
BACHELOR THESIS

Marcel Hruška

Modern approach to user interfaces
for e-mail

Department of Software Engineering

Supervisor of the bachelor thesis: Mgr. Miroslav Kratochvíl
Study programme: Computer Science

Study branch: Programming and Software Systems

Prague 2018

I declare that I carried out this bachelor thesis independently, and only with
the cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the
Act No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact
that the Charles University has the right to conclude a license agreement on
the use of this work as a school work pursuant to Section 60 subsection 1 of
the Copyright Act.

In date signature of the author

i

ii

I would like to express my sincere gratitude to my supervisor, Mgr. Miroslav
Kratochvíl, for all the patience, help and advice he has given to me.

I want to thank my girlfriend, my family and my friends for their constant
support, especially during the last half year.

I also want to thank the staff of VSHosting.cz for providing the server
hosting space.

iii

iv

Title: Modern approach to user interfaces
for e-mail

Author: Marcel Hruška

Department: Department of Software Engineering

Supervisor: Mgr. Miroslav Kratochvíl, Department of Software Engineering

Abstract: Webmails are indisposable interfaces for working with the e-mail on
the current Internet, mostly because of the simplicity of their deployment in
browsers and easy integration with many provider-specific features. The most
important features that are partially or fully missing in current open-source
webmail implementations include directory-less mail organization by tags,
navigation driven by a high-performance full-text search, and integration of
time-management capabilities. This thesis describes a new open-source alter-
native to advanced commercial webmails that possesses these features. The
software integrates full-text search capabilities of the ElasticSearch database
with current e-mail processing infrastructure on UNIX systems to create
a back-end server application, which is used by a Javascript-based browser
front-end. The performance of the solution is tested on a large e-mail dataset.

Keywords: key words electronic mail, full-text search, databases

v

vi

Contents

Introduction 3

1 Electronic mail processing 7
1.1 History . 7
1.2 Message Format . 8

1.2.1 Header . 8
1.2.2 Body . 9

1.3 Message exchange . 11
1.3.1 E-mail Agents . 11
1.3.2 E-mail protocols . 13

1.4 End-user interfaces . 16
1.4.1 Desktop clients . 16
1.4.2 Web based clients . 16
1.4.3 Mobile clients . 17

2 Text search 19
2.1 Text analysis . 20

2.1.1 Mapping . 21
2.2 Indexing and inverted indexes 22

2.2.1 Construction of inverted index 24
2.2.2 Structure of the inverted index 24
2.2.3 Segmentation . 26

2.3 Query structure . 27
2.3.1 Relevance and effectiveness 30
2.3.2 Phrase query . 31

2.4 Search engines . 32
2.4.1 Comparison with relational indexing methods 32
2.4.2 Web search engines . 33
2.4.3 ElasticSearch . 35

2.5 Application to mail indexing 37

3 Implementation 39
3.1 Backend . 39

3.1.1 Data storage . 39
3.1.2 API . 40

3.2 Frontend . 45
3.2.1 Communication with the server 45

1

4 Results 47
4.1 Benchmark setup . 47
4.2 Benchmark results . 47

Conclusion 49
4.3 Future work . 49

Bibliography 51

A User Guide 53
A.1 Interface interaction . 53
A.2 Server configuration . 55

2

Introduction
E-mail is an indisposable communication medium of the current Internet.
Even though the concept of e-mail was developed a long time ago, it still
dominates many areas of the communication, especially in commercial and
governmental environments. In these days, almost every Internet user has at
least one e-mail account.

There is a vast amount of software that was developed for supporting the
e-mail communication: various mail exchange agents and mail servers take
care of the message transfer among users’ mailboxes, and various interfaces
that are supposed to simplify the e-mail handling for the end-users.

This thesis concerns the end-user interfaces. Currently, the most popular
and user-friendly e-mail interfaces are those based on web technologies (ac-
cessible via browsers), and those implemented as mobile applications. These
are followed by desktop, command-line and various specialized clients. The
progress of their popularity throughout last years is compared in Figure 11.
The popularity of the web-based and mobile clients is caused mainly by
the simplicity of their deployment (no complicated configuration is usually
required for their use) and the integration of many vendor-specific improve-
ments, like search services, inter-device sharing or high availability of the
service.

Despite the advantages of such interfaces, many users are forced to use
less advanced solutions due to various limitations: For example, a company
may choose not to submit confidential communication to its e-mail provider.
Similarly, a single user may wish to process his e-mail communication locally,
to avoid the issues with connectivity or provider reliability.

Such users usually deploy open-source solutions which effectively solve
both the problem of vendor trust (because the software can be audited easily)
and local maintainability. On the other hand, the numerous useful features
(such as high-performance full-text search) and the mentioned vendor-specific
improvements are typically missing in the open-source solutions.

This thesis is motivated by the concept of e-mail handling that was in-
troduced by Google for Gmail and subsequently improved by Google Inbox.
The approach completely replaces the handling of mail folders for mail or-
ganization by a more flexible use of customizable tags, and makes heavy use
of Google’s full-text search facilities. Open-source solutions that would im-
plement a decent alternative to Google Inbox are, to the best of author’s
knowledge, currently missing. On the other hand, recent open-source de-

1https://litmus.com/blog/2016-email-client-market-share-infographic

3

Figure 1: Comparison of popularity progress of different categories of e-mail
clients

velopments have created several search engines and databases that can be
used to support the underlying storage and search capabilities. Therefore,
development of the alternative is possible by connecting this functionality to
e-mail processing infrastructure and providing a matching modern interface
for the end-user.

The goal of this thesis is to create this alternative. The specific aims
include the following:

• high speed search for Google-like queries in large amounts of e-mails,
including the tag functionality

• integration with the e-mail processing infrastructure — receiving, pars-
ing, formatting and sending of e-mails

• storing the e-mails in a reliable database

• support for multiple users and account management

• web-based user interface comparable to modern commercial solutions,
using modern UI toolkits and frameworks to promote extensibility

The resulting open-source software package is called KamehaMail. It is pos-
sible to run KamehaMail on any modern UNIX operating system with a
modern working mail server (including exim or postfix). The search func-
tionality is provided by open-source search-engine database ElasticSearch.

4

This thesis is structured as follows: Chapter 1 describes the processing
of e-mail messages and related Internet infrastructure. Chapter 2 details
the functionality of full-text search databases and their deployment in the
real environments. Chapter 3 describes the implementation of KamehaMail,
including the implementation of the backend (server part) and browser-based
frontend. Performance of the resulting software is briefly benchmarked in
Chapter 4. After conclusion, a short installation and user guide is provided
in Appendix A.

Related Work and Software. There exist a great amount of open-source
web-based e-mail interfaces, such as squirrelmail, roundcube, rainloop, mail-
spring or notmuch-web. Most of them support full-text search using IMAP
search or other own means. Yet, the handling of the e-mails as its done by
Google Inbox is on whole different level on both end-user’s side and the func-
tional side. KamehaMail is trying to be as close as possible to the commercial
interfaces while implementing open-source tools.

5

6

1. Electronic mail processing
E-mail or Electronic mail is a mean for sending and receiving messages be-
tween two users on the internet. To process an e-mail, it is necessary to
understand the format of e-mail message as defined by multiple RFCs (Re-
quest for Comments). Generally, an e-mail is a text document separated
into a header and a body. The header contains meta-information about the
e-mail, the body contains the actual message. Encoding of the messages is
further explained in the subsection 1.2.1.

This chapter describes the important parts of the format for the process-
ing of an e-mail message as defined by RFC 5322 [PR08], the protocols that
define the e-mail communication (SMTP, IMAP and POP), and the transfer
agents that make use of these protocols and ensure the communication.

1.1 History
First use of electronic messages as a form of communication can be traced
back to early 1960s1. Using the Compatible Time-Sharing System, hundreds
of users at the MIT Computation Center could log into the remote dial-up
terminals to store their files. This way of sharing data encouraged new ways
of communication to be invented. The mail command for the CTSS was
written in the 1965 to work with e-mail within a single computer.

Ray Tomlinson is considered to be the creator of the e-mail: He was the
first one to use the symbol @ for denoting a message to be sent between the
computers on ARPANET in 1972. Since then, ARPANET encouraged the
usage of e-mails which quickly became widespread. Soon after, the protocols
and tools for the foldering and e-mail organization were invented.

Historically, one of the most important e-mail standards is Simple Mes-
sage Transfer Protocol (SMTP), defined in the 1982. Starting as a comple-
ment to the already existing Unix to Unix Copy Program (UUCP), SMTP
soon started to be widely used. Nowadays, majority of the e-mail commu-
nication is done via SMTP. Nevertheless, the protocol is designed only for
the message-pushing transfers. Additional protocols are required to support
other use-cases.

Post Office Protocol (shortly POP) appeared in the 1984. It was an
important standard as it stated the rules of an e-mail message retrieval to
personal computers, which consequently helped to standardize the commu-
nication between the user and the mail server. Nowadays, the most used

1http://www.nethistory.info/History%20of%20the%20Internet/email.html

7

internet protocols for e-mail communication are POP3, IMAP and SMTP,
further discussed in section 1.3.2 and section 1.3.2.

1.2 Message Format
Multiple standards defining the e-mail message format were created through-
out the years. Probably the most important one was defined by RFC 822, as
it was the first protocol standardizing the e-mail message format. 20 years
after being published, it was replaced by RFC 2822 in the 2005 which was
later obsoleted in the 2008 by RFC 5322. The following sections summarize
the current e-mail format standard, defined by RFC 5322 [PR08].

E-mail message, as defined by RFC 5322, is split into two major parts,
the header and the body.

1.2.1 Header
The header is composed of fields that contain meta-information about the
e-mail (e.g. subject of the message, sender of the message. . .). Field is a pair
of two text values separated by a colon:

field name: field value

If a line in the header begins with 7-bit ASCII character, it is a field. If a line
starts with white space, the value of the field from the previous line continues
on the current line, which makes multi-line fields possible. The values of the
fields have to be 7-bit ASCII as well. To encode a non-ASCII value of a field,
MIME encoding is used.

MIME is a standard that describes the encoding of non-ASCII values to
7-bit ASCII (e.g. to support multiple different charsets or structured values).
To encode a string in a different charset, the following syntax is used:

=?charset?encoding?encoded text?=

For example:

=?iso-8859-1?Q?=A1Hola,_se=F1or!?=

After decoding the encoded text using the provided charset and the encoding,
we obtain the value ¡Hola, señor!. A typical use of the MIME encoding is
the support for different languages.

Only two header fields are mandatory for each message: Date and From.
All other fields are optional, however, there are several fields that are recom-
mended and several fields that are commonly used. Most of these fields are

8

Field name Description

Date Date of origination (mandatory)
From Address of the sender (mandatory)
Message-ID Recommended for the message identification
In-Reply-To Recommended, if the message is a reply
References Recommended, if the message references to

other messages
Sender Displayed sender (optional)
Reply-To The address to reply (optional)
To Displayed recipient (optional)
Cc Carbon Copy, used for sending copies of e-mail

to multiple users (optional)
Bcc Blind Carbon Copy, same as Cc except the

recipients are not visible (optional)
Subject Subject of the message (optional)
Return-Path Return address (optional)

Table 1.1: Header fields as defined by RFC 5322.

described in Table 1.1. A detail worth mentioning is that the To and From
fields do not have to necessarily be the same addresses as the actual sender
and recipient addresses. These fields are just informative, the real addresses
are given to the SMTP for the mail delivery. SMTP is described further in
section 1.3.2.

An example of headers of a real e-mail message is displayed in Figure 1.1.

1.2.2 Body
This section describes the format of the content of the message, called body.
RFC 5322 does not describe an exact format of message body, but references
other documents for this purpose. For example, RFC 2045 [FB96] from
1996 describes how the body of the message is supposed to look (its format,
syntax. . .). We cover only the parts of RFC 2045 necessary for the purposes
of this thesis. The body is separated from the header by one blank line.

9

Figure 1.1: A message sent from KamehaMail to a user of Gmail.

Originally, the messages were meant to be plain-text 7-bit ASCII only.
However, it is possible to use the MIME encoding for the message bodies as
well.

If the user decides to use the MIME encoding for the message body,
three header fields must be filled in: MIME-Version, Content-Type and
Content-Transfer-Encoding.

MIME-Version is the version of the MIME being used for the encoding of
the message, currently 1.0.

Content-Transfer-Encoding specifies the encoding of the body. For ex-
ample, SMTP expects messages to be 7-bit US-ASCII, which can be changed
to 8-bit encoding using this header, making successive encoding more conve-
nient.

Content-Type describes the type of data so that the receiving part un-
derstands how to decode the contents of the e-mail properly. This value is
called media type. Each media type has its subtype identifier, which further
refines the media type. After the type identifiers comes a semicolon and
parameters, if necessary. For example,

Content-type: text/plain; charset="us-ascii"

defines media type text, its subtype plain and the parameter defining the

10

charset charset="us-ascii". This is also the default value, if the header is
not present.

Multipart messages

There is a commonly used media type that we want to mention specifically,
described by RFC 1341 [FB92], called multipart. The multipart content-
type allows to combine multiple bodies/body parts in a single message, each
possibly encoded in a different way. Vast majority of the modern e-mail
clients uses it to send two bodies: an HTML body for the user interfaces
that are capable of displaying HTML messages, and a plain-text body for
the compatibility with simple plain-text interfaces. Another widespread use
of the multipart media type is to encode the attachments into the body of
the e-mail.

All subtypes of the multipart content-type follow the same syntax. The
header must specify a parameter called boundary, which is used to separate
the body parts by two hyphens and the boundary string. Each of the sepa-
rated body parts has its own content-type header defining its inner message
type. The syntax of multipart content-type is displayed in the example in
Figure 1.1.

1.3 Message exchange
Because it is too complicated to send a message directly to end recipient’s
computer with knowing only his e-mail address, a more complicated infras-
tructure is used for e-mail delivery. The computers in this infrastructure are
classified by the role they have as Mail Transfer agents (MTA), Mail User
Agents (MUA), Mail Delivery Agents (MDA) and Mail Submission Agents
(MSA).

This section gives a closer description of the roles of e-mail agents and
the communication protocols that the e-mail agents use.

1.3.1 E-mail Agents
The end-to-end delivery of a message has several stages: the submission of
the message, the transfer of the message and the retrieval. Many complica-
tions can occur during the transport, such as non-existing final destination
or disconnected user. E-mail agents were invented to take care of these situ-
ations which are futher detailed in the following sections as defined by RFC
5598 [Cro09].

11

Mail Transfer Agent

Mail Transfer Agent (also known as Mail Server) is designed to transfer e-
mail messages, implementing both sending and receiving parts of the SMTP
protocol. It is often called a mail relay as well because its job is to route and
forward e-mails to their final destinations.

MTAs are running in the background. They are listening to a port,
waiting for the message to come, either from another MTA or from the user.
If the message comes from another MTA, it is either routed to the next MTA
on its path or in case that the current MTA is its final destination, stored
locally for the user. UNIX mail servers exim, postfix or sendmail are all
examples of MTAs.

MTA does not implement the access to the messages for the user, which
needs to be handled by different agents.

MUA, MSA, MDA

For the communication between the user and the MTA, Mail User Agent
(also known as e-mail client) is used. MUA ’s main role is to retrieve e-
mails from the MTA for the user and display them. It often implements
the interface for the composition of an e-mail. E-mails created by an e-mail
client are then sent to the corresponding MTA for distribution. Usually, the
communication between MUA and MTA is not direct. Two more systems are
commonly used as a layer between MUA and MTA: Mail Submission Agent
and Mail Delivery Agent.

MSA takes care of the submission of a message from MUA to MTA. It
uses SMTP as well but listens to a different port. Some of the advantages
of having an MSA are the following: It enforces the policies of the standard
protocols while representing the interests of the author of the message. It
rejects messages that do not satisfy the conditions stated by the internet
standards. It includes header fields such as Date or Message-ID. In some
cases, it can help to solve minor errors.

MDA takes responsibility of storing an e-mail for the user from MTA and
delivers the message to the recipient’s MUA. Common role of the MDA is to
redirect the message to user-defined address.

A simple diagram of the e-mail flow is shown in the Figure 1.2. The
transfer of the messages between two MTAs is defined by SMTP. The retrieval
of the message to the MUA is done using IMAP or POP.

12

Figure 1.2: A simple diagram of the e-mail transfer flow between two users.

Figure 1.3: Model for SMTP use.

1.3.2 E-mail protocols
SMTP

In the previous sections, we mentioned the internet protocol SMTP which is
a standard for an e-mail transfer. It was first defined in the 1982 by RFC
821 [BP82] and last updated in the 2008 by RFC 5321. SMTP defines a
model of communication as follows: The user sends a request to the sender-
SMTP2 to start an e-mail communication. The sender-SMTP opens a two-
way communication with the corresponding receiver-SMTP which is either
an intermediate or the final destination. After that, the user can submit mail
commands via the established communication path and receive the responses.
The Figure 1.3 shows the SMTP model as described by RFC 821.

To begin an e-mail transaction, user introduces himself using HELO com-
mand. Then there are three stages of the SMTP mail transaction.

1. The first part is the MAIL command. This command indicates the begin-
2sender-SMTP and receiver-SMTP are servers capable of communicating via SMTP,

usually MTA

13

ning of a new e-mail transaction for the receiver-SMTP. The receiver-
SMTP resets all the state data it has and prepares for the following
commands corresponding to the new transaction.

MAIL <SP> FROM:<reverse-path> <CRLF>

Tags SP and CRLF mean space and an end-of-line respectively. The
reverse-path in the field FROM contains address where the responses
will be sent, for example errors. If the command was processed suc-
cessfully, the response 250 OK is sent to the return address.

2. The second part is the RCPT command which defines the receiving ad-
dress of the current mail transaction.

RCPT <SP> FROM:<forward-path> <CRLF>

The forward-path contains the address of the recipient. If the receiver-
SMTP does not recognize the address, it responds with 550 Failure.
This command can be repeated for multiple recipients. If accepted, the
250 OK reply is sent.

3. The third and the last part is the DATA command. This command
transfers the actual data of the message.

DATA <CRLF>

If the command is accepted by the receiver-SMTP, the reply
354 Intermediate
is sent. All following lines until the end of the text are the data of the
message. The headers of the message are sent via DATA command as
well.

To end the transaction, the QUIT command is used. The whole process is
summarized in the following example [BP82]:
S: HELO client.example.com
R: 250 Hello client.example.com
S: MAIL FROM:<Smith@Alpha.ARPA>
R: 250 OK

S: RCPT TO:<Jones@Beta.ARPA>
R: 250 OK

14

S: RCPT TO:<Green@Beta.ARPA>
R: 550 No such user here

S: RCPT TO:<Brown@Beta.ARPA>
R: 250 OK

S: DATA
R: 354 Start mail input; end with <CRLF>.<CRLF>
S: Blah blah blah...
S: ...etc. etc. etc.
S: <CRLF>.<CRLF>
R: 250 OK
S: QUIT
R: 221 Bye
There exists many other commands that SMTP protocol uses for the com-

munication. However, this is all handled by MTA.

POP and IMAP

IMAP was defined by RFC 3501 in the 2003 and its current version is
IMAP4 [Cri03]. POP was first specified by RFC 918 in the 1984 and its
current version POP3 was defined by RFC 1939 in the 1996 [MR96]. While
they are both protocols designed for message retrieval for the e-mail client
from mail server, POP is much older than IMAP.

The main difference between them is that IMAP is designed for multi-
device use (tablet, phone, desktop. . .), displaying the same content on any
device since the content is synchronized on the central server. POP is de-
signed for downloading the e-mail from the mail server to the local machine
without any synchronization. What’s more, POP can be set to remove the
messages from the server after download. In reality, both of the protocols can
be setup to work in a very similar way. However, POP is unable to tell if the
message was read or not or to provide meta-information about the existence
of a folder.

Both provide advantages and disadvantages for the user. IMAP is more
simple to set up for multi-device use as it does not create local storages of
messages on every used device. However, usage of POP offers certain degree
of privacy as the e-mails can be removed from the server after their download.

15

1.4 End-user interfaces
This section briefly describes end-user’s phase of the e-mail transfer flow. An
interface has to be provided for the user to interact with the mail server and
retrieve or send e-mails. E-mail interfaces can be classified by the type of
the interaction and the localization of the data.

1.4.1 Desktop clients
To proceed chronologically, the first e-mail clients described in this section
are so-called desktop clients. It is a common name for all clients that are
installed on the user’s machine and work with the messages locally, using the
message retrieval protocols. They can be further subdivided into command-
line clients and clients with graphical user interface.

Command-line clients

Historically, the first e-mails ever were sent using console commands. Com-
mand-line clients provide only basic graphical interface for the user. We have
already presented an example of SMTP mail command in the item 1.3.2. Al-
though the command-line clients are an old technology, they are not extinct.
On the contrary, they are still popular because of the safety reasons (no
HTML and JavaScript), speed reasons (graphical interfaces take longer to
load and respond) and the flexibility. For example, UNIX’s mail command
is still being frequently used.

GUI clients

As the displaying units grew bigger, e-mail clients with more advanced graph-
ical user interfaces became popular. These are well-known by the average
e-mail users as they are more user-friendly to use than the command-line
clients. Some of the most popular e-mail clients are Mozilla Thunderbird or
Microsoft Outlook.

1.4.2 Web based clients
Another category of the e-mail clients are web based clients or simply web-
mails. The major difference between the desktop clients and the web based
clients is that no e-mails are being downloaded locally to the user’s com-
puter. Instead, they are stored to the webserver and can be accessed by the
user via web browser. The first webmail was developed at CERN in 1993

16

by Hallam-Baker Phillip called The Mail Server Daemon [cer]. Bigger de-
velopment of the webmails began with the easier access to the Web in the
1990s an 2000s. However, using a web browser as an interface represents a
certain level of threat because the communication over unsecured HTTP can
be readable by third parties. Usage of encrypted HTTPS communication is
highly recommended. Some of the most popular webmail services are Gmail,
Outlook.com and Yahoo! Mail and some of the most popular open-source
webmails are squirrelmail, roundcube, rainloop, mailspring, notmuch-web. . .

1.4.3 Mobile clients
Currently, there is a new category, mobile e-mail clients. Smart phones are in-
credibly popular and the mobile clients dominate e-mail client market share.
Around 55% of the e-mails were opened on mobile phones in the 20163. They
are very similar to the desktop clients, except that mobile clients are opti-
mized for smaller touch screens.

3https://litmus.com/blog/the-top-10-most-popular-email-clients-of-2016

17

18

2. Text search
In order to create a modern, searchable e-mail interface, it is necessary
to implement an algorithm that retrieves the wanted information quickly
from a great amount of e-mails. The e-mail databases of some of the e-
mail providers, such as Google or Outlook.com, have grown incredibly big
throughout the years, containing billions of e-mails. Such databases are often
far too big for naive approaches — to find an email that contains specific key-
words quickly (in milliseconds) we need a proper research of more advanced
solutions for this problem.

This chapter describes the Text search, its use in the search engines, its
advantages and disadvantages comparing to the standard database search,
its principles of use and implementation.

Generally, the text search is used to find a document that contains a
specific word structure in a database of text documents. In this chapter, we
describe the overall process of indexing the documents in such a database,
and searching through them.

A document is a single file of words, usually plain-text, processed and
stored in the database: They are preprocessed before getting stored in order
to simplify the search processing, for example by removing some unwanted
(irrelevant for search) parts of the original text, such as various auxiliary
words1 or markup, and split into so-called terms. The terms are ‘clean’ rep-
resentations of the document content which are then stored in the database,
together with the identification of the document they originated from. The
list of split and processed terms associated to their documents is usually
called a text-search index. We describe this preprocessing, also usually called
text analysis, closer in section 2.1; indexing is described later in section 2.2.

The preprocessing of the document, as well as the searching itself, is
usually done by a search engine. A search engine is a system that integrates
many text-search-related techniques to provide a coherent implementation of
the indexing and querying functionality. In section 2.4, we explain closer how
the modern search engines work: The user requests sent to the search engine
are called queries. Each query lists some requested text words together with
additional search criteria. The text in the query is processed by the same
analysis that the documents are, to produce a simplified query of terms
suitable for looking up in the database. The match is the result of the search
that is returned by the search engine as an answer to the given query. In
other words, the match is a list of documents (in the most basic case it

1Including e.g. articles, prepositions and conjunctions, these are usually called stop-
words.

19

Figure 2.1: A simplified view of the search cycle.

only contains document IDs) that satisfy the criteria given by the query (e.g.
contain the requested words).

Some search engines allow to structure the inner contents of the docu-
ments into fields: Instead of treating all terms equivalently, users may sepa-
rate them into the sets represented by the fields. A field is usually identified
by string name, and contains a separately-searchable text value. For exam-
ple, library databases may use fields such as title, authors or topic. This
not only simplifies the user interface of the search, but also lowers the amount
of data that need to be examined by the engine upon processing the query,
because only the specific fields may be examined.

A simple diagram of the whole search cycle is provided in Figure 2.1.
In the following sections, we explain how the text search actually works,

what processes are necessary for it to work efficiently and how to implement
it.

2.1 Text analysis
There are many problems with word matching. Should "ring" and "Ring"
match? Or "swear" and "swears"? In the natural human perception, we
know that simply having the word at the beginning of the sentence (i.e.
capitalized) does not change the meaning of the word. It is the same word as
its non-capital version. We learned that "swear" and "swears" are the same
word, just in a different form. The search engine does not know that and we
have to provide him with exact rules that he processes the words of the text
as similarly to our perception as possible. This process is called text analysis

20

Before we store the terms into the index, we need to preprocess them.
The text search analyzers are systems that process the words of the text and
store them into the index. In reality, it is quite common that they treat
the data in a natural way. Standard analyzers could remember the relative
position, skip the insignificant words (such as "the"), treat certain fields as
an exact type (e.g. date). Depending on the language, the analyzers can
also decide to store the same word for its different word forms. For example,
both words "forgot" and "forgotten" can be placed under the word "forget".

Generally, there are two phases of the text analysis, the tokenization and
the mapping. Tokenization is mandatory for creating the index but mapping
is optional and used only when needed.

The tokenization of the string is further subdivided into the following
stages [GT15].

1. First stage is the characters filter. It is a preprocessing of the text
before tokenization. It converts the text to the form that will be more
simple to tokenize. For example, it is used to strip out HTML tags or
convert & to "add".

2. Then comes the tokenization itself. The string is split into the individ-
ual terms, accordingly to the defined analyzing parameters. The most
simple tokenizers split the text whenever they encounter punctuation
or whitespace, while removing the delimiter from the term.

3. The last stage is similar to the characters filter, the terms are post-
processed by the tokens filter. These filters change terms into their
simplified forms, such as base forms, for easier future searching. The
most common filters are lowercasing, removing the words with no pos-
sible significance to the search (stop words, e.g. "and", "the" etc.) or
even adding words, such as synonyms.

2.1.1 Mapping
As we mentioned before, there is more to the text analysis than the tok-
enization. We can tell the search engine how to treat specific fields and their
values. For example, it is possible to have a field that contains only num-
bers. The search engine should understand that the value is not a simple
plain string but a number. Later, it can make use of this type. For instance,
the search engine can sort the results by this field. This technique is called
mapping.

Mapping is the process of defining how a document, and the fields it
contains, are stored and indexed [GT15]. Which fields should be full-text

21

fields, which should be numbers, booleans, date values, or not analyzed at
all. Some search engines, for example ElasticSearch, offers the possibility
to map a field using a specific language analyzer. If a field is supposed to
contain only french words, the analyzer can understand the syntax of the
French language and match it accordingly. For example, the word "anneau"
("ring" in English) and the word "Anneaux" have the same base form for the
French language analyzer. The English language analyzer has a very little
chance to understand that. Search engine remembers the specific settings for
each field and processes the queries against them accordingly as well.

Different search engines use different approaches to the text analysis. How
deeply is the text to be processed is mainly up to the developer that sets up
the search engine. For the purposes of this thesis, the most convenient way
was to analyze almost every field. We wanted that the date of received/sent
e-mail is treated as a date (milliseconds since certain date in the past) and
that the results can be sorted by this value. On the other hand, there was no
need to analyze fields such as messageid since in order to find a match, we are
supposed to know the exact value. We did not specify any language analyzer
as the users of KamehaMail can be of different nationalities, consequently
writing their e-mails in different languages.

We used tokenization and mapping to process the text into terms and
now we want to store them.

2.2 Indexing and inverted indexes
Much research has been performed to design efficient index structures for
database and information retrieval systems [LYYB96]. There was a need
to find an ideal data structure to store and retrieve data from a database
full of plain-text documents as quickly as possible. In order to do reach the
solution, some sort of indexing of the split terms was needed. A standard
forward index appeared to be inefficient for the full-text search. The goal is
not to look for the documents but for the words in them. Thus, the most
efficient index structure is an inverted index [ZM06].

An inverted index is structured the opposite way to the forward index.
Instead of having a list of documents along with lists of terms accordingly,
inverted index contains a list of terms and for each the documents that
contain them. The difference between them is shown in the Table 2.1.

There exist two major types of inverted indexes. An inverted file (or
document-level index) and a full inverted index (or term-level index). The
difference is that inverted file is used only for accessing the documents of
the corresponding term. It is sufficient when no other information than

22

Inverted Index

Term 1 List of documents
Term 2 List of documents
Term 3 List of documents
Term 4 List of documents

.

Forward Index

Document 1 List of terms
Document 2 List of terms
Document 3 List of terms
Document 4 List of terms

.

Table 2.1: An inverted index (left) and a forward index (right).

document’s ID is needed. A full inverted index has complete information
about the term in the file (e.g. position) which makes it far bigger and
harder to maintain, however indispensable in certain use cases, for example,
when the word position is needed.

An inverted index consists of two main parts.

1. The first part is the vocabulary. It is a list of all distinct terms of all
documents. Each of them can contain information about document
count and about their inverted lists. The inverted lists are associated
to their respective terms directly, as a list or by a pointer to the corre-
sponding part. The position of a word is stored as well, if it is not the
document-level index. This list is ordered.

2. The second part is an inverted list which is a list of all documents where
the word appeared. These lists can be represented as pairs (d, fd,t)
where d represents the identifier of the document and fd,t is the asso-
ciated set of frequencies of the term t in the document d [ZM06]. This
list is ordered as well.

A simple database of documents is provided in the Table 2.2 for the
presentation purposes. Each document in the table is uniquely identified by
its ID field. The actual text of the quote is stored in the Text field. The
Author field contains the author of the quote. As we mentioned before, the
terms are processed and stored to the index structure which is shown in
Table 2.3. Notice that the inverted index provided in the example is made
only of the field Text.

Nowadays, there are plenty of variations for the inverted index structure.
Several possibilities were mentioned in the article written by Mahapatra and
Biswas [MB11]. For instance, some of them store meta data. Apart from
the additional information stored for each word (such as the frequency of

23

ID Text Author

1 Your time will come. You will face the same
Evil, and you will defeat it.

Arwen

2 The Ring has awoken, it has heard its masters
call.

Gandalf

3 We swears, to serve the master of the Precious.
We will swear on. . . on the Precious!

Gollum

4 You shall not pass! Gandalf

Table 2.2: A simple database of quotes from Lord of the Rings.

the occurrence or the word position), these implementations contain meta-
information about each hit. Hit is an exact word position in the document.
These meta data may contain information such as font type, font size, text
type etc. . . Other solutions mentioned in the article implement both types of
the inverted indexes, the full inverted index and the inverted file, each for
different situations.

Creating an inverted index is a simple task. However, it can be chal-
lenging to create it without wasting memory and CPU. Advancements in
the hardware do not provide any significant help because the collections are
growing in size even faster. An efficient way is needed for creating, storing
and maintaining the index.

2.2.1 Construction of inverted index
The fastest and the most simple way to construct an inverted index is to
build the whole collection in memory. However, this approach is not possible
for bigger collection (i.e. billions of documents, terabytes of data). Such
collections do not fit in the memory and disk has to be used which is always
costly. An optimized method that creates small, memory fittable inverted
lists, stores them to disk and merges them when all is done is needed. Moffat
and Bell or Heinz and Zobel described several methods solving this prob-
lem [MB11].

2.2.2 Structure of the inverted index
The article written in 1996 [LYYB96] defines two following approaches for
the inverted index structures.

24

term t (d, fd,t)

and (1, 1)
awoken (2, 1)

call (2, 1)
come (1, 1)
defeat (1, 1)
evil (1, 1)
face (2, 1)
has (2, 2)

heard (2, 1)
it (1, 1), (2, 1)
its (2, 1)

term t (d, fd,t)

master (3, 1)
masters (2, 1)

not (4, 1)
of (3, 1)
on (3, 2)

pass (4, 1)
precious (3, 2)

ring (2, 1)
same (1, 1)
serve (3, 1)
shall (4, 1)

term t (d, fd,t)

swear (3, 1)
swears (3, 1)

the (1, 1), (2, 1), (3, 3)
time (1, 1)
to (3, 1)
we (3, 2)
will (1, 3), (3, 1)
you (1, 2), (4, 1)
your (1, 1)

Table 2.3: A document-level inverted index for the database shown in the
Table 2.2 with only word occurrences.

The first approach is to maintain an inverted index only for the document
access. Specifically, only document IDs are returned upon a matching query.
A postprocessing is needed to retrieve additional information about the doc-
ument, if wanted. That is done by using a term-level index. This approach
has a significant disadvantage, as the number of the matching documents
can be large, the postprocessing can be time consuming. Although, it can
be improved by using an internal tree representation.

The second approach is about having an index for each element type.
It may create a huge space overhead as each term must appear in every
index. There were attempts for removing the duplicates, for example by
using a combined vocabulary. Nevertheless, the space overhead was still far
too great. Many different possible structures exist which take care of the
duplicates and improve the consequential space overhead.

To further reduce space consumption, compressions can be applied on
the inverted lists [MB11]. For example, instead of storing all the numbers as
32-bit integers, variable-length numbers can be used.

25

Figure 2.2: A commit point for three segments of the index.

2.2.3 Segmentation

The maintenance of already existing inverted index also causes an issue.
Inserting a new element into a sorted list and updating the whole index with
possibly billions of documents directly is too expensive.

ElasticSearch uses the principles of segmentation as defined by Lucene
and the following facts will be interpreted as explained in the guide for Elas-
ticSearch [GT15].

Instead of rewriting the whole inverted index again upon each new entry,
completely new indexes are created with the recent results. Such supplemen-
tary index is called a segment. Lucene describes the index as a collection
of segments and a commit point. Commit point serves as a common entry
point for its segments, the query is performed against it, the commit point
then distributes the query to all its segments and returns the results com-
bined. The Figure 2.2 shows an example of the segmentation. This may
cause an issue because the approach may create an enormous amount of
small segments which consume additional CPU and memory, rendering in-
verted indexes inefficient. It can be at least partially improved by merging
the segments, transparently for the incoming search query and the user. It is
most convenient to run this process when a new, not yet committed (not yet
written to the specific commit point) segment has been set. Currently com-
mitted segments are taken along with the new uncommitted one and merged.
The new merged segment is then committed into the commit point and the
old ones are to be removed. To remove them safely, the search engine must

26

be sure that there are no searches being performed on them which usually
delays their removal.

The problems mentioned above are not the only problems concerning in-
verted indexes. However, they are efficiently solved by the search engine we
integrated to the application, ElasticSearch. The specifications of Elastic-
Search are mentioned in subsection 2.4.3.

2.3 Query structure
Once the database is constructed and prepared for the text search queries, it
is possible to search in it. Search engines usually provide an API to make the
communication with them (i.e. send the queries and receive the match data)
possible. The following examples are written in a JSON-based syntax, similar
to the ElasticSearch [GT15] but simplified for presentation purposes. The
queries are effectively performed against the inverted index to the database
shown in Table 2.2. The Text field part of the database is displayed in
Table 2.3.

A simple query looking for the term "ring" is shown in the following
example:

{ "query": {
"term" : "ring"

} }

The second document contains term "ring" and it is the only match. The
most basic result to the above query returns only the matched documents’
IDs:
{ "hits": [

{ "ID" : 2 }]
}

Hits is an array of results. For each matching document, it contains at least
the document’s ID. Nonetheless, there are cases where we want to have more
information about the document than its ID. For example, other contents
of the matching documents or the relevancy of the document to the given
query.

Queries can be more complex, defining different logical search criteria. We
can use logical NOT (for the unwanted terms), AND (for multiple terms) and
OR (for optional matches). In the following example, user is looking for those
documents that contain terms "master" and "precious", cannot contain term
"ring" and optionally may contain term "evil":

27

{ "query" : {
"bool" : {

"must" : {
"term" : "precious",
"term" : "master"

}, "must_not" : {
"term" : "ring"

}, "should" : {
"term" : "evil"

}
} } }

The first document contains the term "evil" but it does not have any of the
obligatory terms, so it will not be a match. The document 4 does not contain
any of obligatory terms. The document 2 neither and furthermore it contains
the forbidden term "ring". The document 3 contains both of the obligatory
terms, does not contain term "ring" which makes it the only match. It is
still a match even if it does not have the term "evil" which was meant to be
optional.

In the previous examples, the search field was not specified so the search
engine looked at all fields. If we want to find all of the Gandal’s quotes, we
can write the following query:

{ "query": {
"term" : "gandalf"

} }

This is a legit query that returns documents 2 and 4 as results. But it
searches through all the fields, Text and Author. This may be time consum-
ing. Depending on the length of the Gandalf’s quotes and the amount of
his quotes in the database, such queries can be inefficient. To save time, we
specify the field in the following example:

{ "query": {
"term" : {

"Author" : "gandalf"
} } }

Let’s say that this time we want that the search engine returns more infor-
mation about the matching document, for example the text of the quote:

28

{ "hits": [{
"ID" : 2,
"_source" : {

"Text" : "the ring has awoken it has heard its
masters call"

} }, {
"ID" : 4,
"_source" : {

"Text" : "you shall not pass"
} }] }

Search details description. The full-text search does not look for a sim-
ple key but rather for content [ZM06]. When the user provides a query, he
is looking for the meaning inside the text according to it. The search engine
should evaluate the query not only in a lexical way but also in a contextual
way. In order to ensure this behaviour, the search engine needs exact rules
for ranking the results appropriately. First of all, it uses the very same ana-
lyzer for the query as it used for the documents stored in the database. This
method ensures that upon looking at a specific word, we will get its other
word forms as well. In certain implementations even synonyms.

Typical steps for the query evaluation are the following [GT15].

1. First, the type of the field in the query is checked, to determine if it
should be analyzed or not.

2. If necessary, the query string is analyzed using the according analyzer.

3. Then, the search engine looks into the inverted index and finds the IDs
of the matching documents.

4. Using the matching document IDs, the search engine can provide, if re-
quested, various additional information, such as relevance of the match
or values of other fields of the matching documents.

In case that query fails and does not find any matching documents or the
match does not evaluate as expected, the user can decide to refine the query
in various ways. We already mentioned that the full-text search tries to find
the most relevant results and sort them that way. The following sections
details the ranking of the match.

29

2.3.1 Relevance and effectiveness
There is an issue of the quantification of the relevance. Is it possible to
measure the relevance of a term in the document? Relevance of word to the
text can be considered subjective or inexact. The document can be relevant
to the given query even though it contains none of the terms [ZM06].

Because of this inexact attribute of the relevance, the attribute effec-
tiveness [ZM06] is preferred. The engine is considered to be effective if the
number of the matched results is as close as possible to the expected results.
Effectiveness is typically described by two aspects, precision and recall. Re-
call measures the quality of the results, it is a fraction between the matches
found and all the relevant matches. Precision measures the quantity of the
results, it is a fraction between the relevant matches found and all matches
found.

We want to know how to measure the relevance. The number indicating
the relevance of a document to the given query is called the score. In the
following example, the score will be a number between zero and one. One
means the result is as relevant as possible. Zero means the result is completely
irrelevant and will not be displayed at all. There are multiple ways to evaluate
the score of the match [GT15]: the occurrences of the query in the document
or the format of the term. Recall that some implementations of the inverted
indexes contain meta data of the original text. In that case, it is simple to
check if the querying term was a header or bold before the text analysis.
Another method is to compute how big portion of the text the term takes.
The following example searches for word "you" in Table 2.3 and sorts the
matches by the relevance of the term "you" in the matched documents:

{ "hits": [{
"_id" : 1,
"_score" : 36.5

},
{

"_id" : 4,
"_score" : 23.5

}] }

Two documents matched. For presentation purposes, we create a simple
version of pseudo-procedure for evaluating the score of the match:

1. For each exact occurrence of the term, add 10 points to the score. Add
3 extra points for each capital letter in the occurrence.

30

2. For each similar occurrence of the term, add 5 points to the score (can
be adjusted depending how similar the occurrence is). Add 1 extra
point for each capital letter in the occurrence.

3. Add 0.5 point for each percent of the text the occurrence takes. If the
occurrence takes generally 30% of the text, add 15 points. (This can
be normalized to the whole length of the text. The bigger the text, the
less likely the term will be relevant).

According to this algorithm, the document 1 has 2 * 10 points for the exact
occurrences and 3 extra points for the capital letter, 5 points for a similar
occurrence ("your") and 1 extra point because it starts with the capital letter
again. Finally, "you" takes together almost 15% of the whole quote, which
means another 7.5 points are added, resulting in 36.5 points together for
document 1.

The document 4 gets only 10 points for one occurrence and 3 points
because it has a capital letter. The term takes roughly 21% of the quote
which means another 10.5 points are added, resulting in 23.5 points together
for document 4.

This simple algorithm determined that term "you" is more relevant in the
quote "Your time will come. You will face the same Evil, and you will defeat
it" than in the quote "You shall not pass!".

The real implementation of the scoring algorithms can be far more com-
plex, taking in consideration the length of the field or the inverse document
frequency [GT15]. The ElasticSearch uses own formula which is mentioned
subsection 2.4.3.

2.3.2 Phrase query
The user does not only searches for one term. The vast majority of the web
search queries contain phrases, multiple words in a single query field. For
the database search, it is an easy task to perform a phrase query — if the
document contains the phrase as it is, match it. The text search takes in
consideration the relevance and it needs a way to measure the relevance of
the phrase query as well. The user expects that the most relevant results
should be those documents that contain the phrase as a whole. The more
words in the phrase query are separated from each other in the document,
the less relevant it should be.

Three possible procedures were mentioned in the article written by Zobel
and Moffat [ZM06].

The first procedure is that the phrase is indexed as a term and that it
has its own inverted list. This solution is often too space consuming, as

31

it is impossible to predict which two-word pair phrases are necessary to be
stored. Creating all possible two-word pairs creates an absurdly big collec-
tion (three-word, four-word. . .). It can be improved by partial indexing and
combinations.

Another way is to simply split the phrase and run a separate query for
each split term. This may possibly return seemingly irrelevant matches,
as the words can happen to be anywhere in the document, have no actual
meaning together and still be a well-ranked match.

Last mentioned procedure is to keep the word positions in the index so
that the position of the phrase can be determined during evaluation.

These three procedures can cooperate together and the final implemen-
tation of the phrase query evaluation is possibly a combination of them.
However pure use of only one of them will not return reasonable results.

The users of KamehaMail will very likely use phrase querying which is
again handled by ElasticSearch.

We described all necessary things to understand the steps needed for a
working search engine. In the following part, we look at the search engines
themselves, compare them to the standard database search and provide some
statistics about them.

2.4 Search engines

2.4.1 Comparison with relational indexing methods

Search engines are similar to the database systems [ZM06]. The documents
are indexed and stored in the database, the search engine evaluates the
queries against the index and finds the match. However, there are differences
mostly in the way the queries are performed and the way the documents are
stored. For instance, the majority of the queries for the search engines are
just lists of terms while the database systems are facing complex queries
(SQL). On the other hand, the database systems are matching only specific
logical condition, the search engines take in consideration the relevance of
the document to the given query. Consequently, the database search returns
all matches while the search engines return fixed number of matches, sorted
by the score of relevance. Returning all matches would not be possible in
certain cases because the result of the query may be huge (millions of doc-
uments). That is because the resulting documents may contain terms that
are at least in some minimal way similar to the query but almost completely
irrelevant for the user.

32

Advantages

The main advantage of the text search comparing to the standard database
search is in the way they process the words of the text.

Standard database search with its binary query cannot even partially un-
derstand the context of the text. It cannot make use of the index when look-
ing for similarity. For example, if we want to find all Gandalf’s quotes with
possible suffixes (WHERE Author LIKE Gandalf%), the standard database se-
arch does not use the index, it has to look at every row and check if it is a
match. In many cases, that is an unwanted and insufficient behaviour. This
also makes the standard database search slower, as it is not optimized for
similarity searching.

We already know that text search understands the value of the data, refers
to it as it was written in human language and behaves that way [GT15]. Many
of the search engines are capable of matching synonyms or understanding
the context. When we are looking for the phrase "Fox News", we actually
do not want news about foxes but some news published by Fox News. Many
distinct approaches of data evaluation can be defined to the specific fields by
the developer.

Disadvantages

There are few disadvantages to the text searching when comparing with the
standard database search.

An index for a text search can be massively bigger than a standard B-
Tree index. B-Tree is a self-balancing tree structure for searching, inserting
and deleting in logarithmic time. A full text search index (or inverted index)
contains duplicates, which can potentially make it several times bigger.

Another disadvantage is hard maintainability of the inverted indexes.
The fact that the lists of documents are sorted and potentially large makes
it difficult to insert into them in a reasonable time. However, there exist
improvements as well.

2.4.2 Web search engines
Text searches most essential use is in the web search engines. They index
the webpages and so provide an easier access to information that was in-
conceivable a few decades ago [ZM06]. Several of the following facts were
published in the article written by Lawrence Page and Sergey Brin [BP98].
They stated that developing a Web Search engine is a difficult task, as it has
to process tons of web pages along with tons of search queries. The Web is

33

Figure 2.3: The amount of webpages indexed by Google

Figure 2.4: The search engine market on all platforms in 2017.

rapidly growing every day, with more and more webpages being created. In
the 1994, one of the first web search engines, the World Wide Web Worm
had an index of 110,000 web pages. In the end of 1997, WebCrawler claimed
to have from 2 million to 100 million documents. In the present, the biggest
and the top search engine is Google. On the 12th of January, it stated that
it had more than 47 billions of webpages indexed [www], as we can see in
Figure 2.3. Google proved to be the most used web search engine by process-
esing the vast majority of all the web search queries. It held 81.53% of the
search engines market share from January 2017 to January 2018, as shown
in Figure 2.42.

Complementary to the already mentioned automated search engines re-
lying on keyword matching, there exist human maintained search engines.
They may return more sufficient answers but are expensive to build and
hard to maintain [BP98].

2provided by netmarket.com

34

The collections used by the search engines can be vastly distinct from
each other: For example, they can vary in size. Some collections can be
as small as tens of megabytes and grow each day by only few hundreds of
documents. Others may contain tens of gigabytes (e.g. libraries) but still
grow slowly. Web collections are different, they are not only extremely huge,
but the amount of indexed data can change drastically both ways. Google
has currently around 40 billion documents indexed. However, on the 17th of
February, they had indexed only around 31 billions of documents.

The search engine we found to be the most attractive option for Kame-
haMail is ElasticSearch. As we covered the topic of text search and the search
engines, we can look into its specifications.

2.4.3 ElasticSearch
In this part, we detail the specific implementation parts of the Elastic-
Search because we integrated it into KamehaMail for the role of search-engine
database. All the facts and information are interpreted from the book written
by Gormley and Tong [GT15]. ElasticSearch is very popular open-source an-
alytics and search engine built on top of Apache Lucene, which is a full-text
search library, used by corporations such as Wikipedia or Github. Elastic-
Search runs on its own server communicating via provided RESTful API and
JSON.

In the following paragraphs, we cover most of the implementation prob-
lems that we faced earlier in this chapter and look at the solutions Elastic-
Search provides.

Document Metadata

ElasticSearch has three mandatory meta data fields stored along with the
document. Index is a document collection where the document is stored.
Type is a subcategory of the index. It defines specific mappings to the doc-
uments of the same type. This mapping is stored with the type and the
queries performed against it are analyzed the same way. It is possible to
have several types in the same index. The last field is id which is a string
that along with the index and type uniquely identifies the document.

Structure

ElasticSearch uses a specific terminology for its structures. The main part
of whole system is a cluster. A Cluster is a collection of servers that are
capable of indexing, searching and holding all the data. These servers are

35

Figure 2.5: An empty cluster.

Figure 2.6: A cluster with one node Master that is subdivided into three
shards P0, P1 and P2. In the node 2, there is one replica shard (R0, R1, R2)
for each primary shard.

called nodes. It is possible to run multiple nodes in a single cluster. An
image of empty initialized cluster is shown in Figure 2.5. It is a one node
cluster, called master.

We would like to remind the problem of large amount of the data in an
index mentioned in section 2.2. ElasticSearch solves this by splitting the
index into the user-defined amount of shards. Shard is an independent and
fully-functional index, capable of searching and indexing by its own. The
usage of shards is fully transparent to the user. In addition, ElasticSearch
provides a possibility of creating copies of the shards, called replicas. Replicas
are 1:1 clones of shards, used to ensure high availability of the indexed data.
If new data is inserted into the primary shard, it is copied to its replica as well.
The replicas are also used to speed up the search by working concurrently
with the shards. An example of simple commonly used cluster is shown in
Figure 2.6 that contains three shards and one replica for each shard.

36

Result score

ElasticSearch uses Lucene’s practical scoring function [GT15] for ranking the
matches. The formula is as follows:

s(q, d) = nq(q) · c(q, d) ·
∑
t∈q

f(t, d) · if(t)2 · b(t) · nt(t, d),

where

• s(q, d) is the final relevance score of the query q in the document d,

• nq(q) is the query normalization factor, it is used for normalizing the
query q in order to be able to compare it to the others,

• c(q, d) is the coordination factor, used to add additional score to the
documents that contain higher percentage of the query terms,

• f(t, d) is the frequency of the term t in the document d,

• if(t) is the frequency of the term t in the inverted index,

• b(t) is a boost to the term t for the query q, and

• nt(t, d) is the field-length normalization. The shorter the field, the
higher the weight.

We believe that ElasticSearch is a great choice for performing the full-text
search in the database of indexed e-mails as it is provides strong performance
and simple interface.

2.5 Application to mail indexing
Short response time for searching in e-mails is necessary for modern e-mail
user interface. To provide this feature, we parse the information from an e-
mail message and index it into the respective fields of ElasticSearch’s index.
The analyzed fields are subject, text, to and from. Non-analyzed fields
are messageid, references and tag as we want an exact match and not
similarity match. The last used field is date which is not only analyzed but
also mapped (by standard date formats) because we want the results to be
sorted primarily by the date and then ranked by the relevance.

Not only user-defined searches but also many other functions are handled
by ElasticSearch. Grouping of the emails by references is done by Elastic-
Search. As the e-mail directory-based hierarchy is replaced by tags, these
are searched by ElasticSearch as well.

37

38

3. Implementation
In this chapter, we show an overview of all the implementation tools and
procedures that we used to create KamehaMail. The implementation is sep-
arated into two major parts: the backend which communicates with the
mailserver and the search engine, and the browser-based frontend that pro-
vides an interface to the end-user. These two parts communicate with each
other using API calls.

3.1 Backend
The implementation of the backend follows the usual style of deployment of
PHP application. The software on the server is organized as follows:

• Apache HTTP server is used to serve the static frontend files and the
end-user’s web browser, and provides the translation of the browser-
originated HTTP API calls to the PHP application.

• The application is run by PHP with several additional modules (the
complete list is shown in Appendix A).

• The application communicates with Exim4 mail server using standard
UNIX methods: sendmail for sending e-mail and pipe-based trans-
port for receiving. Exim handles the communication with the e-mail
infrastructure using standard internet protocols. It is also possible to
integrate other mail servers.

• ElasticSearch is installed for searching and indexing the e-mails. The
server communicates with it via REST API using curl requests.

3.1.1 Data storage
The data on the server are stored on two different places: the primary storage
of the e-mails as files in user directories, and the secondary indexed storage
in ElasticSearch.

The primary storage is organized as follows: in a specified directory the
application stores the meta-information about users (e.g. login details) and
the users’ mailboxes.

The mailbox section contains all the stored e-mails. Each e-mail is
uniquely identified by its 64-character Sha-256 hash. The e-mails are sepa-
rated into users’ subdirectories, in which they are further separated into a

39

subdirectory structure based on first few characters of the hash, to minimize
the problems with large directories.

The meta-information section contains two SQLite databases, usersdb
and loginkeys. usersdb is a list of all users and their corresponding pass-
words. loginkeys is a list of the currently logged users and their correspond-
ing login API keys (further explained in section 3.1.2).

The directory hierarchy is displayed in Figure 3.1.

3.1.2 API
All of the server side scripting was done in PHP. To simplify the communi-
cation between the frontend and the backend, we created a set of API calls
which run specific PHP scripts.

To provide REST-like API calls, htaccess is used. If an HTTP request
is directed to the folder where the .htaccess is located, htaccess takes
the request’s URL and forwards it as a query string to a beforehand defined
script. For example, upon calling URL

hruska.blesmrt.cf/KamehaMail/api/some-work

htaccess takes a part of the url after its folder’s name (i.e. some-work) and
sends it to the api.php as a query string. api.php serves as a relay or
a router. It loads all necessary source scripts and calls other PHP scripts
accordingly to the received query string.

We provide an example of the processing of the user login API request:
1. A HTTP POST request is sent from the frontend to the URL

api/client/login with the data: username and password.

2. .htaccess in the api folder processes the url string and redirects
client/login as a query string to the api.php.

3. api.php parses the query string, calls an external login function (de-
fined by login.php in the source folder) with the username and pass-
word as parametres.

4. The login function checks the credentials and returns a JSON formatted
response whether the login was successful or not, together with a new
API key (which is simultaneously stored to the loginkeys database).

5. Then api.php forwards the response to the frontend.
The source folder contains many of the PHP scripts for different uses.

In the Figure 3.1, they are denoted as API scripts. Depending on their
purpose, they can be divided into three categories:

40

Figure 3.1: A folder hierarchy on the server

41

Client calls

Client scripts are used for the account management such as logging or chang-
ing passwords.

• login.php validates the given credentials. In case of success, it creates
a loginkey (hash of the current time, username and password), saves it
to the loginkeys database and sends it to the frontend which saves it
to the browser as well (similar to cache). This loginkey is later used to
validate the API calls.

• checklogged.php checks whether the currently saved loginkey is valid.
If yes, logged user is redirected to his e-mails page.

• logout.php removes the currently used loginkey from the database and
redirects the user to the homepage.

• mailer.php contains functions for setting/getting the mailer of the
user.

• password.php changes the password of the user.

• signup.php creates new user entry in the usersdb database and a new
folder in mail. It also initializes new index in the ElasticSearch with
the user’s name and the e-mail mapping.

• usertags.php contains functions for adjusting the user’s tags. Each
user can have self-defined tags which are stored in their mail folder.

Integration of the ElasticSearch to the server

Elastic scripts communicate with the ElasticSearch via provided RESTful
API. We implemented it to the API scripts using PHP curl requests. The
following code is an example of a PHP curl request which calls Elastic’s
search API.

42

$req = curl_init();

curl_setopt_array($req, [
CURLOPT_URL =>

"http://localhost:9200/user/email/_search?pretty",
CURLOPT_CUSTOMREQUEST => "GET",
CURLOPT_POSTFIELDS => $data,
CURLOPT_HTTPHEADER => ["Content-Type: application/json"],
CURLOPT_RETURNTRANSFER => true,

]);

$response = json_decode(curl_exec($req));
$curl_close($req);

$req is an initialized curl request. CURLOPT_URL ultimately contains the API
call. The call is directed to the localhost:92001 with index user, type email
and the function _search. $data contains the query in a JSON format.
The response is sent as a JSON string back from ElasticSearch and saved in
$response. We implemented following scripts which use ElasticSearch:

• search.php processes user’s query and reformats it to the Elastic-
Search’s syntax. After being processed by ElasticSearch, the results
of the search are sorted by the date field. search.php in fact runs two
searches. The first search finds e-mails relevant to the given query and
returns their identifiers. Second search creates so-called mail groups:
The e-mails are grouped by references to create a conversation-like in-
terface. ElasticSearch’s search is called for each matched document,
matching also the documents which have the already found identifier
in their references. This will result in a list of grouped e-mail identi-
fiers where in each group at least one of the e-mails was a result of the
former user’s query.

• updatetags.php changes tags in ElasticSearch for the specific e-mail.

• removeMail.php removes the e-mail from ElasticSearch.

• saveMail.php puts new e-mail document to the ElasticSearch. If the
inserted e-mail has some references (to already present e-mails), each
of the referenced e-mail messages is updated with its message-id.

• reindex.php takes hashes of already stored e-mail in the database and
gives their parsed content to ElasticSearch for reindexing.

1ElasticSearch listens to this port

43

Communication with e-mail server and processing of e-mails

E-mail scripts implement the handling of e-mails:
• maildrop.php is called when the mail server receives new message. It

retrieves its content and forwards it to the decide function (defined by
decide.php).

• decide.php is the actual brain behind storing the messages. It checks
whether the recipient is a legit address, parses the contents of the mes-
sage, creates tags, stores it to the mail directory and forwards the
parsed data to the saving function of ElasticSearch.

• downloadAtt.php temporarily saves the received attachment to the
server and forces the browser to download it. Then removes the at-
tachment.

• getMail.php receives resulting IDs from Elastic’s search function and
processes them. It finds the corresponding e-mail files in the mail di-
rectory, parses them and sends their contents to the frontend which
displays them. It also takes care of the date separation of the e-mails.

• changetags.php changes user’s tags.

• removeAtts.php contains function which is called whenever the upload
of the attachments was cancelled or the e-mail was sent, to remove them
from the server.

• removeMail.php removes the e-mail from the mail directory.

• saveMail.php saves the e-mail to the mail directory.

• sendMail.php creates headers for sending an e-mail and sends it.

• upload.php temporarily uploads the attachments to the server, for
future sending.

We used two external libraries to simplify the processing of e-mail text: mail-
parser2, which extracts headers, bodies and attachements from an e-mail, and
PHPMailer3, which creates all necessary headers for sending a message and
actually sends it.

The source folder also contains an administration interface, which is ac-
cessible using admin.php. The usage of admin interface is further described
in Appendix A.

2https://github.com/php-mime-mail-parser/php-mime-mail-parser
3https://github.com/PHPMailer/PHPMailer

44

3.2 Frontend
Frontend provides the interactive visual side that come to contact with the
user. The frontend is coded in JavaScript, HTML and CSS.

Choice of JavaScript framework. Framework is a software structure
that provides functionality for building specific applications. Some of the
most favourite JavaScript frameworks are Vue, Angular, React or Ember.
We chose Vue4 for KamehaMail because it is fast, scales well and has a simple
API to use. Its core part is a Vue instance which configures the application,
binds the data and attaches the application to a specific DOM element.
Another important thing is that there exists a component framework for
Vue, called Vuetify5. It is a UI toolkit, providing many templates that are
directly cooperating with Vue. We used several of these templates to make
KamehaMail pleasant to look at.

Frontend application structure. The frontend is divided into three im-
portant parts. Each of them consists of an HTML file and a JavaScript file.
The first part is index, which is the first thing an user will encounter upon
opening the main site. It is a simple login menu with an option to sign up.
On successful login, user is redirected to the main menu where he can see
his e-mails. The second part is signup which is visually very similar to the
index. The third and the biggest part is emails which implements all of the
interface’s features. For the message text editor we integrated quill6.All used
libraries, such as Vue, Vuetify and jQuery are stored along with their CSS
files in the folder libs in KamehaMail, to be accessible to the frontend.

3.2.1 Communication with the server
The frontend and the backend communicate with each other via asynchronous
POST HTTP requests sent from the frontend to the server. The frontend
uses the jQuery’s feature ajax, which takes care of sending the requests and
receiving the responses from them in a user-friendly way.

4https://vuejs.org/
5https://vuetifyjs.com/en/
6consists of two parts, official quill from https://quilljs.com/ and the Vue imple-

mentation for it taken from https://github.com/surmon-china/vue-quill-editor

45

46

4. Results
In this chapter, we investigate the performance of the resulting software.

KamehaMail is fully functional and implements almost all of the intended
features. Additionally, we test the scalability of the searching capabilities of
the interface on large amount of e-mails.

4.1 Benchmark setup
First of all, we prepared an environment sufficient for testing. Enron e-mail
data set[KY04] is a collection of roughly half million e-mails, freely accessible
for anyone. Using the implemented admin interface, we dropped and indexed
the Enron e-mails into one mailbox in the database. The e-mails were tagged
according to the original position in the folder.

We measured the results on two data sets of different sizes to provide
better overview of performance scaling.

The first data set consists of almost 27.000 e-mails found in the mailbox
of the Enron user V. Kaminski. The second data set consists of 200.000 e-
mails selected randomly from multiple mailboxes. The full data set was not
benchmarked because of resource limitations.

On both data sets, we measured the space needed for their storing in the
database, and the time required to complete several testing queries.

4.2 Benchmark results
The results obtained on the indexed data sets are reported in Table 4.1.

As expected, the more complicated cases were tested, the longer it took
ElasticSearch to give the results. Increases in response time were caused by
more complex queries, more indexed e-mails and more returned results. On
the other hand, from the perspective of the user, the 7.4-times increase in
the amount of data did not have a significant impact on the response time
of the search.

The indexing process itself scaled satisfactorily — indexing performance
was approximately 40 e-mails per second on average, and it varied only neg-
ligibly with the increase of the index e-mail count.

47

Query 26.675 e-mails 200.000 e-mails

tag:inbox

Top 10 results 1ms 5ms
Top 50 results 3ms 8ms
Top 100 results 8ms 11ms
tag:inbox and
approval

Top 10 results 14ms 48ms
Top 50 results 16ms 68ms
Top 100 results – 70ms
tag:inbox and
approval and
time:<1.1.2002

Top 10 results 18ms 52ms
Top 50 results 20ms 59ms
Top 100 results – 57ms

E-mail files disk space 417MB 2.7GB
ElasticSearch’s index
disk space

112MB 394MB

Table 4.1: Search and space results from benchmark performed on Enron
e-mail data set.

48

Conclusion
This thesis has reviewed the necessary means and tools for creating a modern,
web-based end-user e-mail interface, mainly the high-performance full-text
search and customisable tags, while avoiding the usage of mail folders for mail
organization. The main result of the thesis, the mail interface KamehaMail,
provides a simple open-source alternative to the commercial user interfaces
(e.g. Google Inbox).

In chapter 1 we have discussed the format of e-mail messages, e-mail
exchange on the Internet and several details of the related e-mail infrastruc-
ture; including the classification of mail-transfer agents and brief description
of the used communication protocols. We reviewed and classified some of the
existing end-user e-mail interfaces, which are the main concern of this thesis.

In chapter 2, we have described the currently used techniques for creating
a working searchable database using an inverted index structures, which can
be later used for implementing a database capable of high-performance. We
have provided several examples of used queries and of the matching process.
At the end, the chapter compares the full-text search to standard database
search and looks briefly at the current search engines.

Finally we have connected an open-source search engine ElasticSearch
to the mail processing infrastructure and a web-based end-user interface to
create KamehaMail. Implementation details, used tools, frameworks and
libraries are detailed in chapter 3.

We have benchmarked KamehaMail (and ElasticSearch) by indexing ap-
proximately 200 thousand e-mails from the publicly available Enron e-mail
data set [KY04] and measuring the search time required to complete several
queries in the resulting mailbox. The results are available in chapter 4.

KamehaMail can run on any reasonably modern UNIX-like operating
system that can run a mail server, a web server, and ElasticSearch. A simple
installation and user guide is provided in Appendix A.

4.3 Future work
The implementation of KamehaMail is not perfect and we provide ideas for
the improvement of both interface and the API library:

• Implement safety measures against JavaScript e-mail messages.

• Support for more complex queries. The search possibilities of the cur-
rent interface are limited due to the desired simplicity of the user

49

queries. ElasticSearch offers great variety of different options for query-
ing, which can be mapped to the syntax of KamehaMail queries to
expose more functionality to the users.

• Implementation of built-in calendar and a snooze feature (known from
Google Inbox) would benefit the connection of user e-mail manage-
ment to time-management. KamehaMail API can be easily extended
to support this feature.

• Hierarchical tags are a feature that can provide the hierarchical mail-
classification workflow of nested directory structures while still pro-
viding the ability to search by tags without the cumbersome parallel
maintenance of both classification structures. ElasticSearch supports
this kind of tagging via wildcard queries.

• Addition of more user account management possibilities, e.g. avatars,
signatures, mail aliases, addressbooks, or other commonly expectable
features.

• Improve the design of the interface to work nicely on smartphones (or
generally smaller screens), or create a native mobile application that
communicates directly with the KamehaMail API.

• Caching of the search results to the browser for speeding the interface’s
response time.

50

Bibliography
[BP82] Jonathan B. Postel. Simple mail transfer protocol. RFC 821,

August 1982.

[BP98] Sergey Brin and Lawrence Page. The anatomy of a large-scale
hypertextual web search engine. 30(1-7):107–117, 1998.

[cer] Announcing alpha test of ptg mail-daemon server.
https://groups.google.com/forum/#!topic/comp.archives/
vpWqUAmg8xU. Accessed: 2018-03-05.

[Cri03] M. Crispin. Internet message access protocol - version 4rev1. RFC
3501, March 2003.

[Cro09] D. Crocker. Internet mail architecture. RFC 5598, July 2009.

[FB92] N. Freed and N. Borenstein. Mechanisms for specifying and de-
scribing the format of internet message bodies. RFC 1341, June
1992.

[FB96] N. Freed and N. Borenstein. Multipurpose Internet Mail Exten-
sions (MIME) Part One: Format of Internet Message Bodies. RFC
2045, November 1996.

[GT15] Clinton Gormley and Zachary Tong. Elasticsearch: The Definitive
Guide: A Distributed Real-Time Search and Analytics Engine. "
O’Reilly Media, Inc.", 2015.

[KY04] Bryan Klimt and Yiming Yang. The enron corpus: A new dataset
for email classification research. In European Conference on Ma-
chine Learning, pages 217–226. Springer, 2004.

[LYYB96] Yong Kyu Lee, Seong-Joon Yoo, Kyoungro Yoon, and P Bruce
Berra. Index structures for structured documents. pages 91–99,
1996.

[MB11] Ajit Kumar Mahapatra and Sitanath Biswas. Inverted indexes:
Types and techniques. Int. Journal of Computer Science, 8, 2011.

[MR96] J. Myers and M. Rose. Post office protocol - version 3. RFC 1939,
May 1996.

51

https://groups.google.com/forum/#!topic/comp.archives/vpWqUAmg8xU
https://groups.google.com/forum/#!topic/comp.archives/vpWqUAmg8xU

[PR08] Ed P. Resnick. Internet Message Format. RFC 5322, October
2008.

[www] The size of the world wide web. http://www.worldwidewebsize.
com/. Accessed: 2018-04-12.

[ZM06] Justin Zobel and Alistair Moffat. Inverted files for text search
engines. ACM computing surveys (CSUR), 38(2):6, 2006.

52

http://www.worldwidewebsize.com/
http://www.worldwidewebsize.com/

A. User Guide
In this appendix, we provide a user guide for running the interface on own
infrastructure or simply using it for e-mail management.

The appendix is separated into two sections. The first section describes
the interaction with the interface on the end user’s level. The second section
details the API library, and explains how to run the interface on a UNIX
server.

A.1 Interface interaction
KamehaMail can be tried on the webpage hruska.blesmrt.cf/KamehaMail
using any reasonable modern web browser. The main page is a simple login
panel with sign up option. To registrate, go to the Sign Up option, choose a
username (with domain at the end, in this case @hruska.blesmrt.cf).

After successful login, the e-mails page shows up. There are several points
of interest:

Left navigation panel. Left navigation panel contains tags for e-mails.
First four tags are system tags, Inbox, Archive, Trash and Sent. After them
comes menu with customisable user-defined tags1. There is a possibility to
create a search tag from the current search.

Top bar. The top bar contains search panel (center) and account manage-
ment menu (right). Possible queries for the search are the following:

• User can simply type the term he is searching for. In this case, the
search engine will look into all analyzed fields for the match.

• User can specify the search field, for example subject: Hello. Pos-
sible search fields are subject, text, from and to

• There is one more unanalyzed search field named tag. Any system
or user-defined tags can be searched using the same syntax (e.g tag:
inbox).

• User can filter the results by date. Date value must be in time:
dd/mm/yyyy or time: dd.mm.yyyy format. Possibilities of date fil-
tering are:

1list of possible icons for tags can be found on https://material.io/tools/icons/

53

Figure A.1: Main menu description.

– lesser than time: <date

– greater than time: >date

– between time: date-date

– exact date time: date.

All of the queries above can be combined using and, creating multi-criteria
queries with any number of white spaces in between. Account management
provides options for password change, mailer change and logout.

Center. The button in the bottom right corner opens a form for writing a
new e-mail. It features text editor and a file drop for attachments.

The center contains grouped e-mails. Each group indicates the number
of the e-mails it references to and the subject of the conversation. If the
subject is in bold, one or more messages in the conversation are new (i.e.
unread). The tag buttons are to the right of the subject: mark read/unread,
archive, delete and a drop-down menu for user’s tags. Preview of each e-mail
is shown once the group is opened. Each e-mail group provides text editor
and Quick Reply option to reply directly to the conversation. Reply and
forward options on the right side of each e-mail open a new prefilled form for
sending.

All basic features are displayed in Figure A.1.

54

A.2 Server configuration
We briefly cover the installation procedure for getting KamehaMail working
on a UNIX server. The requirements are:

• A running ElasticSearch cluster accessible on localhost port 9200.

• A web server (Apache is preferred because of the .htaccess usage,
but any webserver capable of request rewriting will work). Apache
module mod_rewrite is required; mod_ssl is highly recommended since
KamehaMail does not do any encryption of data on its own. Using
mod_suexec for executing the API is also recommended for additonal
security.

• A working mail server (we use Exim4 as an example, but any server
that can route local mail delivery to a program pipe will work, including
Postfix, Sendmail, Courier and other).

• PHP interpreter, preferably of version 7 or better, with following mod-
ules available:

– php-curl
– php-gd
– php-json
– php-mail
– php-mailparse
– php-mbstring
– php-net-smtp
– php-net-socket
– php-pear
– php-sqlite3
– php-xml

For the installation, KamehaMail backend is extracted on the server. The
source code can be currently obtained from the Git repository at https:
//github.com/hrusticka123/KamehaMail.

The configuration consists of creating a storage space for the primary e-
mail database, configuring Apache webserver and setting up the local mail
transport to KamehaMail.

55

https://github.com/hrusticka123/KamehaMail
https://github.com/hrusticka123/KamehaMail

1. Paths to mailbox directory, data directory (as described in chapter 3)
are filled into source/config.php, together with the full absolute path
to the source directory. KamehaMail script should have write access to
the mailbox and data directory. /var/lib/kamehamail is a preferable
location for both.

2. The extracted directory contains a subdirectory webroot, which is
where Apache document root should be directed. Webroot contains
a subdirectory api with files .htaccess and api.php, which serve as a
gateway to the rest of the implementation. Apache must be configured
to execute api.php as a CGI script (possibly by FastCGI, FCGID or
php-fpm).

3. Path to the source directory must be filled in api.php so that it can
find the rest of the backend source code.

4. To allow mail exchange, the UNIX user that runs KamehaMail source
code must have access to sendmail command.

5. Receiving mail from the mail server is implemented by piping the in-
coming e-mail to the script maildrop.sh, which forwards it to the PHP
application. Configuration of Exim4 for this behavior consists of several
steps that modify the Exim4 configuration:

(a) The mail domains that are handled by KamehaMail instance are
put into the list dc_other_hostnames, which effectively makes
them ‘local domains’ for Exim.

(b) The local user transport is changed to
transport = transport_kamehamail.

(c) A corresponding transport configuration is created in the directory
with mail transports:

transport_kamehamail:
driver = pipe
command = /var/www/example.org/maildrop.sh
user = kamehamail-user
group = kamehamail-group

(Path to maildrop.sh, user and group should be changed to
match local setup.)

Other mail servers can be set up for similar behavior.

56

Description Command Parameters Script stan-
dard input

Inject
an e-mail

drop user@domain tag RFC-
formatted
content of
e-mail

Reindex mail reindex user@domain list of hashes
to reindex

Add user add_user user@domain password –
Remove user remove_user user@domain –
Remove
a specific
mail

remove_mail user@domain list of hashes
to remove

Table A.1: Administration interface command listing.

After setting up and reloading all services, KamehaMail should be ready
to register new users and accept e-mail.

Extra interface is provided for the usual administrative commands: script
source/admin.php can be run with php to execute administrative tasks, such
as user management, reindexing or e-mail injection. The list of commands is
available in Table A.1. For example, a new user is added by running:
php api.php add_user john.doe@example.com johnspassword
The same interface was used during benchmarking to easily index the dataset
and make it available to the web interface for measurements.

57

58

	Introduction
	Electronic mail processing
	History
	Message Format
	Header
	Body

	Message exchange
	E-mail Agents
	E-mail protocols

	End-user interfaces
	Desktop clients
	Web based clients
	Mobile clients

	Text search
	Text analysis
	Mapping

	Indexing and inverted indexes
	Construction of inverted index
	Structure of the inverted index
	Segmentation

	Query structure
	Relevance and effectiveness
	Phrase query

	Search engines
	Comparison with relational indexing methods
	Web search engines
	ElasticSearch

	Application to mail indexing

	Implementation
	Backend
	Data storage
	API

	Frontend
	Communication with the server

	Results
	Benchmark setup
	Benchmark results

	Conclusion
	Future work

	Bibliography
	User Guide
	Interface interaction
	Server configuration

