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Berlin, 31 May 2018 
 
 
Review of the PhD thesis 
 
Maxwell-type viscoelasticity in small and large deformations of planetary mantles 
by Vojtěch Patočka  
 
The thesis submitted by Mr. Patočka represents an in-depth study of the dynamics of viscoelastic 
deformation in the interior of terrestrial bodies. Over a wide range of geologically-relevant timescales, 
the cold upper part of planetary lithospheres responds elastically to surface and internal loads, while 
the deeper and hotter mantle exhibits a ductile behavior and deforms as a viscous fluid, leading to an 
effective viscoelastic deformation of the mantle-lithosphere system. Although it has long been 
recognized that elasticity and viscoelasticity are essential to describe fundamental geophysical 
processes such as plate bending under volcanic loads or the Earth’s glacial isostatic adjustment (GIA), 
much less attention has been devoted to the effects of elasticity on the large-scale convective dynamics 
of the mantle. With this work, Mr.  Patočka succeeded in presenting a comprehensive description of 
viscoelasticity from its theoretical foundations, through its role in controlling the small deformations 
associated with the GIA over thousands of years, to its effects on the large deformations associated 
with mantle convection over millions or even billions of years.  
 
The thesis is well written and clearly structured. After an introduction discussing the motivations and 
goals of the work, a detailed and lucid analysis of the theoretical foundations of Maxwell viscoelasticity 
is presented in Chapter 1. This chapter clearly reveals that Mr. Patočka spent a great deal of time and 
effort to master the (not simple) principles at the base of the numerical models he discusses later. Even 
without being an expert in the theory of continuum mechanics, I could fully appreciate the need to 
construct a more general time-derivative of the stress tensor satisfying the principle of objectivity in 
order to deal with large viscoelastic deformations. The extension of the classical material time 
derivative is obtained following two approaches, a traditional one based on mechanical considerations 
and a more modern one based on the entropy principle. The limited number of references that appear 
in this chapter makes the reader think that the author himself elaborated a significant part of the 
material presented. Even if this was not the case, the chapter would still be a very valuable and useful 
work of synthesis; perhaps it could have been useful to spell out more clearly whether and where there 
are significant novelties in the treatment of the theory.  

 
The main results of the thesis consist of two independent investigations related to the GIA (Chapter 2) 
and mantle convection (Chapters 3 and 4) that are based on the use of two different numerical codes. 
For the first, the author employed an Eulerian spectral code in a spherical shell geometry. This code 
solves the conservation equations for the small deformations of a Maxwell-type viscoelastic medium 
induced by surface loading, coupled with the (non-linear) Liouville equation controlling the rotational 
response induced by the deformation. Mr.  Patočka investigated in detail the largely overlooked 
problem of the energetic consistency of the GIA formulation for a rotating planet. He showed that 



 

 

linearizing the Liouville equation, a widely employed approximation in the GIA-community, violates 
energy conservation. On the contrary, he proved that energy is conserved when the fully nonlinear 
Liouville equation is solved. Although the linearization barely affects the solution for the displacement 
field, it may lead to a significant error in the evolution of the polar motion and should thus be used 
with care. The results of this work were published in Geophysical Journal International. 
 
As far as mantle convection is concerned, Mr. Patočka implemented the effects of elasticity into an 
existing and well-developed code already able to treat viscous and viscoplastic flows. With this 
addition, this code is now probably the first within the geodynamics community that is able to deal 
with visco-elasto-plastic convection at a global scale in various geometries. Mr. Patočka applied this 
quite unique tool to two important problems. First, in the framework of simple models of stagnant-lid 
convection, he simulated the convective cooling of a mantle with a Maxwell viscoelastic rheology from 
an initial hot state (Chapter 3). He demonstrated that the elastic lithosphere can preserve a “memory” 
of the initial bending stresses induced by the underlying convection for several billions of years. This is 
an important result with possibly far-reaching consequences. It suggests that the stress state of the 
stagnant lid may contain information on the thermal evolution of the mantle, and that the way the 
elastic lithosphere deforms in response to surface or internal loads is affected by its own previous 
deformation history. These results are contained in a second paper that was also published in 
Geophysical Journal International. 
 
In addition, Mr. Patočka addressed the problem of the transition from stagnant lid to plate tectonics 
using visco-elasto-plastic convection models (Chapter 4). In order to develop lithosphere-scale shear 
zones that ultimately lead to surface deformation, these models generally require the use of an 
unrealistically low yield stress with respect to the well-constrained (and high) strength of the 
lithosphere. Searching for mechanisms that can affect such critical yield stress (positively or negatively) 
is an active area of current research. Mr. Patočka obtained the somewhat negative - yet significant - 
result that the effects of elasticity are basically irrelevant with respect to the maximum critical yield 
stress that allows the initiation of surface deformation. In the same context, he also analyzed the effects 
of the free-surface, which, in a previous study, was suggested to be able to significantly increase the 
critical yield stress. In contrast, he showed that these effects are also minor and that the previously 
reported claim that the free surface facilitates the initiation of surface deformation was due to a 
peculiar choice of both initial and boundary conditions that tended to promote stress accumulation and 
facilitate plate failure. 
 
The thesis is concluded by a summary of the work and a discussion of its possible developments. The 
author suggests to apply his models of viscoelastic stagnant lid convection to carry out realistic 3D 
simulations of specific bodies, of Mars in particular. Given the relatively large amount of data 
available, this is certainly a promising application as the evolution of the martian lithosphere might 
indeed help to better constrain the overall thermochemical evolution of the mantle. He further 
proposes that the effects of elasticity on the development of surface mobilization may become 
important if combined with  more sophisticated descriptions of the brittle and ductile behaviour of the 
lithosphere. In contrast to the simple pseudo-plastic flow models used in the thesis, more complex 
lithospheric rheologies can generate narrow shear zones where elastic stresses accumulated in the 
lithosphere could be released, thus promoting more deformation. This also represents a promising 
development that could help bridging the gap between regional- and planetary-scale deformation 
models.  
 
I believe that this thesis and the accompanying publications are an important contribution to the 
literature on mantle dynamics. Although numerical models of GIA and viscoelastic mantle convection 
share a common theoretical ground, they are generally used by different research communities to 
address different problems. I found it very impressive for a PhD student to be at ease with both 
modelling approaches and their mathematical foundations, and to be able to produce significant 



 

 

research results in both fields. This work demonstrates that Vojtěch Patočka is a creative and promising 
scientist and I fully recommend it to by accepted as a PhD thesis.   
 
A series of specific comments and questions for the author is listed below: 
 
1. In Section 1.2, a geometrical argument is introduced to propose the lower convected time derivative 
as a preferable choice for Maxwell viscoelasticity. Yet for the numerical simulations presented in 
Chapters 3 and 4,  the Jaumann time derivative is employed as in most studies of viscoelastic 
convection. What motivated this choice? Should one expect significant differences in the simulation 
results if different convected derivatives were used? Is there any experimental and/or theoretical 
approach that could be used to select a “most suitable” derivative, at least for a specific problem?  
 
2. The numerical techniques employed in GIA and mantle convection modelling are substantially 
different. Spectral techniques solving for the displacement field and limited to small deformations are 
typically adopted in the first case, while finite (volume, element, or difference) techniques solving for 
displacement rates and allowing for large deformations are used in the second. Since “small 
deformations” are obviously a subset of large ones, shouldn’t one try to unify the two approaches? To 
what extent could the small deformations of GIA problems be reproduced with a viscoelastic flow 
model? For example, what would be necessary to reproduce the results of Chapter 2 with the finite 
volume convection code?  
 
3. For the implementation of viscoelasticity (Sect. 3.2.3), the author discusses about the possibility to 
choose two time steps (as proposed by Moresi et al., 2003): an “elastic” one for the stress advection and 
the standard one for the advection of temperature and tracers. The author concludes that this is 
actually not necessary and that choosing the time stepping according to the CFL criterion is sufficient. 
Also, the “numerical viscosity” Zη depends on the amplitude of the time step. Given the non-linearity 
of the problem, one may think that the choice of ∆t could actually affect the solution to some extent. 
Did the author conduct convergence tests that prove the application of the CFL criterion to be 
sufficiently accurate? It is mentioned that the Courant number is set to 0.5. Is this a requirement of the 
advection scheme? What motivated this choice?  
 
4. The advection of the stress tensor is obtained using either the grid-based donor-cell method or via 
tracers, with the second option employed in the simulations of thermal convection. However, to 
reproduce the viscoelastic convection benchmark of Harder (1991), the author reported the need to use 
up to 1000 tracers per cell. According to this figure, for high-resolution or 3D simulations, the total 
number of tracers could quickly  become prohibitively large. How many tracers were used in the 
thermal convection runs (Sect. 3.4.1)? Again, did the author carry out convergence tests to verify 
whether the number of tracers was sufficient? 
 
5. Two stagnant-lid models are described in Sect. 3.4.1 based on Earth-like and Mars-like parameters. 
However, what controls the outcome of the corresponding simulations is probably the choice of the 
reference viscosity and the resulting convective vigor. Since these simulations are quite simplified, it 
might have been more appropriate to perform a parameter study simply based on different Rayleigh 
and Deborah numbers. Furthermore, these simulations are meant to describe the elastic response of the 
lithosphere in a mantle “that cools down from an initially hot state”. However, these are actually 
steady-state (or statistically steady-state) simulations with basal heating and without cooling (no 
decaying heat sources nor core cooling is prescribed). The lithosphere thickens or shrinks just because 
convection adjusts the thermal boundary layers to the effective Rayleigh number of the system,  which 
should happen quite rapidly. Therefore I found it somewhat surprising that the initial thickness of the 
upper thermal boundary layer has a very large influence on the stress pattern in the lithosphere even 
after long simulation times. In particular, no detailed explanation is provided as to why no significant 
difference in the lithospheric stress field is observed between viscous and viscoelastic models 



 

 

initialized with a thick boundary layer of 300 km (Figure 3.6b). Can the author comment on these 
observations? 
 
6. The importance of the “memory effect” in viscoelastic convection is shown to depend crucially on 
the absolute viscosity of the lithosphere or, in other words, on its Maxwell time. The author is clearly 
well-aware of this fact, which is mentioned several times in the thesis. Yet the actual viscosity of the 
lithosphere is difficult to determine and, as far as numerical models are concerned, it is often defined 
simply by a cut-off preventing it from growing to the huge values predicted by the Arrhenius law. 
Does the author have some ideas regarding how to solve or make progress on this issue? Could the 
interaction with experimentalists help in this sense? 
 
 
Sincerely,  
 

	
	

	
	

 


