 2 474.0 2 474.0 2 474.0
2011 1 767.0 2 110.0 2 148.0 2 159.0 2 160.0 2 160.0 2 160.0 2 160.0
2012 1 791.0 2 110.0 2 136.0 2 139.0 2 140.3 2 140.3 2 140.3 2 140.3
2013 1 803.0 2 076.0 2 093.0 2 098.8 2 100.1 2 100.1 2 100.1 2 100.1
2014 1 716.0 1 962.0 1 986.3 1 991.9 1 993.1 1 993.1 1 993.1 1 993.1
2015 1 646.0 1 947.7 1 971.9 1 977.4 1 978.6 1 978.6 1 978.6 1 978.6

Table 2.5: Completed cumulative development triangle for numbers of reported
material damage claims (last two columns omitted)

0 1 2 3 4 5 6 7 8 9
2006 238.0 373.0 410.0 415.0 415.0 415.0 415.0 415.0 415.0 415.0
2007 248.0 410.0 463.0 470.0 473.0 473.0 473.0 473.0 473.0 473.0
2008 264.0 388.0 438.0 444.0 448.0 448.0 448.0 448.0 448.0 448.0
2009 191.0 311.0 341.0 351.0 352.0 352.0 352.0 352.0 352.0 352.0
2010 183.0 287.0 309.0 312.0 314.0 315.0 315.0 315.0 315.0 315.0
2011 221.0 312.0 334.0 335.0 337.0 337.2 337.2 337.2 337.2 337.2
2012 240.0 321.0 339.0 345.0 346.8 347.0 347.0 347.0 347.0 347.0
2013 230.0 305.0 312.0 316.5 318.1 318.3 318.3 318.3 318.3 318.3
2014 223.0 288.0 313.4 317.9 319.6 319.7 319.7 319.7 319.7 319.7
2015 191.0 280.7 305.5 309.9 311.5 311.6 311.6 311.6 311.6 311.6

Table 2.6: Completed cumulative development triangle for numbers of reported
bodily injuries claims

the whole history there were visible trends in residuals. We can easily calculate
from these tables that chain ladder results in approximately 372 material damage
IBNR claims and approximately 161 bodily injuries IBNR claims. It is possible
that expected numbers based on claim-by-claim method underestimate number
of IBNR claims, but only overall results of simulations will show whether this
detail is important or not.
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2.3 Times Between Events

We already briefly discussed this problem in subsection 1.2.2 and in this sec-
tion we derive likelihoods for continuous distribution of the observed times be-
tween events v1, v2, . . . We must realize first that in presence of only one event we
observe pairs (V1, δ1), (V2, δ2), . . ., where δ has meaning of a failure indicator, i.e.
δi = I(Vi ≤ Wi), where Wi is a time of censoring. Likelihood (or more precisely
sublikelihood, because times of censoring are not part of it) can be written (under
some usual assumptions) as ∏

i:δi=0

S(vi)
∏
i:δi=1

f(vi),

where f is a continuous density function and S is a survival function, which can
be calculated as

S(v) =

∫ ∞
v

f(t) dt, v ≥ 0.

In presence of two events we assume that the first type has a density f1 and
the second type has a density f2. Because we assume independent increments,
the overall survival function is simply equal to

S(v) = S1(v)S2(v), (2.5)

which is implied by equations 1.3 and 1.4. Finally, δi is a generalized failure
indicator, which can be written as

δi =


0, if Vi > Wi,

1, if Vi ≤ Wi and the event is of type 1,

2, if Vi ≤ Wi and the event is of type 2,

i.e. zero still means censoring and a positive value refers to the type of event.
This leads us to likelihood

L =
∏
i:δi=0

S(vi)
∏
j:δj=1

f1(vj)
∏
k:δk=2

f2(vk) = L1 L2,

where
Lm =

∏
i:δi=0

Sm(vi)
∏
j:δj=k

fm(vj), m = 1, 2

and it means that we can estimate the distributions separately, but censored
times are contained in both likelihoods.

Before we progress further, the types of events should be discussed in more
detail. We already mentioned that with only two types of events we simplified
the situation. Ideally, we would allow settlement without a payment, however, it
seems that our data do not contain reliable information about times of settlement.
We tried to extract them from the data as the last change of RBNS reserve, but
the problem is that many of these changes seem to have an accounting nature.
With this suspicion we choose to work only with the reliable part, which are dates
of payments. Of course, there are cases where claims are closed some time after
the last payment. We can view such a situation in a way that these claims are
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Distribution Type 1 log likelihood Type 2 log likelihood
Lognormal -50 088.35 -100 585.30

MD Weibull -52 511.50 -102 384.80
Exponential -52 732.62 -102 536.40
Lognormal -30 112.09 -11 532.36

BI Weibull -30 963.73 7 969.18
Exponential -31 153.56 -11 634.96

Table 2.7: Logarithmic likelihoods for times between payments distributions

Parameter Estimate Standard deviation
Material damage - event 1 µ 3.90580 0.01517
(lognormal distribution) σ 1.71824 0.01196

Material damage - event 2 µ 4.59656 0.01010
(lognormal distribution) σ 1.46572 0.00756
Bodily injuries - event 1 µ 4.68635 0.02104
(lognormal distribution) σ 1.66392 0.01640
Bodily injuries - event 2 µ 5.57852 0.04011
(lognormal distribution) σ 1.86370 0.03345

Table 2.8: Estimated parameters of times between events

not considered closed at first and another payments are still expected. However,
later the claim is closed without any other payment and therefore the last event
is updated to type 2 instead of type 1. We note that there might be a problem
with more recent claims, where another payment is still expected, but it will be
eventually closed later without any other payment.

We should also describe preparation of data used for estimation. Claims with
a positive RBNS reserve as at December 31, 2015 are considered as claims where
another payment is still expected, therefore their last observed payment is con-
sidered as type 1. Other claims with zero RBNS reserve as at December 31,
2015 have some payments of type 1 and the last payment is of type 2. For each
claim we calculate time differences in days between payments (or time between
the first payment and the notification) while distinquishing type 1 and 2. Finally,
observed times of type 0 are calculated as time differences in days between De-
cember 31, 2015 and the last observed payment (or the notification, if there is
no payment yet). We gather times of type 0 from both files containing payments
and RBNS reserve development.

We have an important note regarding data for estimation: before 2013 pay-
ments were handled in a different way: each claim settlement was delegated to
a member insurance company and date of payment was recorded as date of re-
fundment to the company, while payment from the company had been sent earlier.
It implies that development of times between events might not be the same at all
times. Because of that, we consider a shorter history for estimation, specifically
data concerning claims incurred after December 31, 2007. In case of material
damage it would be possible to work with even shorter history, but it might not
be a reasonable approach to exclude too many data. All in all, we have 26 609
observations for material damage and 7 464 observations for bodily injuries.

Based on values of logarithmic likelihoods (see Table 2.7), we choose lognor-
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1st Qu. Median Mean 3rd Qu. SD
Material damage 12.4 23.1 39.1 44.9 57.7
Bodily injuries 5.7 17.3 67.5 58.6 169.5

Table 2.9: Descriptive statistics of payments (in thousand CZK)

mal distributions for material damage. For bodily injuries we choose lognormal
distributions as well, but we should note that Weibull distributions have sig-
nificantly larger maximized likelihood when we sum it for Type 1 and Type 2.
However, Table 2.7 reveals that logarithmic likelihood for Type 2 is a little bit
suspicious. Moreover, a preparation of simulation routine reveals that this choice
would be inappropriate, because a comparison of the estimated Weibull hazard
functions leads us to conclusion that number of future payments would be very
likely overestimated. From these reasons we omit Weibull distribution from our
choice for bodily injuries.

Table 2.8 summarizes the estimated distributions and their estimated param-
eters. We can mention expected values for the estimated distributions: 259 and
233 days for material damage (type 1 and 2 respectively); 323 and 1 633 days
for bodily injuries (type 1 and 2 respectively). Later we will need product of
cumulative density functions to evaluate probabilities that an event occurs before
some selected time, which will be used for sampling times between events.

2.4 Payments

We have few important remarks to payments. Firstly, we do not adjust pay-
ments for inflation and take them as they are. Secondly, all payments are positive,
i.e. our data do not contain information about salvages and subrogiations. Fi-
nally, we noticed the data contain repetitive payments in amounts 500, 1 000,
2 500 and 2 783 CZK, which can be considered as zeroth payments, which are
not used anymore. Such payments are actually a remainder of a revoked rule
regarding payments, therefore we exclude the mentioned amounts from the data.
Table 2.9 contains few descriptive statistics of observed payments and Table 2.11
summarizes estimated distributions for payments.

Because we treat payments as iid random variables, it is relatively easy to
estimate this part. We compare exponential, Weibull, Burr and lognormal distri-
bution and based on their maximized likelihoods the most suitable distribution
is lognormal in both cases (see Table 2.10). The estimates are based on 41 465
observations for material damage and 11 603 observations for bodily injuries. It
is relatively easy to calculate that expected values are 39 021 CZK for material
damage and 72 079 CZK for bodily injuries.

We can take a look at Figure 2.5, where is a comparison of theoretical and
sample quantiles for logarithms of payments. We observe that the left tail of
material damage does not fit our data well, however, this tail is not as important
as the right tail. A graphical comparison of estimated densities with histograms
can be found in Figure 2.6. We can see that lognormal distribution fits bodily
injuries very nicely. Table 2.10 contains also results of performed chi-squared
tests in the same way as it was done for delays distributions and the same critique
applies here.

24



Distribution Log likelihood Test statistic DF Critical value
Lognormal -476 464.60 694.70 47 64.00

MD Weibull -479 853.30 5 830.61 47 64.00
Exponential -479 858.00 5 872.04 48 65.17

Burr -554 627.80 NA NA NA
Lognormal -136 153.70 126.89 47 64.00

BI Weibull -137 003.10 1 362.00 47 64.00
Exponential -140 619.40 7 657.25 48 65.17

Burr -151 911.40 NA NA NA

Table 2.10: Logarithmic likelihoods and results of (chi-squared) goodness-of-fit
tests for payments distribution

Parameter Estimate Standard deviation
Material damage µ 10.06658 0.00494

(lognormal distribution) σ 1.00526 0.00349
Bodily injuries µ 9.80910 0.01540

(lognormal distribution) σ 1.65917 0.01089

Table 2.11: Estimated parameters of payments

This section concludes the practical part, because all we needed has been
estimated and we can finally simulate future developments in the next chapter to
obtain results.
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Figure 2.5: Normal Q-Q plots for logarithms of payments
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Figure 2.6: Histograms of logarithms of payments and estimated normal density
functions
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3. Simulation

This chapter utilizes the previous chapters. We describe our simulation al-
gorithm in more detail (especially parts that were not mentioned yet), then we
review results and finally compare it with chain ladder method and bootstrap.
The simulation algorithm is inspired by Antonio and Plat (2014) with necessary
adjustments implemented.

3.1 Simulation Algorithm

At the beginning we prepare a data frame containing RBNS claims, in our set
up it is sufficient to keep only information about dates of last payment for each
claim. This part can be done only once, other parts are repeated in each simula-
tion and are described in the following subsections. However, the file containing
payments contains only part of RBNS claims, because there are still some RBNS
claims in the other file, where we need to extract claims with positive RBNS
reserve and without any payment yet.

3.1.1 Parameters

In each simulation we sample new parameters for times between events and
new parameters for payments from asymptotic distributions implied by maximum
likelihood theory. Estimated parameters take role of mean values and variance
matrices are obtained as inverse of negative hessian matrices. New parameters
are then sampled with function rmvnorm() from package mvtnorm. We do not
sample new parameters for delay distribution and intensity of occurence process,
because we believe that the impact would be relatively small.

3.1.2 Occurence and Delay of IBNR Claims

We recall equations 1.6 and 1.7, their interpretation and add conclusions from
the section devoted to division of claims. Number of IBNR claims is a random
variable that has Poisson distribution with parameter ΛIBNR(∞) and this number
was already calculated earlier, it is approximately 219 for material damage and
approximately 106 for bodily injuries. Random numbers of IBNR claims can be
easily generated with function rpois() in R.

With given number of IBNR claims, we generate each time of occurence from
a density function

f(t) =
λIBNR(t)

ΛIBNR(∞)
,

which is simply a rescaled intensity function in Figure 2.4. This is a density,
which is not predefined in R, therefore we need to define the generating procedure
by ourselves. We calculate a set of points (x, F (x)), reverse them to (F (x), x) and
we finish definition of quantile function by a simple linear interpolation. Since we
use the linear interpolation, we need to define the quantile function for too low
values. For IBNR claims inccurred three and more years back in the history, we
set their time occurrence to three years back (specifically we set it to τ −3∗365).
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In the current model, this does not affect final estimates of IBNR and RBNS
reserve (it can slightly affect only payments during the future one-year window).

For each IBNR claim we also generate a random delay in notification. We
generate a random number p from uniform distribution between zero and one
and we find u which fulfills

P (Ut ≤ u |Ut > τ − t) = p.

Firstly, we realize that the left-hand side can be rewritten to

FUt(u)− FUt(τ − t)
1− FUt(τ − t)

,

therefore we want to find u which satisfies

FUt(u) = p [1− FUt(τ − t)] + FUt(τ − t). (3.1)

Secondly, we recall equation 2.2 and realize that in case of lognormal distribution
it means that parameter σ is the same and µ changes to µ + t log(b), in case
of Weibull distribution it means that shape parameter α is the same and scale
parameter β changes to btβ. To sum up, we can simply use quantile functions
qlnorm() and qweibull() in R with the corresponding parameters to invert
equation 3.1 and get the delay u.

3.1.3 Times of Next Event

We put IBNR and RBNS claims together, because the next part of simulation
can be easily done for both categories at once. Considering a selected RBNS
claim, the last payment was paid tlast days from December 31, 1999 and there is
a censoring c = τ − tlast. In case of IBNR claims we simply set c = 0. In both
cases, we want a random number from conditional distribution V |V > c. We
recall equation 2.5, which implies that the overall cumulative density function is

F (v) = F1(v)F2(v).

We generate a random number p from uniform distribution between zero and one
and the same argument as in equation 3.1 gives us that we want find v such that

F (v) = p [1− F (c)] + F (c).

We use a similar approach for definition of the quantile function as for occur-
rences of IBNR claims, we only need to define interpolated quantile function for
too low and too large values of p. Too low values of p are not a problem, because
the quantile function changes from values less than one to approximately one.
We believe that the right tail will not cause any problems as well, because large
times of a next payment have already similar probabilities of event’s type (see the
next subsection). This is also supported by a simulation performed with differ-
ent, more precise, but more time consuming method (in diploma thesis with the
same name) - differences are indeed negligible. Furthermore, if a larger precision
is desired, it is sufficient to interpolate the quantile function on more dense grid.
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Figure 3.1: Probabilities of event 1 at various times

3.1.4 Types of Next Event

We recall the last statement of Theorem 1: when an event occured at time v,
the event is of type 1 with probability equal to

p(v) =
λ1(v)

λ1(v) + λ2(v)
,

where λ1, λ2 are hazard functions, which can be interpreted also as intensity
functions. They are calculated (for continuous distributions) as ratio of density
and survival function, i.e.

λm(v) =
fm(v)

Sm(v)
, m = 1, 2.

A possible way to obtain randomly an event with prescribed probability p(v) is
the following: we generate a random number p from uniform distribution between
zero and one and compare it with p(v). If p is less than or equal to p(v), the
next event is of type 1 and we will need to generate another time and type of
next event. Otherwise, the next event is of type 2 and it means there will not be
another payment in future.

Figure 3.1 shows development of the probability in time. It is possible to
calculate that in case of material damage the function is equal to one half at
approximately 53 days, i.e. when a next event takes place after a longer time
than the mentioned 53 days, it has probability of settlement greater than one half.
Probability of settlement for bodily injuries is always smaller than one half, which
corresponds to the observed behavior, where usually several payments precede the
last payment. We can also see that for large value of days the probabilities of
event’s type do not change much.

29



1st Qu. Median Mean 3rd Qu. SD
No. of payments 3 162 3 206 3 207 3 251 65

MD Total liability 122 125 125 128 4
Liability in 2016 48 50 50 51 2
No. of payments 2 890 2 961 2 963 3 034 106

BI Total liability 202 212 214 224 18
Liability in 2016 24 27 28 31 6

Table 3.1: Summary of results from simulation separately for material damage
and bodily injuries (liability values in million CZK)

3.1.5 Payments

Regardless of the type of the last event we generate a payment at time v. This
part is very simple, because we use function rlnorm() in R to generate random
numbers from distribution for payments with the corresponding parameters. If
the last event is of type 1, we generate another time of event, type and payment,
until we get an event of type 2.

3.2 Results

We have few remarks regarding our results. Firstly, we remind that the model
is based on few simplifications, mostly implied by data insufficiencies. There is
still a space for improvement, for instance in connection with payments, where
a more sophisticated model could be used. Times between payments are very
important too and other models for them might be worth to examine. Secondly,
a comparison of 1 000 and 10 0000 simulations suggests that the results are very
similar, but in case of bodily injuries the higher number of simulations is more
appropriate. The reason is that in the second case also few scenarios with large
severity occured, and therefore it captures the underlying risk and uncertainty
better. In case of material damage the smaller number of simulations would
suffice, because results are very comparable.

Table 3.1 summarizes results obtained from our simulations performed in R.
Each simulation starts with random seed set to 22121992, so that both simula-
tions can be repeated with the same result. At the time of finishing the thesis
we received new data about payments for material damage and bodily injuries in
2016, hence we are able to compare our results at least with payments in 2016.
More specifically, we can calculate paid amounts in 2016 for claims that occured
before 2016, which is 29.5 million CZK for material damage and 35.1 million CZK
for bodily injuries. The observed number for bodily injuries is still within esti-
mated 95% confidence interval, while the observed number for material damage
is not. This particular result of individual claims reserving approach for bod-
ily injuries is much more realistic then estimated payments in 2016 from chain
ladder, which are 68.3 million CZK for material damage and 72.4 million CZK
for bodily injuries. The last column of Table 3.1, where SD stands for standard
deviation, shows us that bodily injuries have more volatile results than mate-
rial damage, when we compare ratio of standard deviation and mean (coefficient
of variation), which could be expected a priori, because bodily injuries claims
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Figure 3.2: Simulated numbers of future payments

have more complicated developments than material damage claims. On the other
hand, volatility of material damage seems to be low, considering the magnitude
of the average future liability.

Figure 3.2 shows results of simulations with respect to number of future pay-
ments. We can easily verify that average number of future payments multiplied
by expected value of payments gives us a number very close to average total lia-
bility. This should not be surprising, because our simulation almost follows the
well-known collective risk model, where the total liability L is considered as

L =
N∑
i=1

Pi,

where N is a random number of payments, identically distributed random vari-
ables P1, P2, . . . correspond to payments and all random variables are mutually
independent. It is easy to derive that in the collective model holds

E [L] = E [N ]E [P1] .

The equality is fulfilled almost precisely in our case, even though we have only
estimates of the respective expected values and additionaly some parameters are
generated from their asymptotic distribution in order to include parameter un-
certainty in the model, which slightly violates the assumptions of the collective
model.

Figure 3.3 contains histograms of simulated total liability, the top row cor-
responds to our claim-by-claim model and the bottom row contains results of
bootstrap. We also see a comparison with RBNS reserve, which is particularly
interesting in case of bodily injuries (impliying possibly a negative IBNR reserve).
Average simulated liabilities in amounts of 125.1 million CZK and 213.8 million
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Figure 3.3: Simulated reserve (IBNR + RBNS) based on claim-by-claim data and
bootstrap (red line is RBNS reserve)

CZK can be interpreted as best estimates, but they almost coincide with medians,
so future liability will be larger with probability roughly one half. We note that
99.5% quantile is 135.4 million CZK for material damage and 269.4 million CZK
for bodily injuries.

To sum up, the results for bodily injuries seem to be valid and acceptable,
but the results for material damage raise a red flag. One suspicious thing is
that payments in 2016 do not fit the reality very well, as we already observed.
Nevertheless, this comparison is not available to actuaries, when they calculate
technical provisions. However, the low coefficient of variation is also an indicator
that something might be wrong.

3.3 Comparison with Chain Ladder

We use chain ladder method to see how it performs on our data and for com-
parison with our results. We construct development triangles of paid amounts
divided by years. We do not use the full available history because of the in-
consistency already mentioned in the previous chapter. We omit the first six
calendar years for material damage and the first three years for bodily injuries.
We should exclude even more periods, but there would arise a problem with too
short development history. Paid triangles provide us the following results: 85.7
million CZK for material damage and 152.5 million CZK for bodily injuries, the
estimates refer to IBNR and RBNS reserve together. Completed paid triangles
can be found in Table 3.2 and Table 3.3. Since incurred triangles produce much
lower results, we do not take them into consideration. We note that in case of
material damage the corresponding RBNS reserve (see Figure 3.3) is 56.2 million
CZK and in case of bodily injuries RBNS reserve is 281.9 million CZK, which is
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0 1 2 3 4 5 6 7 8 9
2006 42.0 125.0 136.3 139.6 140.0 140.0 140.2 140.2 140.4 140.5
2007 56.1 123.2 140.2 143.9 144.5 144.7 144.7 144.7 144.7 144.7
2008 62.3 139.9 149.0 151.7 153.0 153.9 154.1 154.1 154.2 154.3
2009 50.7 104.0 109.8 112.2 113.6 113.7 113.7 113.7 113.8 113.8
2010 55.3 97.9 105.7 108.4 108.9 108.9 109.0 109.0 109.1 109.1
2011 47.5 90.5 94.9 97.6 98.1 98.3 98.4 98.4 98.5 98.5
2012 40.1 77.4 82.1 83.2 83.6 83.8 83.9 83.9 83.9 84.0
2013 44.9 78.3 80.9 82.7 83.2 83.4 83.4 83.4 83.5 83.5
2014 55.4 80.9 87.0 89.0 89.5 89.6 89.7 89.7 89.8 89.8
2015 58.4 117.8 126.6 129.5 130.3 130.5 130.6 130.6 130.7 130.8

Table 3.2: Completed cumulative paid triangle (in million CZK) for material
damage

very prudent number when we take into account results of two different methods.
The above mentioned estimates of claims reserve are, however, only point

estimates and it is much better to compare two distributions. Table 3.4 con-
tains results of bootstrap applied on paid triangles in R calculated with function
BootChainLadder() from package ChainLadder. We set random seed in both
cases to 20121992, number of replicates to ten thousand and we choose gamma
process distribution. Figure 3.3 depicts all simulated results by bootstrap in
histograms and compares them with our claim-by-claim model. We can easily
obtain results with a larger number of replicates, but we choose the same num-
ber as in our simulation in order to obtain comparable histograms. On the other
hand, mean value and standard deviation do not change drastically with different
number of replicates, hence we consider the chosen number of replicates sufficient.

We observe that chain ladder and bootstrap provide lower results, but the ap-
proach based on individual claims provides much lower standard deviation. This
might be a consequence of using more information in the procedure of estimation,
although the standard deviation for material damage is suspicious. We note that
in case of chain ladder we were able to discard less older data than in case of
individual claims reserving method. The corresponding 99.5% quantiles obtained
by bootstrap are 134.3 million CZK for material damage and 260.7 million CZK
for bodily injuries. It means that in this case estimates based on claim-by-claim
data are placed in the upper tail of chain ladder estimates and are more prudent.

33



0 1 2 3 4 5 6 7 8 9 10 11
2003 1.5 16.5 37.5 47.9 52.3 53.1 53.5 53.6 53.7 53.8 53.9 54.0
2004 3.6 28.2 44.3 53.5 57.1 58.0 58.9 59.0 59.1 59.2 59.2 59.2
2005 7.0 37.3 50.7 59.6 62.3 63.8 65.0 65.7 65.8 69.5 69.5 69.6
2006 6.2 33.3 53.3 63.6 65.6 66.6 67.0 67.1 67.5 67.6 67.7 67.7
2007 8.3 41.8 64.2 70.8 73.8 74.3 74.4 74.9 74.9 76.1 76.1 76.2
2008 11.4 47.8 63.8 74.8 84.2 86.0 86.6 87.7 88.0 89.4 89.4 89.5
2009 9.1 34.4 51.6 57.3 61.2 61.8 62.6 63.0 63.2 64.2 64.2 64.3
2010 7.2 28.5 44.0 51.9 53.6 53.8 54.3 54.7 54.8 55.7 55.7 55.8
2011 8.1 29.9 38.0 40.3 40.7 41.3 41.7 41.9 42.0 42.7 42.7 42.8
2012 13.3 36.4 46.3 48.4 51.3 52.0 52.5 52.8 53.0 53.8 53.9 53.9
2013 15.4 32.8 38.4 44.2 46.9 47.6 48.0 48.3 48.4 49.2 49.2 49.3
2014 16.2 46.6 67.6 77.8 82.4 83.6 84.4 84.9 85.2 86.5 86.6 86.6
2015 13.8 53.4 77.4 89.1 94.4 95.8 96.7 97.3 97.5 99.1 99.2 99.2

Table 3.3: Completed cumulative paid triangle (in million CZK) for bodily in-
juries (with last column omitted)

1st Qu. Median Mean 3rd Qu. SD
Material damage 75 85 86 96 16
Bodily injuries 131 151 153 173 33

Table 3.4: Summary of results from bootstrap separately for material damage
and bodily injuries (values in million CZK)
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Conclusion

Objective of the thesis was to summarize theory regarding loss reserving for
individual claim-by-claim data, apply it on real data and perform a simulation.
Each part is described in its own chapter. Chapter 1 describes the necessary
theory; we partially followed theory from the literature, but we derived every-
thing more formally in terms of probability densities. Chapter 2 contains our
application on real data from the Czech market. Finally, Chapter 3 presents our
simulation algorithm, results and comparison with chain ladder and bootstrap.

Although the final model might appear too complex, it has a nice advantage
of flexibility, which can be incorporated in the model. For example, we noticed
that delays contain a trend, which we estimated and then we took it into account
in later estimations. Another example of flexibility is choice of data for estima-
tion: we realized that times of payments before 2013 were recorded differently,
so we restricted the disruptive effect of the older data. We could not restrict it
completely, but we were able to discard more older data than in case of chain
ladder, where we were limited by not fully developed triangle.

We partially included a parameter uncertainty in the model, where parameters
of times between events and parameters of payments are sampled from asymptotic
normal distribution implied by maximum likelihood theory. We simplified the
situation in a way that delay distribution and intensity of occurence process are
treated as given, because we believe that their influence is rather small.

The model is based on few simplifications, so there is still a space for improve-
ment. One simplification concerns intensity function of occurence process, where
we used a piecewise constant specification. This approach allowed us to omit ex-
posure, which is not included in our data. However, when exposure is available,
a parametric approach might slightly improve the model. Another simplification
was incorporated with respect to payments, where we assumed that they are
independent and identically distributed. An improvement regarding simulation
routine might concern an optimization of the procedure, because 10 000 simula-
tions last more than three hours each (and this increases with number of open
claims and expected IBNR claims). Finally, we could sample parameters from
asymptotic distribution even for delay and intensity of occurence process, which
would lead to full inclusion of parameter uncertainty.

All in all, we believe that individual claims reserving method is very promis-
ing and worth of a further research. This conclusion is based on our comparison
of results with chain ladder and bootstrap. Another comparison with payments
in 2016 suggests that in our case claim-by-claim data provided a more realis-
tic view on payments in the next year than chain ladder. Although individual
claims reserving method is more complex than other methods, we believe it is an
interesting alternative to methods based on aggregate data.
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Appendix

Material damage - highlights of the source code

library(MASS)

library(mvtnorm)

library(ggplot2)

library(gridExtra)

# Load data

plneni <- read.csv("plneni.csv", header = TRUE, sep = ";")

plneni$CASTKACZK <- as.numeric(plneni$CASTKACZK)

plneni$DATUMCASSU <- as.Date(plneni$DATUMCASSU)

plneni$DATUMEVIDENCE <- as.Date(plneni$DATUMEVIDENCE)

plneni$den.platby <- as.Date(plneni$den.platby)

sapply(plneni, class)

# create subset of MD

md <- plneni[plneni$DRUH_PLNENI == "vecna skoda", ]

reserve <- read.csv("rezerva.csv", header = TRUE, sep = ";")

reserve$zmena.v.Kc <- as.numeric(reserve$zmena.v.Kc)

reserve$DATUMCASSU <- as.Date(reserve$DATUMCASSU)

reserve$DATUMEVIDENCE <- as.Date(reserve$DATUMEVIDENCE)

reserve$den.zmeny <- as.Date(reserve$den.zmeny)

sapply(reserve, class)

# create subset of MD

mdr <- reserve[reserve$DRUH_PLNENI == "vecna skoda", ]

# Order data

# Aggregate same IDs and sort them with respect to days of payment

md <- md[order(md$IDSKODNIUDALOST,md$den.platby), ]

mdr <- mdr[order(mdr$IDSKODNIUDALOST, mdr$den.zmeny), ]

md$order <- 1

mdr$order <- 1

# Calculate order of payments

for (i in 2:nrow(md)){

if (md$IDSKODNIUDALOST[i]==md$IDSKODNIUDALOST[i-1]){

md$order[i] <- md$order[i-1] + 1

}

}

for (i in 2:nrow(mdr)){

if (mdr$IDSKODNIUDALOST[i]==mdr$IDSKODNIUDALOST[i-1]){

mdr$order[i] <- mdr$order[i-1] + 1

}

}

# Remove 9 claims where notification is before occurence

exclude <- md$IDSKODNIUDALOST[md$DATUMCASSU>md$DATUMEVIDENCE]

md <- md[!md$IDSKODNIUDALOST %in% exclude, ]

# Remove 32 claims where notification is before occurence

exclude <- mdr$IDSKODNIUDALOST[mdr$DATUMCASSU>mdr$DATUMEVIDENCE]
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mdr <- mdr[!mdr$IDSKODNIUDALOST %in% exclude, ]

# Remove 1 claim where payment is before notification

exclude <- md$IDSKODNIUDALOST[md$DATUMEVIDENCE>md$den.platby]

md <- md[!md$IDSKODNIUDALOST %in% exclude, ]

# Remove 2 claims where change of reserve is before notification

exclude <- mdr$IDSKODNIUDALOST[mdr$DATUMEVIDENCE>mdr$den.zmeny]

mdr <- mdr[!mdr$IDSKODNIUDALOST %in% exclude, ]

md[md$CASTKACZK<=0, ] # There are no rows with negative payments

# Intersection of claims

md$include <- 0

for (i in 1:dim(md)[1]){

if (nrow(mdr[mdr$IDSKODNIUDALOST==md$IDSKODNIUDALOST[i], ])>0){

md$include[i] <- 1

}

}

md[md$include==0, ] # One claim not included in mdr

md <- md[md$include==1, ] # We exclude it

mdr$include <- 0

for (i in 1:dim(mdr)[1]){

if (nrow(md[md$IDSKODNIUDALOST==mdr$IDSKODNIUDALOST[i], ])>0){

mdr$include[i] <- 1

}

}

# Add information about current value of RBNS reserve

md$reserve <- 0

for (i in 1:nrow(md)){

md$reserve[i] <- sum(mdr$zmena.v.Kc[mdr$IDSKODNIUDALOST

==md$IDSKODNIUDALOST[i]])

}

# few rows have RBNS reserve -2, -1 or 1, we change it to zero

md$reserve[md$reserve<=1] <- 0

mdr$reserve <- 0

for (i in 1:nrow(mdr)){

mdr$reserve[i] <- sum(mdr$zmena.v.Kc[

mdr$IDSKODNIUDALOST==mdr$IDSKODNIUDALOST[i]])

}

### Distribution of delay in notification

md$delay <- as.numeric(md$DATUMEVIDENCE - md$DATUMCASSU)

mdr$delay <- as.numeric(mdr$DATUMEVIDENCE - mdr$DATUMCASSU)

## Estimation of acceleration in notification

date0 <- as.Date("1999-12-31")

divisionyearly <- seq.Date(from=date0, by="years", length=16*1+1)

lengths2 <- rep(0, length(divisionyearly))

for (i in 2:length(divisionyearly)) {

lengths2[i] <- as.numeric(divisionyearly[i]-divisionyearly[i-1])

} # lengths contain lengths of respective years
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divisionyearly2 <- cumsum(lengths2)

divisionyearly2

# present moment in days

tau <- as.numeric(divisionyearly[length(divisionyearly)] - date0)

# Create subset of delays for different claims

delaymd <- mdr[mdr$order==1, ]

summary(delaymd$delay)

sd(delaymd$delay)

delaymd$t <- as.numeric(as.Date(delaymd$DATUMCASSU) - date0)

delaymd <- delaymd[, c("delay", "t")] # Reduce columns

# Quantify effect of time occurence, exclude last year

lmmd <- lm(delay~1+t, data=delaymd[delaymd$t<=divisionyearly2[16],])

# Exponential trend

fexp <- function(a, b, t) {

a*b^t

}

fitmd1 <- nls(delay ~ fexp(a, b, t),

data=delaymd[delaymd$t<=divisionyearly2[16], ],

start=c(a=300, b=1))

cmd1 <- coef(fitmd1)

x <- delaymd[delaymd$t<=divisionyearly2[16], ]

suma1 <- sum((x$delay - fexp(cmd1[1], cmd1[2], x$t))^2)

suma2 <- sum((x$delay - mean(x$delay))^2)

1-suma1/suma2 # R-squared

bmd <- cmd1[2] # Exponential trend is more suitable

# Transform observed values

delaymd$delay2 <- delaymd$delay / bmd^delaymd$t

chisquaretest <- function(observations, quantiles, par) {

counts <- 1:(length(quantiles)-1)

for (i in 1:length(counts)) {

counts[i] <- length(observations[observations>=quantiles[i]

& observations<quantiles[i+1]])

}

expected <- length(observations) / length(counts)

chisqsum <- sum((counts-expected)^2 / expected)

df <- length(counts) - par - 1

message("p-value: ", 1 - pchisq(chisqsum, df))

message("statistic: ", chisqsum)

message("critical value: ", qchisq(0.95, df))

print(counts)

message("expected value in each interval: ", expected)

}

## Exponential distribution

fitexpmd <- fitdistr(delaymd$delay2[delaymd$delay2>0], "exponential")

x <- delaymd$delay2

breaks <- qexp(seq(from=0, to=100, by=2)/100,

rate=fitexpmd$estimate[1])

chisquaretest(x, breaks, 1)
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## Gamma distribution

fitgammamd <- fitdistr(delaymd$delay2[delaymd$delay2>0],

"gamma", start=list(shape=1, rate=1))

x <- delaymd$delay2

breaks <- qgamma(seq(from=0, to=100, by=2)/100,

shape=fitgammamd$estimate[1],

rate=fitgammamd$estimate[2])

chisquaretest(x, breaks, 2)

## Weibull distribution

fitweibullmd <- fitdistr(x=delaymd$delay2[delaymd$delay2>0],

densfun="weibull")

x <- delaymd$delay2

breaks <- qweibull(seq(from=0, to=100, by=2)/100,

shape=fitweibullmd$estimate[1],

scale=fitweibullmd$estimate[2])

chisquaretest(x, breaks, 2)

## Burr distribution

burrdensity <- function (x, c, k) {

c * k * x^(c-1) / (1 + x^c)^(k+1)

}

fitburrmd <- fitdistr(x=delaymd$delay2[delaymd$delay2>0],

densfun=burrdensity, start=list(c=1, k=1),

lower=list(c=0, k=0))

## Lognormal distribution

fitlognormalmd <- fitdistr(x=delaymd$delay2[delaymd$delay2>0],

densfun="lognormal")

meanlmd <- fitlognormalmd$estimate[[1]]

sdlmd <- fitlognormalmd$estimate[[2]]

x <- delaymd$delay2

breaks <- qlnorm(seq(from=0, to=100, by=2)/100,

meanlog=meanlmd, sdlog=sdlmd)

chisquaretest(x, breaks, 2)

### Piecewise intensity function of the occurence process

division <- seq.Date(from=date0, by="months", length=16*12+1)

# Numbers of reported claims with respect to the given division

countmd <- rep(0, length(division) - 1)

for (i in 1:(length(division) - 1)) {

countmd[i] <- nrow(mdr[mdr$order==1 &

mdr$DATUMCASSU>division[i] &

mdr$DATUMCASSU<=division[i+1], ])

}

lengths <- rep(0, length(division))

for (i in 2:length(division)) {

lengths[i] <- as.numeric(division[i] - division[i-1])

} # lengths of respective intervals and zero in beginning

division2 <- cumsum(lengths)

integrandmd <- function(t) {

plnorm((tau - t) / bmd^t, meanlog=meanlmd, sdlog=sdlmd)

}
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integratedcdf <- rep(0, length(division2) - 1)

for (i in 1:(length(division2) - 1)) {

integratedcdf[i] <- integrate(integrandmd, lower=division2[i],

upper=division2[i+1])$value

}

# Estimate of intensity of the occurence process

lambdahatmd <- countmd / integratedcdf

intensityRBNSmd <- function(t) {

lambdahatmd2(t)*integrandmd(t)

}

intensityIBNRmd <- function(t) {

lambdahatmd2(t)*(1 - integrandmd(t))

}

### Payments

subsetmd <- md$CASTKACZK[md$CASTKACZK!=500 &

md$CASTKACZK!=1000 &

md$CASTKACZK!=2500 &

md$CASTKACZK!=2783]

nrow(md) - length(subsetmd) ### 5 646 excluded observations

fitpmd1 <- fitdistr(subsetmd, densfun="exponential")

breaks <- qexp(seq(from=0, to=100, by=2)/100,

rate=fitpmd1$estimate[1])

chisquaretest(subsetmd, breaks, 1)

fitpmd2 <- fitdistr(subsetmd, densfun="weibull")

breaks <- qweibull(seq(from=0, to=100, by=2)/100,

shape=fitpmd2$estimate[1],

scale=fitpmd2$estimate[2])

chisquaretest(subsetmd, breaks, 2)

fitpmd3 <- fitdistr(subsetmd, densfun="lognormal")

breaks <- qlnorm(seq(from=0, to=100, by=2)/100,

meanlog=fitpmd3$estimate[1],

sdlog=fitpmd3$estimate[2])

chisquaretest(subsetmd, breaks, 2)

fitpmd4 <- fitdistr(subsetmd , densfun=burrdensity,

start=list(c=1, k=1), lower=list(c=0, k=0))

### Days between events

md$timeDif <- as.numeric(md$den.platby - md$DATUMEVIDENCE)

for (i in 2:nrow(md)) {

if (md$order[i] > 1) {

md$timeDif[i]<-as.numeric(md$den.platby[i]-md$den.platby[i-1])

}

}

md$event <- 1 # One is for payments

for (i in 2:nrow(md)) {

if (md$IDSKODNIUDALOST[i-1] != md$IDSKODNIUDALOST[i] &

md$reserve[i-1] == 0) {

md$event[i-1] <- 2 # Two means the last payment
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}

}

if (md$reserve[nrow(md)] == 0) {

md$event[nrow(md)] <- 2

}

md$survival <- -1

for (i in 2:nrow(md)) {

if (md$IDSKODNIUDALOST[i-1]!=md$IDSKODNIUDALOST[i] &

md$reserve[i-1] > 0) {

md$survival[i-1] <- as.numeric(division[length(division)] -

md$den.platby[i-1])

}

}

if (md$reserve[nrow(md)]>0) {

md$survival[nrow(md)] <- as.numeric(division[length(division)] -

md$den.platby[nrow(md)])

}

mdr$survival <- -1

for (i in 1:nrow(mdr)) {

if (mdr$include[i]==0 & mdr$reserve[i]>0 & mdr$order[i]==1) {

mdr$survival[i] <- as.numeric(division[length(division)] -

mdr$DATUMEVIDENCE[i])

}

}

helpmd <- md[md$survival!=-1 & md$DATUMCASSU>divisionyearly[9],

c("event", "survival")]

helpmd <- rbind(helpmd, mdr[mdr$survival!=-1 &

mdr$DATUMCASSU>divisionyearly[9],

c("event", "survival")])

helpmd$event <- 0

colnames(helpmd) <- c("event", "timeDif")

helpmd <- rbind(helpmd, md[md$DATUMCASSU>divisionyearly[9],

c("event", "timeDif")])

## Lognormal distribution

NLLlognormal <- function(par, x){

m <- par[[1]]

s <- par[[2]]

-sum(log(1-plnorm(x$timeDif[x$event==0], meanlog=m, sdlog=s)))-

sum(log(dlnorm(x$timeDif[x$event>0], meanlog=m, sdlog=s)))

}

fitlognormaltimesmd1 <- optim(par=c(2, 2), fn=NLLlognormal,

x=helpmd[helpmd$event!=2, ],

hessian=TRUE)

fitlognormaltimesmd2 <- optim(par=c(2, 2), fn=NLLlognormal,

x=helpmd[helpmd$event!=1, ],

hessian=TRUE)

### Simulation

## Define Generation of time of the next payment and type of the event

varMatrix1 <- solve(fitlognormaltimesmd1$hessian)

# inverse of negative hessian
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varMatrix2 <- solve(fitlognormaltimesmd2$hessian)

# inverse of negative hessian

parmd1 <- fitlognormaltimesmd1$par

parmd2 <- fitlognormaltimesmd2$par

cdf2 <- function(x, help) {

plnorm(x, meanlog=parmd1[1], sdlog=parmd1[2]) *

plnorm(x, meanlog=parmd2[1], sdlog=parmd2[2]) - help

}

x <- seq(from=1, to=5000, length=1000)

qfapprox2 <- approxfun(cdf2(x, 0), x, method = "linear")

nextEventTime2 <- function(censoring) {

randomNumber <- runif(n=1, min=0.000001, max=0.995)

pnew <- randomNumber * (1 - cdf2(censoring, 0)) + cdf2(censoring, 0)

if (pnew < 0.000001) {

pnew <- 0.000001

}

else if (pnew > 0.995) {

pnew <- 0.995

}

qfapprox2(pnew)

}

hazardRatemd1 <- function(t) {

dlnorm(t, meanlog=parmd1[1], sdlog=parmd1[2]) /

(1 - plnorm(t, meanlog=parmd1[1], sdlog=parmd1[2]))

}

hazardRatemd2 <- function(t) {

dlnorm(t, meanlog=parmd2[1], sdlog=parmd2[2]) /

(1 - plnorm(t, meanlog=parmd2[1], sdlog=parmd2[2]))

}

nextEventType <- function(t) {

p <- hazardRatemd1(t)/(hazardRatemd1(t)+hazardRatemd2(t))

randomNumber <- runif(n=1, min=0, max=1)

if (randomNumber <= p) {

1

}

else {

2

}

}

## Define generation of payments

varMatrix3 <- fitpmd3$vcov # variance matrix

par3 <- fitpmd3$estimate

nextPayment <- function() {

rlnorm(n=1, meanlog=par3[1], sdlog=par3[2])

}

## Prepare RBNS claims

c <- integrate(f=intensityIBNRmd, lower=0, upper=tau,

subdivisions=2000)$value ### Lambda(infinity)

cdf1 <- function(x, help) {

integrate(f=intensityIBNRmd, lower=0, upper=x,
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subdivisions=2000)$value / c - help

}

x <- seq(from = tau - 3*365, to = tau, length = 1000)

cdf1Values <- rep(0, times=length(x))

for (i in 1:length(x)) {

cdf1Values[i] <- cdf1(x[i], 0)

}

qfapprox1 <- approxfun(cdf1Values, x, method = "linear")

IBNR_occurence <- function() {

randomNumber <- runif(n=1, min=0, max=1)

if (randomNumber < cdf1Values[1]) {

randomNumber <- cdf1Values[1]

}

qfapprox1(randomNumber)

}

RBNSclaims <- md[md$reserve>0, c("den.platby", "order")]

RBNSclaims$den.platby <- as.double(RBNSclaims$den.platby - date0)

include <- rep(TRUE, times=nrow(RBNSclaims))

for (i in 1:(nrow(RBNSclaims)-1)) {

if (RBNSclaims$order[i] < RBNSclaims$order[i+1]) {

include[i] <- FALSE

}

}

RBNSclaims <- RBNSclaims[include, ]

# Add open claims with zero payments

helpRBNS<-mdr[mdr$include==0 & mdr$reserve>0 & mdr$order==1,

c("DATUMEVIDENCE", "order", "reserve")]

helpRBNS <- helpRBNS[helpRBNS$DATUMEVIDENCE>divisionyearly[16],

c("DATUMEVIDENCE", "order")]

helpRBNS$DATUMEVIDENCE <- as.double(helpRBNS$DATUMEVIDENCE - date0)

colnames(helpRBNS) <- c("den.platby", "order")

RBNSclaims <- rbind(RBNSclaims, helpRBNS)

## Generate number of IBNR claims, times of occurence and delay

set.seed(22121992)

simulations <- 10000

results <- data.frame(numberOfPayments=numeric(),

amountsPaid=numeric(),

amountsPaidNextYear=numeric())

tau3 <- as.double(as.Date("2016-12-31")-date0)

for(simulation in 1:simulations) {

parmd1 <- rmvnorm(n=1, mean=fitlognormaltimesmd1$par, varMatrix1)

parmd2 <- rmvnorm(n=1, mean=fitlognormaltimesmd2$par, varMatrix2)

par3 <- rmvnorm(n=1, mean=fitpmd3$estimate, varMatrix3)

results[simulation, ] <- c(0, 0, 0)

NSclaims <- RBNSclaims

rowNumber <- nrow(NSclaims) + 1

n <- rpois(n=1, lambda=c)

time <- 0

u <- 0

for (i in 1:n) {
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time <- IBNR_occurence()

randomNumber <- runif(1, min=0, max=1)

meanlogcorrected <- meanlmd + time*log(bmd)

pnew <- randomNumber*(1 - plnorm(tau-time,

meanlog=meanlogcorrected,

sdlog=sdlmd)) +

plnorm(tau-time, meanlog=meanlogcorrected, sdlog=sdlmd)

u <- qlnorm(pnew, meanlog=meanlogcorrected, sdlog=sdlmd)

NSclaims[rowNumber, ] <- c(time+u, 0)

rowNumber <- rowNumber + 1

}

payments <- data.frame(time=numeric(), amount=numeric())

index <- 1

for (claim in 1:nrow(NSclaims)) {

newEvent <- 1

while (newEvent==1) {

censoring <- max(0, as.double(tau-NSclaims$den.platby[claim]))

payments[index, ] <- c(0, 0)

payments$time[index] <- NSclaims$den.platby[claim] +

nextEventTime2(censoring)

newEvent <- nextEventType(payments$time[index])

payments$amount[index] <- nextPayment()

NSclaims$den.platby[claim] <- payments$time[index]

index <- index + 1

}

}

results$numberOfPayments[simulation] <- nrow(payments)

results$amountsPaid[simulation] <- sum(payments$amount)

results$amountsPaidNextYear[simulation] <- sum(payments$amount[

payments$time>tau & payments$time<=tau3])

}

}
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Ñ . . . number of payments
Pi . . . ith payment f(t) . . . a density
F (t) . . . a distribution function
S(t) . . . a survival function
DF . . . degrees of freedom
SD . . . standard deviation
τ . . . number of days since date zero (till present)

48


	Introduction
	Theoretical Part
	Nonhomogeneous Poisson Process
	Marked Poisson Process
	Notation
	Payment Process
	Distribution of Claims Process
	Division of Claims


	Practical Part
	Delay Distribution
	Occurence Process
	Times Between Events
	Payments

	Simulation
	Simulation Algorithm
	Parameters
	Occurence and Delay of IBNR Claims
	Times of Next Event
	Types of Next Event
	Payments

	Results
	Comparison with Chain Ladder

	Conclusion
	Bibliography
	Appendix
	List of Figures
	List of Tables
	List of Notation

