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Introduction
Poisson processes are widely used in practice for predicting events’ arrival.
The simplest and, probably, the most known model is the one with a constant
rate — a homogeneous Poisson process. However, such model does not allow
for any changes in the intensity of events’ arrival within time. A more complex
model — a non-homogeneous Poisson process (NHPP) — should be used in the
cases where events arrive differently within time. In this model the rate is not
constant anymore. It depends both on the starting-point and endpoint of the
analysed time interval.

The purpose of this thesis is primarily to summarize the most important prop-
erties of non-homogeneous Poisson processes along with the certain estimation
and simulation methods. The properties described in the thesis are very im-
portant for further understanding of the estimation and simulation procedures.
Unfortunately, none of the current most known books about the topic contain
such compilation.

The main properties of NHPPs are summarized in Chapter 1. Along with the
basic properties, we present a very useful method to reduce complex computations
about a NHPP as well as derive the conditional distribution of arrival times.

The main focus of Chapter 2 is to describe a general procedure of esti-
mating the parameters of the rate function using maximum likelihood method.
We present the likelihood equations and the Fisher Information Matrix adjusted
for the case of a NHPP. Furthermore, we describe the procedure for the log linear
family of rate functions in more detail.

Chapter 3 contains the theory in respect of the most widely used simulation
methods for a NHPP. We consider two general algorithms which can be applied
to rate functions of any form along with the special methods designed for log
linear and log quadratic rate functions. In addition, we discuss the theoretical
time efficiency of the described algorithms.

Chapter 4 is dedicated to practical application of the previously described
methods, which is another aim of this thesis. We use the data on MTPL claims
caused by uninsured drivers from the Czech Republic, provided by Czech In-
surers’ Bureau. We present general description of the data together with its
analysis. Next, we perform certain grouping of the data and justify the choice
of the grouping. Then we apply the selected estimation and simulation methods
on the grouped data. Afterwards, the real time efficiency of the simulation algo-
rithms is discussed, and the recommendations about the most suitable algorithm
are provided. Furthermore, we simulate the next year payments of the selected
claims. In addition, the source code of the simulation algorithms is provided in
the Attachment of this thesis.
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1. Non-homogeneous Poisson
process and its properties
In this chapter we define a non-homogeneous Poisson process (NHPP) and state
its basic properties which are important for the next chapters, where we focus
on the estimation and simulation methods. Non-homogeneity of the Poisson
process basically means that the distribution of the number of events between
two particular points on the timeline is no longer a function depending on the
difference between these points, as it is in case of a homogeneous Poisson Process
(HPP). In our case it is a function of both starting-point and endpoint of the
time interval.

Now let us look at the definition of a NHPP in more detail. There are more
equivalent definitions of the latter; nevertheless, we state here the one described
in Ross [2010].

Definition 1. (Non-homogeneous Poisson process)
The counting process {N(t), t ≥ 0} is said to be a non-homogeneous Poisson
process with intensity function λ(t), t ≥ 0, if it satisfies

• N(0) = 0 almost surely;

• {N(t)} has independent increments;

• P [N(t + h) − N(t) ≥ 2] = o(h);

• P [N(t + h) − N(t) = 1] = λ(t)h + o(h).

Function λ(t) is sometimes also referred to as the instantaneous arrival rate.
Ross [2010] is exploring the relationship between the average number of events

which occurred until time t and the intensity function λ(t) of the corresponding
NHPP:

E N(t) =
t∫

0

λ(u)du = Λ(t) − Λ(0) def= µ(t). (1.1)

We shall further refer to µ(t) as the expectation function of the NHPP {N(t)}.
In addition, if we consider the expected number of events between times t and
t+s and use a simple integration property, we can conclude from expression (1.1):

E [N(t + s) − N(t)] =
t+s∫
t

λ(u)du = Λ(t + s) − Λ(t).

Çinlar [2013] shows that µ(t) is, in fact, a non-decreasing right-continuous
function. However, from now on we assume that µ(t) is a continuous function.
Furthermore, we assume that

0 ≤
∫
R

λ(u)du < ∞,

for all bounded subsets R of the state space S of the process.
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In Figure 1.1 we can see expected numbers of events until time t for two
NHPPs with λ(t) = exp{θ0 + θ1t}, which represents log linear model for the
intensity function. In the first case θ0 = 0.8, θ1 = 0.1; for the second intensity
function θ0 = 0.8, θ1 = −0.1.

λ(t)=exp{0.8+0.1t}

λ(t)=exp{0.8-0.1t}
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Figure 1.1: Expected numbers of events until time t for log linear model for λ(t)

Dealing with a NHPP can be very often computationally challenging. Never-
theless, we can easily reduce computations to the ones about a HPP, as can be
seen from the next theorem stated in Çinlar [2013].

Theorem 1. (Relation between a NHPP and a HPP)
Let µ(t) be a continuous non-decreasing function. Then T1, T2, . . . are the arrival
times of a NHPP {N(t), t ≥ 0} with expectation function µ(t) if and only if
µ(T1), µ(T2), . . . are the arrival times of a HPP {M(t), t ≥ 0} with arrival rate
λ = 1.

The previous theorem can be restated in terms of the Poisson processes {N(t)}
and {M(t)}. If we define a time inverse of µ(t) by

τ(t) = inf{s : µ(s) ≥ t}, t ≥ 0 (1.2)

the number of events until time τ(t) in the NHPP {N(t)} is then equivalent to
the number of events until time t in the HPP {M(t)}, i.e.:

N(τ(t)) = M(t).

Let us now examine the distribution of the number of events between times t
and t + s, i.e. the distribution of increments of the NHPP {N(t)}. According to
Çinlar [2013], we can derive one by making use of Theorem 1.

Theorem 2. (Distribution of increments of a NHPP)
Let {N(t), t ≥ 0} be a NHPP with continuous expectation function µ(t). Then
for any t, s ≥ 0 it holds:

P (N(t + s) − N(t) = k) = [Λ(t + s) − Λ(t)]k
k! e−{Λ(t+s)−Λ(t)}.
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That is, the distribution of N(t + s) − N(t) is, in fact, Poisson with parameter
Λ(t + s) − Λ(t). It is also useful to note the property of the superposition of two
NHPPs’, which will be used later for one of the simulation algorithms. According
to Ross [2010], it holds:

Theorem 3. (Superposition of two independent NHPPs)
Let {N(t), t ≥ 0} and {M(t), t ≥ 0} be two independent NHPPs, with respective
intensity functions λ1(t) and λ2(t). Furthermore, let N∗(t) = N(t)+M(t). Then,
the following are true.

1. {N∗(t)} is a NHPP with intensity function λ1(t) + λ2(t);

2. Given that an event of the {N∗(t)} process occurs at time t then, inde-
pendently of what occurred prior to t, the event at t was from the {N(t)}
process with probability λ1(t)/(λ1(t) + λ2(t)).

Now let us examine the distribution of arrival times (or, equivalently, times
to events 1, . . . , n) T1, T2, . . . , Tn of a NHPP {N(t)} under the condition that
exactly n events occurred in the time interval (0, T ]. Firstly, let us look at the
distribution function of the time to the next event in a NHPP. As Cox and Lewis
[1966] state, it has the following form.

Theorem 4. (Probability distribution of the time to the next event in a NHPP)
Let {N(t), t ≥ 0} be a NHPP with continuous expectation function µ(t). Then
for any t, s ≥ 0

P (1 or more events occurred in (t, t + s]) = 1 − exp

⎧⎨⎩−
t+s∫
t

λ(u)du

⎫⎬⎭
= 1 − e−{Λ(t+s)−Λ(t)}. (1.3)

From the above statement we can derive the joint distribution of arrival times
T1, T2, . . . , Tn and occurrence of exactly n events. To simplify the computations,
we firstly find the probability density function of the time to the next event by
deriving expression (1.3) with respect to s, i.e. we arrive at

d
ds

P (1 or more events occurred in (t, t + s]) = λ(t + s) e−{Λ(t+s)−Λ(t)}.

Furthermore, according to Cox and Lewis [1966], if we observe events in the
interval (0, T ] and n events occurred at times t1, t2, . . . , tn, the desired joint
probability density function takes form

λ(t1) e−{Λ(t1)−Λ(0)} · λ(t2) e−{Λ(t2)−Λ(t1)} · . . . · λ(tn) e−{Λ(tn)−Λ(tn−1)} · e−{Λ(T )−Λ(tn)}

= e−(Λ(T )−Λ(0))
n∏

i=1
λ(ti), (1.4)

where the multiplier e−{Λ(T )−Λ(tn)} in the first part of the equation stands for the
probability of no events occurring in the interval (tn, T ]. To find the conditional
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probability density function of the arrival times T1, T2, . . . , Tn under the con-
dition that exactly n events occurred, we should divide expression (1.4) by the
probability of exactly n events occurring, that is, by

[Λ(T ) − Λ(0)]n
n! e−{Λ(T )−Λ(0)}.

Then, in total, the conditional probability density function of T1, T2, . . . , Tn looks
like

n!
[Λ(T ) − Λ(0)]n

n∏
i=1

λ(ti), (1.5)

where the range of ti satisfies 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ T . Expression (1.5) is,
in fact, as mentioned in Cox and Lewis [1966], the probability density function
of ordered sample of n variables from a truncated exponential distribution. That
is, by using a relation between such probability density function and marginal
ordered variables, we can derive the probability function of an ordered variable
T(i), which takes form

fT(i) (ti | N(T ) = n) = λ(t)
Λ(T ) − Λ(0) , i = 1, . . . , n, (1.6)

if t1 < t2 < . . . < tn is satisfied. The respective distribution function can be
derived from expression (1.6) by integration. That implies we have proved the
following theorem.

Theorem 5. (Conditional distribution of arrival times)
Let {N(t), t ≥ 0} be a NHPP with continuous expectation function µ(t). If
we observe events in the interval (0, T ], arrival times T1, T2, . . . , Tn, under the
condition that exactly n events occurred in (0, T ], are distributed as the order
statistics from a sample with the distribution function

F (t) = Λ(t) − Λ(0)
Λ(T ) − Λ(0) , 0 ≤ t ≤ T.

We have stated all basic properties of a NHPP which will be needed for the
purpose of simulation algorithms. Now let us continue with Chapter 2, where we
discuss intensity estimation.
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2. Estimation of the intensity
function
In this chapter we examine estimation of the intensity function parameters in a
NHPP using maximum likelihood method. We restrict ourselves to the case of
a parametric intensity. Note that its form should be chosen before performing
the estimation. One can assume different models for λ(t) and apply maximum
likelihood algorithm on all of them. Subsequently, the best model can be chosen
using e.g. Akaike Information Criterion (AIC). There are several recommended
models in literature which are appropriate for practical applications. The general
form of estimates obtained by maximum likelihood procedure as well as the special
case of one recommended model will be mentioned here.

Common problem in practice is the case when the likelihood function is not
strictly concave, hence its maximum will not be unique. Its shape depends on
the chosen model for λ(t). As the maximum likelihood estimate is, by definition,
the global maximum of the likelihood function, numerical algorithms for solving
the likelihood equations should be restarted with different initializations in such
case. The solution with the largest likelihood is then considered to be the global
maximum. We shall also describe methods suitable for finding initial estimates
of the parameters of a general rate function containing a global trend as well as
periodicity components, which helps to increase efficiency of the chosen numerical
algorithm.

2.1 General description of maximum likelihood
method for a NHPP

We consider the sample data t = (t1, . . . , tn)⊤ from a realization of a NHPP
with intensity function λ(t) on (0, T ] ⊂ S ⊂ R, where S is the state space of the
process. According to Streit [2010], the sample data are conditionally independent
given their total number n. As further mentioned in the book, it implies that the
points ti are in (0, T ] and for that reason we are estimating the intensity only on
(0, T ], not on the whole state space S.

If we substitute the arrival time terms in expression (1.4) with our realization
of the process, that is, (t1, . . . , tn)⊤, we can conclude that the obtained expression
is actually the joint likelihood function of the sample arrival times and the occur-
rence of n events. Let us further consider m parameters of the intensity function,
i.e. vector of parameters θ = (θ0, . . . , θm)⊤ defined on some set Θ ⊂ Rm. The in-
tensity function in this case will be denoted as λ(t | θ) to emphasise its dependency
on the considered set of parameters. The log-likelihood function then looks like

ℓ(t, n | θ) =
n∑

i=1
log λ(ti | θ) −

T∫
0

λ(u | θ)du =
n∑

i=1
log λ(ti | θ) + Λ(0 | θ) − Λ(T | θ).

(2.1)
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The maximum likelihood estimate of θ can then be found as

θ̂ML ≡ arg max
θ∈Θ

ℓ(t, n | θ).

If we assume differentiability of λ(t | θ) with respect to every component of the
vector of parameters θ for each t ∈ (0, T ]n, we can compute θ̂ML by solving the
necessary conditions, i.e. by setting to zero the partial derivatives with respect to
each θi, or, if written more formally, that ∂ [ℓ(t, n | θ)] /∂θ = 0m. Hence we shall
be solving

n∑
i=1

1
λ(ti | θ)

∂

∂θ
λ(ti | θ) = ∂

∂θ

T∫
0

λ(u | θ)du = ∂

∂θ
[Λ(T | θ) − Λ(0 | θ)] .

It is essential to verify that the likelihood function is indeed concave at the
point of the solution θ̂ML, which will ensure that θ̂ML is at least a local maximum.
We can do so by demonstrating that the Fisher Information Matrix (FIM) of the
log-likelihood function is positive definite at the solution θ̂ML. If λ(ti | θ) > 0 for
all ti ∈ (0, T ], the FIM is defined by

I(θ) = E
[
−∂2ℓ(t, n | θ)

∂θ∂θ⊤

]
.

Furthermore, if the regularity conditions are satisfied, confidence intervals for
θ can be derived using the property of asymptotic normality of θ̂ML. It holds
that √

n(θ̂ML − θ) D−→ Nm(0, I−1(θ))

as the number of events n occurred in the interval (0, T ] approaches infinity. Based
on the asymptotic distribution one can then construct the asymptotic confidence
interval for θ e.g. using Slutsky’s theorem and the properties of a continuous
transformation of a random vector.

Moreover, as stated in Streit [2010], the inverse of the FIM is, in fact, the
lower bound on the covariance matrix of any unbiased estimator of θ, provided
that the FIM is a regular matrix. Hence, it holds for any unbiased estimator θ̂,
if we fix the value of θ, that

var [θ̂] ≥ I−1(θ).

Log linear rate function

Now let us move to a special case of the model for the intensity function, which
was considered by Lewis and Shedler [1976] as useful for practical applications of
a NHPP. We assume that λ(t) follows so-called log linear model,
λ(t) = exp{θ0 + θ1t}. The reasons to assume an exponential model, not just
a linear one, that is, λ(t) = θ0 + θ1t, are the following. As Lewis and Shedler
[1976] state, λ stays positive for all values of θ0 and θ1 in case of log linear model,
whereas for a linear model it can be acquired only by applying non-linear re-
strictions on the parameters. In addition, statistical procedures performed on log
linear model are simple.
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Such model represents the case when the intensity function is monotonically
increasing or decreasing, depending on whether θ1 is greater or less than zero.
The case θ1 = 0 gives a HPP with rate λ = eθ0 . The model described here is the
simplest of the general family of log linear rate functions. We shall also discuss
a more complicated case with an additional term θ2t

2 in the next chapter, where
the methods for simulation of such process will be presented.

From expression (1.4) we know that in case of the considered model, the joint
likelihood function takes form

f(t, n | θ) = exp
{

nθ0 + θ1

n∑
i=1

ti − eθ0 [eθ1T − 1]
θ1

}
. (2.2)

However, Cox and Lewis [1966] show that, since the observations in expres-
sion (2.2) are contained only in terms (n,

∑
ti), the latter are sufficient statistics

for drawing any conclusions about the values of θ0 and θ1. Furthermore, they
state that for fixed θ1, a sufficient statistic for θ0 is the number of events n. It fol-
lows then that for estimating θ1 we can consider the conditional distribution of
the arrival times under the condition that n events occurred. Hence using (1.5)
we get

f(t | n, θ) = n! enθ0 eθ1
∑

ti

[ eθ0 (eθ1T − 1) / θ1]n
= n! [θ1]n

( eθ1T − 1)n eθ1
∑

ti .

The log-likelihood function then takes form

ℓ(t | n, θ1) = log n! + n log θ1 + θ1

n∑
i=1

ti − n log (eθ1T − 1)

and its derivative with respect to θ1, according to Cox and Lewis [1966], looks
like

∂ℓ(t | n, θ1)
∂θ1

def= ℓ′ =

⎧⎨⎩n/θ1 + ∑
ti − nT/(1 − e−θ1T ), θ1 ̸= 0,

−nT/2 + ∑
ti, θ1 = 0.

The maximum likelihood estimate of θ1 can be found by solving
∂ℓ(t | n, θ1)/∂θ1 = 0. Numerical methods should be used to find the solution
in this case, an initial estimate should be provided as well. Otherwise, the nu-
merical solving algorithm does not necessarily have to converge. In order to verify
that the likelihood function is concave at the point of the solution, we shall check
for positive definiteness of the FIM. In our case the FIM takes the following form,
as Cox and Lewis [1966] state:

I(θ1) =

⎧⎨⎩n
[
1/(θ1)2 − T 2 e−θ1T /(1 − e−θ1T )2

]
, θ1 ̸= 0,

−nT 2/12, θ1 = 0.
(2.3)

One might consider testing for the value of the parameter θ1, that is, we want
to test for the null hypothesis

H0 : θ1 = θ∗
1

against the alternative

H0 : θ1 ̸= θ∗
1.
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Cox and Lewis [1966] show that in order to perform the test, one can consider
the following test statistic

Z(θ∗
1) = ℓ′(θ∗

1)√
I(θ∗

1)
,

which has exactly zero mean and unit variance under the null hypothesis. In ad-
dition, its distribution is asymptotically normal under the null hypothesis. There-
fore, we reject H0 at the desired significance level α in case

|Z(θ∗
1)| ≥ c1− α

2
,

where c1− α
2

is (1 − α
2 )-quantile of the standard normal distribution.

One special case is when one wants to test for θ1 = 0, in other words, for no
trend in the intensity function. Then, under the null hypothesis, the marginal
distribution of ordered arrival times from expression (1.6) is, according to Cox and
Lewis [1966], uniform on the interval (0, T ). Consequently, the sum of the arrival
times S = ∑

Ti is distributed as the sum of n independent random variables
having uniform distribution on (0, T ). Hence the distribution of the variable

Zu =
S − nT

2

T
√

n
12

converges fast to the standard normal distribution. Due to that fact we shall be
checking for the value of the test statistic

zu =

∑
ti

n
− T

2

T
√

1
12n

. (2.4)

The null hypothesis should be then rejected at the level of significance α when

|zu| ≥ c1− α
2
.

As soon as the value of θ1 has been defined, we can move to the estimation of θ0.
Unlike the case of θ1, we consider the joint likelihood function defined by (2.2).
Its logarithm then takes form

ℓ(t, n | θ) = nθ0 + θ1

n∑
i=1

ti − eθ0 [eθ1T − 1]
θ1

.

In order to find the maximum likelihood estimate of θ0, we solve the equation

∂ℓ(t, n | θ)
∂θ0

= n − eθ0 [eθ̂1T − 1]
θ̂1

= 0, (2.5)

where θ̂1 is the already obtained maximum likelihood estimate of θ1, as described
above. As a result, we arrive at

θ̂0 = log n + log θ̂1 − log[eθ̂1T − 1].

Now let us move to the problem of finding initial estimates of the parameters
of a more general rate function.
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2.2 Computing initial estimates of the
parameters

In this section we consider a more general family of such rate functions, which con-
tain a polynomial component describing a possible global trend as well as trigono-
metric components for explaining periodicity in the event occurrence. The meth-
ods described here are fully based on Kuhl et al. [1997].

We shall label the considered rate function EPTMP, meaning exponential-
polynomial-trigonometric rate function having multiple periodicities. It is of the
following form:

λ(t) = exp
{

m∑
i=0

θit
i +

p∑
k=1

γk sin(ωkt + φk)
}

def= exp{h(t; m, p, θ)}, (2.6)

where
θ = [θ0, θ1, . . . , θm, γ1, . . . , γp, φ1, . . . , φp, ω1, . . . , ωp]

is the vector of parameters we want to estimate. Its first m + 1 terms, that is,
θ0, θ1, . . . , θm, represent the global trend in occurrence of events over time. Com-
ponents of the periodic part can be understood as follows. Parameters γ1, . . . , γp

stand for amplitudes of oscillation, φ1, . . . , φp describe phases (possible time
shifts in the periodic components) and, finally, ω1, . . . , ωp represent frequencies.
In general, the frequency of a periodic component represents the number of cycles
during some chosen unit of time. For example, if we choose year as a time unit,
frequency can be monthly, quarterly, semi-annually or annually (where the latter
stands basically for no periodic cycles).

Frequencies are either known from the origin of the analysed data, or could
be estimated along with other parameters using maximum likelihood approach.
However, initial estimates of frequencies should be provided. This can be done
by analysing the periodogram of historical payments. According to Lee et al.
[1991], if a process indicates cycling behavior, its periodogram should contain
peaks in the neighborhood of the corresponding frequency points, regardless of
the possible long-term trend.

Suppose that we have a realization of a NHPP consisting of n events which oc-
curred in the fixed time interval (0, T ] with observed arrival times
t1 < t2 < . . . < tn. The log-likelihood function of the parameter vector θ
then takes form

ℓ(t, n | θ) =
m∑

i=0
θi

n∑
j=1

ti
j +

p∑
k=1

n∑
j=1

γk sin(ωktj + φk) −
T∫

0

exp{h(u; m, p, θ)}du.

Elements of θ can be estimated by conditioning the log-likelihood function on
a fixed value of m, that is, on the degree of the polynomial component. Likelihood
equations should be solved for several values of m, so that we get the set of
remaining parameters for each value of m. The most suitable set along with the
value of m can be chosen using likelihood ratio test which will be presented later.
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Initial estimates of the periodic components

Suppose that we have at our disposal either initial estimates or known values of
the frequencies. Furthermore, we temporarily assume that there is no long-term
evolutionary trend in the interval (0, T ], so the log-likelihood function reduces to

ℓ(t, n | θ) = nθ +
p∑

k=1

n∑
j=1

γk sin(ωktj + φk)

−
T∫

0

[ p∏
k=1

exp {θ/p + γk sin(ωku + φk)}
]

du, (2.7)

where we define θ = θ0 for simplicity.
Kuhl et al. [1997] consider that we can obtain good initial estimates if we

estimate the parameters of each periodic component independently. Authors also
present a useful approximation of the right-hand side of expression (2.7), which
plays a key role in the presented method. This approximation can be described as

T∫
0

[ p∏
k=1

exp {θ/p + γk sin(ωku + φk)}
]

du

≈ eθT −(p−1)
p∏

k=1

⎡⎣ T∫
0

exp {γk sin(ωku + φk)} du

⎤⎦ . (2.8)

Reasoning behind this approximation can be found in Kuhl et al. [1997] (Ap-
pendix A). The considered approximation is suitable in cases of rather small
number of periodic components p. For larger values of p the error of the approx-
imation is compounded. Furthermore, authors state that the approximation can
be poor in case when inequality θ/p ≫ γk does not hold for some k, that is, if
there exists some k for which θ/p is not much larger than γk.

If we denote the length of the cycle by L and consider only observations
forming an interval, say (0, T c], consisting of complete cycles, we can notice that
T c = νL, where ν stands for the number of complete cycles. One can also note
that frequencies ωk can be rewritten as ωk = 2π/L. Moreover, since the integrand
in each integral on the right-hand side of (2.8) has the came cyclic behavior over
each subinterval [(j − 1)L, jL] for j = 1, 2, . . . , ν, we can derive the following:

T c∫
0

exp {γk sin(ωku + φk)} du = ν

L∫
0

exp
{

γk sin
(2π

L
u + φk

)}
du

= ν

2π∫
0

exp
{

γk sin(ζ + φk) L
2π

}
dζ = T c

2π

2π∫
0

exp {γk cos(ζ)} dζ

= T c · I0(γk),

where we performed the substitution ζ = ωu = 2πu/L. The last two equalities are
based on so-called modified Bessel function of the first kind, which is defined as

In(γk) = 1
π

π∫
0

exp[γk cos ζ] cos(nζ)dζ.
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More information about this function and its properties can be found e.g. in
Abramowitz and Stegun [1965].

Hence the approximation shown in (2.8) can be rewritten as

T c∫
0

{ p∏
k=1

exp[θ/p + γk sin(ωku + φk)
}

du ≈ eθT c
p∏

k=1
I0(γk).

The log-likelihood function (2.7) would then take the following form

ℓ(t, n | θ) ≈ nθ +
p∑

k=1
γk sin(φk)A(ωk) +

p∑
k=1

γk cos(φk)B(ωk) − eθT c
p∏

k=1
I0(γk),

(2.9)
where

A(ωk) =
n∑

j=1
cos(ωktj), B(ωk) =

n∑
j=1

sin(ωktj), k = 1, 2, . . . , p. (2.10)

To obtain initial estimates of the parameters, we have to compute partial
derivatives of the approximate log-likelihood function (2.9) with respect to each
parameter and solve the following equations:

∂ℓ(t, n | θ)
∂θ

= 0;

∂ℓ(t, n | θ)
∂γk

= 0;

∂ℓ(t, n | θ)
∂φk

= 0

for k = 1, 2, . . . , p. Then, according to Kuhl et al. [1997], we obtain the following
initial estimates for φk and γk:

φ̂k = arctan
[

A(ωk)
B(ωk)

]
, k = 1, 2, . . . , p,

and γ̂k is a solution of

I1(γ̂k)
I0(γ̂k) =

√
A2(ωk) + B2(ωk)

nk

, k = 1, 2, . . . , p,

where nk is the number of events in the interval (0, ⌊ωkT c/{2π}⌋·2π/ωk], and ⌊x⌋
stands for the floor function. In addition, the upper limit n of the summations
in (2.10) is interchanged for nk. One can note that for amplitude and phase
parameters their initial estimates depend only on the frequencies, respectively,
on their known values or initial estimates.

13



Initial estimates of the trend components

Kuhl et al. [1997] consider a generalized version of the moment matching proce-
dure in order to compute initial estimates of the trend components. They state
that the first m + 1 moments of rate function (2.6) over the interval (0, T ] have
the form

T∫
0

uiλ(u)du =
T∫

0

ui exp{h(u; m, p, θ)}du

for i = 0, 1, . . . , m. Taking the partial derivative of the log-likelihood function
with respect to θi, setting it to zero and solving for

n∑
j=1

ti
j yields

n∑
j=1

ti
j =

T∫
0

ui exp{h(u; m, p, θ)}du (2.11)

for i = 0, 1, . . . , m.
The moment-matching procedure finds the coefficients {cj : j = 0, 1, . . . , m}

of some polynomial
m∑

j=0
cju

j of degree m whose first m + 1 moments are equal

to those of exp{h(u; m, p, θ)} on the interval (0, T ]. Equation (2.11) implies
that we should consider the following system of equations in order to find initial
estimates of the coefficients {cj : j = 0, 1, . . . , m}:

n∑
j=1

ti
j =

T∫
0

ui

⎛⎝ m∑
j=0

cju
j

⎞⎠ du =
m∑

j=0

cjT
i+j+1

i + j + 1

for i = 0, 1, . . . , m.
Kuhl et al. [1997] introduce the following procedure for finding initial esti-

mates of θi for i = 0, 1, . . . , m. Authors consider matching the moments of the
function log(

m∑
j=1

cju
j) to the ones of h(u; m, p, θ) over the interval (0, T ]. This

consideration leads us to the system

T∫
0

ui log
⎛⎝ m∑

j=0
cju

j

⎞⎠ du =
T∫

0

ui

⎡⎣ m∑
j=0

θju
j +

p∑
k=1

γk sin(ωku + φk)
⎤⎦ du (2.12)

for i = 0, 1, . . . , m. Note that the initial estimates of the parameters of the
periodic components {γk, ωk, φk : k = 1, . . . , p} should be used to find the
solution of (2.12).

All of the initial estimates considered in this section provide a fairly good
starting point for numerical algorithms solving the likelihood equations. Never-
theless, it cannot assure that the algorithm will not diverge.

It is essential to note that this procedure can be used to find initial estimates
of the parameters of degree-two exponential polynomial rate function as well.
This type of a rate function is described in Section 3.4 of Chapter 3.
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Choice of degree m of the polynomial representing the global trend

In this part we dedicate ourselves to finding the final estimates of all parameters
along with the choice of degree m of the polynomial component representing the
global trend. As mentioned above, one should firstly compute sets of parameter
estimates conditionally on several different values of m. Let us denote the set of
estimates corresponding to fixed degree m as θ̂m. We consider an extension of
the likelihood ratio test in order to find the most suitable m and θ̂m. We test for
the null hypothesis

H0 : m is the true degree of (2.6)

against the alternative

H0 : m + 1 is the true degree of (2.6).

We shall be using the following test statistic

Zm = 2
[
ℓ(t, n | θ̂m+1) − ℓ(t, n | θ̂m)

]
H0∼ χ2

1 as T → ∞.

The null hypothesis is rejected when Zm ≥ χ2
1(1 − α), where χ2

1(1 − α) is
(1 − α)-quantile of χ2 distribution with one degree of freedom, and α is the
desired significance level. The test should be repeated until one finds the small-
est m for which the null hypothesis is not rejected. The vector of final estimates
of the parameters θ̂m is then determined by the final value of m.

We have discussed intensity estimation in a NHPP using maximum likelihood
method as well as methods suitable for computing initial estimates of the param-
eters. Now we move to the presentation of the simulation methods for a NHPP
as well as comparison of their efficiency.
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3. Simulation methods for a
Non-Homogeneous Poisson
process
In this chapter we describe several commonly used methods for simulation of a
NHPP as well as perform a comparison of these algorithms with respect to their
efficiency. Some of these methods can be used for a general NHPP, others are
designed for specific models of the intensity function. In the practical part of
this thesis we shall use the discussed methods for modelling payments on bodily
injury claims caused by uninsured drivers.

3.1 Time-scale transformation of a NHPP
The algorithm considered in this section is analogical to inverse transform
method for simulation of continuous non-uniform random variables. It is, as
Klein and Roberts [1984] state, an exact method of simulation a NHPP. Accord-
ing to Çinlar [2013], Theorem 1 is used to transform a NHPP into a HPP with
rate 1. However, the algorithm requires simulating of a random variable from the
uniform distribution on (0, 1) in each step.

Firstly, we construct time inverse τ(t) of expectation function µ(t) as defined
by expression (1.2). If µ(t) is strictly monotone, it implies then that it is also
invertible. Function τ(t) would be simply an inverse of µ(t) in such case. If one
cannot assume strict monotonicity of µ(t), calculation of τ(t) could be challenging
and numerical methods have to be involved in some cases.

In the next step we are going to simulate times between events in a HPP with
rate 1: if we already know arrival time t∗

i−1 of the previous event, then adding the
simulated time to the next event to t∗

i−1 would give us exactly the arrival time of
the i-th event, that is, t∗

i . Thereafter, we transform the time to the event i of a
HPP into the one of a NHPP via the inverse of µ(t). From the general properties
of a HPP we know that times between events are independent random variables
having exponential distribution with parameter λ, in our case with parameter 1.
Let us denote the time between (i − 1)-th and i-th event in a HPP with rate 1 by
Si. Then, using the general inverse transform method for generating a continuous
non-uniform random variable, we can state that

FSi
(si) = 1 − e−si = u,

where u is a random variable from the uniform distribution on (0, 1). After several
algebraic operations, we arrive at

si = − log(1 − u)

Then, given that the time to the event i − 1 is t∗
i−1, we can find the time to the

event i by t∗
i = t∗

i−1 + si, which can be further transformed to the time to the i-th
event ti of a NHPP via expression (1.2).
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Now let us assume that we want to simulate a NHPP with expectation function
µ(t) in the fixed interval (0, T ]. To summarize the steps stated above, we describe
the simulation algorithm using time-scale transformation in the following way:

1. Set s0 = 0, t∗
0 = 0, t0 = 0, i = 0.

2. Simulate a variable ui+1 from the uniform distribution on (0, 1).

3. Set si+1 = − log(1 − ui+1).

4. If t∗
i + si+1 > µ(T ), go to step 6.

5. Otherwise, set t∗
i+1 = t∗

i + si+1, ti+1 = τ(t∗
i+1) and i = i + 1. Go to step 2.

6. Return t1, t2, . . . , tn, where n = i, and also n.

The number of events simulated in (0, T ] would be then the current value of i
before the exit. The algorithm is relatively simple to apply; however, inverse τ(t)
could be computationally challenging, depending on the form of µ(t). Further-
more, the calculation time of µ(t) depends on the form of λ(t) as well, as we have
to integrate the rate function in this case.

3.2 Thinning of a NHPP
The algorithm described in this section is rather simple and can be applied to any
form of rate function λ(t). It is fully based on Lewis and Shedler [1979]. Firstly,
we should find some Poisson process whose rate function dominates the given
rate function on the whole time interval. Afterwards, we delete certain points of
such process according to the particular criterion. The method is based on the
following theorem.

Theorem 6. (Thinning of a NHPP)
Consider a NHPP {N∗(t), t ≥ 0} with rate function λ∗(t) and expectation function
µ∗(t) = Λ∗(t) − Λ∗(0). Let T ∗

1 , T ∗
2 , . . . , T ∗

N∗(T ) be the arrival times of {N∗(t)} in
the fixed interval (0, T ]. Suppose that for every t satisfying 0 ≤ t ≤ T it holds
that λ(t) ≤ λ∗(t). For i = 1, 2, . . . , N∗(T ), delete the point T ∗

i with probability
1 − λ(T ∗

i )/λ∗(T ∗
i ). Then the remaining points form a NHPP {N(t), t ≥ 0} with

rate function λ(t) in the time interval (0, T ].

The proof of this theorem can be found again in Lewis and Shedler [1979].
Let us now describe the general algorithm of simulation of a NHPP using

thinning in the fixed interval (0, T ]. Its steps are the following:

1. Generate the arrival times of a NHPP {N(t)∗} with rate function λ∗(t) in
the interval (0, T ]. If the number of generated points n∗ equals 0, exit the
algorithm → there are no events of the process {N(t)} in (0, T ].

2. Denote the generated ordered arrival times by t∗
1, t∗

2, . . . , t∗
n∗ . Set i = 1 and

k = 0.

3. Generate a variable ui from the uniform distribution on (0, 1).
If ui ≤ λ(t∗

i )/λ∗(t∗
i ), set k = k + 1 and tk = t∗

i .
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4. Set i = i + 1. If i ≤ n∗, go to step 3.

5. Return t1, t2, . . . , tn, where n = k, and also n.

The main source of time inefficiency of the algorithm is the computation of
λ(t). In case when {N∗(t)} is a HPP with rate function λ∗(t) = λ∗ and the
minimum of λ(t), denoted by λ̃, is known, one can note that t∗

i is always accepted
if u ≤ λ̃/λ∗. This could speed up the computations, as in some cases one would
not need to calculate λ(t).

The simplest form of the method of thinning, i.e. if we choose λ∗(t) according
to λ∗(t) = λ∗, where λ∗ ≥ max0≤t≤T λ(t), can be used to simulate a NHPP on an
interval-by-interval basis. In this case the process {N∗(t)} is actually a HPP. The
method is based on the fact that times between events in a HPP are independent
random variables which are exponentially distributed with parameter λ∗. If we
consider generation of a NHPP with rate function λ(t) in the fixed interval (0, T ],
the steps of such simplified algorithm would be the following:

1. Set t0 = 0, t∗
0 = 0, E∗

0 = 0, i = 0, k = 0.

2. Generate a variable E∗
i+1 from the exponential distribution with parameter

λ∗ and a variable ui+1 from the uniform distribution on (0, 1).

3. If t∗
i + E∗

i+1 > T , go to step 5. Otherwise, set t∗
i+1 = t∗

i + E∗
i+1.

4. If ui+1 ≤ λ(t∗
i+1)/λ∗, set k = k + 1, tk = t∗

i+1 and i = i + 1. Go to step 2.

5. Return t1, t2, . . . , tn, where n = k, and also n.

The method of thinning described in this section can be applied to any rate
function without the necessity of numerical integration or simulation of Poisson
variables, which, however, diminishes efficiency of the algorithm. It can be used
for more complex rate functions, in case of which numerical integration or inverse
of λ(t) could be very challenging. In order to increase efficiency, one should
choose λ∗(t) as close as possible to λ(t), taking into account also the difficulty of
generating the process {N∗(t)}.

3.3 NHPP with log linear rate function
In this section we consider rate functions having the particular form, which was
already mentioned in the previous chapter. In this case the rate function is of the
form λ(t) = exp{θ0 + θ1t}

def= θ̃0 eθ1t. The natural logarithm of the considered rate
function is linear in the parameters, hence the name “log linear rate function”.
General properties of such rate function were described in Chapter 2. This section
is fully based on Lewis and Shedler [1976].

Considering the process in a fixed interval (0, T ], the following relationship
for its expectation function holds

µ(t) = Λ(t) − Λ(0) =
t∫

0

λ(u)du =

⎧⎨⎩θ̃0(eθ1t − 1)/θ1, θ1 ̸= 0,

θ̃0t, θ1 = 0.
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In this thesis we restrict ourselves to the case θ1 ̸= 0 only. Hence the variable
N(T ) indicating the number of events which occurred in the interval (0, T ] is
Poisson distributed with parameter µ(T ) = θ̃0(eθ1T − 1)/θ1. According to Theo-
rem 5, the arrival times of such process, under the condition that exactly n events
occurred in (0, T ], are distributed as order statistics from the distribution

F (t) = Λ(t) − Λ(0)
Λ(T ) − Λ(0) = eθ1t − 1

eθ1T − 1 , 0 ≤ t ≤ T, θ1 ̸= 0.

For θ1 ̸= 0 we can also invert F (t) and get

t = F −1(p) = log [1 + p(eθ1T − 1)]/θ1, 0 ≤ p ≤ 1.

Because the inverse of F (t) is known explicitly, one way of simulating such NHPP
is to use the inverse probability transform method directly. The algorithm can
be described in the following way.

Algorithm 1 (θ1 ̸= 0)

1. Generate a variable n from the Poisson distribution with parameter
µ(T ) = θ̃0(eθ1T − 1)/θ1. If n equals 0, exit → there are no events in (0, T ].

2. Otherwise, generate n variables from the uniform distribution on (0, 1) and
order them to get U(1) ≤ U(2) ≤ · · · ≤ U(n).

3. Calculate log [1 + U(i)(eθ1T − 1)]/θ1 for all i = 1, . . . , n and set

T1 = log [1 + U(1)(eθ1T − 1)]/θ1, T2 = log [1 + U(2)(eθ1T − 1)]/θ1, . . .

4. Return T1, T2, . . . , Tn and n.

The described algorithm requires generation of one Poisson variable, n uniform
variables and their subsequent ordering as well as calculation of n logarithms.

Compared to the algorithm which uses time-scale transformation of a NHPP,
the one described above is considered by Lewis and Shedler [1976] to be more
efficient. However, the method using gap statistics, which is discussed further, is
considered to be even more efficient than the latter two.

The next method we are going to describe is designed specially for the log
linear family of rate functions and does not require ordering of the generated
variables. Let us consider the case θ1 < 0 in the next part, the case of θ1 > 0 will
be described later. The simulation algorithm for the fixed time interval (0, T ] is
based on the following two theorems.

Theorem 7. (Gap statistics for exponential distribution)
Let Y1, Y2, . . . , Ym be independent random variables having exponential distribu-
tion with parameter β with order statistics Y(1), Y(2), . . . , Y(m). Let us define the
gap statistics as D1 = Y(1), D2 = Y(2) − Y(1), . . . , Dm = Y(m) − Y(m−1). Then the
gap statistics are independent random variables having exponential distribution
with means E (Di) = β/(m + 1 − i), i = 1, . . . , m.

The proof can be found e.g. in Cox and Lewis [1966].
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Theorem 8. (The gap process)
Let m be a realization of a random variable M having Poisson distribution with
parameter µ∗ = −θ̃0/θ1, and let us set β = −θ1 > 0. Then the gap process is
a NHPP with rate function λ(t) = θ̃0 eθ1t on (0, ∞).

A computation showing the relations between the parameters is shown in Lewis
and Shedler [1976]. The main result can be summarized in the following algo-
rithm.

Algorithm 2a) (θ1 < 0)

1. Set t0 = 0, E0 = 0, i = 0.

2. Generate a random variable m from the Poisson distribution with parameter
µ = −θ̃0/θ1. If m equals 0, exit → there are no events in (0, T ].

3. Generate a random variable Ei+1 from exponential distribution with rate
parameter 1.

4. If Ei+1/[β(m − i)] + ti > T , where β = −θ1, go to step 5. Otherwise, set
ti+1 = Ei+1/[β(m − i)], i = i + 1 and go to step 3.

5. Return t1, t2, . . . , tn, where n = i, and n.

To summarize, n ≤ m events are generated and n is Poisson distributed with
parameter µ = θ̃0(eθ1T − 1)/θ1, as stated in Lewis and Shedler [1976]. Authors
also note that Algorithm 2, unlike Algorithm 1, can use fast exponential generators
and requires neither ordering of uniform variables nor logarithms calculation.

Now let us adjust Algorithm 2 for the case θ1 > 0 using the so-called time-
reversal technique. Let us denote by ξ(t) the time measured backwards from T ,
i.e. ξ(t) = T − t for all 0 ≤ t ≤ T . Then N(ξ(t)), that is, the number of events
in (T − ξ(t), T ], or, equivalently, in (t, T ], is Poisson distributed with the mean
Λ(T ) − Λ(T − ξ(t)).

The rate function can be then derived as follows:

λ∗(ξ(t)) = d
dξ(t) [Λ(T )−Λ(T −ξ(t))] = λ(T −ξ(t)) = exp{θ0 +θ1T +(−θ1)ξ(t)}

def= θ̃0
∗ eθ∗

1ξ(t).

Note that the coefficient of ξ(t) is negative. Hence the adjusted algorithm can be
described as follows.
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Algorithm 2b) (θ1 > 0)

1. Set t0 = 0, t∗
0 = 0, E∗

0 = 0, i = 0.

2. Generate a random variable m from Poisson distribution with parameter
µ∗ = −θ̃0

∗
/θ∗

1, where θ̃0
∗ = exp{θ0 + θ1T} and θ∗

1 = −θ1. If m equals 0, exit
→ there are no events in (0, T ].

3. Generate a random variable E∗
i+1 from exponential distribution with rate

parameter 1.

4. If E∗
i+1/[β(m − i)] + t∗

i > T , where β = −θ∗
1 = θ1, go to step 5. Otherwise,

set t∗
i+1 = Ei+1/[β(m − i)], i = i + 1 and go to step 3.

5. Calculate tj = T − t∗
i−j+1 for all j = 1, . . . , i.

6. Return t1, t2, . . . , tn, where n = i, and n.

Algorithm 2a) and Algorithm 2b) need, as stated in Lewis and Shedler [1976],
only one Poisson variable and, on average, Λ(T ) − Λ(0) + 1 exponential variables.
On the contrary, Algorithm 1 needs one Poisson variable, an ordering and, on
average, Λ(T ) − Λ(0) logarithms and uniform variables. Thus authors consider
Algorithms 2a) and 2b) to be almost about twice as fast as Algorithm 1 or time-
scale transformation via the inverse of µ(t).

3.4 NHPP with degree-two exponential
polynomial rate function

In this section we consider an extension of log linear rate function which is basi-
cally log quadratic, meaning we are going to analyse the rate function of the type

λ(t) = exp{θ0 + θ1t + θ2t
2}. (3.1)

Such rate functions allow for events whose arrival rate changes direction within
time, i.e. it can either increase until it reaches the peak and after that monotoni-
cally decrease, or vice versa. Again, exponentiation ensures that the rate function
is always positive.

The method we are going to describe is examined in Lewis and Shedler [1979]
and is based on decomposition of a NHPP with rate function (3.1) into two
NHPPs, i.e. we decompose rate (3.1) in the following way

λ(t) = λ̃(t) + (λ(t) − λ̃(t)) = λ̃(t) + λ⋆(t), a < t ≤ b. (3.2)

Hence the analyzed process {N(t)} with rate function λ(t) is decomposed as
N(t) = Ñ(t) + N⋆(t), where rate functions λ̃(t), resp. λ⋆(t) correspond to the
processes Ñ(t), resp. N⋆(t). The reasoning behind the consideration of an interval
(a, b] instead of (0, T ] is that in case of the changing direction rate function
interval (0, T ] has to be decomposed into two disjoint intervals. In Figure 3.1 all
possible cases of the direction of the logarithm of rate function (3.1) are displayed,
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Figure 3.1: Function log(λ(t)) displayed for all possible cases of direction of λ(t).

depending on the signs of θ1 and θ2 as well as on the value of T . In case of the
changing direction rate function the inflexion point equals −θ1/2θ2.

One can note that by design of (3.2), λ̃(t) ≤ λ(t) on the interval (a, b], and
λ̃(t) has the form

λ̃(t) = exp{γ0 + γ1t}, γ1 ̸= 0, a < t ≤ b,

where γ0 and γ1 are chosen in the way that the mean number of events in (a, b],
µ̃ = Λ̃(a) − Λ̃(b), is largest possible. According to Lewis and Shedler [1979],
µ̃ is maximized by maximizing the area under λ̃(t) for a < t ≤ b. Geometric
considerations related to this problem are discussed in detail in Lewis and Shedler
[1979]. In this thesis we reckon only the final suggestions of the authors which
will be summarized in separate tables.
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The process {Ñ(t)} with rate λ̃(t) can be generated efficiently by Algo-
rithm 1 or 2 described in Section 3.3. Regarding the process {N⋆(t)}, Lewis and
Shedler [1979] consider the method of thinning for the simulation of this process.
This method has already been discussed in Section 3.2. Authors suggest to choose
the majorizing rate λ∗(t) according to λ∗(t) = λ∗, where λ∗ ≥ maxa<t≤b λ⋆(t), to
minimize the number of deleted points.

Let us now consider two separate simulation algorithms for the cases of the
rate function with change of direction and without. These algorithms can be then
summarized in the following steps:

Algorithm 1 (no change of the rate direction, i.e. cases (i)-(iv) in Figure 3.1)

1. Set γ0 and γ1 according to the corresponding case from Table 3.1. Set a = 0
and b = T .

2. Using one of the algorithms described in Section 3.3, simulate n arrival
times of the process {Ñ(t)} with rate function λ̃(t) = exp{γ0 + γ1t} on
(a, b] to obtain times

t′
1, t′

2, . . . , t′
n.

3. Set λ∗ according to

λ∗ ≥ max
a<t≤b

λ⋆(t) = max
a<t≤b

[
exp{θ0 + θ1t + θ2t

2} − exp{γ0 + γ1t}
]

.

4. Using the algorithm described in Section 3.2, simulate m events of the
process {N⋆(t)} with majorizing rate λ∗ on (a, b] to obtain times

t′′
1, t′′

2, . . . , t′′
m.

5. If n + m = 0, exit → there are no events in (0, T ].

6. If m = 0, return t′
1, t′

2, . . . , t′
n as the required arrival times and exit.

7. If n = 0, return t′′
1, t′′

2, . . . , t′′
m as the required arrival times and exit.

8. Otherwise, merge t′
1 ≤ t′

2 ≤ . . . ≤ t′
n and t′′

1 ≤ t′′
2 ≤ . . . ≤ t′′

m, order and
return as the required arrival times, then exit.

Table 3.1: Values of γ0 and γ1 for the rate without direction change

θ1 θ2 T γ0 γ1

(i) ≥ 0 > 0 – θ0 − θ2T
2 θ1 + 2θ2T

(ii) < 0 > 0 ≤ −θ1/2θ2 θ0 θ1
(iii) > 0 < 0 ≤ −θ1/2θ2 θ0 θ1 + θ2T
(iv) ≤ 0 < 0 – θ0 θ1 + θ2T

23



Algorithm 2 (change of the rate direction, i.e. cases (v)-(vi) in Figure 3.1)

First part, t from the interval (0, −θ1/2θ2]

1. Set γ0 and γ1 according to the corresponding case (v.1) or (vi.1) from Ta-
ble 3.2. Set a = 0 and b = −θ1/2θ2.

2. Using one of the algorithms described in Section 3.2, simulate n1 arrival
times of the process {Ñ(t)} with rate function λ̃(t) = exp{γ0 + γ1t} on
(a, b] to obtain times

t′
1, t′

2, . . . , t′
n1 .

3. Set λ∗ according to

λ∗ ≥ max
a<t≤b

λ⋆(t) = max
a<t≤b

[
exp{θ0 + θ1t + θ2t

2} − exp{γ0 + γ1t}
]

.

4. Using the algorithm described in Section 3.2, simulate m1 events of the
process {N⋆(t)} with majorizing rate λ∗ on (a, b] to obtain times

t′′
1, t′′

2, . . . , t′′
m1 .

Second part, t from the interval (−θ1/2θ2, T ]

5. Set γ0 and γ1 according to the corresponding case (v.2) or (vi.2) from Ta-
ble 3.2. Set a = −θ1/2θ2 and b = T .

6. Using one of the algorithms described in Section 3.2, simulate n2 arrival
times of the process {Ñ(t)} with rate function λ̃(t) = exp{γ0 + γ1t} on
(a, b] to obtain times

t′
n1+1, t′

n1+2, . . . , t′
n2 .

7. Set λ∗ according to

λ∗ ≥ max
a<t≤b

λ⋆(t) = max
a<t≤b

[
exp{θ0 + θ1t + θ2t

2} − exp{γ0 + γ1t}
]

.

8. Using the algorithm described in Section 3.2, simulate m2 events of the
process {N⋆(t)} with majorizing rate λ∗ on (a, b] to obtain times

t′′
m1+1, t′′

m1+2, . . . , t′′
m2 .

Merging part

9. If n = n1 + n2 = 0 and m = m1 + m2 = 0, exit → there are no events in
(0, T ].

10. If m = 0, return t′
1, t′

2, . . . , t′
n as the required arrival times and exit.

11. If n = 0, return t′′
1, t′′

2, . . . , t′′
m as the required arrival times and exit.

12. Otherwise, merge t′
1 ≤ t′

2 ≤ . . . ≤ t′
n and t′′

1 ≤ t′′
2 ≤ . . . ≤ t′′

m, order and
return as the required arrival times, then exit.
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Table 3.2: Values of γ0 and γ1 for the rate with direction change

θ1 θ2 γ0 γ1 t

(v.1) < 0 > 0 θ0 θ1 t ∈ (0, ≤ −θ1/2θ2]
(v.2) < 0 > 0 θ0 − θ2T

2 θ1 + 2θ2T t ∈ (−θ1/2θ2, T ]
(vi.1) > 0 < 0 θ0 θ1/2 t ∈ (0, ≤ −θ1/2θ2]
(vi.2) > 0 < 0 θ0 + (θ1/2)T (θ1/2) + θ2T t ∈ (−θ1/2θ2, T ]

3.5 Simulation of a NHPP with EPTMP rate
function

Now let us consider the rate function of EPTMP type. Its general description
along with the estimation of the parameters is described in detail in Section 2.2.
As soon as the final estimates of the rate function parameters are obtained, we can
proceed with the simulation of the events from the process. General algorithms
such as described in Sections 3.1 and 3.2 can be used. Kuhl et al. [1997] consider
the method of piecewise inversion.

Suppose that we are analysing a NHPP with rate function λ(t | θ) in the
fixed interval (0, T ] and that we have already obtained the final estimate θ̂ of
the parameter vector θ. Let us denote the rate function containing the final
parameter estimates by λ(t | θ̂). Then the distribution function of the arrival
time Ti+1 of the next event conditionally on the observed arrival time Ti = ti of
the previous event takes form

FTi+1 | Ti
(t | ti) ≡ P [Ti+1 ≤ t | Ti = ti] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − exp

⎧⎨⎩−
t∫

ti

λ(u | θ̂)du

⎫⎬⎭ , t ≥ ti,

0, otherwise.

This yields that in order to generate a value ti+1 of the variable Ti+1 given Ti = ti

we should generate a variable Ui+1 from the uniform distribution on (0, 1) and
compute

ti+1 = F −1
Ti+1 | Ti

(Ui+1 | ti),

or, equivalently, solve the equation

Ti+1∫
ti

λ(u | θ̂)du = − log(1 − Ui+1)

for Ti+1. Let us summarize the described procedure in the following algorithm.

1. Set s0 = 0, t0 = 0, i = 0.

2. Simulate a variable ui+1 from the uniform distribution on (0, 1).

3. Solve
si+1∫
ti

λ(u | θ̂)du = − log(1 − ui+1) for si+1.

4. If si+1 > T , go to step 6.
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5. Otherwise, set ti+1 = si+1 and i = i + 1. Go to step 2.

6. Return t1, t2, . . . , tn, where n = i, and also n.

Lee et al. [1991] consider also the method of piecewise thinning for simulation of
a NHPP with rate function of EPTMP type, see the article for more details.

26



4. Application to non-life
insurance data
In this chapter we are going to use the previously described methods to esti-
mate the number of claim payments for the data from non-life insurance. Only
exponential-polynomial models up to degree 2 are considered in the practical part
due to their multipurpose use and appealing properties. Higher degrees of the
polynomial are not considered due to complex estimation of the parameters as
well as further simulation of the estimated process. Moreover, we do not assume
any models with cycling components due to the lack of observations for judging
about periodicity. Even if one disregards that, the analysis of the plots of the
empirical autocorrelation function for different lags did not confirm presence of
any periodicity in the data as there were no peak points on the plots; the points
induced monotonic behavior. One could apply more sophisticated assumptions
on the rate function; however, in practice, this should be done in cooperation with
the claims department since they are able to provide useful information about
every questionable claim itself as well as its settlement.

4.1 Data description
The data were provided by Czech Insurers’ Bureau (CIB) and consist of incre-
mental claim payments and RBNS reserves (reserves for reported but not settled
claims) at 31.12.2015 for the claims occurred during years 2000 and 2015. The
claims correspond to MTPL (Motor Third Party Liability) line of business, which
is a part of non-life insurance business. These claims are handled by CIB due to
the fact that they were caused by uninsured drivers. In spite of MTPL insurance
is obligatory for any driver, there are still some without such policy. The purpose
of CIB is to assure that the victim of the accident is paid in time, as in many
cases payments for bodily injuries include expensive daily care, income loss as
well as pain and suffering. Naturally, most of the drivers cannot afford paying
such amounts to the victim in the short time interval.

CIB is itself financed by the insurers’ contributions which are obligatory by
the current legislation. Every Czech insurance company underwriting MTPL
business must become a member of CIB. If contributions are not enough to meet
the obligations of CIB, the organisation can request additional payments from
its members. Non-proportional reinsurance programs can be also used by CIB in
order to cover extreme claims. After the claim settlement or the potential court
decision, CIB enforces the claim payment from the driver guilty for the accident.

The data distinguish payments for material damage, bodily injury claims,
annuities (regular payments including loss of income and daily care), technical
costs, loss of income for legal entities (a very rare case in the data) and others,
where the claim type is specific (e.g. so called Green Card claims, representing
the claims caused by uninsured drivers from Czech Republic and which occurred
in the countries participating in the Greed Card System). For the purpose of
our research we consider annuity and bodily injury payments since these are
rather frequent and for that reason could be modeled by a NHPP. Moreover,
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only claims for which either cumulative payments or RBNS at 31.12.2015 exceed
1 million CZK are considered for maximum likelihood method to estimate the
rate function parameters. Such limitation is due to the fact that we want to
model relatively large claims, where either previous number of payments or the
expected one is substantial because of a large amount to be paid out to the victim.

The considered annuity claims consist of 139 observations which occurred
during years 2000 to 2015. As for the bodily injury claims, we have 168 claims
meeting our requirements, also from years 2000 to 2015. Histograms of numbers
of payments for both claim types can be found in Figure 4.1. One can notice
that most of the annuity claims have up to 13 payments, majority of the bodily
injury claims, on the contrary, up to 5 payments. This may be caused by dif-
ferent occurrence years of the claims – for older claims we have longer history of
payments. Nevertheless, it is not always the case – some of the newer claims have
already much more payments than the majority of the claims. The difference
in payments between the annuity and bodily injury claims is natural since the
annuity claims by their definition result in more payments than the bodily injury
claims.
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Figure 4.1: Histogram of the numbers of payments for the annuities and bodily
injury claims.

Boxplot of both types of claims can be found in Figure 4.2. We can conclude
that the bodily injury claims have in general less payments than the annuities
which is natural due to the reasons described above. Median, 25%- and 75%-
quantiles as well as maximum are lower for the bodily injury claims. We can arrive
at the same conclusion by looking at Table 4.1 containing descriptive statistics
for both claim types. Annuities have higher standard deviation meaning higher
volatility in the numbers of payments. For convenience we use rounding up to
one decimal point in the following table, despite that later we consider rounding
up to two decimal points due to the better differentiation of the data.

Table 4.1: Descriptive statistics of the numbers of payments for the annuities and
bodily injury claims.

Min. Max. Mean 25% q. Med. 75% q. Std. d.
Annuities 1.0 41.0 14.1 7.0 12.0 19.0 8.6
Bodily injury 1.0 26.0 5.4 2.0 4.0 8.0 4.5

We can also examine delays in the first payment for both claim types, meaning
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Figure 4.2: Boxplot of the numbers of payments for the annuities and bodily injury
claims.

the number of days passed since a claim was reported until the moment of the
first payment on this claim. From the boxplot of delays depicted in Figure 4.3
we can observe that the minimum and maximum delays are roughly the same for
both claim types. Quantiles are lower for the bodily injuries. One can notice that
the box of the annuity claims is wider which gives evidence for higher volatility in
the delays of the annuity payments. This may be caused by the fact that annuity
claims are often related to the victim’s disability which implies more complex and
time-consuming claim settlement.
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Figure 4.3: Boxplot of the delays in the first payment for the annuities and bodily
injury claims.

4.2 Parameter estimation
Due to the claim origin we can assume independence of the moments of payments
for different claims. Nevertheless, annuity and bodily injury claims should be
analysed separately because of their different behavior. Our log-likelihood func-
tion is then constructed as the sum of log-likelihood functions of each claim owing
to the previously mentioned assumption of independence. The function from ex-
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pression (2.1) then corresponds to the log-likelihood function of each claim; the
combined log-likelihood function then takes the following form:

ℓ(t̃, N | θ) =
m∑

i=1

ni∑
j=1

log λ(tj | θ) −
m∑

i=1

⎡⎣ Ti∫
0

λ(u | θ)du

⎤⎦ ,

where t̃ = (t1
1, . . . , t1

n1 , t2
1, . . . , t2

n2 , . . . , tm
1 , . . . , tm

nm
) stands for the combined

times to payments of all claims, m is the overall number of the analysed claims and
N = n1 + . . . + nm is the overall number of payments occurred. The claim report
date is selected as the starting-point for evaluating times to payments since it is
the moment from which we start observing the claim; in the likelihood function
the starting-point then equals 0. Finally, Ti corresponds to the time from the
claim report date until 31.12.2015, i.e. until the last day of observing the claims.
Time differences are calculated in days. Nevertheless, to simplifying further work
with the data, we select a year with 365 days as the time unit.

We firstly estimate the parameters of log linear rate function as well as con-
stant rate separately for the annuity and bodily injury claims. For this purposes
we consider version 11.1 of the software Mathematica developed by Wolfram Re-
search, Inc. [2017]. We choose this software due to several reasons. Firstly, it
is convenient for working with databases and we have a set of claims, each con-
taining times of payments, and the number of payments differs within each claim
record. Secondly, it provides a lot of efficient numerical methods for maximizing
more complex functions. The function NMaximize is used in order to numeri-
cally maximize the log-likelihood for both cases. This function also returns the
maximized value of the log-likelihood.

After obtaining the estimates we have to check whether the FIM is positive in
each estimate. Considering the homogeneous case as well as the case of parameter
θ0 in the log linear model, the FIM is always positive in these points due to the
way of construction of the log-likelihood function. The homogeneous case is
straightforward; as for the second case, if we take the derivative of expression 2.5,
we can see that it is always negative, implying that the FIM is always positive.
That means we have to check for positiveness of the FIM in each estimate of the
parameter θ1 according to expression (2.3).

Finally, the likelihood ratio test (or, alternatively, the test statistic consid-
ered in expression 2.4) should be performed to determine whether parameter θ1
representing the non-homogeneity can be set to 0. We want to test the null
hypothesis

H0 : θ1 = 0, or, equivalently, λ(t) = θ ≡ const.

against the alternative

H0 : θ1 ̸= 0, or, equivalently, λ(t) = exp {θ0 + θ1t} .

The test statistic is of the following form

S = 2 ·
[
ℓ

(
t̃, N | θ̂0, θ̂1

)
− ℓ

(
t̃, N | θ̂

)]
, (4.1)

where θ̂0 and θ̂1 are the estimates of the rate function parameters in log linear
model, θ̂ is the estimate of the rate in the homogeneous model. S follows the
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χ2
1 distribution under the null hypothesis. The null hypothesis is then rejected if

S > χ2
1(1 − α), where χ2

1(1 − α) is (1 − α)-quantile of χ2
1 distribution, and α is

the considered level of significance. We have the χ2 distribution with 1 degree of
freedom due to the fact that the alternative model has only one more parameter
than the null model. From now on, we consider α to be 5 %.

For both annuity and bodily injury claims the FIM is positive in the points
of the estimates and the likelihood ratio is significantly larger than 3.84 which is
approximately the 95%-quantile of the χ2

1 distribution. We received S equal to
310.29 for annuity claims and 647.94 for bodily injury claims which implies that
we reject the hypothesis of homogeneity of the processes.

Next, we shall perform the same steps for log quadratic rate function.
The likelihood-ratio test again speaks in favor of the more complex model –
we arrived at S equal to 72.88 for the annuity model and 49.59 for the bodily
injury model. The summarized results which include parameter estimates and
their estimated standard deviation calculated as ŝd(θ̂i) =

√
I−1(θ̂i), can be found

in Table 4.2. One can note that the estimated standard deviations are relatively
low; this is caused by the fact that, firstly, the values of the parameter esti-
mates themselves are not high and, secondly, by having the substantial number
of payments accomplished.

Table 4.2: Estimates of the parameters of log quadratic rate function as well as
their estimated standard deviation.

Annuity claims

θ̂i ŝd(θ̂i)
θ0 0.83 0.02
θ1 0.08 0.01
θ2 -0.02 < 0.01

BI claims

θ̂i ŝd(θ̂i)
θ0 1.23 0.03
θ1 -0.64 0.01
θ2 0.03 < 0.01

In conclusion, we consider log quadratic rate model as the final one for both
annuity and bodily injury claims. It is essential to note that other approaches to
grouping claims for the parameter estimation could be applied, e.g. grouping of
claims by year, which means assuming a different process of payments for each
year. Choice of the correct approach depends on the data origin; as for MTPL
claims on uninsured drivers, they are rather standardized within the years as
they do not depend e.g. on the tariff or limit policy of an insurance company.
Moreover, MTPL business is mainly coordinated by the legislation of the country
where the claim occurred. Only changes in the legislation may possibly cause
the difference in payments between different years. For instance, there can be
a switch from annuities to lump sums, when the claim is settled in a single
payment containing the sum of estimated discounted future payments, as it is in
the Italian market. Since we aim mainly to demonstrate the use of the methods,
we assume no difference in payments within the years.

4.3 Simulation
In this part we focus on application of the simulation methods described in Chap-
ter 3. We are going to use RStudio environment (developed by RStudio Team

31



[2017], version 1.0.143) of the software R (version 3.4.0) developed by R Core
Team [2017] to demonstrate the methods since it is available free of charge for
any user. Nevertheless, the considered algorithm can be basically implemented
in any software which provides random variable generators.

We consider 10 annuity and 10 bodily injury claims with the highest values of
the RBNS reserve at 31.12.2015. These values in CZK can be found in Table 4.3,
where we do not use decimal points as there are no such in the provided data.
The reason these claims are interesting for analysis is that there is substantial
future uncertainty due to extremely high (considering the Czech market) expected
recoveries.

Table 4.3: 10 largest annuity and bodily injury claims by RBNS at 31.12.2015.

Annuity claims

Claim RBNS at
31.12.2015

#1 A 28 954 770
#2 A 22 458 408
#3 A 21 926 000
#4 A 20 165 000
#5 A 17 182 000
#6 A 17 075 000
#7 A 16 005 000
#8 A 15 000 000
#9 A 13 400 000
#10 A 12 912 000

BI claims

Claim RBNS at
31.12.2015

#1 BI 10 091 099
#2 BI 9 950 000
#3 BI 9 281 500
#4 BI 9 075 000
#5 BI 8 568 313
#6 BI 8 165 000
#7 BI 6 327 735
#8 BI 6 080 000
#9 BI 4 134 000
#10 BI 4 021 603

We are going to simulate instants of payments during the year 2016, i.e. the
simulation should be in the interval (Ti, Ti + 1], where Ti corresponds to the
time from the claim report date until 31.12.2015 divided by 365. Therefore, the
simulation methods should be slightly modified – the starting-point no longer
equals 0. The source code of the algorithms can be found in the Attachment of
this thesis.

Now let us compare all described methods with respect to their time efficiency
and ease of their implementation. Each of the methods has been firstly tested
on a set of claims, where we considered a separate process with log linear rate
for each claim. 10 000 simulations of the year 2016 payments were performed for
each claim. The average number of payments per year was then compared to the
theoretical value ∆ = Λ(Ti + 1) − Λ(Ti) which was calculated based on the values
of the estimated parameters.

4.3.1 Comparison of the methods
Time-scale transformation
(Section 3.1 of Chapter 3)

This method is very easy to implement; however, in case of not strictly monotone
rate function where the inverse function is not defined explicitly, simulation took
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up to 5 times longer than for the other methods. Due to the fact that even for
log linear rate the simulation time was extremely high, we are not going to use
this method for the final simulations – we have much more efficient methods at
our disposal. Nevertheless, the method is accurate because the deviation of the
simulated average numbers of payments from the theoretical ones is rather minor.

Thinning
(Section 3.2 of Chapter 3)

The thinning method is easy to implement if one chooses λ∗(t) according to
λ∗(t) = λ∗, where λ∗ ≥ max0≤t≤T λ(t). We used the same logic as well since
a homogeneous process is easy to simulate, and finding the maximum of the rate
function is not that time-consuming. The method appeared to be time efficient
as well as accurate by means of the deviation from the theoretical average.

Direct simulation of processes with log linear rate function
(Section 3.3 of Chapter 3)

The method turned out to be very efficient for simulating a process with log
linear rate function. 10 000 simulations took roughly 2 times less than in case of
thinning. The method is accurate as well. We consider it the best solution for
a process with log linear rate function.

Gap statistics for processes with log linear rate function
(Section 3.3 of Chapter 3)

Time efficiency of this method is roughly the same as in case of the direct sim-
ulation, but it is not as easy to implement. Nevertheless, this method was not
accurate when the theoretical expected number of events was less than or very
close to 1. The deviations for higher expected numbers of events were small (up
to 10 %); however, in the first case they could be e.g. even 300 %. For that reason
we are not going to consider this method for the final simulations since in many
cases the simulated averages should be less than 1. This also implies that we
prefer to use the direct simulation for the algorithm designed for log quadratic
rate functions.

Simulation of processes with log quadratic rate function
(Section 3.4 of Chapter 3)

This method was the most complex in terms of its implementation since one has
to allow for several different cases of the direction of the rate function as well
as time interval (Ti, Ti + 1]. The method appeared to be accurate. However, it
is less time efficient comparing to the method of thinning for processes with log
quadratic rate – it was roughly 15 % slower. Due to this fact the method of
thinning is considered to be the most appealing and time-efficient algorithm for
simulating NHPPs. Moreover, it is very easy to handle in any software.
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4.3.2 Final simulations
Considering the final simulations, we performed 10 000 simulations of the year
2016 payments for the thinning method and the method for log quadratic rates
for each of the claims considered above, taking into account the final parameter
estimates of the log quadratic rate function along with the values of Ti. We point
out that in practice some actuarial softwares use two-step simulation, when the
value of the parameter itself is firstly simulated considering also its estimated
standard deviation. Then we continue with the simulation algorithm using the
generated values of the parameters. In this thesis we do not take into account
the parameters’ standard deviations.

The output contains 10 000 developments of the year 2016 payments for each
method for 10 annuity and 10 bodily injury claims. The payment time instants
themselves can be used in the combined model for tariff setting in order to cal-
culate the discounted cashflows if the simulation comprises more years. In this
practical part we focus only on the number of payments during the year 2016.

In Tables 4.4, 4.5, 4.6 and 4.7 we show the descriptive statistics of the simu-
lated numbers of payments along with their deviations from the theoretical ex-
pected numbers of payments. Note that we use rounding up to 2 decimal points
only for the means, deviations and standard deviations for better visual repre-
sentation of the numbers, since other statistics do not contain the decimal part.
We can note that the deviations are rather small in all cases. Both sum of the
squared deviations and the standard deviations are roughly the same for both
methods. We conclude that the method of thinning is more preferable due to its
multipurpose use, simple implementation and time efficiency.

Table 4.4: Descriptive statistics of the numbers of payments for the annuities
simulated using the thinning method (Section 3.2, Chapter 3).

Min. Max. 25% Med. 75% Mean ∆ Std.
q. q. d.

#1 A 0 5 0 0 1 0.61 -1.59% 0.79
#2 A 0 6 0 1 1 0.88 -0.32% 0.94
#3 A 0 6 0 1 1 0.76 0.44% 0.88
#4 A 0 8 0 1 2 1.25 -0.12% 1.12
#5 A 0 10 1 2 3 1.97 -0.93% 1.42
#6 A 0 8 1 2 3 1.99 1.42% 1.41
#7 A 0 7 0 1 1 0.96 1.11% 0.99
#8 A 0 6 0 1 1 0.78 -0.70% 0.88
#9 A 0 11 1 2 3 2.40 -0.51% 1.53
#10 A 0 10 1 2 3 2.21 -0.73% 1.49
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Table 4.5: Descriptive statistics of the numbers of payments for the annuities
simulated using the method for degree-two exponential polynomial rate functions
(Section 3.4, Chapter 3).

Min. Max. 25% Med. 75% Mean ∆ Std.
q. q. d.

#1 A 0 6 0 0 1 0.63 0.84% 0.80
#2 A 0 7 0 1 1 0.89 0.27% 0.96
#3 A 0 6 0 1 1 0.77 1.68% 0.88
#4 A 0 7 0 1 2 1.25 0.44% 1.12
#5 A 0 10 1 2 3 1.99 -0.10% 1.42
#6 A 0 9 1 2 3 1.97 0.14% 1.40
#7 A 0 6 0 1 1 0.95 0.14% 0.98
#8 A 0 5 0 1 1 0.78 -0.45% 0.88
#9 A 0 10 1 2 3 2.43 0.43% 1.53
#10 A 0 10 1 2 3 2.22 -0.17% 1.50

Table 4.6: Descriptive statistics of the numbers of payments for the bodily injury
claims simulated using the thinning method (Section 3.2, Chapter 3).

Min. Max. 25% Med. 75% Mean ∆ Std.
q. q. d.

#1 BI 0 4 0 0 0 0.18 2.32% 0.43
#2 BI 0 7 0 1 2 1.31 -0.95% 1.15
#3 BI 0 7 0 1 2 1.31 1.37% 1.15
#4 BI 0 5 0 0 1 0.39 0.54% 0.62
#5 BI 0 6 0 0 1 0.53 -1.86% 0.74
#6 BI 0 7 0 1 2 1.09 1.33% 1.05
#7 BI 0 7 0 1 2 1.31 2.28% 1.15
#8 BI 0 6 0 1 2 1.23 0.31% 1.10
#9 BI 0 9 1 2 3 1.93 0.45% 1.38
#10 BI 0 6 0 1 1 0.81 -1.27% 0.89

Table 4.7: Descriptive statistics of the numbers of payments for the bodily in-
jury claims simulated using the method for degree-two exponential polynomial rate
functions (Section 3.4, Chapter 3).

Min. Max. 25% Med. 75% Mean ∆ Std.
q. q. d.

#1 BI 0 3 0 0 0 0.18 3.73% 0.43
#2 BI 0 8 0 1 2 1.32 -0.66% 1.15
#3 BI 0 8 0 1 2 1.29 -0.12% 1.15
#4 BI 0 4 0 0 1 0.39 -0.06% 0.62
#5 BI 0 5 0 0 1 0.53 -2.42% 0.72
#6 BI 0 7 0 1 2 1.08 0.43% 1.04
#7 BI 0 7 0 1 2 1.27 -0.99% 1.14
#8 BI 0 7 0 1 2 1.23 0.71% 1.12
#9 BI 0 10 1 2 3 1.92 0.17% 1.37
#10 BI 0 5 0 1 1 0.81 -0.20% 0.89
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Conclusion
The purpose of this thesis was to summarize the main properties of a NHPP
and describe the widely used estimation and simulation methods together with
demonstration of their use on real data.

In Chapter 1 we presented the main properties of NHPPs. Furthermore, we
discussed the method to simplify the work with a NHPP using a HPP. In addition,
we derived the conditional distribution of arrival times, which was of much use
while describing the simulation procedures.

Chapter 2 focused on the general description of the maximum likelihood
method adapted for a NHPP. Moreover, we discussed the uniqueness of the esti-
mate along with its asymptotic properties. Finally, we presented a special case
of log linear rate function, where we described the estimation procedure in more
detail.

In Chapter 3 we discussed two general methods for simulation of a NHPP —
the time-scale transformation technique and the method of thinning. Afterwards,
we discussed the methods designed specially for log linear and log quadratic rate
functions. All of the methods were compared with respect to their theoretical
time efficiency.

Chapter 4 presents another aim of this thesis — application of the discussed
estimation and simulation methods on real data. As NHPPs can be widely used
in actuarial practice, we used the real data from non-life insurance. The data
contain payments and RBNS until the year 2015 for MTPL claims caused by
uninsured drivers from the Czech Republic. The data were provided by Czech
Insurers’ Bureau which manages such claims.

We performed the analysis of the data along with their grouping by annuity
and bodily injury claims. In the next step we estimated the parameters of con-
stant, log linear and log quadratic rate functions and selected the most suitable
model by conducting the likelihood ratio test. Then the simulation methods were
tested on a set of claims, where we assumed a separate process for each claim. Af-
ter that, the methods were compared with respect to their real time efficiency and
accuracy of the simulations. Time-scale transformation method appeared to be
time-inefficient and for that reason it was not considered in the final simulations.
The method for log linear rate functions based on gap statistics was inaccurate
for low expected numbers of payments. Therefore, it was not considered in the
final simulations as well.

Finally, we chose 10 largest annuity and bodily injury claims by their RBNS
value at the end of the observation period. These claims are interesting for
analysis since they are not expected to be settled in the short time interval.
We performed 10 000 simulations of the year 2016 payment instants for each
claim using all considered methods. Then we compared the simulated average
numbers of payments to the theoretical ones.

There are still a lot of possibilities for research in the field of NHPPs, since
most of the articles used in the thesis are from 1970-1990s, when there was no
powerful software to test the efficiency of the simulation methods properly. Now
software is much more functional; therefore, more sophisticated simulation meth-
ods could be designed.
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R source code of the simulation
algorithms
Time-scale transformation

Both starting point and endpoint of the desired simulation interval together with
expectation function µ(t) ≡ Λ(t) − Λ(0) should be provided. The algorithm
returns 0 in the case of no events, and the arrival times otherwise.

simulation_Time_Scale <- function(t0,t_max,Lambda){

Lambda_inv <- function(s){
v <- seq(t0,t_max, length.out = 1000)
min(v[Vectorize(Lambda)(v)>=s])

}

t1 <- Lambda(t0)
lt_max<-Lambda(t_max)
t<-0
s <- 0
X <- numeric()

while(t1 <= lt_max){
u <- runif(1)
s <- -log(1-u)
t1 <- t1+s
if (t1>lt_max) {

break
}

t<-Lambda_inv(t1)
X <- c( X, t)

}
if (length(X)>0) {

return(X)
} else {

0
}

}

Thinning

Both starting point and endpoint of the desired simulation interval together with
rate function λ(t) should be provided. The algorithm returns 0 in the case of no
events, and the arrival times otherwise.

simulation_Thinning <- function(t0,t_max,lambda){

t1<-t0
lambda_star <- max(sapply(seq(t0, t_max,length.out=1000), lambda))
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X <- numeric()

while(t1 <= t_max){
e<-rexp(1,lambda_star)
u <- runif(1)
t1<-t1+e
if (t1>t_max) {

break
}
if(u < lambda(t1)/lambda_star) {

X <- c(X,t1)
}

}
if (length(X)>0) {

return(X)
} else {

return(0)
}

}

Direct simulation of a NHPP with log linear rate

Both starting point and endpoint of the desired simulation interval along with
the parameters θ0 and θ1 of the rate function should be provided. The algorithm
returns 0 in the case of no events, and the arrival times otherwise.

simulation_Log_Linear_1 <- function(par1,par2,t0,t_max){

lpoiss<-exp(par1)*(exp(par2*t_max)-exp(par2*t0))/par2
inv<-function(u) {

log(exp(par2*t0)+u*(exp(par2*t_max)-exp(par2*t0)))/par2
}
X <- numeric()
p<-rpois(1,lpoiss)

if (p>0) {
for (i in 1:p) {

u <- runif(1)
t<-inv(u)
X<-c(X,t)

}
if (length(X)>0) {
return(sort(X,decreasing=FALSE))
} else {

return(0)
}
} else {

return(0)
}

}
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Gap statistics for a NHPP with log linear rate

Both starting point and endpoint of the desired simulation interval along with
the parameters θ0 and θ1 of the rate function should be provided. The algorithm
returns 0 in the case of no events, and the arrival times otherwise.

simulation_Log_Linear_2 <- function(par1,par2,t0,t_max){

e<-0
X <- numeric()

if (par2<0) {
t<-0
lpoiss<- -exp(par1)/par2
m<-rpois(1,lpoiss)

if (m>0) {
for (i in 0:m-1) {

e <- rexp(1,1)
if (t+e/(-par2*(m-i))>1) {

break
}
t<-t+e/(-par2*(m-i))+t0
X<-c(X,t)

}
if (length(X)>0) {

return(X)
} else {

0
}

} else {
0

}
} else {

lpoiss<- exp(par1+par2*t_max)/par2
m<-rpois(1,lpoiss)
t1<-0

if (m>0) {
for (i in 0:m-1) {

e <- rexp(1,1)
if (t1+e/(par2*(m-i))>1) {

break
}
t1<-t1+e/(par2*(m-i))
X<-c(X,t1)

}
if (length(X)>0) {

Ts<-rep(t_max,ct)
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return(Ts-rev(X))
} else {

0
}

} else {
0
}

}
}

Simulation of a NHPP with log-quadratic rate function

Both starting point and endpoint of the desired simulation interval along with the
parameters θ0, θ1 and θ2 of the rate function should be provided. The algorithm
returns 0 for each part of the algorithms in the case of no events, and the merged
arrival times otherwise. Zero values can be further deleted during the simulation
process.

simulation_Log_Quadratic <- function(par1,par2,par3,tStart,tEnd){

gamma0<-0
gamma1<-0
res<-0
t0<-tStart
t_max <- tEnd
crit<- -par2/(2*par3)

’check whether it is case (i)-(iv)’

if ((t_max<crit)|(par2*par3>0)) {
if (par2>0) {

if (par3>0) {

’case (i)’

gamma0<-par1-par3*(tStart+1)ˆ2
gamma1<-par2+2*(tStart+1)*par3

} else {

’case (iii)’

gamma0<-par1
gamma1<-par2+(tStart+1)*par3

}
} else {

if (par3<0) {

’case (iv)’
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gamma0<-par1
gamma1<-par2+(tStart+1)*par3

} else {

’case (ii)’

gamma0<-par1
gamma1<-par2

}
}
lambda2<-function(u) {

exp(par1+par2*u+par3*uˆ2)-exp(gamma0+gamma1*u)
}
t0<-tStart
t_max <- tEnd
x<-simulation_Log_Linear_1(gamma0,gamma1,t0,t_max)
y<-simulation_Thinning(lambda2,t0,t_max)
return(sort(c(x,y),decreasing=FALSE))

} else {
’check whether it is case (iv) or (v) but with the
starting point larger than the inflexion point -
there is no rate direction change in such a simulated interval’

if (t0>crit) {
if (par2<0) {

’case (v.2)’

gamma0<-par1-par3*(tStart+1)ˆ2
gamma1<-par2+2*(tStart+1)*par3

} else {

’case (vi.2)’

gamma0<-par1+(par2/2)*(tStart+1)
gamma1<-(par2/2)+par3*(tStart+1)

}

lambda2<-function(u) {
exp(par1+par2*u+par3*uˆ2)-exp(gamma0+gamma1*u)

}
t0<-tStart
t_max <- tEnd
x<-simulation_Log_Linear_1(gamma0,gamma1,t0,t_max)
y<-simulation_Thinning(lambda2,t0,t_max)
return(sort(c(x,y),decreasing=FALSE))

} else {
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’we have to take into account the change of the direction of
the rate function’

’part 1 - simulation before the inflexion point of the rate
function’

if (par2<0) {

’case (v.1)’
gamma0<-par1
gamma1<-par2

} else {

’case (vi.1)’
gamma0<-par1
gamma1<-par2/2

}
lambda2<-function(u) {

exp(par1+par2*u+par3*uˆ2)-exp(gamma0+gamma1*u)
}
t0<-tStart
t_max<--par2/(2*par3)
x1<-simulation_Log_Linear_1(gamma0,gamma1,t0,t_max)
y1<-simulation_Thinning(lambda2,t0,t_max)

’part 2 - simulation after the inflexion point of the rate
function’

if (par2<0) {

’case (v.2)’
gamma0<-par1-par3*(tStart+1)ˆ2
gamma1<-par2+2*(tStart+1)*par3

} else {

’case (vi.2)’
gamma0<-par1+(par2/2)*(tStart+1)
gamma1<-(par2/2)+par3*(tStart+1)

}
lambda2<-function(u) {

exp(par1+par2*u+par3*uˆ2)-exp(gamma0+gamma1*u)
}
t0<--par2/(2*par3)
t_max<-tStart+1
x2<-simulation_Log_linear_1(gamma0,gamma1,t0,t_max)
y2<-simulation_Thinning_1(lambda2,t0,t_max)
return(sort(c(x1,x2,y1,y2),decreasing=FALSE))

}
}

}
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