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Abstract: A present limitation of global-scale simulations of planetary interi-
ors is that they assume a purely viscous or viscoplastic flow law for solid rock,
i.e. elasticity is ignored. This is not a good assumption in the cold and strong
outermost mantle layer known as the lithosphere, which seems to maintain its
elastic properties even on time scales corresponding to the geological processes of
subduction or sedimentation. Here we overcome such simplification and present
a numerical tool for modelling visco-elasto-plastic mantle convection. The most
promising new feature of the resulting models is related to the ability of vis-
coelastic materials to remember deformation experienced in the past. Thus, the
growing viscoelastic lithosphere of a cooling planet, when subject to internal or
surface loading, can store information about its thickness at the time of loading.
This phenomena is consistent with datasets of the effective elastic thicknesses
determined in flexure studies and we label it here as the “stress memory effect”.
Attention is also paid to the theoretical foundations of viscoelasticity. We review
the approaches that are commonly used to formulate Maxwell-type constitutive
equations and thoroughly analyze the condition of material objectivity in a search
for objective stress rate that fits Maxwell’s original idea the best. While the main
focus of the thesis lies in the field of large deformations, small deformations of
planetary mantles are addressed too. We solve the traditional problem of glacial
isostatic adjustment on a rotating Earth and analyze the accompanying changes
in the rotational, gravitational and elastic energy of the planet.
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Abstrakt: Současná limitace globálních simulací plášťů terrestrických planet spočívá
v tom, že uvažují čistě viskózní nebo visko-plastické tečení plášťových hornin, a
tedy zanedbávají jejich elasticitu. Tato aproximace není vyhovující ve studené
a pevné svrchní vrstvě pláště, známé jako litosféra, která si uchovává elastické
vlastnosti i na časových škálách odpovídajícíh geologickým procesům subdukce
a sedimentace. V této práci překonáváme toto zjednodušení a představujeme
numerický nástroj pro modelování visko-elasto-plastické plášťové konvekce. Zají-
mavá vlastnost našich simulací pramení ze schopnosti viskoelastického materiálu
pamatovat si prodělanou deformaci. A tak postupně mohutnějící litosféra chlad-
noucí planety, vystavená vnitřím nebo povrchovým zátěžím, ukládá informaci o
své tloušťce v okamžiku zátěže. Tento jev je v souladu s hodnotami efektivní ela-
stické tloušťky získanými v rámci měření flexe litosféry, a my jej zde označujeme
jako “napěťová paměť materiálu”. Pozornost je věnována i teoretickým základům
viskoelasticity. Shrnujeme přístupy, které lze použít při formulaci konstitutivní
rovnice Maxwellova typu, a důkladně analyzujeme podmínku materiálové objek-
tivity za cílem nalezení objektivní tenzorové derivace, která odpovídá původní
Maxwellově myšlence nejlépe. Zatímco těžiště práce spočívá v oblasti velkých
deformací, malé deformace planetárních plášťů jsou adresovány také. Řešíme
tradiční úlohu postglaciálního výzdvihu na rotující Zemi a analyzujeme změny v
rotační, gravitační a elastické energii tělesa, ke kterým při tom dochází.
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Introduction
“Elastic materials deform when a force is applied and return to their original

shape when the force is removed. Almost all solid materials, including essentially
all rocks at relatively low temperatures and pressures, behave elastically when the
applied forces are not too large.” – Turcotte & Schubert (2002)

“Thus a block of pitch may be so hard that you cannot make a dent in it by
striking it with your knuckles; and yet it will in the course of time flatten itself
by its weight, and glide downhill like a stream of water”
– James Clerk Maxwell, from Theory of Heat (1871)

The rheological behaviour of the lithosphere has long been contentious in
geodynamics. The approaches developed over the years have essentially two end-
members that are mutually contrasting, one treating the lithosphere as an elastic
solid and the other as a highly viscous fluid.

Several observations directly confirm that the surface plates constituting the
lithosphere are very rigid. Many geological structures in the continental crust
have survived longer than 1 Gyr without flowing away and the linearity and
constant separation of transform faults proves that the oceanic plates strongly
resist to any intra-plate flow. In fact, this is a fundamental postulate of plate
tectonics (e.g. Turcotte & Schubert, 2002). At the same time, the lithosphere
is observed to bend under imposed loads and its topography can often be fitted
by the curvature of a flexed elastic plate. Thickness of such theoretical plate is
referred to as the effective (or equivalent) “elastic thickness” of the lithosphere.

For this reason, modelling the lithosphere as an elastic solid has traditionally
played an important role in geodynamics, particularly when response to surface
loading and unloading is investigated. These flexure studies, however, also suggest
that the lithosphere relaxes with time, meaning that it cannot be purely elastic.
It is best illustrated by the general disagreement between seismic thickness of
the lithosphere, as indicated by the depth of the low-velocity zone (e.g. Shapiro
& Ritzwoller, 2002), and the elastic thickness observed at long time scales, the
latter being much smaller. Moreover, there is evidence for a decrease of effective
elastic thickness of oceanic lithosphere with the age of imposed surface loads. An
insightful review byWatts et al. (2013) employs a large dataset of topographic and
gravity measurements to support and quantify these geophysical observations. In
Section 0.1 we repeat some of the conclusions presented by Watts et al. (2013)
and discuss them in the context of viscoelastic rheologies.

In numerical experiments of mantle convection the approach is different, since
convection is intrinsically associated with fluid-like behaviour. The dominant
type of creep mechanism in the upper and lower mantle is still debated (e.g.
Ranalli, 1995; Schaeffer et al., 2016), but both major candidates – the diffusion
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and dislocation creep – can be described by temperature and pressure dependent
viscous flow laws. For present day temperatures of terrestrial planets one obtains
large viscosity contrasts with these flow laws, resulting in a mantle that convects
below a highly viscous stagnant lid (Solomatov, 1995). The rheological behaviour
of the outer thermal boundary layer (the lid, more generally the lithosphere) is
then not of primary importance. Its internal deformation has little effect on the
overall thermal evolution, layering of convection, convective vigor, the shape of
plumes, or other typically addressed features.

When plastic yielding is introduced, more tectonic regimes can be obtained
in thermal convection models. Namely, the mobile lid regime, similar to plate
tectonics on Earth (Tackley, 2000), and episodic lid regime, which could apply
to Venus (Armann & Tackley, 2012; Rozel, 2012). Lithosphere-scale shear zones
develop in these regimes due to plastic yielding, splitting the lid into plates which
then subduct. Most of the deformation is accommodated within boundaries of
the plates, that is, within some localized shear zones. In plate-like regimes the
rheology of the lithosphere is more important, as it controls the shape of sub-
ducted slabs during their descent (e.g. Čížková et al., 2007), which in turn affects
slab penetration through the transition zone (e.g. Tagawa et al., 2007), and thus
also the overall convection pattern. Nevertheless, elasticity is still only rarely
considered in global-scale numerical models of mobile and episodic lid regimes.
In regional-scale models the behaviour of subducting slabs is under closer scrutiny
and visco-elasto-plastic rheology is more common.

The basic premise of this thesis is that essentially all materials show viscoelas-
tic properties: their short term response is elastic or elasto-brittle and when
loaded for sufficient time the elastic strains are accommodated by a dissipative
mechanism, gradually diminishing the stored elastic strain energy. The key ques-
tion to ask is what the “sufficient time” is for a given material and given spatial
scale, as recognized already by Maxwell (1871): “In the case of a viscous fluid
it is time which is required, and if enough time is given, the very smallest force
will produce a sensible effect, such as would require a very large force if suddenly
applied. Thus a block of pitch may be so hard that you cannot make a dent in
it by striking it with your knuckles; and yet it will in the course of time flatten
itself by its weight, and glide downhill like a stream of water.” (adopted from
Málek & Rajagopal, 2005).

In the case of lithosphere the time needed for it to behave “like a stream of
water” is extremely large: it can preserve elastic energy even on geological time
scales, examples of which are given in Section 0.1. While this alone advocates for
considering elasticity in mantle convection modelling, there is also another aspect.
The effects of elastic deformation in regional modelling, even when short-lived,
suggest a possible influence on the long-term behaviour of global-scale models.
These are discussed in Section 0.2.
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Figure 1: Comparison of a bathymetric profile across the Mariana trench (solid line)
with the universal lithospheric deflection profile, that is, with the solution of the general
equation for the deflection of a thin elastic plate subject to an end loading (dashed line).
The scheme in the right bottom corner shows the parameters describing such situation.
A plate fixed on the right side and loaded by a vertical force V0 and a bending moment
M0 on its left edge. Distance xb − x0 is the half-width of the forebulge from which
the thickness of the plate can be inferred. Adopted in modified form from section 3 of
Turcotte & Schubert (2002).

0.1 The lithosphere as an elastic plate

On short time scales, there are two major types of experiments to determine
the elastic properties of rocks: laboratory and seismological. In laboratory exper-
iments the spatial scales are limited. One can measure up to meter-sized blocks
of material, typically involving monoliths (well connected unfractured samples
made of a single rock type). From seismology, in particular from the study of free
oscillations of the Earth, we know that the mantle behaves as a continuous elastic
body even on very large spatial scales, with wavelengths reaching thousands of
kilometers. Such evidence does not, however, directly imply that the mantle can
preserve its elastic properties on geological time scales.

A textbook example that in the lithosphere this is indeed the case can be found
near the deepest part of the world’s oceans – by investigating the bathymetric
profile across the Mariana trench (see Fig. 1). While viscous or viscoplastic plates
can also bend over time when subject to loading, such bending does not form a
forebulge as observed near the Mariana trench and in other subduction zones.
The formation of a forebulge is related to the way elastic rods and plates transfer
bending moments throughout their lengths (for some settings a forebulge can be
created and supported by viscous flow only, but a satisfying fit to the observed
forebulge morphology is not obtained without elasticity – see Gurnis et al. (1996)
and Hall & Gurnis (2005)). The bathymetric profile across the Mariana trench
can be compared with the solution of the general equation for deflection of a thin
elastic plate subject to an end loading. Measuring the half-width of observed
forebulge almost directly leads to the thickness of such bent elastic plate: upon
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specifying plate density, its Young’s modulus, Poisson’s ratio, the density of water,
and the gravitational acceleration, the half-width xb−x0 can be converted to the
plate thickness Te.

For typical parameters one gets Te ∼= 28 kilometers for the Pacific plate sub-
ducting at the Mariana trench (Turcotte & Schubert, 2002, Fig. 3-35). This is
much less than the local thickness of the oceanic lithosphere when defined as
the width of the thermal boundary layer derived from a half space cooling model
(e.g., Turcotte & Schubert, 2002, eq. 4-115). Thermal boundary layer is the region
where temperature drops by a certain amount (relative to the initial temperature
contrast, that is, relative to the difference between the temperature of the rising
magma and the surface temperature of ocean floor) and so its depth corresponds
to a predefined isotherm (typically around 1300 ◦C). With viscosity strongly de-
pendent on temperature, it is a region where viscosity exceeds a given threshold,
i.e. it is very stiff (with high resistance to flowing). The estimated thickness of
the thermal boundary layer matches quite well with the depth to the channel of
low seismic velocities (the astenosphere), as first observed from Rayleigh wave
dispersion data by Leeds et al. (1974).

How, then, is the discrepancy between the observed Te and the thickness of
the oceanic lithosphere explained? The stresses that develop in a subducting
plate easily exceed the brittle strength of rocks and part of the bending energy
is released in relatively small intra-plate fractures (not to be confused with the
possibly large seismic events at the interface of two plates), reducing the plate’s
equivalent elastic thickness in effect. Moreover, stress-dependent ductile creep
may get activated in deeper parts of the slab, further releasing elastic energy
into heat through viscous dissipation of the creeping material. While brittle
failure is almost singular in time, ductile yielding acts gradually and reduces the
lithospheric elastic strain progressively.

The slower a tectonic process is, the more time creep mechanisms have to relax
elastic stresses that formed in response to lithospheric loads. Convergence rate at
the Mariana trench is a few cm/year, leaving each segment of the slab loaded for
several tens of Myr before it sinks into the mantle. The computed Te value can
be viewed as a measure of elastic strength which persists over the characteristic
time of each process. In the case of subduction it is several tens of Myr. In
principle, the slower the sinking rate of slab is, the smaller value of Te one should
expect. To our knowledge, no systematic study relates convergence rates with
observed elastic thickness of subducting plates, but there is other evidence of time
dependent stress relaxation in the lithosphere: the relationship between the age
of a seamount and the amount of deflection it causes to the underlying seafloor.
Oceanic seafloor is littered with volcanic seamounts which make ideal lithospheric
loads because they are very concentrated (having large edifice height to width
ratio) and form rapidly (1-2 Myr). An example of seamount chain is depicted
on Fig. 2, adopted from Watts et al. (2013), the left panel showing the free-air
gravity anomaly along the Louisville Ridge, and the right panel demonstrating
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Figure 2: The crustal and upper-mantle structure along Profile AB, which intersects
the crest of the Louisville Ridge seamount chain in the southwest Pacific Ocean at
27◦35’S (Contreras-Reyes et al., 2010) (for perspective image of the free-air gravity
anomaly along the Louisville Ridge seamount chain in the southwest Pacific Ocean see
left part of the figure). The colors indicate the P-wave velocity structure derived from
a seismic refraction experiment involving a shooting ship (R/V SONNE) and ocean-
bottom seismometers (open symbols). The solid black lines represent the predicted
flexure of the crust and upper mantle assuming a load base at a depth of 4910 m with
densities of the infill, load, and mantle of 2800, 2800, and 3400 kg m−3, respectively,
and effective elastic thickness, Te, of 5, 10, and 20 km. There is an excellent fit between
the observed seismically constrained depth to Moho and the calculated depth based on
the predictions of a simple elastic plate (flexure model) with Te = 10 km. Adopted from
Watts et al. (2013).

how seismic refraction data can be used to determine the elastic thickness of the
Pacific plate in that region.

In their review paper, Watts et al. (2013) collect data from many studies
of flexure such as the one depicted in Fig. 2. They show that the observed
elastic thickness Te generally decreases with load age. The evidence is not very
robust, for reasons discussed below, but for the moment let us assume that Te
indeed decreases with the seamount age. What implications can be made for the
lithospheric rheology?

General feature of viscoelastic rheologies is that both the viscous and the
elastic deformation are present when a viscoelastic body is loaded. The rela-
tionship between these two deformational components is, however, different for
different viscoelastic material models. If we compare the two most fundamen-
tal ones, Maxwell model and Kelvin-Voight model (other models are often built
by combining these), only the first one allows for elastic energy to be gradually
dissipated by the viscous mechanism when the imposed loading is held constant.
Thus, as long as erosion does not significantly reduce the size of the seamounts
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over time, only the Maxwell model can explain the observed decrease of Te with
time (i.e. the decrease of elastic support with time). Note also that Kelvin-Voight
material does not behave as fluid in the t→∞ limit, meaning that it can never
reach hydrostatic equilibrium. This seems unlikely for planetary bodies, whose
rotational bulge is often close to the hydrostatic equilibrium (see also Chapter
2). Therefore, we choose Maxwell model as the central concept of this thesis,
for it is the simplest viscoelastic rheology capable of explaining the phenomena
mentioned above.

While the dependence of Te on the load age is not very robust, a more con-
vincing feature in the large dataset assembled by Watts et al. (2013) is that the
observed elastic thicknesses are related to the thermal age of the oceanic plates
at the time of loading rather than to their current thermal age. When volcanic
eruptions form a seamount, it causes deflection of the underlying seafloor. The
amount of deflection is given by the size of the load and by the thickness of the
plate at the time of eruptions. Subsequent cooling and thickening of the oceanic
lithosphere has little effect on the recorded deflection of its crustal strata. In the
words of Watts et al. (2013): “Accordingly, as the plate increases its age away
from a mid-ocean ridge, it increases in strength, and despite a possible decrease
in Te with load age, the plate retains a memory of this strength for long periods
of time”. In Chapter 3 we, for the first time in the literature, demonstrate such
memory effects in numerical simulations of global-scale thermal convection.

The fact that the measured elastic thicknesses primarily depend on the plate
age makes it difficult to extract the relationship between Te and load age. One
needs to get rid of the plate age to obtain such relationship, e.g. by compiling a
dataset that compares values of Te under seamounts of different age, but for which
the plate’s thermal age at the time of loading (formation of the seamount) is the
same for all the selected seamounts. Clear evidence of gradual stress relaxation
is given only in individual cases, e.g. when the long-term subsidence of Ascension
volcanic island is reported (Minshull et al., 2010), or similarly for the islands in
French Polynesia (Watts & Zhong, 2000).

While all oceanic seamounts eventually get subducted, leaving no loads older
than cca. 200 Myr, the continents are subject to a wider range of load age and
so have a better potential to manifest lithospheric relaxation. Unfortunately,
their thermal and mechanical evolution is much more complicated than that of
the oceanic plates. It is dominated by the Wilson cycle, leaving structural in-
heritance which makes it complicated to isolate loads from the deformation they
cause (Watts et al., 2013). Perhaps the least troubling geological structures in
terms of such isolation are foreland basins. To illustrate the general procedure
of determining Te in foreland basins we adopt Fig. 3 from Watts et al. (2013),
who compute the Te value in the case of Ganges basin, loaded by the Himalayas.
Watts et al. (2013) gather 86 Te estimates from foreland basins and rim flank
uplifts, portraying the flexure of Archean and Middle Proterozoic to Phanerozoic
lithosphere. The main result is, similarly as for the oceanic lithosphere, that
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the equivalent elastic thickness increases significantly with the plate thermal age
and is much smaller than the seismic thickness of the lithosphere in each region.
Dependence of Te on load age shows even larger scatter than for the oceanic
lithosphere data, providing little information about the long-term relaxation of
lithospheric stresses.

To summarize, elasticity is important when lithospheric deformation is studied
– both on short time scales and on geological time scales. The elastic mechanism
must be complemented by a dissipative one in order to explain the difference
between the computed Te estimates and the observed seismic thicknesses of the
lithosphere in various regions. Dissipation takes place both through brittle crack-
ing and through gradual ductile creep. Moreover, the viscosity controlling the
creep must be temperature dependent in order to explain the dependence of Te
on the plate’s thermal age at the time of loading. It is, however, difficult to iden-
tify particular creep type because the data on Te against the load age show a large
scatter, making it hard to infer the temporal evolution of stress relaxation under
the load. Despite these uncertainties, it is flexure studies that provide important
constraints on the brittle/ductile transition and on the active creep mechanism
in a realistic, compositionally stratified lithosphere (e.g. Afonso & Ranalli, 2004;
Burov, 2010). Note that one cannot infer such rheological zonation from lab ex-
periments only, because the experimentally determined constitutive relations for
lithospheric rocks strongly depend on composition, water content and tempera-
ture, and these are not well known in the real Earth.

0.2 Elastic deformation in mantle convection

There is a certain paradox in many numerical experiments of subduction and
mantle convection. While flexure studies are often taken into account – by using
therein derived constraints on the brittle/ductile transition and on the active
type of creep – flexure itself is often forgotten in these experiments as elasticity is
ignored in them. Perhaps it is because their focus have traditionally been on the
deeper dynamics rather than near the surface. Below we address a few exceptions
– studies that include elastic deformation in global geodynamical simulations.

Planetary-scale thermal convection of viscoelastic medium has first been ad-
dressed long ago by Ivins et al. (1982) and Harder (1991), but the papers do
not include the temperature dependence of viscosity. When it is considered, the
basic mode of thermal convection becomes the stagnant lid regime, as mentioned
above. The dynamic effects of elasticity on stagnant lid convection have only
been investigated many years later by Beuchert & Podladchikov (2010), who
employed a free-slip upper boundary condition and found mostly transient dif-
ferences when comparing viscous and viscoelastic models. Some stress reduction
due to elasticity was observed, but the overall effects were not very dramatic on
the global-scale.

Quite recently, it was shown by Thielmann et al. (2015) that a free surface up-
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Figure 3: (a) Perspective view (from the northwest) of the EGM2008 free-air gravity
anomaly field over the Himalayas and Ganges basin and the outer rise of central India.
Arrows show the location of Profile CD in panel b. (b) Comparison of the observed and
calculated Bouguer anomalies (right) and depth to the base of the foreland basin se-
quence (left) along Profile CD of northern India, the Ganges basin, the Himalayas, and
Tibet. The profile intersects the Main Boundary thrust (MBT), which separates the
subducting Indo-Australian plate from the overthrusting Eurasian plate, at longitude
82.4◦E and latitude 28.3◦N. The observed gravity anomalies are based on “point” mea-
surements compiled by the Bureau Gravimetrique International (BGI) (red and purple
circles) and the 2.5’ × 2.5’ EGM2008 combined terrestrial and satellite derived free-air
gravity anomaly grid of Pavlis et al. (2008) (thin red line). The EGM2008 field has
been converted to Bouguer gravity anomalies (blue circles) using a fast Fourier trans-
form method of calculating the gravity effect of the topography up to degree and order
4 (Parker 1972), a GEBCO topographic grid, and an average crustal density of 2,650
kg m−3. The calculated Bouguer gravity anomalies (thick red lines) and depth to the
base of the foreland basin sequence (thick brown lines) are based on an elastic plate
model with a load and infill density of 2,650 kg m−3, an effective elastic thickness, Te,
of 87.5 km (best fit) and a plate break at a distance of 185, 285, and 385 km north of
the MBT. The calculated Bouguer gravity anomaly has been referenced to the general
level of the observed anomalies over the unflexed parts of the Bundelkhand craton, and
the calculated depth to the base of the foreland basin sequence has been referenced to
mean sea level. The Indus-Tsangpo suture (thick gray dashed line) is located 285 km
north of the MBT. Adopted from Watts et al. (2013)
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per boundary is necessary for the effects of elasticity to fully develop in stagnant
lid convection. Similar findings were reported earlier in the context of mantle
lithosphere detachment from the continental crust (Kaus & Becker, 2007). In
Chapter 3, we analyze this in detail by comparing viscous and viscoelastic simu-
lations with a free surface. A viscoelastic lithosphere is able to build topography
much more quickly than a purely viscous one, resulting in a significant lithospheric
stress reduction in viscoelastic models. We quantify this effect for the case of a
rising cylinder and for basally heated stagnant lid convection. Moreover, we show
how the stress patterns formed in the lithosphere are influenced by the fact that
Maxwell material, unlike purely viscous medium, remembers the deformation it
has undergone in the past. Initially thin viscoelastic lithosphere can record the
pull of downwellings and the push of plumes as it grows in thickness, the respec-
tive stress patterns being “frozen” into it for times comparable with its Maxwell
relaxation time. Despite the above mentioned features, most of the typical ob-
servables of interest, such as the surface heat flux, vigor of convection, or the
behaviour of plumes, are little affected by considering elasticity in the overlying
stagnant lid.

Global-scale simulations of plate tectonics have also only rarely been per-
formed with rheologies that include elasticity, exceptions being the works of
Moresi et al. (2002), Muhlhaus & Regenauer-Lieb (2005), and Muhlhaus et al.
(2006). These pioneering studies focused mainly on the methodology, leaving
little space for a systematic evaluation of the influence of viscoelastic rheology
on the convective patterns. Moresi et al. (2002), who originated the method for
including elasticity into a viscous flow solver which we adopt and expand in Chap-
ter 3, also computed three simulations of mantle convection with a subducting
plate, differing from each other by the Maxwell relaxation time of the plate. They
investigated whether the slab would roll forward, as is typical in simulations with
viscoplastic rheology (but not observed in nature very often), or roll backwards,
as is often observed in nature. They found that for the intermediate value of
the relaxation time the slab rolled backwards for a transient period of time, but
surprisingly this feature did not appear for the highest relaxation time. They con-
clude that “the effect of increasing the elastic stresses in the end is to modify the
manner in which the lithosphere yields. This highlights the unpredictability of
complex nonlinear systems and serves as a warning that application of these sim-
ulations to modeling of plate tectonics requires considerable care and a thorough
attention to data which constrain the evolution of specific plate boundaries.”

Recently, Jaquet et al. (2016) found elasticity to play a significant role in the
context of shear heating induced thermal softening (e.g. Thielmann & Kaus, 2012;
Schmalholz & Duretz, 2015). Jaquet et al. (2016) performed regional models of
lithospheric shortening with realistic crustal and upper mantle rheologies. They
found that stresses build up much more slowly when strain can accumulate in
the form of elastic strain. When plastic criterion is reached and strain localizes
within a shear zone, the global release of the accumulated elastic strain energy
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promotes shear heating and increases the strain localization in effect, helping to
form a narrow and deep shear zone such as needed for the initiation of subduc-
tion. Similar thermoelastic feedback, though less dramatic, was observed earlier
by Regenauer-Lieb et al. (2001) in models that include hydrated minerals. Mo-
tivated by these results, we investigate in Chapter 4 how the ability to store and
release elastic energy influences the critical yield stress value needed to form a
lithosphere-scale shear zone in mantle convection simulations. Diffusion creep is,
apart from the elastic mechanism, coupled with either Drucker-Prager or Von-
Mises plasticity in these models, with the aim to parametrize both the brittle
failure and ductile yielding of the lithosphere. We perform a systematic study,
aiming at statistically robust results that minimize the influence of chaoticity,
intrinsic to every convection simulation with a high Rayleigh number.

0.3 Structure and goals of this thesis

Although not discussed very often in geodynamical literature, the traditional
formulation of Maxwell constitutive equation violates the principle of material
frame-indifference. Every constitutive relation and other physical laws should
respect this principle. The traditional formulation of Maxwell rheology is only
acceptable when understood as an approximation of a more complete formulation,
with its range of applicability being restricted to small strains (e.g. postglacial
rebound, see below). The topic has been pioneered in the fifties by Oldroyd
(1950), but is recently again gaining attention as new thermodynamics based
formulations of constitutive laws are being proposed. In Chapter 1, we thoroughly
review the principle of material frame-indifference and bring new insights into its
implications for generalizations of the traditional model.

Chapter 2 is devoted to a classical application of Maxwell rheology, in which
the Earth is subject to small deformations resulting from glacial isostatic adjust-
ment (GIA). The periodic accumulation and melting of ice loads and unloads the
Earth’s surface within tens to hundreds of kyr, that is, on short time scales when
compared to geological processes (e.g. Peltier, 2004). Viscoelastic relaxation is
crucial in explaining the postglacial rebound data. The rate at which the sur-
face is being uplifted due to historical ice caps is an observable directly linked
to the relaxation time of the lithosphere. A purely elastic Earth would predict
zero present day uplift due to the already melted ice caps, because elastic models
deform only when the load size is being changed. Purely viscous models, on the
other hand, would predict unrealistically small uplift rates – surface loads cannot
induce significant deformation of the deeper mantle when emplaced onto a non-
elastic, highly viscous lithosphere. Moreover, secular drift of the rotation axis in
response to GIA would be too small in a purely viscous Earth, because the read-
justment of the rotational bulge would be too slow. For these reasons, viscoelastic
rheology has always been a necessity in GIA modelling, with the Maxwell model
being the most common, almost unanimous, choice. Computing GIA on a ro-
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tating Earth becomes a delicate exercise as one has to account for the changes
in Earth’s rotation induced by the load induced deformation. In Chapter 2, we
analyze this phenomena from an energetic point of view. We derive a diagnostic
tool that can be used, within the field of small planetary deformations, to de-
tect physically ill-posed problems, or to reveal numerically incorrect solutions to
physically well-posed problems. We apply this tool to review the approximations
commonly used in GIA modelling and demonstrate some of their inconsistencies.

The main goal of this thesis is to investigate the footprints of viscoelastic-
ity in the context of mantle convection. We study how elasticity influences the
surface topography and lithospheric stresses when internal loading is generated
by self-consistently developed plumes and downwellings. The focus is on mantle-
lithosphere interaction: how the internal dynamics impacts the deformation of a
viscoelastic lithosphere and, conversely, how the elastic properties of the litho-
sphere affect the internal dynamics. In Chapter 3, we evaluate the response of
a stagnant lid and discuss the importance of the lid thickness and its evolution
in time. We perform simulations of a model Mars that is cooling down from its
initially hot state and analyze the stress patterns in its thickening lithosphere.
Statistically steady state, in which the lid thickness remains constant in time,
is also addressed. In Chapter 4, we study the transition from a stagnant lid to
plate-like mode of convection in visco-elasto-plastic models. We asses the fluctu-
ations of lithospheric stresses that are associated with the chaotic movement of
sinking and rising plumes and explore whether the expected effects of elasticity
and a free surface emerge despite these fluctuations. Attention is paid to the role
of viscosity profile assumed in the mantle.
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1. Maxwell viscoelastic fluid
“Mathematicians may flatter themselves that they possess new ideas which

mere human language is as yet unable to express. Let them make the effort to
express these ideas in appropriate words without the aid of symbols, and if they
succeed they will not only lay us laymen under a lasting obligation, but, we ven-
ture to say, they will find themselves very much enlightened during the process,
and will even be doubtful whether the ideas as expressed in symbols had ever quite
found their way out of the equations into their minds.” – James Clerk Maxwell

“All the mathematical sciences are founded on relations between physical laws
and laws of numbers, so that the aim of exact science is to reduce the problems
of nature to the determination of quantities by operations with numbers.”
– James Clerk Maxwell, from Faraday’s Lines of Force (1856)

Figure 1.1: Mechanical analogue for Maxwell viscoelastic body

In this chapter we review two phenomenological1 approaches to formulating
Maxwell viscoelastic rheology. In one way or the other they both involve a spring
and dashpot mechanical analogue, the spring representing elastic deformation
and the dashpot representing viscous deformation. In the first approach, the
traditional one, one-dimensional stress S and one-dimensional deformation ∆ are
introduced, and these are put into a relation that follows from the mechanical
analogue. For a Maxwell body both elements are connected in series, see Fig. 1.1,
meaning that stress is the same in the spring as in the dashpot, while deformation
adds up:

S = Selastic = Sviscous; ∆ = ∆elastic + ∆viscous . (1.1)

Linear elastic behaviour can be expressed as Selastic = G∆elastic, the constant
of proportion G being the shear modulus. Viscous friction law reads Sviscous =

η∆̇viscous, the dot denoting time derivative and η standing for the viscosity. By
computing time derivative of eq. (1.1), employing the elastic and viscous laws,
and assuming the shear modulus G to be time constant, one obtains

∆̇ = ∆̇elastic + ∆̇viscous ⇒ ∆̇ =
Ṡelastic

G
+
Sviscous

η
=
Ṡ

G
+
S

η
, (1.2)

which is the classical equation for Maxwell’s one-dimensional mechanical ana-
logue.

1“dealing only with phenomena directly accessible to the experience and measurement with-
out trying to interpret the phenomena in terms of ostensibly more fundamental (microscopic)
physical theories” - Málek & Průša (2016)
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In order to rewrite the equation into the language of continuum mechanics,
one must identify S, Ṡ and ∆̇ in terms of some appropriate tensorial quantities
that describe stress, stress rate and deformation rate of three-dimensional bodies.
While the Cauchy stress tensor ←→τ and the strain-rate tensor D, defined as the
symmetric part of the velocity gradient, 2D := ∇~v + (∇~v)T, are the obvious
adepts for two of these quantities, there is no straightforward counterpart for the
stress rate Ṡ. Even though it is sometimes overlooked in geodynamical and other
literature, neither partial nor material time derivative of second-order tensors are
frame-indifferent quantities, meaning that neither of these rates should appear in
a self-consistent physical law.

To illustrate, let us consider an elastic body deformed to some shape, and not
deforming any further (e.g. a tennis ball squeezed into a fence), watched by two
observers: one registering no motion of the body at all (observer attached to the
fence), and the other observer moving both translationally and rotationally with
respect to the first one. Let us further assume that both observers are given a
physical law, called “the constancy of stress”, which has the form D←→τ/Dt = 0,
with D/Dt being the material time derivative. The stress tensor field (or any
other second-order symmetric tensor field) can be visualized as a set of three-
axial ellipsoids with axes aligned according to the principal directions of stress
at each point. The attached observer’s solution to the constancy of stress is a
stress field constant in time (as he is solving ∂←→τ/∂t+ 0 · ∇←→τ = 0). To him, each
material point of the body is fixed in space and the three-axial ellipsoid sitting on
that point is also fixed, its orientation is not changing. The moving observer sees
a translating and rotating body. Since there is only one stress field in the body,
one should expect the moving observer’s solution to the constancy of stress to be
a set of three-axial ellipsoids that both follow the material particles’ trajectories
and also rotate with respect to the moving observer the same as the body rotates
with respect to him. The moving observer’s solution is, however, a set of stress
ellipsoids that follow material points of the body, but their orientation is time
constant with respect to him. It is because the material derivative takes account
of the drift of material points during the motion (via the term ~v ·∇←→τ), but it does
not account for the change of orientation of the infinitesimal volume elements
that contain material points (absence of corotational term). It is a valid rate for
scalar quantities, which have no orientation in space, but not for quantities with
orientation in space.

In Section 1.1 we discuss the principle of material frame-indifference (PMFI)
in detail. Its implications for formulating Maxwell constitutive law are covered
in Section 1.2. In particular, we aim to emphasize the differences in geometrical
interpretations of various objective rates. Contrary to mathematically driven lit-
erature, we find one particular rate that fits the traditional derivation of Maxwell
body the best, namely the lower convected rate.

Relatively recently, a new technique for producing thermodynamically con-
sistent constitutive laws has emerged, referred to as “entropy production maxi-
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mization” procedure. It is based on the work of Rajagopal & Srinivasa (2004)
and summarized in Málek & Průša (2016). The procedure consists of a priori
stating how the model material dissipates energy (i.e. produces entropy). Within
this approach, the constitutive law is obtained by assuming that the body always
deforms such as to maximize its entropy production while simultaneously com-
plying with the thermodynamical constraints imposed by fundamental balance
laws.

In Section 1.3 we briefly review how Maxwell viscoelastic fluid can be derived
within such framework. Similarly as in the traditional approach, the underlying
idea is to assume the total deformation of a viscoelastic body to be composed
of two parts, one being dissipative and the other elastic. A special configura-
tion of the considered body is introduced to distinguish these: so-called natural
configuration. The natural configuration, respectively its temporal evolution,
corresponds only to the dissipative part of the total deformation. The entropy
production maximization technique is very different from the traditional one, but
the principle of material frame-indifference is equally important within its con-
cept. It is because the principle has to be applied when proposing a model’s
entropy production rate. With natural configuration involved, the proper ap-
plication of PMFI is a delicate exercise, which has not been to our knowledge
discussed in the literature. We pay attention to it in Section 1.3.

1.1 Material frame-indifference

In this section we adopt the conceptual approach of Martinec (2011) (see
chapter 5. therein) and expand it by considering non-Cartesian frames. Such
expansion will be needed in Section 1.2. Regarding key terminology we strictly
follow the analysis by Liu & Sampaio (2014), who distinguish between the con-
cepts of frame indifference, postulate of Euclidean objectivity, principle of material
frame-indifference, and condition of material objectivity.

Let a body B be a set of material points. Motion of the body will be defined
as a mapping of the body, at each time t ∈ [0,∞), into the Euclidean space E,

χ : B × [0,∞)→ E. (1.3)

We will consider two observers of the body. Each observer can be understood
as a frame, the frame allowing the observer to measure positions, distances and
angles in the Euclidean space E. Frame can be formalized as a mapping that, at
a given time t, associates each point of the Euclidean space with its coordinates
in the frame φ : E×[0,∞) → R3. Motion of the body, when measured in frame
φ, is defined as the composite mapping χφ = φ ◦ χ,

χφ : B × [0,∞)→ R3, (1.4)
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Figure 1.2: Position of particle p at times 0 and t, as viewed from fixed Cartesian frame
φ: E→R3 and from moving polar frame φ∗: E×[0,∞)→R3.

where the triplets of real numbers denote the coordinates of material points’ posi-
tions at time t in frame φ. During any motion χ, measured by two observers φ and
φ∗, we can identify the position of each particle p by its coordinates x = χφ(p, t)

in frame φ and its coordinates x∗ = χφ∗(p, t) in frame φ∗. The time dependent
mapping between coordinates of the same point in the Euclidean space E will be
referred to as change of frame: x∗ = x∗(x, t), resp x = x(x∗, t). See Appendix
1.A for a worked out example.

Each frame contains an origin, the point with zero coordinates, and a local
basis formed by vectors tangent to coordinate lines at each point (see Fig. 1.2).
The local basis ~ei=1,2,3 of frame φ is related with the local basis ~gi=1,2,3 of frame
φ∗ via

~gj(x
∗, t) =

∂xi(x∗, t)

∂xj∗
~ei(x, t) =: Qi

j(x
∗, t)~ei(x, t), (1.5)

where we have defined the shifter tensor Qi
j and used the Einstein summation

convention. The local vector bases ~ei and ~gi are but two different bases of the
same vector space V, which is the translational space of the Euclidean space E.

Let us assume that each material point, at any time t, holds a scalar quantity
a:B× [0,∞)→ R. The functions aφ: R3× [0,∞)→ R and aφ∗ : R3× [0,∞)→ R,
defined as aφ(χφ(p, t), t) := a(p, t), resp. aφ∗(χφ∗(p, t), t) := a(p, t), are represen-
tations of the scalar field a in the frames φ and φ∗. Clearly, aφ∗(x∗, t) = aφ(x, t).
We say that the scalar field a is frame indifferent, or objective, because for each
point in the Euclidean space E its value is given, irrespective of the chosen frame.

Similarly, for any vector quantity ~a belonging to V we say that it is objective
if ~aφ∗(x∗, t) = ~aφ(x, t). For the components of such vector field with respect to
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the local bases of ~ei and ~gj eq. (1.5) gives

~aφ∗(x
∗, t) = ajφ∗(x

∗, t)~gj(x
∗, t) = ajφ∗(x

∗, t) Qi
j(x
∗, t)~ei(x, t)

=~aφ(x, t) = aiφ(x, t)~ei(x, t),

which provides the transformation properties of components of objective vectors,
aiφ(x, t) = Qi

j(x
∗, t) ajφ∗(x

∗, t).
For any second-order contravariant tensor ←→a belonging to V⊗V we get, fol-

lowing the same procedure,

←→aφ∗ = aklφ∗ ~gk⊗~gl = aklφ∗ (Qi
k ~ei)⊗(Qj

l ~ej) = aklφ∗Q
i
kQ

j
l ~ei⊗~ej = ←→aφ = aijφ ~ei⊗~ej,

that its components transform as

aijφ (x, t) = Qi
k(x

∗, t)Qj
l(x
∗, t) aklφ∗(x

∗, t). (1.6)

The basis of the space of all linear mappings V → R, denoted as L(V), will
be referred to as the local dual basis. It is formed by one-forms ei, resp. gi, which
are defined through the relations

ei(~ej) = δij; gi(~gj) = δij, (1.7)

where δij is the Kronecker delta. In virtue of the identity

δij =
∂xi∗(x, t)

∂xk
∂xk(x∗, t)

∂xj∗
(1.8)

we see that (insert for δij in the second relation of eq. (1.7) and expand ~gj on its
left-hand side – the following then stems from the linearity of one-forms)

gi(x∗, t) =
∂xi∗(x, t)

∂xj
ej(x, t) = {Q−1(x, t)}ij ej(x, t), (1.9)

where Q−1(x, t) is the inverse shifter tensor, Qi
k(x

∗, t) {Q−1(x, t)}kj = δij. The
transformation properties of one-forms, or covectors, are thus inverse when com-
pared to those of vectors. Typical example of a one-form is the gradient of a
scalar field:

∇a =
∂aφ(x, t)

∂xi
ei(x, t) =

∂aφ∗(x
∗, t)

∂xk∗

∂xk∗(x, t)

∂xi
ei(x, t) =

∂aφ∗(x
∗, t)

∂xk∗
gk(x∗, t),

where we have used the chain rule in differentiating aφ(x, t) = aφ∗(x
∗(x, t), t) to

show that the components of the gradient indeed transform according to eq. (1.9),
that is, {∇aφ(x, t)}i = {Q−1}ki(x∗, t) {∇aφ∗(x∗, t)}k.

Performing the above procedure for components of an objective vector field ~a
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yields the transformation properties of the gradient of objective vector field:

{∇~aφ(x, t)}ij = Qi
k(x, t) {Q−1(x∗, t)}lj {∇~aφ∗(x∗, t)}kl, (1.10)

where {∇~aφ(x, t)}ij := ∂aiφ/∂x
j. The shifter tensor in eq. (1.10) comes from

the objectivity of the vector field, aiφ(x, t) = Qi
j a

j
φ∗(x

∗(x, t), t), and the in-
verse shifter tensor stems from the differentiation. Eq. (1.10) is equivalent to
saying that the gradient of objective vector field is a second-order, right co-
variant mixed tensor (contravariant in its first index, covariant in the second
index). Such tensors can be written as a linear combination of ~ei⊗ej, so that
∇~aφ(x, t) = {∇~aφ(x, t)}ij ~ei⊗ej.

Not all vectors are objective. Typical examples of frame dependent vector
fields are the velocity and the acceleration of a body. Velocity of a particle is
the rate of change of its position vector. We will denote the position vector of
particle p in frame φ as ~sφ(x, t), resp. ~sφ∗(x∗, t) in frame φ∗, where x=χφ(p, t)

and x∗=χφ∗(p, t) are the respective coordinates of point p. The position vectors
are related via

~sφ(x, t) = ~sφ∗(x
∗, t) + ~c(t), (1.11)

where ~c(t) is a vector connecting the origins of both frames. To see how the
velocity of a particle, when measured in frame φ, is related to the velocity observed
in frame φ∗, we must apply the material derivative DDt := ∂

∂t

∣∣
p=const

to eq. (1.11).
First, let us express the vectors in eq. (1.11) in terms of its components in the
corresponding local vector bases

siφ(x, t)~ei(x, t) = sjφ∗(x
∗, t)~gj(x

∗, t) + ~c(t). (1.12)

Though generally not necessary, it is usually instructive to have one observer
equipped with a simple Cartesian frame attached to the Euclidean space, φ: E→
R3, with its basis being identical at every point of the Euclidean space, ~ei(x, t)=~ei,
and experiment only with the other observer φ∗: E× [0,∞)→ R3. Eq. (1.12) then
reads

xi(p, t)~ei = sjφ∗(x
∗(p, t), t)~gj(x

∗(p, t), t) + ckφ(t)~ek, (1.13)

because in the Cartesian frame components of the position vector are equal to the
coordinates of the respective point, siφ(x(p, t), t)=xi(p, t). By applying material
derivative to eq. (1.13) we get

viφ~ei =
Dsjφ∗
Dt ~gj + sjφ∗

∂~gj
∂xl∗

Dxl∗
Dt + sjφ∗

∂~gj
∂t

+
dckφ
dt
~ek, (1.14)

where the particle’s velocity in the Cartesian frame was identified, viφ:=(Dxi)/(Dt).
The first two terms on the right-hand side of eq. (1.14) together form the velocity
~vφ∗ , with the second term correcting for the change of the local basis along the
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trajectory of the particle (first term alone would equal the velocity ~vφ∗ if the local
basis of φ∗ was spatially homogeneous). The third term is related to the relative
motion of both frames (see below). The last term describes the relative velocity of
the origins of both frames and does not depend on which particle p we are tracing.

By Euclidean change of frame we will understand a change of frame that
satisfies

sjφ∗(x
∗, t)

∂~gj(x
∗, t)

∂t
= ~ω(t)× ~sφ∗(x∗, t) (1.15)

for all points x∗ and times t. The vector ~ω(t) is the relative rotation of both
frames and it is dependent on time only. It can be related with the tensor

Ωi
j(x
∗, t) :=

∂Qi
k(x

∗, t)

∂t
{Q−1(x(x∗, t), t)}kj , (1.16)

through the relation Ωi
ja
j = ξijkω

jak, valid for any vector ~a. ξijk denotes the
Levi-Civita symbol. In other words, the change of frame is Euclidean if and only
if Ωi

j(x
∗, t) is antisymmetric and spatially homogeneous. In Appendix 1.A the

formulae (1.14) are worked out for a particular example, explaining the meaning
of each term in eq. (1.14) and discussing the properties of Ωi

j(x
∗, t) for Euclidean

changes of frame, for which the relative motion of frames φ and φ∗ is a combination
of translation and rotation only.

Note that it would not have been possible to distinguish between Euclidean
and other changes of frame, had we, in the beginning, restricted ourselves only
to Cartesian frames (with equal metric). Cartesian frames with equal metric are
always only translated and rotated with respect to each other. For the rest of this
section, however, we will consider Euclidean changes of frame only and for brevity
we will thus abandon curvilinear coordinates (we return to them in Section 1.2).

For Cartesian coordinates one gets ~gj(x∗, t)=~gj(t), sjφ∗(x
∗(p, t), t)=xj∗(p, t),

Qi
j(x
∗, t)=Qi

j(t) and eq. (1.14) reads

viφ(x, t)~ei = vjφ∗(x
∗, t)~gj(t) + ξijkωj(t)x

k
∗(p, t)~gi(t) +

dckφ(t)

dt
~ek. (1.17)

Applying material derivative again gives a relation between the accelerations of
the particle, as viewed by the two observers:

aiφ~ei = ajφ∗ ~gj + vjφ∗
∂~gj
∂t

+ ξijk
dωj
dt

xk∗ ~gi + ξijkω
jDxk∗
Dt ~gi + ξijkω

jxk∗
∂~gi
∂t

+
d2ckφ
(dt)2

~ek,

where aiφ := Dviφ/Dt, resp. aiφ∗ := Dviφ∗/Dt. Since eq. (1.15) is valid for any
position vector, it must be valid for any vector in general, and we can rewrite the
second, fourth and fifth terms as cross products:

aiφ~ei = ajφ∗ ~gj + ~ω×~vφ∗ + ξijk
dωj
dt

xk∗ ~gi + ~ω×~vφ∗ + ~ω×(~ω×~sφ∗) +
d2ckφ
(dt)2

~ek. (1.18)
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In direct notation, that is, without expanding the vectors into local bases, eq. (1.18)
reads

~aφ = ~aφ∗ + 2~ω×~vφ∗ +
d~ω

dt
×~sφ∗ + ~ω×(~ω×~sφ∗) +

d2~cφ
(dt)2

, (1.19)

which is valid for any Euclidean change of frame. We see that the accelerations in
frames φ and φ∗ differ by the well known Coriolis acceleration, Euler acceleration,
centrifugal acceleration, and by the relative acceleration of the frames’ origins.

Once we have derived the transformation properties of objective vectors, one-
forms and contravariant tensors, as well as the transformation properties of mate-
rial particle’s velocity and acceleration, we can discuss the transformation prop-
erties of the equation of motion. Let us assume that frame φ is an inertial frame.
The equation of motion then acquires the form

∇ · ←→τφ + ~fφ = ρφ~aφ. (1.20)

To find the equation of motion in some non-inertial frame φ∗, one must find the
transformation properties of the density ρφ, the volumetric body force ~fφ, and
the Cauchy stress tensor ←→τφ. We agree with Liu & Sampaio (2014), that “unlike
the acceleration, transformation properties of non-kinematic quantities cannot be
deduced theoretically”. Instead, the transformation properties of non-kinematic
quantities must be postulated. The postulate of Euclidean objectivity says that,
for any Euclidean change of frame, the density, the body force and the Cauchy
stress tensor are frame indifferent, and so their components transform in the
following manner:

ρφ(x, t) = ρφ∗(x
∗, t); f iφ(x, t) = Qi

j(t) f
j
φ∗(x

∗, t);

τ ijφ (x, t) = Qi
k(t)Q

j
l(t) τ

kl
φ∗(x

∗, t). (1.21)

In other words, these quantities are objective scalar, vector, and contravariant
tensor fields respectively. The equation of motion in a non-inertial frame φ∗ can
then be written as

∇ · ←→τφ∗ + ~fφ∗ = ρφ∗ ~aφ∗ + ρφ∗~iφ∗ , (1.22)

where ρφ∗~iφ∗ are the so-called fictious forces, ~iφ∗ being the accelerations named
below eq. (1.19).

The primary focus of this chapter is on the properties of constitutive equa-
tions for the Cauchy stress tensor. We will assume a body whose stress state is
determined only by the body’s motion,

τ ijφ (x(p, t), t) = F ijφ (χφ; p), (1.23)
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where F ijφ is a functional that can generally depend on the entire history of
the motion that the body has experienced. From the postulate of Euclidean
objectivity it immediately follows that

F ijφ (χφ; p) = Qi
k(t)Q

j
l(t)Fklφ∗(χφ∗ ; p) = Qi

k(t)Q
j
l(t)Fklφ∗(∗(χφ); p), (1.24)

where ∗ denotes the Euclidean change of frame x∗=x∗(x, t) of the entire history of
the motion χφ. Eq. (1.24) does not yet impose any restrictions on the constitutive
functional F ijφ itself. It is a relation between two constitutive functionals F ijφ and
F ijφ∗ , defining the Cauchy stress tensor for two different observers. The desired
restriction comes when eq. (1.24) is combined with the principle of material frame-
indifference, which says that the form of the constitutive equation does not depend
on observer:

F ijφ (•; p) = F ijφ∗(•; p). (1.25)

Only then one arrives at the condition of material objectivity:

F ijφ (χφ; p) = Qi
k(t)Q

j
l(t)Fklφ (∗(χφ); p), (1.26)

where ∗ stands for any Euclidean change of frame. Eq. (1.26) is a fundamental
result in constitutive theories. It is used for testing whether a suggested consti-
tutive law is physically consistent. An intuitive way to interpret the condition of
material objectivity is to consider χφ and ∗(χφ) to be two different motions of
the same body, these motions being measured in the frame φ. The deformation
experienced by the body in these motions is, however, identical, because the mo-
tions differ only by a rigid body motion (see the definition of Euclidean changes
of frame). The condition (1.26) thus says that the stress state of the material
depends on the experienced deformation only.

Note that if we wanted to stay within the general framework of curvilinear co-
ordinates, we could not write eq. (1.25)2. Indeed, in some textbooks it is directly
eq. (1.26) that is postulated, referred to as the “principle of invariance under su-
perimposed rigid body motions”. It is because eq. (1.26) is valid for any frame,
including curvilinear ones, as long as ∗(χφ) is a motion composed of the motion
χφ and some rigid body translation and rotation, measured in the frame φ. The
shifter tensor in eq. (1.26) is, however, spatially dependent for curvilinear frames.

So far we have worked with motions defined as mappings of the body B. The
domain of such mappings was a set of material points. In real applications, this is
rarely the case. Motions are usually defined with respect to some reference con-
figuration. By a reference configuration of the body B in frame φ we understand a
mapping κφ:B → R3, which is a time independent mapping that associates each
material point uniquely with a set of coordinates in the frame φ. Reference con-

2See the example in Appendix 1.A, where eq. (1.25) is not valid because frame φ is Cartesian
and frame φ∗ is polar.

22



figuration is often chosen as the initial configuration the body, κφ(•) = χφ(•, 0),
but not necessarily. For example, when modelling small deformations of a planet,
the reference configuration is usually taken as a sphere, even though the planet
never was a sphere during the studied motion (see e.g. the modelling study in
Chapter 2).

When κφ is used to replace the set of material points B by R3 in the defini-
tion of motion χφ, we get the traditional notion of a motion, used in practical
applications:

χκ,φ : R3 × [0,∞)→ R3, (1.27)

where χκ,φ is the motion χφ with respect to the reference configuration κφ. The
coordinates of material point p in the reference configuration κφ are usually de-
noted as X=κφ(p). The coordinates of such particle throughout the motion are
obtained as x=χκ,φ(X, t). Distinguishing between χφ and χκ,φ has important
implications for constitutive theory, which was pointed out by Liu & Sampaio
(2014). Constitutive functional F ijφ , defined for motions χφ, is not ideal for real
applications. Instead, it is convenient to introduce a constitutive functional F ijκ,φ,
defined on motions in referential description:

F ijφ (χφ; p) = F ijφ (χκ,φ ◦ κφ; κ−1
φ (X)) =: F ijκ,φ(χκ,φ; X). (1.28)

The principle of material frame-indifference (1.25), when motion χφ is inserted in
its both sides, implies that

F ijκ,φ(χκ,φ; X) = F ijφ (χφ; p)
(1.25)
= F ijφ∗(χφ; p) = F ijφ∗(χκ,φ◦κφ; κ−1

φ (X))

= F ijφ∗(χκ,φ◦κφ◦κ−1
φ∗ ◦κφ∗ ; κ−1

φ∗ ◦κφ∗◦κ−1
φ (X)) = F ijκ∗,φ∗(χκ,φ◦κφ◦κ−1

φ∗ ; κφ∗◦κ−1
φ (X)),
(1.29)

and so F ijκ,φ(•; X) 6= F ijκ∗,φ∗(•; X), in contrast to eq. (1.25)3. In the referential
description, such relation is only be valid if κφ is equal to κφ∗ , so that the joined
mappings κφ∗◦κ−1

φ and κφ◦κ−1
φ∗ are identity. For the typical scenario, in which ref-

erence configuration is chosen as the initial configuration, the condition κφ=κφ∗

means that both frames coincide at time t=0.

The condition of material objectivity can also be written in the referential de-
scription. Following a similar procedure as above, eq. (1.26) can be reformulated
in terms of F ijκ,φ instead of F ijφ :

F ijκ,φ(χκ,φ; X) = Qi
k(t)Q

j
l(t)Fklκ,φ(χκ∗,φ∗◦κφ∗◦κ−1

φ ; X). (1.30)

3Compare eq. (1.29) with eq. (25) from Liu & Sampaio (2014). Clearly, q∗ in their eq. (25)
was supposed to be κj◦κ−1

i and not j◦i−1. Corrected version of their original article can now
be downloaded from the author’s website (Liu, personal communication). We note that in
view of this correction the two generally inappropriate assumptions discussed in Remark 9 of
Liu & Sampaio (2014) no longer seem to cancel each other out by a “lucky coincidence”: the
correctness of both assumptions depends on whether or not κj◦κ−1

i is identity.
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Above we mentioned that the condition of material objectivity can be viewed as
the equality of stress in a body experiencing two different motions, by interpret-
ing the mappings χφ and χφ∗ as two different motions measured in one frame φ
(the invariance of stress under superimposed rigid body motions). By inspection
of eq. (1.30) we see that in referential description this interpretation is also pos-
sible, but κφ∗◦κ−1

φ must be identity for such interpretation to be straightforward.
In other words, both such motions χκ,φ and χκ∗,φ∗ must have the same initial
configuration.

In the following sections we will need transformation properties of other kine-
matic quantities than just the velocity and the acceleration. In the theory of solid
materials, fundamental role is played by the deformation gradient:

{Fφ}ij :=
∂χiκ,φ(X, t)

∂Xj
; {Fφ∗}ij :=

∂χiκ∗,φ∗(X
∗, t)

∂Xj
∗

. (1.31)

The change of frame x = x(x∗, t) provides a possibility to express the mo-
tion x = χκ,φ(X, t) in terms of its counterpart x∗ = χκ∗,φ∗(X

∗, t), resulting
in the identity χκ,φ(X, t) = x(χκ∗,φ∗(X

∗(X), t), t), whereX∗(X) is the mapping
κφ∗◦κ−1

φ . By differentiating this relation we get the transformation properties of
the deformation gradient

{Fφ}ij =
∂xi(χκ∗,φ∗(X

∗(X), t), t)

∂Xj
=
∂xi(x∗, t)

∂xk∗

∂χkκ∗,φ∗(X
∗, t)

∂X l
∗

∂X l
∗(X)

∂Xj
. (1.32)

Eq. (1.32) simplifies to the traditional {Fφ}ij = Qi
k(t) {Fφ∗}kj when κφ∗◦κ−1

φ

is identity. For the inverse of the deformation gradient we analogously obtain
{F−1

φ }ij = Oi
k {F−1

φ∗ }kl {Q−1(t)}lj, with the shifter tensor Oi
j := ∂X i/∂Xj

∗ describ-
ing the change of frame for the reference configuration. Typically Oi

j = Qi
j(0).

In the theory of fluids, it is the velocity gradient that is of primary interest.
Thanks to the identity{DFφ
Dt F−1

φ

}i
j

=
∂2χiκ,φ(X, t)

∂Xk∂t

∂{χ−1
κ,φ}k(x, t)
∂xj

=
∂viφ(X, t)

∂Xk

∂Xk(x, t)

∂xj
= {∇~vφ}ij,

(1.33)
with ∇ standing for the gradient with respect to x, we can use the transformation
properties of the deformation gradient to infer the transformation properties of
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the velocity gradient:

{∇~vφ}ij =

{DFφ
Dt F−1

φ

}i
j

=
D (Qi

m(t) {Fφ∗}mn {O−1}nk)
Dt Ok

u {F−1
φ∗ }uv {Q−1(t)}vj

= Qi
m(t)
D{Fφ∗}mn
Dt {F−1

φ∗ }nv {Q−1(t)}vj +
dQi

m(t)

dt
{Q−1(t)}mj

= Qi
m(t){∇~vφ∗}mv {Q−1(t)}vj + Ωi

j(t),

(1.34)

where Oi
j is no longer present as it was canceled with its inverse in both terms on

the second line. Eq. (1.34) resembles the transformation properties of gradients
of objective vector fields (cf. eq. (1.10)). However, since the velocity vector is
not objective, there is an additional term Ωi

j(t) in eq. (1.34), making ∇~vφ not
objective either. The tensor Ωi

j(t) describes the relative rotation of frames φ and
φ∗.

We have defined Euclidean change of frame to be any transformation x∗=x∗(x, t)
for which Ωi

j is spatially homogeneous and antisymmetric (see also Appendix
1.A). It is thus a direct consequence of eq. (1.34) that the symmetric part of the
velocity gradient, Dφ := 1

2
[∇~vφ + (∇~vφ)T], is Euclidean objective, while the com-

plementary antisymmetric part, Wφ := 1
2
[∇~vφ − (∇~vφ)T], is not. The symbol T

is the transposition4. The strain-rate Dφ describes the stretching of a given vol-
ume element, while the spin Wφ describes the rigid body rotation of that volume
element. Indeed, the measure of deformation rate Dφ is independent of observer,
while the observed local rigid rotation Wφ differs by the relative rotation of both
frames Ωi

j from observer to observer.

1.2 Objective tensor rates

In the beginning of this chapter, the 1-D analogue of Maxwell viscoelastic
fluid was introduced, leading to the equation S = η∆̇ − (η/G)Ṡ. Based on this
equation it was suggested that the corresponding 3-D constitutive law should be
of the form

τ ijφ (χκ,φ(X, t), t) = F ijκ,φ(χκ,φ; X) = 2ηφDij
φ −

ηφ
Gφ

D?(τ
ij
φ )

Dt , (1.35)

but it was unclear what stress rate to employ, since the material derivative of
second-order tensors was argued to be frame dependent. In the first half of this
section we use the condition of material objectivity to impose restrictions on the

4Note that the gradient of a vector field is a right covariant mixed tensor, while the transpose
of it is a left covariant mixed tensor (covariant in its first index and contravariant in the second
index), which implies that both tensors generally cannot be added together, as they are of
different kind. Let us, for now, continue in the scenario in which φ is a Cartesian frame, where
we can disregard such subtleties.
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possible stress rates. While such procedure eliminates non-objective tensor rates
from considerations, it does not provide a hint as to which tensor rate to actually
use. In the second half of this section we use the work of Oldroyd (1950) and
geometrical considerations to suggest which objective rate results in a material
model that fits the traditional derivation of Maxwell body.

First, let us investigate the transformation properties of 2ηφDij
φ . The viscosity

ηφ is not a kinematic quantity, and its transformation properties thus cannot be
derived. Instead, ηφ must be postulated to be objective scalar, ηφ=ηφ∗ . The
product 2ηφDij

φ is then automatically frame indifferent, because strain-rate D
was shown to be objective in the previous section. Note that when only frame
indifferent quantities are used in a constitutive law the condition of material
objectivity (1.26), resp. (1.30), is automatically satisfied.

Similarly as for the viscosity, the relaxation time trel:=ηφ/Gφ must be postu-
lated to be objective scalar, leaving the transformation properties of the second
term in eq. (1.35) to be determined by the properties of the proposed stress rate.
In the introduction to this chapter, we have argued by qualitative means that
material derivative of second-order tensor fields is not objective. By applying
D/Dt to eq. (1.6) we directly obtain its transformation properties:

Daijφ (x, t)
Dt = Qik(t)Qjl(t)

Daklφ∗(x∗, t)
Dt +

dQik(t)
dt

Qjl(t) a
kl
φ∗(x∗, t) +Qik(t)

dQjl(t)
dt

aklφ∗(x∗, t)

(1.36)

= Qik(t)Qjl(t)
Daklφ∗(x∗, t)
Dt + Ωik(t) akjφ (x, t) + Ωjk(t) aikφ (x, t),

where the objectivity of ←→a and the definition Ωi
j:=(dQi

k/dt) {Q−1}kj are used
on the second line. Eq. (1.36) shows that D←→aφ/Dt is not an objective tensor5,
because its components do not transform according to eq. (1.6). To fix this, one
needs to incorporate a quantity into the definition of the proposed time derivative,
whose transformation properties could cancel out the second and third terms in
eq. (1.36). Eq. (1.34) immediately suggests such quantity. Adding −{∇vφ}ik akjφ
into the definition of a tensor rate would cancel the second term and adding
−aikφ {∇(vφ)}jk would cancel the third term from eq. (1.36).

This idea can be formalized by introducing so-called “upper convected”, or
Oldroyd, time derivative

Duc a
ij
φ

Dt :=
Daijφ
Dt − {∇~vφ}

i
k a

kj
φ − aikφ {∇~vφ}jk, (1.37)

where aijφ are the components of any contravariant tensor ←→a. By combining

5To be fully consistent, one should thus distinguish between Dφ(•)/Dt and Dφ∗(•)/Dt in
the definition of material time derivative. For brevity we not do so. The observer performing
the derivative will always be identifiable from the subscript of the quantity being differentiated.
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eqs. (1.34) and (1.36) it follows that

Duc a
ij
φ (x, t)

Dt = Qi
k(t)Q

j
l(t)
Duc a

kl
φ∗(x

∗, t)

Dt , (1.38)

which means that the Oldroyd derivative of an objective tensor is an objective
tensor (the rate is objective). Recall that the transformation properties (1.38)
simply imply that

Duc
←→aφ(x, t)

Dt =
Duc

←→aφ∗(x
∗, t)

Dt . (1.39)

An immediate consequence is that when such rate is used in eq. (1.35), the re-
sulting constitutive law satisfies the condition of material objectivity.

In Section 1.1 the symmetric and antisymmetric parts of the velocity gradient
were introduced and called the strain-rate Dφ and the spin Wφ respectively. It was
argued that the carrier of non-objectivity of the velocity gradient is the spin Wφ

(because Ωi
j in eq. (1.34) is antisymmetric). In effect, it is not necessary to use

the full velocity gradient when defining a stress rate to get rid of the second and
third terms from eq. (1.36). The antisymmetric part Wφ alone can be employed.
This idea stands behind the definition of another rate, named after Jaumann:

DJau a
ij
φ

Dt :=
Daijφ
Dt −Wik

φ a
kj
φ + aikφ Wkj

φ , (1.40)

where the antisymmetry of spin was used, Wjk
φ =−Wkj

φ . Again, by combining
eqs. (1.34) and (1.36), together with the definition of spin, it can be shown that
the Jaumann rate is objective.

In fact, an entire class of objective rates can be built, which the above rates
belong to:

DOld(c) a
ij
φ

Dt :=
Daijφ
Dt −Wik

φ a
kj
φ + aikφ Wkj

φ − c (Dik
φ a

kl
φ + aikφ Dkj

φ ), (1.41)

where the parameter c is usually taken to be from the interval [−1, 1]. But it
can be arbitrary, because both ←→a and D are objective, so their products do not
influence the transformation properties of DOld(c)/Dt. For c=1 eq. (1.41) gives
the upper convected rate, for c=0 we get the Jaumann rate, and for c=−1 we
will refer to the rate as the lower convected rate and denote it Dlc/Dt.

A different approach that leads to formulating an objective stress rate, namely
the Truesdell rate, is to perform material derivative to the second Piola-Kirchhoff
stress instead of the Cauchy stress tensor. The two stresses are related through
so-called Piola transformation, which is a special mapping of tensors from current
to reference configuration of the body. By altering this procedure, in particular
by modifying the Piola transformation in a way as to consider only the rotation
tensor instead of the full deformation gradient, another objective rate is derived,
named the Green-Naghdi rate. We will not discuss these two rates here, with
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the exception of one remark in Appendix 1.B. Nevertheless, it is worth noting
that the Truesdell rate is equal to the upper convected rate for isochoric flows
and that the Green-Naghdi rate resembles the Jaumann rate, only it employs a
slightly different kinematic quantity than the spin.

A fundamental insight into objective tensor rates is provided in the work
of Oldroyd (1950), who analyzes the temporal evolution of second-order tensors
under a very special non-Euclidean change of frame: he considers a frame that is
convected with the material. In other words, the coordinate lines of such frame
are “frozen” into the material and deform the same way as the body deforms. It
is shown that the components of a contravariant tensor ←→a are time constant in
the convected frame if and only if the Oldroyd derivative of the tensor is zero:

Duc
←→aφ
Dt = 0 ⇒ aijφ∗(x

∗, t) = aijφ∗(x
∗), (1.42)

where φ∗ denotes the convected frame. Note that the properties of the convected
frame are governed by the deformation of the body and cannot be arbitrarily
chosen. It is generally a curvilinear frame with spatially heterogeneous and tem-
porally dependent metric tensor (see below).

We do not repeat the analysis of Oldroyd here (for a modern treatment, see
Gurtin et al., 2010, sections 13 and 20). Instead, the validity of (1.42) is demon-
strated in Appendix 1.B on a particular example of stationary simple shearing.
Eq. (1.42) is usually interpreted in the way that the natural rate of contravariant
tensors is the upper convected rate. It is because the basic property one would
expect from a time derivative is that when it is zero the differentiated quantity
stays constant. For geometrical interpretation of the constancy of aijφ∗(t) see Ap-
pendix 1.B below eq. (1.93). The natural rate of covariant tensors is the lower
convected rate.

The key question to ask is whether or not there is a particular objective rate
that should be used in the constitutive law for Maxwell viscoelastic fluid. Before
we address this question, it is necessary to mention “raising and lowering indices”
and direct notation.

For any one-form f :=fi e
i the Riesz representation theorem uniquely gives

vector ~f such that f(~v) = ~f · ~v for any ~v ∈ V, where dot is the scalar prod-
uct. No particular frame is now under consideration, so the notion of frame is
omitted for this paragraph. The components of such vector ~f can be obtained
as fm=gmnfn, where gmn is the inverse of the metric tensor gmn := ~em · ~en (the
inverse defined through gmngnl=δ

m
l ). Thanks to this bijection L(V) ↔ V one

can go from contravariant to covariant tensors and vice versa, and one tradition-
ally distinguishes the components of contravariant, covariant and mixed tensors
by upper and lower indices in tensor analysis. In fact, it is common to denote
the tensors Aij ~ei⊗~ej, Ai

j ~ei⊗ej and Aij e
i⊗ej, whose components are related via
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Ai
j = gmjAim and Aij = gmjgniAnm, simply as one tensor A (direct notation)6.

In direct notation, the product of two tensors A and B is denoted as A B, and it
is defined for tensors of any kind. To illustrate, for contravariant components of
the product it holds

{A B}ij = Ai
n Bnj = Ain B j

n = gkn Ai
n B j

k = gkn Ain Bkj, (1.43)

because ~em · ~en = gmn, while ei(~ej) = δij, and so if upper and lower indices meet
Kronecker delta comes out, while components of the metric tensor come out in
other cases. To illustrate the validity of eq. (1.43), consider

(Ain ~ei⊗~en) · (Bkj ~ek⊗~ej) = AinBkj(~en·~ek)~ei⊗~ej = AinBkjgkn ~ei⊗~ej
= Ai

nBnj ~ei⊗~ej = Ai
nBkj (~ei⊗en) · (~ek⊗~ej) = (Ai

n ~ei⊗en) · (Bkj ~ek⊗~ej).

The objective rates discussed above can also be written in direct notation.
With the velocity gradient denoted by Lφ, implication (1.42) reads in direct
notation as

DA
Dt − Lφ A− A LT

φ = 0 ⇒ Aij
φ∗(x

∗, t) = Aij
φ∗(x

∗), (1.44)

where A is any objective tensor, and similarly it holds for the lower convected
derivative that

DA
Dt + LT

φ A + A Lφ = 0 ⇒ {Aφ∗}ij(x∗, t) = {Aφ∗}ij(x∗). (1.45)

Frame φ∗ is the convected frame in both theorems. In eqs (1.44) and (1.45) the
definitions of objective rates are broadened with respect to (1.37) and (1.41),
because the rates are now defined for tensors of any kind. The direct notation,
however, removes certain subtleties.

Geometrically, tensors are defined as linear mappings from and to V and L(V),
depending on their kind. The gradient of a vector field is a mapping V→ V, its
transpose is thus a mapping L(V)→ L(V). Since Lφ is the gradient of the velocity
field, only for contravariant tensors ←→a: L(V) → V it is true that both products
({Lφ}ij ~ei⊗ej) · (akl ~ek⊗~el) and (aij ~ei⊗~ej) · ({Lφ}kl el⊗~ek) are again contravariant,
that is, the same tensor kind as ←→a. Similarly, only for covariant tensors Aij e

i⊗ej
both products ({Lφ}kl el⊗~ek)·(Aij e

i⊗ej) and (Akl e
k⊗el)·({Lφ}ij ~ei⊗ej) are again

covariant. This is deeply related to the derivation of theorems (1.44) and (1.45),
which are covered in most modern treaties on continuum mechanics (e.g. Gurtin
et al. (2010), sections 13 and 20). In analogy to the above, one can directly guess

6This may not be interpreted in the way that they are one tensor. Of course, Aij ~ei⊗~ej 6=
Aij ~ei⊗ej 6= Aij ei⊗ej . Direct notation only uses the fact that a tensor equation for one kind of
tensor can be rewritten for any kind of tensor, by raising or lowering indices of tensors appearing
in that equation.
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the natural rate for right covariant mixed tensors

DA
Dt − Lφ A + A Lφ = 0 ⇒ {Aφ∗}ij(x∗, t) = {Aφ∗}ij(x∗), (1.46)

where φ∗ is the convected frame.
The equation of motion (1.20) is by its nature a vector equation, because

acceleration is a vector, and we have thus assumed the Cauchy stress tensor to
be contravariant7 throughout the text. One could thus argue that it is the up-
per convected rate which should be used in the definition of Maxwell viscoelastic
body. On the other hand, the possibility to change tensor kinds by raising or
lowering indices can be used to argue that there is no a priori way of determining
which objective rate to use, leaving the choice to experiments. It is because both
the equation of motion and the constitutive law can be written in direct notation,
eradicating the differences between different tensor kinds. In other words, one
can write the equation of motion in a vector form, with the contravariant com-
ponents of the Cauchy stress tensor, and the constitutive law in, for instance, its
covariant form, with the covariant components of the Cauchy stress, and combine
both equations through raising and lowering indices. This line of thought believes
that there is no reason to assume that the constitutive law should be written in
terms of the contravariant components of the involved tensors, or in terms of any
other particular components for that matter.

We agree with the latter only partially. In theorems (1.44), (1.45) and (1.46)
the direct notation can be used only on their left hand sides. It is the constancy
of the particular tensor components in the convected frame that the theorems
imply, regardless of which components of A are used when evaluating the objective
rates. To illustrate, one could use the covariant components of A when solving
(DucA)/(Dt) in the frame φ, and still it would be the contravariant components
of A in the convected frame that would be time constant, and not the covariant
components. The main point we are trying to make is that the different objective
rates do have different geometrical meaning8, and the question to ask is whether
there is a particular one, whose geometrical meaning suits the idea of Maxwell
viscoelastic fluid outlined in the beginning of this chapter.

Recall from eq. (1.35) that the elastic component of Maxwell viscoelastic rhe-
ology must satisfy

D?

Dt

(
τ ijφ
2G

)
= Dij

φ, el. (1.47)

7Because it must return a vector and acts on normals to surfaces. Normals to surfaces are
one-forms, or covectors, because they are the normalized gradients of functions that implicitly
define the respective surfaces.

8Note that the objective rates from eq. (1.41) have a distinct geometrical meaning only for
c ∈ {−1, 0, 1}. Using any other value of c in a proposed constitutive law for some material
would thus be difficult to justify. One should always consider the geometrical meaning of the
objective rate he proposes to employ in a constitutive law.
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In linear elastic rheologies, stress is proportional to elastic strain with the constant
of proportion equal to 2G. By replacing τ ijφ /2G with Eij

φ, el in eq. (1.47) we see
that the problem of finding the right objective rate is in fact equivalent to finding
a measure of elastic strain Eφ, el for which it holds that

D? Eij
φ, el

Dt = Dij
φ, el. (1.48)

Indeed, the problem in eq. (1.2) was in going from ∆elastic to its rate ∆̇elastic.
One of the most common measures of strain used in continuum mechanics is the
Eulerian strain tensor, defined as

Eφ :=
1

2

(
I− F−T

φ F−1
φ

)
. (1.49)

It is related to the change of distance between two infinitesimally close material
points p and q, whose coordinates differ by dxi(t) = χiφ(p, t)−χiφ(q, t), as follows:

ds2
φ − dS2

φ = gφijdx
idxj − gφijdXidXj = gφijdx

idxj − gφij{F−1
φ }ik{F−1

φ }
j
ldx

kdxl

= (gφkl − g
φ
ij{F−1

φ }ik{F−1
φ }

j
l) dxkdxl = 2{Eφ}kl dxkdxl. (1.50)

The Eulerian strain is, geometrically speaking, a covariant tensor, which can be
seen both from its definition (1.49) and from eq. (1.50). Eq. (1.50) can be written
also in the convected frame φ∗. The coordinates of material points do not change
with time in the frame φ∗, dxi∗(t) = dX i

∗, but the metric tensor of the frame
evolves with time, and so eq. (1.50) takes the form

ds2 − dS2 = [gφ
∗

kl (x∗, t)− gφ∗kl (x∗, 0)] dXk
∗dX

l
∗. = 2{Eφ∗(x

∗, t)}kl dXk
∗dX

l
∗ (1.51)

Eq. (1.51) provides a good reason to use the lower convected rate in Maxwell
viscoelastic rheology. When one demands the elastic part of the total deformation
to be constant (i.e. the limiting case of purely viscous fluid, G → ∞), then it is
naturally the covariant components of the elastic strain that have to be constant
in the convected frame. And this is ensured, for any tensor field, by setting its
lower convected derivative to zero.

Coming back to eq. (1.48), we see that making the choice of the lower con-
vected derivative is equivalent to saying that

Dlc Eφ, el

Dt = Dφ, el. (1.52)

Is eq. (1.52) reasonable? It is indeed. For any deformation, the Eulerian strain
tensor and the strain-rate tensor are related through the identity (e.g. Martinec,
2011, eq. 2.24):

DEφ

Dt = Dφ −
(
EφLφ + LT

φ Eφ

)
⇒ Dlc Eφ

Dt = Dφ, (1.53)
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where the implication follows directly from the definition of the lower convected
derivative.

We are aware that the considerations above have certain drawbacks. The
major one is that adding strain-rates as Dφ = Dφ,vis + Dφ,el is disputable, which
is illustrated in the next section. We do not claim that the lower convected
derivative is the only one to use, the goal of our analysis is to discuss the different
geometrical meaning of several objective rates in the context of the traditional
derivation of Maxwell body. As far as we understand it, the traditional derivation
is based on the addition of strain-rates. The identity (1.53) nicely fits into such
framework.

In Chapter 3 we use the Jaumann rate in geodynamical modelling. In direct
notation the Jaumann rate reads

DJau A
Dt :=

DA
Dt −Wφ A + A Wφ. (1.54)

Note that, in view of eq. (1.43), the definition (1.40) is valid only for Cartesian
frames. The Jaumann rate is not the natural rate for any tensor kind. Setting this
rate to zero ensures that both the covariant and the contravariant components of
A are constant, but not in the convected frame (where this can generally never
happen due to the properties of the frame’s metric tensor). The components are
A are constant in so-called corotated frame when the Jaumann rate of A is zero
(see the worked-out example in Appendix 1.B). While such property gives the
Jaumann rate a clear geometrical interpretation, it is primarily the fact that it
preserves the trace of the stress tensor that makes it popular among modelers.

1.3 Maximization of entropy production

The approach used in the preceding sections was based on mechanical con-
siderations. A posteriori it can be shown that the Maxwell model derived above
satisfies the second law of thermodynamics, that is, entropy is produced when the
body deforms. In modern literature, a reverse procedure starts to play increas-
ingly important role in constitutive theory: first it is postulated how a model
produces entropy and from that the rheology is derived.

The approach presented in this section is summarized in detail in Málek &
Průša (2016). We refer the reader who is not yet familiar with the procedure to
their handbook and the references therein. Here we only repeat the analysis of
section 4.4.3 in Málek & Průša (2016), where viscoelastic models are derived, and
comment on the inclusion of PMFI into the theory.

Similarly as in the traditional approach, the total deformation of the body
is decomposed into two parts: dissipative and reversible (elastic). Contrary to
the traditional approach, the idea is formalized by introducing so-called “natural
configuration” of the body (see Fig. 1.3). The motion mapping the reference

32



current configuration

natural configuration

reference configuration

dissipative response

elastic response

timet0

frame 

Euclidean space 

frame 
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Figure 1.3: Reference, current and natural configurations associated with a viscoelastic
body, as viewed from a fixed Cartesian frame φ and from a moving polar frame φ∗. For
a description of the concept of change of frame see also Fig. 1.2.

configuration onto the natural configuration describes the dissipative processes.
The mapping from the natural configuration to the current configuration describes
the instantaneous elastic response. Every deformation of a body is driven by some
loading. Had all the loading suddenly ceased to exist, the body would take the
natural configuration.

To formalize this idea, the motion of the body χκ,φ is decomposed into two,
χκ,φ = χE

κp(t),φ◦χD
κ,φ, with χD

κ,φ(X, t) being the dissipative part of the motion, and
χE
κp(t),φ(ξ, t) being the elastic deformation of the natural configuration κp(t). We

denote the coordinates in the natural configuration by ξ, ξ(X, t) := χD
κ,φ(X, t).

For the total deformation gradient the chain rule gives

Fφ = F̂φ F̃φ, (1.55)

where the partial deformation gradients are defined as

{F̃φ}ij :=
∂{χD

κ,φ(X, t)}i
∂Xj

; {F̂φ}ij :=
∂{χE

κp(t),φ(ξ, t)}i
∂ξj

. (1.56)

For later reference, we derive a few identities related to kinematics of media
with multiple configurations. In analogy with eq. (1.33), the velocity gradient of
the natural configuration is defined as

L̃φ :=
DF̃φ
Dt F̃−1

φ . (1.57)
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Eq. (1.55) together with the identity

D
Dt
(
F̃−1
φ

)
= −F̃−1

φ

DF̃φ
Dt F̃−1

φ (1.58)

yields

DF̂φ
Dt =

DFφ
Dt F̃−1

φ + Fφ
DF̃−1

φ

Dt = Lφ Fφ F̃−1
φ − Fφ F̃−1

φ

DF̃φ
Dt F̃−1

φ = Lφ F̂φ − F̂φ Lφ.

(1.59)
For the left Cauchy-Green tensor B̂φ := F̂φ F̂T

φ eq. (1.59) gives

DB̂φ

Dt = Lφ B̂φ + B̂φ LT
φ − 2F̂φ D̃φ F̂T

φ , (1.60)

which implies a relation for the material derivative of the trace of B̂φ,

D
Dt(TrB̂φ) = 2Dφ : B̂φ − 2Ĉφ : D̃φ (1.61)

where A:B := Tr(ABT) and the identity Tr(AB) = Tr(BA) was used to replace the
deformation gradients in the second term by the right Cauchy-Green tensor Ĉφ.
Finally, since D(det A)/Dt = (det A) Tr(DA/DtA−1), for the material derivative
of the logarithm of determinant of the right Cauchy-Green tensor B̂ one gets

D
Dt(log(det B̂φ)) = Tr

(
DB̂φ

Dt B̂−1
φ

)
= 2I : D− 2I : D̃φ (1.62)

Often, the only quantity that needs to be specified in the procedure by (Ra-
jagopal & Srinivasa, 2004) is the production of entropy. For viscoelastic materials,
however, the internal energy of the body must be allowed to account for stored
elastic energy. The form of such storage is also to be assumed, and here the
internal energy takes the following form:

e(s, ρ,Tr B̂φ, det B̂φ) = ẽ(s, ρ) +
G

2ρ

(
Tr B̂φ − 3− log(det B̂φ)

)
. (1.63)

The second term on the right hand side represents the energy stored in the elastic
deformation of the natural configuration and ẽ is analogous of the internal energy
for a simple thermodynamic system, for which it depends on entropy and volume
of the system only. The quantity s is the specific entropy per unit volume. The
motivation for this particular choice of storage of elastic energy comes from the
theory of isotropic elastic materials (see Horgan & Saccomandi, 2004, for a list
of other frequently used possibilities).

Next step in the procedure is to derive evolutionary equation for the spe-
cific entropy of the model. By applying material derivative to eq. (1.63), and
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multiplying both sides by ρ, we get,

ρ
De
Dt = ρ

(
∂e

∂s

Ds
Dt +

∂e

∂ρ

Dρ
Dt +

∂e

∂(Tr B̂φ)

D(Tr B̂φ)
Dt +

∂e

∂(det B̂φ)

D(det B̂φ)
Dt

)

= ρ
∂ẽ

∂s

Ds
Dt +

(
ρ
∂ẽ

∂ρ
− G

2ρ
(Tr B̂φ − 3− log(det B̂φ)

) Dρ
Dt

+G
(
B̂φ : Dφ − Ĉφ : D̃φ − Dφ : I + D̃φ : I

)
, (1.64)

where eqs (1.61) and (1.62) are used on the third line. Along with Málek & Průša
(2016), we define the “pressure” as

pM
th := ρ2 ∂e

∂ρ
= ρ2 ∂ẽ

∂ρ
− G

2

(
Tr B̂φ − 3− log(det B̂φ)

)
. (1.65)

Note that such definition is questionable. Thermodynamic pressure is the sys-
tem’s resistance to changes of volume, generally defined as in eq. (1.65), but under
the assumption that the internal energy e is known as a function of mutually inde-
pendent state variables. In our case, B̂φ describes the deformation of the natural
configuration, and det B̂φ is thus inevitably related to changes of density of our
medium. Since the density ρ and det B̂φ are not mutually independent state vari-
ables, we believe that the pM

th, as defined in eq. (1.65), is not the thermodynamic
pressure of the studied system. Nevertheless, by employing eq. (1.65), together
with the definition of temperature, θ := ∂e/∂s, and the continuity equation,
eq. (1.64) simplifies to

ρ
De
Dt = ρθ

Ds
Dt − p

M
th div~vφ +G

(
B̂φ : Dφ − Ĉφ : D̃φ − Dφ : I + D̃φ : I

)
. (1.66)

The temporal evolution of the specific internal energy e is, on the other hand,
also governed by the standard energy balance

ρ
De
Dt = τφ : Dφ − div~jq, (1.67)

where ~jq is the heat flux. Internal (e.g. radioactive) heat sources are omitted. By
inserting for ρDe/Dt from eq. (1.67) into eq. (1.66) we get

ρ
Ds
Dt + div

~jg
θ

=
1

θ

[
τφ:Dφ −

~jq·∇θ
θ

+ pM
th div~vφ −G

(
B̂φ:Dφ−Ĉφ:D̃φ−Dφ:I+D̃φ:I

)]
,

(1.68)
where the identity div(~jg/θ) = (div~jq)/θ− (~jq·∇θ)/θ2 was used in order to obtain
the entropy production of the system,

ξ := ρDs/Dt+ div(~jg/θ), (1.69)

on the left-hand side of eq. (1.68). The second law of thermodynamics states
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that the entropy production is always positive, because the maximum outflux of
entropy from a cooling thermodynamic system is given as ~jq/θ, integrated over
the surface of the system. For quasi-static processes ρDs/Dt = −div(~jg/θ) and
the entropy production is zero.

Eq. (1.68) is valid for all materials that store elastic energy in the manner
specified by eq. (1.63), regardless of their rheology. Right-hand side of eq. (1.68)
is traditionally divided into terms representing mutually independent processes,
each term usually expressed as a product of a thermodynamic affinity and a ther-
modynamic flux. For this reason, we separate the trace of the strain-rate, related
to volumetric changes during deformation, from the deviatoric part of the strain-
rate, which is related to isochoric shearing. The second law of thermodynamics
then takes the form

θξ =
(
τ d
φ −G B̂d

φ

)
: Dd

φ +

(
m+ pM

th −
G

3
TrB̂φ +G

)
div~vφ +G Ĉd

φ : D̃d
φ

+G

(
TrB̂φ

3
− 1

)
TrD̃φ −

~jq·∇θ
θ
≥ 0, (1.70)

where superscript d denotes the deviatoric part of a tensor and m is the trace of
the Cauchy stress tensor τφ.

One way to propose a material rheology is to derive the formula for its en-
tropy production, as done above, and to demand each term in the formula to be
positive. This can be illustrated on the example of materials with no storage of
elastic energy. In such a scenario, the first term in eq. (1.70) is τ d

φ :Dd
φ, which can

be made positive by proposing a linear relation τ d
φ ≈ Dd

φ, that is, by proposing
Newtonian viscous rheology τ d

φ = 2ηDd
φ, the constant of proportion known as vis-

cosity, η ≥ 0. The resulting entropy production term is clearly positive, because
2ηDd

φ:Dd
φ = 2η|Dd

φ|2. In a way, the method by Rajagopal & Srinivasa (2004) is a
generalization of such procedure. In their method, instead of inspecting eq. (1.70)
and proposing relations between the thermodynamic affinities and fluxes to make
each term positive, the entropy production is directly postulated as a function of
the affinities. To obtain Maxwell-type fluid, Málek & Průša (2016) propose the
following entropy production terms:

ξ(Dd
φ, div~vφ, D̃φ,∇θ) :=

1

θ

[
2η|Dd

φ|2 +
2η+3λ

3
(div~vφ)2 + 2η1D̃φ:(ĈφD̃φ) + κ

|∇θ|2
θ

]
.

(1.71)
The constants 2η, (2η + 3λ)/3, 2η1, and κ must all be greater than or equal to
zero in order to satisfy the second law of thermodynamics in a general case.
The motivation for the first two terms in eq. (1.71) comes from the theory of
compressible Newtonian viscous fluid, as illustrated in the previous paragraph,
and the respective constants are known as the shear and bulk viscosity. The last
term in eq. (1.71) is the entropy production due to the transfer of heat, and stems
from Fourier law.

36



As discussed at the end of this section, the third term in eq. (1.71) is moti-
vated, so to say, by the desired outcome of the derivation. In the procedure by
Rajagopal, it is the two scalar functions e and ξ that fully determine the material
properties. When thermodynamic fluxes are given, the procedure assumes that
each material behaves so as to maximize its entropy production for the given
fluxes. To obtain the material rheology, one thus has to maximize the entropy
production (1.71) with respect to the affinities Dd

φ, div~vφ, D̃φ,∇θ, with eq. (1.70)
serving as a constraint for the maximization.

As long as the scalar functions e and ξ are objective scalars, the entropy pro-
duction maximization results in constitutive laws that automatically satisfy the
principle of material frame-indifference. This is a serious advantage when com-
pared to the traditional technique. To ensure that e and ξ are objective scalars,
one must investigate how the components of the kinematic quantities appearing
in eq. (1.71) transform under a change of frame. To our knowledge, this is not
discussed in the relatively recent literature that deals with the entropy maximiza-
tion procedure within the framework including the natural configuration, that is,
within the framework involving the composite deformation χκ,φ = χE

κp(t),φ ◦χD
κ,φ.

Similarly to eq. (1.32), we can derive the transformation properties of defor-
mation gradient F̂φ under a change of frame, φ → φ∗. Recall that F̂φ describes
the elastic deformation of the natural configuration, and so

{F̂φ}ij =
∂xi(χE

κ∗p(t),φ∗(ξ
∗(ξ), t), t)

∂ξj
=
∂xi(x∗, t)

∂xk∗

∂{χE
κ∗p(t),φ∗(ξ

∗, t)}k

∂ξl∗

∂ξl∗(ξ, t)

∂ξj
.

(1.72)
The important difference from eq. (1.32) is that while the reference configuration
is a time independent mapping, the natural configuration evolves with time (sim-
ilarly as the current configuration, see Fig. 1.3). The transformation ξ → ξ∗ is
thus identical to the transformation x→ x∗, making F̂φ an objective contravari-
ant tensor (unlike the common deformation gradient Fφ, which is a non-standard
object).

Note that the traditional formula for the total deformation gradient, {Fφ}ij =

Qi
k(t) {Fφ∗}kj, is not applicable to the partial deformation gradient F̂φ. While one

can easily restrict their considerations to changes of frame that satisfyX∗(X)=X

when discussing objectivity, it is not possible to demand that ξ∗(ξ, t) = ξ (com-
pare eqs (1.32) and (1.72)). Assuming ξ∗(ξ, t) = ξ means nothing less than to
demand that both frames φ and φ∗ are identical at all times, prohibition any
discussion of objectivity in effect. Note also that, in view of eq. (1.72), the left
Cauchy-Green tensor Ĉφ is an objective tensor, and not objective scalar, as is
sometimes erroneously stated (perhaps because {Fφ}ij = Qi

k(t) {Fφ∗}kj is erro-
neously assumed to hold for F̂φ).

By repeating the argument above, it can be shown that also D̃φ is an objective
tensor. As a result, the entropy production term 2η1D̃φ:(ĈφD̃φ) is an objective
scalar as desired. By a coincidence, the same conclusion is reached when the
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components of Ĉφ are incorrectly assumed to be objective scalars.
The constrained maximization of (1.71) is performed using the Lagrange mul-

tipliers, and we refer the reader to Málek & Průša (2016) for more details. It
results in the following set of equations:

τ d
φ −G B̂d

φ = 2ηDd
φ (1.73)

m+ pM
th −

G

3
TrB̂φ +G =

2η+3λ

3
div~vφ (1.74)

G
(
Ĉφ − I

)
= 2η1ĈφD̃φ (1.75)

~jq = −κ∇θ (1.76)

Upon multiplying eq. (1.75) by F̂T
φ from the right and by F̂T

φ from the left, and
recalling the identity (1.60), eq. (1.75) reads

DB̂φ

Dt − Lφ B̂φ − B̂φ LT
φ +G

(
B̂φ − I

)
= 0, (1.77)

which allows one to combine eqs (1.73), (1.74) and (1.77) into the constitutive
relation for the Cauchy stress tensor:

τφ = −pM
th + 2ηDφ + Sφ + λ(div~vφ)I (1.78a)

η1

G

(DSφ
Dt − Lφ Sφ − Sφ LT

φ

)
+ Sφ = 2η1Dφ, (1.78b)

where the extra stress tensor Sφ := G(B̂φ − I) was introduced. Málek & Průša
(2016) note that eq. (1.78a) can be seen as a compressible variant of the classi-
cal Oldroyd-B model, developed for viscoelastic incompressible fluids by Oldroyd
(1950). In our case, it is interesting to set η and λ to zero, because then eq. (1.78a)
reduces to the constitutive relation for a compressible Maxwell-type viscoelastic
fluid:

τφ = −pM
th + Sφ (1.79a)

η1

G

(DSφ
Dt − Lφ Sφ − Sφ LT

φ

)
+ Sφ = 2η1Dφ. (1.79b)

The resulting constitutive eq. (1.79a) contains the upper convected rate. Unlike
in the traditional technique, which is based on mechanical analogues, the stress
rate is a result of the performed procedure here. Seemingly, this makes the
geometrical interpretations of various objective rates redundant. However, one
must realize that choosing the entropy production maximization over mechanical
analogues is nothing but choosing one uncertainty over the other. The upper
convected derivative in eq. (1.79a) can be traced back to the entropy production
term 2η1D̃φ:(ĈφD̃φ) in eq. (1.71). Finding a valid physical interpretation for
this dissipational mechanism may be equally hard as trying to justify the upper
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convected rate on geometrical grounds. Nevertheless, the maximization technique
is very intriguing and various dissipational mechanisms can be expected to appear
in the literature. We hope that this section shed more light on the transformation
properties of Ĉφ, B̂φ and D̃φ, which usually have to be considered when proposing
an equation for the entropy production ξ.

1.A Change of frame: moving polar coordinates

We consider a 2-D Euclidean space with two frames, one Cartesian and the
other having polar coordinates. They are related via

x = r cos (ϕ+θ(t)) + c1(t); r =
√

(x− c1(t))2 + (y − c2(t))2 ;

y = r sin (ϕ+θ(t)) + c2(t); ϕ = arctan

(
y − c2(t)

x− c1(t)

)
,

where, ~c(t) and θ(t) describe the relative movement of both observers. To recall
the notation from the main text, x=x1, y=x2, r=x1

∗, ϕ=x2
∗. The shifter tensor Qi

j

and its inverse are, by their definition,

Q(x∗, t) =

[
∂x
∂r

∂x
∂ϕ

∂y
∂r

∂y
∂ϕ

]
=

[
cos (ϕ+θ(t)) −r sin (ϕ+θ(t))

sin (ϕ+θ(t)) r cos (ϕ+θ(t))

]
(1.80)

Q−1(x, t) =

[
∂r
∂x

∂r
∂y

∂ϕ
∂x

∂ϕ
∂y

]
=

 x−c1(t)√
(x−c1(t))2+(y−c2(t))2

y−c2(t)√
(x−c1(t))2+(y−c2(t))2

c2(t)−y
(x−c1(t))2+(y−c2(t))2

x−c1(t)
(x−c1(t))2+(y−c2(t))2

 . (1.81)

Both matrices are indeed inverse to each other, which can be seen when the
conversion x→ x∗ is performed in eq. (1.81),

Q−1 =

 cos (ϕ+θ(t)) sin (ϕ+θ(t))

−1
r

sin (ϕ+θ(t)) 1
r

cos (ϕ+θ(t))

 .
For the curvilinear local vector basis we get (cf. eq. (1.5))

~gr(x
∗, t) = cos (ϕ+θ(t))~ex + sin (ϕ+θ(t))~ey

~gϕ(x∗, t) = −r sin (ϕ+θ(t))~ex + r cos (ϕ+θ(t))~ey .
(1.82)

Now, let us consider a motion of a single particle p. In the frame φ∗ it is
described as a time-dependent mapping of the particle p into the coordinate
system, x∗ = χφ∗(p, t), so for the two coordinates of the particle’s trajectory we
have r=r(p, t), and ϕ=ϕ(p, t). For the position vector, upon inserting eq. (1.5)
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into eq. (1.13), the following relation holds,

xi(p, t)~ei =
[
Qk

j(x
∗(p, t), t) sjφ∗(x

∗(p, t), t) + ck(t)
]
~ek, (1.83)

which leads to an alternative form of eq. (1.14):

viφ~ei =

(
Qk

j

Dsjφ∗
Dt +

∂Qk
j

∂xl∗

Dxl∗
Dt s

j
φ∗ +

∂Qk
j

∂t
sjφ∗ +

dckφ
dt

)
~ek. (1.84)

Note that in polar coordinates the position vector has radial component only,
~sφ∗(x

∗, t) = s1
φ∗(x

∗, t)~gr(x
∗, t), and so while s1

φ∗ is equal to r, the second compo-
nent of the position vector s2

φ∗ is identically zero. We can thus simplify the first
two terms in eq. (1.84):

viφ~ei =

(
Qk

1

Dr
Dt +

∂Qk
1

∂ϕ

Dϕ
Dt s

1
φ∗ +

∂Qk
j

∂t
sjφ∗ +

dckφ
dt

)
~ek, (1.85)

where the independence of Qk
1 on r for both k=1, 2 was recognized. If we evaluate

the expression and employ the relations (1.82) we get

viφ~ei =
Dr
Dt~gr +

Dϕ
Dt ~gϕ +

∂Qk
j

∂t
sjφ∗~ek +

dckφ
dt
~ek. (1.86)

We see that the first sum in eq. (1.14) from the main text, (Dsjφ∗/Dt)~gj, is equal to
(Dr/Dt)~gr for our particular example, which is the radial velocity of the particle.
The second sum in eq. (1.14), sjφ∗(∂~gj/∂x

l
∗)(Dxl∗/Dt), is equal to (Dϕ/Dt)~gϕ for

our example, which is the angular velocity of the particle. The terms are thus
the two components of the velocity vector ~vφ∗ . Indeed, they describe the tangent
to the parametrized curve r=r(p, t); ϕ=ϕ(p, t), that is, the particle’s trajectory,
which is the primary definition of velocity9.

To investigate the third sum in eq. (1.14), sjφ∗
∂~gj

∂t
, let us insert in eq. (1.86)

for sjφ∗ from eq. (1.83):

viφ~ei =
Dr
Dt~gr +

Dϕ
Dt ~gϕ +

∂Qkj

∂t
Q−1
jl (xl − cl)~ek +

dckφ
dt
~ek. (1.87)

9Note that ~vφ∗ 6= D
Dt (s

j
φ∗(x∗, t)~gj(x∗, t)). It is because any observer, when provided the

components of the position vector (for each time t) with the task to measure the particle
velocity, is generally not aware of the fact that he himself is moving (he measures the velocity
with respect to his frame), and so the term sjφ∗(x∗, t) ∂~gj(x∗, t)/∂t, discussed below, is not part
of the velocity measured by the observer.
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Since the product Ωk
l := (∂Qk

j/∂t) {Q−1}jl is equal to−dθ
dt

sin (ϕ+θ) −dθ
dt
r cos (ϕ+θ)

dθ
dt

cos (ϕ+θ) −dθ
dt
r sin (ϕ+θ)


 cos (ϕ+θ) sin (ϕ+θ)

−1
r

sin (ϕ+θ) 1
r

cos (ϕ+θ)

 =

 0 −dθ
dt

dθ
dt

0

 ,
we see that the change of frame studied in this example satisfies our definition
of Euclidean change of frame, because Ωk

l is antisymmetric and spatially homo-
geneous. Indeed, for any antisymmetric and homogeneous tensor Ωk

l, the third
term in eq. (1.87), resp. in eq. (1.14), can be written as ξijkωj(xk − ck)~ei, which
is the cross product ~ω×(~sφ−~c)=~ω×~sφ∗ . This term describes the relative rotation
of both frames. In other words, the mutual motion of two frames that are bound
by Euclidean change of frame is a combination of translation and rotation only,
it is a deformationless motion. This can be confirmed by observing the metric
tensor of the frame φ∗, gmn := ~gm · ~gn. The metric tensor is spatially dependent,
but constant in time:

gmn(x∗, t) =

[
~gr·~gr ~gr·~gφ
~gφ·~gr ~gφ·~gφ

]
=

[
1 0

0 r

]
. (1.88)

For the convected frame, discussed below, we cannot write gmn(x∗, t) = gmn(x∗),
because switching to the convected frame is not a Euclidean change of frame.

1.B Convected and corotated frames:
simple shearing

Let us assume a 2-D Euclidean space with a Cartesian frame φ, in which
simple shearing of a body is observed:

χ1
κ,φ(X, t) = X1 + αX2t

χ2
κ,φ(X, t) = X2

}
v1
φ(x, t) = αx2

v2
φ(x, t) = 0

}
∇~vφ =

(
0 α

0 0

)

Note that χ1
κ,φ(X, t=0) = X1 and χ2

κ,φ(X, t=0) = X2, and so the reference con-
figuration is the initial configuration. The strain-rate and the spin of this motion
are, along with the velocity gradient, spatially homogeneous and stationary:

Dφ =
1

2

(
∇~vφ + (∇~vφ)T

)
=

(
0 α

2
α
2

0

)
; Wφ =

1

2

(
∇~vφ − (∇~vφ)T

)
=

(
0 α

2

−α
2

0

)
.

Let us further assume a contravariant tensor ←→a(x, t) = aijφ (x, t)~ei⊗~ej, whose time
evolution is governed by

Duc a
ij
φ

Dt =
Daijφ
Dt − {∇~vφ}

i
k a

kj
φ − aikφ {∇~vφ}jk = 0 . (1.89)
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At the origin of the frame (x=0), the observed velocity of the motion is zero and
eq. (1.89) reduces to

∂

∂t

[
a11
φ a12

φ

a12
φ a22

φ

]
=

[
2αa12

φ αa22
φ

αa22
φ 0

]

This set of ordinary differential equations has the following solution

←→a (x=0, t) = (2α2t2a22
0 + 2αta12

0 + a11
0 )~e1⊗~e1 + (αta22

0 + a12
0 )~e1⊗~e2

+(αta22
0 + a12

0 )~e2⊗~e1 + a22
0 ~e2⊗~e2 , (1.90)

where a11
0 , a

22
0 , a

12
0 are the initial values of ←→a, that is, aijφ (x=0, t=0).

The simple shearing studied here can be also viewed from the convected frame
φ∗, related to φ through a non-Euclidean change of frame x∗=x∗(x, t), defined
so that the coordinates of material points stay constant throughout the motion:

x1(x∗, t) = x1
∗ + αx2

∗t

x2(x∗, t) = x2
∗

}
x1
∗(x, t) = x1 − αx2t

x2
∗(x, t) = x2

Thus, in the convected frame the motion reads χiκ∗,φ∗(X∗, t) = X i
∗, with the

reference configuration chosen to be the initial configuration. For the shifter
tensor of the change of frame one gets

Q(x∗, t) =

[
1 αt

0 1

]
; Q−1(x, t) =

[
1 −αt
0 1

]
, (1.91)

and the local curvilinear contravariant and covariant bases reads

~g1 = ~e1; ~g2 = αt~e1 + ~e2; g1 = e1 − αte2; g2 = e2

~e1 = ~g1; ~e2 = αt~g1 − ~g2; e1 = g1 + αtg2; e2 = g2 (1.92)

Inserting for ~ei from eq. (1.92) into the solution (1.90) gives the components of
the solution in the convected frame φ∗:

←→a (x∗=0, t) = a11
0 ~g1⊗~g1 + a12

0 ~g1⊗~g2 + a12
0 ~g2⊗~g1 + a22

0 ~g2⊗~g2. (1.93)

We see that the components aijφ∗ of the solution are constant in time. Here we
have shown it only at the origin x∗=0, but it is valid for any particle of the body.

It is instructive to analyze the geometrical meaning of the fact that aijφ∗ are
constant in time. Any contravariant tensor field ←→a is a mapping from the dual
space L(V) to V: ←→a (n) = ~w; ~n ∈ L(V), ~w ∈ V. Generally, it is a temporally
and spatially dependent mapping. Let us consider a scalar field s and a set of
parametrized curves with tangents given by a vector field ~w, such that ←→a (∇s) = ~w
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holds at every point p at time t=0. Let us further assume that the scalar field
s and the parametrized curves are frozen into the body, that is, s(p, t)=s(p) and
wiφ∗(p, t)=w

i
φ∗(p). Then, the time-constancy of aijφ∗ implies that ←→a (∇s) = ~w holds

at every point p and every time t throughout the motion of the body.

To inspect the meaning of the Jaumann rate, let us assume a different con-
travariant tensor

←→
b(x, t) = bijφ (x, t)~ei ⊗ ~ej, whose temporal evolution is governed

by

DJau b
ij
φ

Dt =
Dbijφ
Dt −Wik

φ b
kj
φ + bikφ Wkj

φ = 0. (1.94)

At the origin of the frame eq. (1.94) reduces to

∂

∂t

[
b11
φ b12

φ

b12
φ b22

φ

]
=

[
αb12

φ
α
2
(b22
φ −b11

φ )
α
2
(b22
φ −b11

φ ) −αb12
φ

]
,

which has the following solution

←→
b (x=0, t) = [c1 sin(αt)− c2 cos(αt) + c3]~e1⊗~e1 + [c1 cos(αt) + c2 sin(αt)]~e1⊗~e2

+ [c1 cos(αt) + c2 sin(αt)]~e2⊗~e1 − [c1 sin(αt)− c2 cos(αt)− c3]~e2⊗~e2, (1.95)

where c1, c2, c3 are constants that can be determined from the initial conditions
bijφ (x=0, t=0) = bij0 .

Again, there exists a frame φ∗ in which the components of
←→
b are time constant.

It is the corotated frame, defined as

x1(x∗, t) =
√

(x1
∗)

2 + (x2
∗)

2 cos
(
α
2
t
)

x2(x∗, t) =
√

(x1
∗)

2 + (x2
∗)

2 sin
(
α
2
t
) } x1

∗(x, t) =
√

(x1)2 + (x2)2 cos
(
α
2
t
)

x2
∗(x, t) = −

√
(x1)2 + (x2)2 sin

(
α
2
t
)
.

Unlike in the case of the convected frame, the corotated frame is related to the
Cartesian frame φ via Euclidean change of frame, but it is only because we are
studying homogeneous simple shearing here. The relative motion of both frames
is a rotation with the angular speed of α/2 (compare with the spin of the studied
motion). For the shifter tensor we get

Q(x∗, t) =

[
cos
(
α
2
t
)

sin
(
α
2
t
)

− sin
(
α
2
t
)

cos
(
α
2
t
)] ; Q−1(x, t) =

[
cos
(
α
2
t
)
− sin

(
α
2
t
)

sin
(
α
2
t
)

cos
(
α
2
t
) ] ,

confirming that the change of frame is a time dependent rotation, because the
inverse of the shifter tensor is its transpose: Q−1(x, t) = QT(t). The local curvi-

43



linear contravariant and covariant bases are related via

~g1 = cos
(α

2
t
)
~e1 − sin

(α
2
t
)
~e2; ~g2 = cos

(α
2
t
)
~e2 + sin

(α
2
t
)
~e1

g1 = cos
(α

2
t
)
e1 − sin

(α
2
t
)
e2; g2 = cos

(α
2
t
)
e2 + sin

(α
2
t
)
e2.

(1.96)

Since both frames are orthonormal, the transformation properties of one-forms
and vectors are the same. With the help of eq. (1.96) the solution (1.95) can
be, after some algebraic manipulations, written in terms of its components in the
corotated frame φ∗:

←→
b (x∗=0, t) = (c3 − c2)~g1⊗~g1 + c1 ~g1⊗~g2 + c1 ~g2⊗~g1 + (c3 + c2)~g2⊗~g2, (1.97)

which are indeed constant in time.

We conclude the example with two remarks. First, the local covariant and
contravariant bases are indistinguishable in the corotated frame, cf. eq. (1.96),
and so the calculations with the contravariant tensor field

←→
b would be the same

for second-order tensors of any kind, namely for any left covariant mixed tensor
field, right covariant mixed tensor field, and covariant tensor field. All the com-
ponents of tensor fields are constant in the corotated frame when their temporal
evolution is governed by eq. (1.94). For the convected frame and the upper con-
vected derivative this is different: only the contravariant components of tensors
are constant in the convected frame when their temporal evolution is governed
by eq. (1.89) (see also the discussion below eq. (1.46) in the main text).

Second, it is instructive to repeat the procedure with the convected frame for
the case of simple stretching instead of simple shearing. Simple stretching can
be defined as χ1

κ,φ(X, t) = X1 exp(α1t); χ
2
κ,φ(X, t) = X2 exp(α2t), and it can be

shown that while setting the Oldroyd derivative of a contravariant tensor to zero
leads to constancy of its components in the convected frame (they are constant
along particle trajectories), setting the Truesdell rate to zero results in constant
components in the Cartesian frame (again, constant along particle trajectories).
In other words, the first solution satisfies aijφ∗(x

∗, t) = aijφ∗(x
∗), while the latter

solution can be satisfies ←→a(p, t) = ←→a(p).
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2. Small deformations of
viscoelastic mantle

“Any opinion as to the form in which the energy of gravitation exists in space
is of great importance, and whoever can make his opinion probable will have made
an enormous stride in physical speculation. The apparent universality of gravi-
tation, and the equality of its effects on matter of all kinds are most remarkable
facts, hitherto without exception; but they are purely experimental facts, liable to
be corrected by a single observed exception. We cannot conceive of matter with
negative inertia or mass; but we see no way of accounting for the proportionality
of gravitation to mass by any legitimate method of demonstration. If we can see
the tails of comets fly off in the direction opposed to the sun with an accelerated
velocity, and if we believe these tails to be matter and not optical illusions or mere
tracks of vibrating disturbance, then we must admit a force in that direction, and
we may establish that it is caused by the sun if it always depends upon his position
and distance.” – James Clerk Maxwell, Letter to William Huggins (13 Oct 1868)

2.1 Eulerian formulation of the governing equa-
tions

Throughout the thesis we use Eulerian description of field variables, meaning
that the domain of these variables is the current configuration of the body at time
t. Such approach is obvious when mantle convection is addressed, see Chapters 3
and 4, but it is not very common when small deformations of a planet, for example
caused by surface loads, are being computed. In such cases it is more common
to use Lagrangian description of field variables, with their domain being some
convenient reference configuration with a regular shape. The advantage is that
symmetric domains allow for the use of fast numerical methods – in planetary
science it is often assumed to be a sphere or spherical shell, allowing for the use of
so-called spectral methods (decomposing field variables into spherical harmonics).

In Section 2.2, dealing with deformation of the Earth due to surface glaciers
and rotation, we use the Eulerian description of variables, but still choose the
computational domain to be a time constant spherical shell. This somewhat puz-
zling combination enables us to harvest the elegance intrinsic to the Eulerian
formulation – the absence of any additional terms related to the fact that in the
Lagrangian formulation the body forces are expressed at locations where they do
not actually act – and at the same time to employ a spectral method. The ap-
proach has appeared in geodynamical literature several times in the past decade
(e.g. Tobie et al., 2008; Golle et al., 2012; Souček et al., 2016), but the papers are
mostly application driven. We carefully derive the governing equations in this
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section in order to avoid any potential confusions.

Let us assume a spherical body at rest, its static pressure p0 counteracting the
gravitational forcing ρg0, ρ being the density and g0 the gravitational acceleration
(see the left panel of Fig. 2.1). When the body is subject to a conservative
forcing described by potential ζ it deforms. Eulerian formulation of the equation
of motion then reads

∇ · τ + ρg0 − ρ∇ζ = 0 in v(t), (2.1)

where τ is the Cauchy stress tensor and ζ is the potential driving deformation
(e.g. centrifugal potential or perturbation of the gravitational potential due to
the change of the body’s shape – see Section 2.2). Eq. (2.1) is valid within the
deformed body occupying the region v(t). If the surface of the body is free, the
boundary condition reads

τ · n = 0 on s− ∩ s+, (2.2)

where n is the outer normal vector to surfaces s− and s+ of the deformed body,
depicted on the right panel of Fig. 2.1. If the body’s deformation is driven by
surface loads, the boundary condition (2.2) is replaced with τ ·n = (g0 +∇ζ)σL,
σL representing surface mass density of the load. In this section we further
assume σL = 0 for clarity. Systems described by eq. (2.1) are often referred to
as hydrostatically pre-stressed bodies. The effect of the static pressure p0, which
satisfies

−∇p0 + ρg0 = 0 in S0 (2.3)

and is equal to zero elsewhere, can be subtracted by subtracting eq. (2.3) from
eq. (2.1). The governing equations (2.1) and (2.2) then take the form

∇ · τ̄ − ρ∇ζ = 0 in vJ(t), (2.4)

∇ · τ̄ + ρg0 − ρ∇ζ = 0 in v+(t), (2.5)

τ̄ · n = p0n on s−(t), (2.6)

τ̄ · n = 0 on s+(t), (2.7)

where τ̄ := τ + p0I, I being the identity tensor. Note that the static pressure p0

is defined by eq. 2.3 as a positive quantity inside the sphere S0 and zero outside
that sphere. In Section 2.2 we solve, however, the following set of equations:

∇ · τ̄ − ρ∇ζ = 0 in S0, (2.8)

τ̄ · n = urρg0 on ∂S0, (2.9)

where er is the outer normal to surface ∂S0 and ur is the radial component of
the Eulerian displacement field u.
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Figure 2.1: A sphere S0 deforms and becomes volume v(t) due to the acting of a surface
load σL or due to a disturbing potential ζ. The surface ∂S0 can be separated into the
part ∂S+

0 which goes up and becomes s+ after the deformation. The other part, ∂S−0 ,
descends and becomes s− after the deformation.

To show that eqs (2.8)–(2.9) are a reasonable approximation of the original
eqs (2.1)–(2.2), resp. of their equivalent eqs (2.4)–(2.7), we investigate the terms
(2.5) and (2.6). Upon integrating (2.5) over the volume v+(t) and using the Gauss
theorem, together with the free surface condition (2.7), we get

−
∫
∂S+

0

τ̄ · er ds+

∫
v+(t)

ρ(g0−∇ζ) dv = 0. (2.10)

The second term in eq. (2.10) can be subject to a series of approximations:∫
v+(t)

ρ(g0−∇ζ) dv ∼=
∫
v+(t)

ρg0 dv ∼=
∫
∂S+

0

ρg0 ur ds, (2.11)

where we first assumed ∇ζ � g0 and then we expressed the volume element dv

of v+(t) as ur ds. Note that the second step is approximative for two reasons: 1)
radial variations of the integrand, ρg0, within the volume v+(t) are neglected, and
2) the height of topography above the sphere S0 is estimated by the value of ur
at the surface ∂S+

0 and not at the surface s+. Since we use Eulerian description
of variables, the displacement field u taken at ∂S+

0 represents the displacement
of material particles that are at ∂S+

0 after the deformation. It is thus only a
first-order estimate of the actual topography height, which is equal to the value
of ur taken at the surface of the deformed body s+. Eq. (2.11) together with
eq. (2.10) yield ∫

∂S+
0

(−τ̄ · er + ρg0 ur) ds ∼= 0, (2.12)

which is the boundary condition (2.9) on ∂S+
0 . In other words, the volumetric

force ρ(g0−∇ζ) was found dynamically equivalent to the surface traction ρg0 ur,
acting at the spherical surface ∂S+

0 . Also note that the approximation ∇ζ � g0
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could be easily avoided by replacing g0 with (g0−∇ζ) in eq. (2.9).
For regions with negative topography we integrate the traction in eq. (2.6)

over the surface s−(t),∫
s−(t)

p0n ds ∼=
∫
s−(t)

−ρg0ur nds ∼=
∫
∂S−0

ρg0ur ds , (2.13)

where in the first step the static pressure p0 at the surface s−(t) was set equal
to −ρg0ur, which neglects the radial variations of ρg0 within the volume v−(t),
similarly as in eq. (2.11). In the second step the surface element nds of s−(t)

was approximated by the surface element of ∂S−0 , which is a good first-order es-
timate. Observing eq. (2.13) directly shows that the boundary traction (2.6) is
dynamically analogous to the prescribed traction (2.9) on ∂S−0 , concluding the
correspondence of eqs (2.8)–(2.9) with the set (2.4)–(2.7).

Instead of the procedure above, the same conclusions can be reached by per-
forming the Taylor expansion of (2.2), as done in appendix to Souček et al. (2016):

0 = τ (rs+u) · n(rs+u) = (τ̄ − p0I)(rs+u) · n(rs+u) (2.14)
∼= np0(rs) + τ̄ (rs) · n+ u · [∇(p0n)]r=rs + u · [∇(τ̄ · n)]r=rs (2.15)
∼= τ̄ (rs) · er + ρg0ur(rs)er (2.16)

where rs is the position vector tracking the spherical surface ∂S0, p0(rs) was
recognized as zero, the normal vector n was approximated by er, the term
u·[∇(p0n)]r=rs was approximated by ρg0ur(rs)er, and the last term on the second
line was neglected. We believe, however, that the more detailed analysis provided
here may help the reader in understanding the derivations in the next section.
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2.2 Energy balance of GIA on a rotating Earth

Published in Geophysical Journal International,
Volume 212(2), p. 955-975, doi: 10.1093/gji/ggx469, 2017

V. Patočka1, O. Čadek1 and Z. Martinec1,2

1 Department of Geophysics, Faculty of Mathematics and Physics, Charles Uni-
versity, Prague, Czech Republic
2 Dublin Institute for Advanced Studies, Geophysics Section, Dublin, Ireland

Summary

Understanding the feedback between the glacial isostatic adjustment (GIA)
and the Earth’s rotation is important for an accurate prediction of sea level
changes induced by climate and tectonic processes. Here we consider a simple,
four-layer incompressible Earth model, recently used for a benchmark of GIA
codes to estimate the accuracy of the linearized Liouville equation (LE) and to
demonstrate that models with an incomplete or missing rotational feedback vio-
late the principle of energy conservation. First, we compute GIA on a rotating
Earth by solving the equation of motion coupled with LE in its full nonlinear form.
By comparing the nonlinear LE solution with the traditional linearized one, we
find that the radial component of the angular velocity vector is inaccurate in
the latter case, with an error exceeding 10% already after 1 kyr of evolution.
To understand the cause of this discrepancy, we investigate the time evolution
of different kinds of energy involved in the process. While the rotational, elas-
tic and dissipative energies are straightforward to compute, the formula for the
gravitational energy contains an integral that requires a careful, higher-order ac-
curate evaluation of the gravitational potential perturbation. We circumvent this
problem by transforming the integral into a different one, formulated in terms of
displacement instead of potential. We find that the solution of the linearized LE
equation does not conserve the energy, since, in the linearized case, the rate of
change of the rotational energy is not equal to the power of the centrifugal force.
We also compute the energy balance of GIA on a constantly rotating Earth, and
demonstrate the importance of the rotational feedback in the equation of mo-
tion. The formalism derived in this study allows a detailed examination of the
energy balance for a rotating, incompressible planetary body deformed by a sur-
face load. As such, it may not only serve as a reliable tool for a posteriori testing
of GIA numerical solutions but it can also be used in different planetary science
applications.
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2.2.1 Introduction

Glacial isostatic adjustment (GIA) has been investigated within the geophysi-
cal community for many decades, recently gaining attention due to the increasing
precision of geodetic measurements obtained from the GRACE (Tapley et al.,
2004) and GOCE (Floberghagen et al., 2011) satellite missions and the growing
interest in sea level changes. The response of the Earth to surface loading was
used primarily to constrain the viscosity profile of the mantle (Cathles, 2015).
However, the depth to which viscosity can be inferred by measuring postglacial
rebound is limited by the lateral extent of the past glaciers, leaving the lowermost
mantle poorly resolved (e.g. Mitrovica & Peltier, 1991).

The motion of the rotation axis of the Earth, induced by mass redistribution
that accompanies the periodic accumulation and melting of ice during glacial
cycles, can be used to overcome this limitation. Assuming that the ice load history
is known, lower-mantle viscosity can be constrained by fitting the observed rate of
the secular drift (e.g. Sabadini et al., 1982; Wu & Peltier, 1984; Vermeersen et al.,
1998; Lau et al., 2016). Also worth noting is the pioneering attempt of Nakada
& Karato (2012) to infer the lower-mantle viscosity by comparing the Q-factor
of the predicted Chandler wobble with the observed value (e.g. Benjamin et al.,
2006).

It was only later that the perturbation of the centrifugal force, inherent to any
change in the rotation vector, was also included in modelling GIA-related suite
of observables. While its effect on the sea level equation has been extensively
studied (e.g. Milne & Mitrovica, 1998; Mitrovica et al., 2001), its impact on
the GIA-induced deformation of the Earth has only been addressed recently by
Martinec & Hagedoorn (2014).

Precise computation of GIA-induced polar motion (PM) thus plays an im-
portant role in numerical simulations of postglacial rebound related phenomena.
Following Munk & MacDonald (1960) it has become common to use the linearized
form of the Liouville equation (LE) to obtain the PM solution. The error intro-
duced by the linearization is not straightforward to estimate and depends on the
amplitudes of the wander that the rotation axis experiences. In this paper, we
couple the fully nonlinear LE (NLE) with the equations governing small deforma-
tions of a radially symmetric, self-gravitating incompressible spherical shell. By
comparing the NLE solution with the linearized one we quantitatively evaluate
the error due to neglecting higher-order terms in the linearized LE (LLE). In par-
ticular, we estimate the error arising from decoupling the equations for PM and
the length of day (LOD) variation, which is an intrinsic property of the linearized
approach. The accuracy of the LLE is tested for the Earth model M3-L70-V01
loaded with a spherical ice cap, a community benchmark by Spada et al. (2011).

Another way to assess the accuracy of the linearized solution, without having
to solve the NLE, is to check whether the total energy of the Earth’s model is
conserved. The energy balance involves the rotational, elastic and dissipative en-
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ergies, which are straightforward to evaluate, and the gravitational energy, which
requires a higher-order accurate evaluation of the gravitational perturbation po-
tential. In section 2.2.4.1 we solve this problem by deriving an equivalent integral
but with the displacement in the integrand, allowing the use of a simple spectral
formula for the geoid (e.g. Choblet et al., 2007).

We then compute the energy balance for various test examples relevant to
GIA studies. In section 2.2.4.2 we load a non-rotating Earth with a spherical ice
cap. To assess the energetic importance of free wobble, triggered by a hypothetical
rapid accumulation of a surface load on a rotating Earth, we separately study this
phenomenon in section 2.2.4.3. In section 2.2.4.4, we analyse the energy balance
of a rotating Earth loaded with a spherical ice cap, that is, the benchmark case by
Spada et al. (2011). We show that the LLE solution does not conserve the energy
and discuss the consequences of this finding for the prediction of PM and LOD. In
section 2.2.4.5 we consider the same surface loading, but on a constantly rotating
Earth. A large deviation from the energy conservation is obtained in such case,
proving the importance of including rotational feedback in GIA modelling.

All results discussed in section 2.2.4 are obtained for the four-layer, incom-
pressible Earth model M3-L70-V01 used already in the benchmark of GIA codes
(Spada et al., 2011). Although this structural model is relatively simple in com-
parison with recent models inferred from ice age data sets (e.g. Lau et al., 2016), it
allows our predictions of PM and LOD to be compared with those in Spada et al.
(2011) and the energy curves presented in section 2.2.4 to be easily reproduced.

The energy balance analysis introduced in this paper does not include the
effect of compressibility. As shown by Cambiotti et al. (2010), compressibility of
the real Earth can have non-negligible effect on both GIA and PM. Compressible
models are more deformable than the incompressible ones, which makes the read-
justment of the rotational bulge quicker, effectively reducing the GIA-induced
PM. This reduction, however, depends on lower mantle viscosity and is almost
negligible for values higher than 1022 Pa s, which are usually needed to stabilize
the rotation of the Earth on geological time scales (Ricard et al., 1993).

To compute small deformations of a rotating, gravitationally pre-stressed
Earth we use the Eulerian formulation of the governing equations, instead of
applying the traditional Lagrangian approach (e.g. Wu & Peltier, 1982). The Eu-
lerian formulation has appeared in the literature several times in the past decade
(e.g. Tobie et al., 2008; Golle et al., 2012; Souček et al., 2016), but only for spher-
ical shells with a constant density. We extend it for the case where the internal
density is a continuous piecewise linear function and we numerically demonstrate
that the solution is equivalent to the Lagrangian one. Using the Eulerian for-
mulation we demonstrate a one-by-one correspondence between individual forces
in the equation of motion and the terms describing the gravitational, rotational,
elastic and dissipative energies. Such a correspondence provides a powerful tool
when diagnosing a numerical solution. While the evaluation of the sum of all in-
volved energies reveals only whether or not the solution is numerically correct, the
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term-by-term correspondence can be used to directly identify a potential source
of energy imbalance.

In the present paper, we do not use the normal mode theory (e.g. Peltier,
1974) or complex contour integration (e.g. Tanaka et al., 2009; Sabadini et al.,
2016), as we solve all equations in the time domain, making the coupling between
the equation of motion and the LE straightforward. It is worth noting that the
use of the NLE does not require the amplitudes of the modelled PM to be small
and the time scales on which mass redistribution occurs can be arbitrary. Our
approach thus broadens the variety of processes that can be addressed compared
to the traditional techniques: the linearized approach is limited to PM with small
amplitudes, and the viscous quasi-fluid approximation, introduced by Lefftz et al.
(1991) and Ricard et al. (1993), is valid only for mass redistribution occurring
on the time scale of a few million years (see also Cambiotti et al., 2011). The
rapid formation of craters and volcanoes that can subsequently shift the rotation
axis of a planetary body by tens of degrees (Runcorn, 1984; Kite et al., 2009),
and a number of asteroids that experience a large-amplitude wobbling (Harris,
1994), are examples of the problems that could newly be tackled with the tool
we present.

2.2.2 Governing equations

We consider small deformations of a hydrostatically prestressed spherical shell
with radially dependent reference density profile ρ0(r) and a homogeneous fluid
core. The material of the spherical shell is assumed to behave like an incom-
pressible Maxwell-type viscoelastic fluid. The time evolution of displacement
and stress can be obtained by integrating the following set of partial differential
equations (e.g. Tobie et al., 2008):

∇ · τ + f = 0 , (2.17)

∇ · u = 0 , (2.18)

τ d − µ(∇u+ (∇u)T) = −µ
η

∫ t

0

τ ddt′ , (2.19)

where τ is the Cauchy stress tensor, τ d is its deviatoric part, f is the body force,
u is the displacement, the superscript T denotes transposition of a tensor, µ is the
elastic shear modulus, η is the viscosity, and t is the time. At time t=0 the integral
on the right-hand side of eq. (2.19) is zero and the spherical shell behaves like an
elastic solid. Throughout the paper, we strictly use the Eulerian description of the
problem. All variables are expressed as functions of the instantaneous position of
the particle in the deformed body. A particle occupying the position r at time
t would occupy the position r − u(r, t) if all forces that cause the deformation
were set to zero at all times.

The body force f is given as the product of density and the negative gradient
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of gravity potential. The gravity potential has three components: (i) the reference
gravitational potential V0, (ii) the centrifugal potential Ψ due to the rotation of
the body, and (iii) the perturbation Φ of the gravitational potential V0 due to the
deformation of the body. V0 is the gravitational potential of a sphere of radius a
with density profile ρ0(r). Inside the sphere (r ≤ a)

V0(r) = −4πG

r

∫ r

0

ρ0(r′)r′
2

dr′ − 4πG

∫ a

r

ρ0(r′)r′ dr′, (2.20)

where G is the universal gravitational constant. The centrifugal potential Ψ is
given as

Ψ =
1

2

(
(ω · r)2 − |ω|2|r|2

)
, (2.21)

where ω is the angular velocity vector which has the direction of the rotation axis
and the magnitude equal to the angular speed of the body.

As the sphere deforms, the initial density ρ0(r) changes to density ρ(r, t)

which can be expressed as a sum of density ρ0(r) and Eulerian density increment
δρ(r, t). If the body is incompressible and the density ρ0 is a continuous function,

δρ(r, t) = ρ(r, t)−ρ0(r) = ρ0(|r−u(r, t)|, t)−ρ0(r) = −u(r, t)·∇ρ0(r)+O(|u|2),

(2.22)
where the displacement u describes the deformation of the body. The Eulerian
density increment δρ is non-zero also at the outer surface and at the internal
density interfaces where it is equal to the density jump at the respective interface.
Using δρ we can express the perturbation potential Φ in an integral form:

Φ(r, t) = −G
∫
v(t)

δρ(r′, t)

|r − r′| dv′, (2.23)

where v(t) is the volume occupied by the body (including the core) at time t. Ne-
glecting the terms O(|u|2) and −δρ∇(Φ + Ψ), we obtain the following expression
for the body force f :

f = −ρ∇(V0 + Φ + Ψ) ∼= −(u · ∇ρ0)g0 − ρ0∇ (Φ + Ψ) + ρ0g0, (2.24)

where g0 = −∇V0. The laterally homogeneous and static contribution ρ0g0 is
counteracted by the hydrostatic prestress p0(r), satisfying the equation −∇p0 +

ρ0g0 = 0.
Equations (2.17) – (2.19) are solved in a spherical shell with outer radius a

and inner radius b. The boundary condition at the outer surface is obtained
from the force equilibrium condition, taking into account the pressure due to the
deformation-induced topography (e.g. Souček et al., 2016) and the presence of a
surface load:

τ · er =
(
ur[ρ0]a + σL

)
g0, (2.25)

where er is the radial unit vector, ur is the radial component of displacement
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u, [ρ0]a = ρ0(a) is the density jump at the surface, and σL is the surface mass
density of the prescribed surface load. A similar condition can be imposed at the
bottom boundary, on Earth corresponding to the core-mantle boundary:

− τ · er = ur[ρ0]b g0 − ρc(V0 + Φ + Ψ)er, (2.26)

where [ρ0]b is the density jump at the bottom boundary and −ρc(V0 + Φ + Ψ) is
the hydrostatic pressure acting on the boundary due to the contact with a liquid
core of density ρc.

To compute the temporal evolution of the angular velocity vector ω with
respect to the body-fixed Tisserand frame (Munk & MacDonald, 1960) we solve
the LE with zero external torque,

− I · dω

dt
=

dI

dt
· ω + ω × (I · ω), (2.27)

where I is the time-dependent tensor of inertia. Equations (2.17) – (2.26) are
coupled with eq. (2.27) both through the displacement field u, which is needed
to compute the inertia tensor I, and through the centrifugal potential Ψ, which
depends on the angular velocity vector ω.

2.2.3 Numerical implementation

The LE is a set of ordinary differential equations for three unknown compo-
nents of vector ω as functions of time. It can be rewritten as

dω

dt
= F(I,ω) , (2.28)

where
F = −I−1 ·

(
dI

dt
· ω + ω × (I · ω)

)
. (2.29)

Equation (2.28) is solved numerically using the fifth order accurate Adams-
Bashforth multistep method with a time step of 10−3 yr. Each evaluation of
F requires the calculation of the tensor of inertia I and its time derivative. The
perturbation of the tensor of inertia is computed by MacCullagh’s formula from
the gravitational potential Φ and the reference density profile ρ0 (e.g. Patočka,
2013, eqs 2.12),

I = I0 I+

√
5
π

a3

6G


 −Φ20 0 0

0 −Φ20 0
0 0 2Φ20

 − √6

 −Re Φ22 Im Φ22 Re Φ21

Im Φ22 Re Φ22 −Im Φ21

Re Φ21 −Im Φ21 0


 .

(2.30)
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Here I0 := 8
3
π
∫ a

0
r4ρ0dr, I is the identity tensor, and Φ`m are the coefficients of

the spherical harmonic expansion of potential Φ,

Φ(r, ϑ, ϕ) =
`max∑
`=0

∑̀
m=−`

Φ`m(r)Y`m(ϑ, ϕ) , (2.31)

where Y`m are the fully normalized spherical harmonics of degree ` and order m
(e.g. Jones, 1985), and `max is the cut-off degree. The potential Φ depends on the
deformation of the body and we describe its calculation in the next paragraph.
The term dI/dt is then computed numerically using the second order accurate
mid-point finite difference scheme. The spectral algorithm for the numerical
solution of eqs (2.17) – (2.26) for a given centrifugal potential Ψ is outlined in
Tobie et al. (2008), identities needed to construct the matrix of the discretized
problem are summarized in the appendix to Golle et al. (2012).

The potential Φ depends on u and vice versa. It is computed iteratively by
expanding the integral (2.23) into a spherical harmonics series, while condensing
topographies into surface mass densities (see eq. 35 in Choblet et al., 2007):

Φ`m(r) =
−4πGr

2`+ 1

(
[ρ0]b ur,`m(b)

(
b

r

)`+2

+ [ρ0]a ur,`m(a)
(r
a

)`−1

−
∫ r

b

(
r′

r

)`+2

ur,`m(r′)
dρ0

dr′
dr′ −

∫ a

r

( r
r′

)`−1

ur,`m(r′)
dρ0

dr′
dr′

)
, (2.32)

where we substituted for δρ from eq. (2.22) on the second line of eq. (2.32). The
discretization in the radial direction is performed by the finite difference method
on a staggered grid with constant spacing (e.g. Gerya & Yuen, 2003). Our ap-
proach differs from the algorithm described in Tobie et al. (2008) by employing a
higher order Crank-Nicholson integration scheme for evaluating the time integral
in eq. (2.19).

The accuracy of the numerical method used to solve the governing equations
(2.17) - (2.26) was carefully tested against the traditional Lagrangian solution.
Figure 1 shows the relative difference between the loading and tidal degree 2
Love numbers kLe , kTe , kLf and kTf , computed numerically using the method de-
scribed above, and those computed semi-analytically by Spada et al. (2011) for
a viscoelastic Earth model M3-L70-V01 (for description of the model, see table
3 therein). The difference is plotted as a function of the radial resolution con-
sidered in the numerical solution in which the density profile is approximated
by a continuous piecewise linear function. Inspection of Fig. 1 shows that the
relative error of the numerical method converges to zero with increasing resolu-
tion, decreasing below 10−4 when the number of equally spaced radial nodes is
larger than 5000. The error does not decrease monotonically because it depends
on how well the equidistant discretization matches the positions of the density
interfaces. In section 2.2.4.4, we will use 460 radial grid nodes for which the error
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Figure 2.2: Relative error of the numerically computed tidal and loading degree 2 Love
numbers kTe , kTf , k

L
e and kLf relative to the semi-analytically computed values by Spada

et al. (2011). The subscript e denotes the instantaneous response and f is the t→∞
“fluid” limit. The shadowed region marks the domain where the relative error is smaller
than 10−4.

in determining the Love numbers is less than 10−4. The number of radial grid
nodes could be significantly smaller if we used a variable grid spacing.

Besides the computation of the Love numbers, we have also reproduced the
benchmark example in Spada et al. (2011), where model M3-L70-V01 is loaded
with a spherical ice cap (Spada et al., 2011, table 4), centred at the colatitude
θc = 25◦ and the longitude λc = 75◦. Our solution consists of two steps. In the
first one, the model M3-L70-V01 is rotated at a constant angular velocity ω0 =

[0, 0, 7.292115] × 10−5 s−1 until it reaches hydrostatic equilibrium. Numerically
we achieve this by integrating eqs (2.17) – (2.26) with the prescribed ω0 and
σL ≡ 0 over a period of 200 Myr (similar procedure was used to obtain the fluid
Love numbers in Fig. 1). We will denote the hydrostatic values of the polar and
equatorial moments of inertia by C and A respectively (C=If33 and A=If11=If22).
Then, at time which we formally mark as t=0, the body is suddenly loaded with
a spherical ice cap. The loading instantaneously shifts the figure axis, and we
adjust the vertical component of ω(t=0), so that the total angular momentum is
preserved in first approximation (ω = ω0(1 − c33/C), where c33 is the change of
polar moment of inertia due to the loading). The further evolution of the tensor
of inertia, which in turn determines the evolution of ω(t), is governed by both
the viscoelastic relaxation under the load and the viscoelastic readjustment of
the rotational bulge in response to the induced PM. For clarity of comparison
with other studies, we introduce two quantities characterizing the PM – the PM
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vector m and the LOD variation ∆LOD:

ω(t) = ω0 + |ω0|m(t) , ∆LOD(t) =
c33(t)

C

2π

|ω0|
, (2.33)

where c33(t) is the time variation of I33 (polar moment of inertia) in response to
the loading.

In Fig. 2a, we compare the PM components m1 and m2 computed by our
method (coloured points) with those obtained using the traditional Laplace do-
main approach and the LLE (dashed lines, adopted from Martinec & Hagedoorn
(2014)). Since our solution includes the wobbling while the LLE solution by Mar-
tinec & Hagedoorn (2014) gives only the mean position of the rotation axis, the
two solutions are very different in the beginning, but they match each other once
the wobbling is damped. This confirms that our code gives correct results on long
time scales (i.e. greater than the damping time of Chandler wobble), and con-
versely, that neither the wobbling nor the linearization influences the long term
evolution of the PM. A good agreement is also found for ∆LOD (Fig. 2b) where
the relative difference between the two solutions is smaller than 1%.

The study by Spada et al. (2011) provides a valuable benchmark for validation
of different numerical techniques to compute the PM. Nevertheless, there are two
things that are worth noting because they are not explained in the original paper
in sufficient details. First, in fig. 13(c) in Spada et al. (2011), the variation ∆LOD

induced by the load is plotted as a positive quantity. However, since the load is
imposed close to the north pole and the total mass of the Earth is conserved, the
loading reduces the polar moment of inertia and the variation ∆LOD is actually
negative. Second, the hydrostatic values C and A must be corrected to reproduce
the benchmark results. The ∆LOD curve (Fig. 2.3b) is sensitive to the value of
C, which has to be 8.0394 × 1037 kgm2 to match the benchmark (i.e. the value
given in table 1 of Spada et al. (2011)). However, to match the benchmarked PM
solution (Fig. 2.3a), which is sensitive to the difference C−A, this difference has
to be 2.6947 × 1035 kgm2. This value corresponds to model M3-L70-V01 in the
hydrostatic limit, and not to the value of C−A derived from table 1 in Spada
et al. (2011). Numerically we proceeded by adding a diagonal correction to our
tensor of inertia, Ic(t≥0) = I(t) + γI, where I is identity tensor and Ic is the
corrected tensor of inertia used in our simulations. The correction γ is given as
(8.0394− 8.17848)× 1037 kgm2, with 8.17848× 1037 kgm2 being the hydrostatic
polar moment of inertia of model M3-L70-V01. We believe this information can
be helpful for the future users of the benchmark.
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2.2.4 Energy balance of a rotating Earth

The conservation of energy for a rotating self-gravitating viscoelastic body
can be expressed as

Erot + Eel + Ediss + Egrav = const , (2.34)

where the terms on the left-hand side are the rotational, elastic, dissipative and
gravitational energies, respectively. The kinetic energy associated with the rate
of deformation is not considered, since the inertia term in the equation of mo-
tion (2.17) is neglected. The rotational energy Erot can be computed using the
standard formula

Erot =
1

2
ω · I · ω. (2.35)

The elastic energy Eel stored in the body and the viscous dissipation rate Ėdiss

can be expressed as (cf. Joseph, 2013, p. 50)

Eel =

∫
v(t)

τ d : τ d

4µ
dv ∼=

∫
Sa−Sb

τ d : τ d

4µ
dv , (2.36)

Ėdiss =

∫
v(t)

τ d : τ d

2η
dv ∼=

∫
Sa−Sb

τ d : τ d

2η
dv , (2.37)

where τ d : τ d ≡ τ dij τ
d
ij in Cartesian components and Sa−Sb denotes the spherical

shell of outer radius a and inner radius b. The integration over the core is omitted
since the core is assumed to be filled with inviscid liquid. Finally, the gravitational
potential energy is given by

Egrav =
1

2

∫
v(t)

ρ (V0 + Φ) dv . (2.38)

2.2.4.1 Alternative formula for the gravitational energy

The computation of the gravitational energy is a delicate exercise which re-
quires a careful evaluation of topographic and volumetric contributions to integral
(2.38). In this section we derive a formula for the gravitational energy which is
easy to implement and, as we will demonstrate in section 2.2.4.4, it is sufficiently
accurate if the deformation is small. We first derive the formula for a model with
a finite number of layers of constant densities, and then we extend it to a model
with a continuous density profile. For the derivation we will assume that the
surface load density σL is equal to zero. For a non-zero surface load density the
problem can be converted into a problem with zero surface load density by using
a modified radial displacement umod

r (a) = ur(a)+σL/[ρ0]a.
For the sake of clarity of exposition, we consider a multilayer (N -layer) sphere.

The N -layered sphere is composed of N spheres Si with radii ri, i = 1, 2, ...N ,
where r1 = a and rN = b are respectively the radii of the outer and inner boundary
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Figure 2.4: Deformation of N -layer sphere. Black lines show boundaries of the reference
spherical shells with constant densities, red lines show the interfaces of the deformed
body. In regions where the deformation produces a positive topography, the Eulerian
density increment is equal to [ρ0]i, i=1, 2, ..., N , while in regions where the topography
is negative, the density increment is equal to −[ρ0]i.

of the spherical shell considered in Section 2. The density ρ0(r) of the sphere is
a piecewise constant function with density jumps [ρ0]i at radii ri (taken positive
if the density increases with depth). When the body is deformed, each sphere Si
transforms into an aspherical object vi and the density changes by

δρ(r, t) = ρ0(|r−u(r, t)|, t)−ρ0(r) =

 0, |r−ri|≥|ur(r, t)| ∀i ∈ {1, 2, . . . , N}
[ρ0]i, ur(r, t)>0 ∧ |r−ri|<|ur(r, t)|
−[ρ0]i, ur(r, t)<0 ∧ |r−ri|<|ur(r, t)|

(2.39)
where the three possibilities given on the right are illustrated in Fig. 3. The
volume integral in eq. (2.38) can then be rewritten as

∫
v(t)

ρ (V0 + Φ) dv =
N∑
i=1

[ρ0]i

∫
vi

(V0 + Φ) dv. (2.40)

On the right-hand side of this equation, we obtain a sum of N integrals over
N homogeneous bodies which have no internal boundaries, occupy the volumes
vi and have the densities [ρ0]i. Each volume vi can be expressed in terms of the
spherical volume Si and the volume hi induced by the deformation (see the yellow
and green regions in Fig. 3). The volume hi is taken with a positive sign if it is
above the sphere Si (yellow regions) and with a negative sign if it is inside the
sphere (green regions). The total volume of hi at each interface (the sum of the
yellow and green domain) is zero due to the incompressibility of the body. The
gravitational energy can then be rewritten using Si and hi as follows:

Egrav =
1

2

N∑
i=1

[ρ0]i

∫
hi

(V0 + Φ) dv +
1

2

N∑
i=1

[ρ0]i

∫
Si

(V0 + Φ) dv. (2.41)

The gravitational potential V0 + Φ can be split into N parts, V0 + Φ =∑N
i=1(V i

0 +Φi), where V i
0 is the potential of the homogeneous sphere Si of density
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[ρ0]i and Φi is the perturbation due to the aspherical shape of the i-th interface:

V i
0 (r) = −G[ρ0]i

∫
Si

1

|r − r′| dv, Φi(r) = −G[ρ0]i

∫
hi

1

|r − r′| dv. (2.42)

In the following, we take advantage of the well-known fact that the gravitational
energy of a body A in the gravitational field of a body B is the same as the
gravitational energy of body B in the gravitational field of body A. By applying
this general rule to eq. (2.42) we obtain the following relations:

[ρ0]i

∫
Si

Φj dv = [ρ0]j

∫
hj

V i
0 dv, (2.43)

valid for any i, j = 1, ..., N . Using eq. (2.43) we can link the first and the second
sum on the right-hand side of eq. (2.41):

N∑
i=1

[ρ0]i

∫
Si

Φ dv =
N∑
i=1

[ρ0]i

∫
Si

N∑
j=1

Φj dv =
N∑
j=1

[ρ0]j

∫
hj

N∑
i=1

V i
0 dv =

N∑
i=1

[ρ0]i

∫
hi

V0 dv.

(2.44)
Substituting (2.44) into (2.41) gives the alternative formula for the gravitational
energy Egrav of the body:

Egrav = E0
grav +

N∑
i=1

Ei
grav, (2.45)

where E0
grav is the gravitational energy of the undeformed N -layer sphere

E0
grav =

1

2

N∑
i=1

[ρ0]i

∫
Si

V0 dv = 2π

∫ a

0

ρ0(r)V0(r)r 2 dr , (2.46)

and
Ei

grav = [ρ0]i

∫
hi

(
V0 +

1

2
Φ

)
dv . (2.47)

Since the deformation is small, the topography of the ith interface (defined here
as the deviation from a sphere) can be approximated by the radial component of
the displacement vector at the interface. Equation (2.47) then takes the form

Ei
grav
∼= [ρ0]i

∫
∂Si

∫ ri+ur(ri,ϑ,ϕ)

ri

(
V0 +

1

2
Φ

)
dr ds , (2.48)

where ∂Si denotes the surface of the sphere of radius ri, ds is the element of
∂Si, and ϑ and ϕ are the spherical angular coordinates. The integral in eq. (2.48)
can be simplified by expanding V0 in a Taylor series and setting Φ(r, ϑ, ϕ) ∼=
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Φ(ri, ϑ, ϕ):

Ei
grav
∼= [ρ0]i

∫
∂Si

∫ ri+ur(ri,ϑ,ϕ)

ri

(
V0(ri) + g0(ri)(r − ri) +

1

2
Φ(ri, ϑ, ϕ)

)
dr ds .

(2.49)
Integration of eq. (2.49) over the radius gives

Ei
grav
∼= 1

2
[ρ0]i

∫
∂Si

(
g0u

2
r + Φur

)
ds , (2.50)

where we used that
∫
∂Si

urds = 0 for an incompressible body.
The surface integral in eq. (2.50) can be easily evaluated in spectral domain.

Representing quantities ur and Φ in terms of spherical harmonic expansions,
eq. (2.31), and invoking the orthonormality of the spherical harmonic basis {Y`m},
we obtain

Egrav
∼= E0

grav +
1

2

N∑
i=1

[ρ0]i r
2
i

`max∑
`=0

∑̀
m=−`

(
g0(ri)|ur,`m(ri)|2 + ur,`m(ri)Φ

∗
`m(ri)

)
,

(2.51)
where * denotes complex conjugation. The rotational potential is described by
spherical harmonics of degrees 0 and 2. Since degree 0 has no effect on the
deformation of an incompressible body, we will only consider the terms with `=2

and |m|≤2.
The formula (2.51), derived for a layered density model, can be generalized

to the case of a continuous density profile. Replacing the density jumps [ρ0]i
in eq. (2.47) by (−dρ0(r)/dr) dr and the sum in eq. (2.45) by an integral, and
following the analogous procedure as above, we get the formula

Egrav
∼= E0

grav +
1

2

(
[ρ0]a

∫
∂Sa

(
g0u

2
r + urΦ

)
ds+ [ρ0]b

∫
∂Sb

(
g0u

2
r + urΦ

)
ds

−
∫ a

b

dρ0

dr

∫
∂Sr

(
g0u

2
r + urΦ

)
ds dr

)
, (2.52)

where ∂Sr denotes the surface of the sphere with radius r.
Equation (2.52) allows us to compute the gravitational energy using the quan-

tities obtained by solving the governing equations in a regular computational do-
main Sa−Sb, that is, in the spherical shell of outer radius a and inner radius
b. The radial displacement ur needed to evaluate the integrals in eq. (2.52) is
obtained as the solution to eqs (2.17) – (2.19), (2.25) and (2.26), with the grav-
itational potential Φ being computed iteratively from ρ0 and ur via eq. (2.32),
that is, using the traditional “condensation” method (e.g. Choblet et al., 2007). If
the deformation is small, the Eulerian and Lagrangian approaches give the same
displacement (see Fig. 2.8b in section 2.2.4.4). Therefore, the formula for the
gravitational energy derived here can be used regardless which of the approaches
is chosen to evaluate the deformation.
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Note, however, that a direct application of the condensation method to the
energy integral (2.38) leads to an incorrect result. In order to demonstrate this,
we will assume, for simplicity, that the density ρ is constant throughout the body.
Equation (2.38) can then be expressed as the sum of two integrals over the sphere
Sa and two integrals over the domain ha representing the irregular shape of the
body (ha ≡ h1 in the notation used above):

Egrav =
ρ

2

(∫
Sa

V0 dv +

∫
Sa

Φ dv +

∫
ha

V0 dv +

∫
ha

Φ dv

)
. (2.53)

The first integral corresponds to E0
grav (cf. eq. 2.46). The second integral can be

evaluated by expanding Φ into spherical harmonics. Due to the orthogonality
of the spherical harmonic functions, only Φ00 has non-zero contribution to the
integral. In the simplified formula (2.32), which is based on the condensation
technique, there is no coupling among coefficients of different degrees and orders.
According to that formula, Φ00 is a function of ur,00 only, and, since ur,00 is zero for
an incompressible body, the second integral vanishes. Condensing the volumetric
density ρ into surface mass density ρur(a) in the last two integrals then gives

Egrav = E0
grav +

ρ

2

(
V0(a)

∫
∂Sa

ur ds+

∫
∂Sa

Φur ds

)
= E0

grav +
ρ

2

∫
∂Sa

Φur ds ,

(2.54)
while the correct solution is (eq. 2.52 with [ρ0]a = ρ, [ρ0]b = 0 and dρ0/dr = 0)

Egrav = E0
grav +

ρ

2

∫
∂Sa

(
g0u

2
r + Φur

)
ds . (2.55)

In other words, the second and third integrals in eq. (2.53) have been incorrectly
evaluated as zero, giving the wrong solution (2.54). In this section we have shown
that both integrals are in fact non-zero, they are equally important, and together
yield the contribution with g0u

2
r in the integrand. The advantage of our formula

for the gravitational energy is that it does not require the computation of Φ00,
which is a non-zero quantity inside the sphere Sa if evaluated exactly.

In Appendix 2.A we derive other formulae that can be helpful in assessing the
energy balance of a deforming body, based on evaluating the power of individual
forces in the equation of motion (2.17).

2.2.4.2 Energy balance of GIA for a non-rotating Earth

We first evaluate the energy balance for a non-rotating Earth with internal
structure given by model M3-L70-V01, loaded at time t=0 with a spherical ice
cap as described in Spada et al. (2011). In this case, the body has a perfectly
spherical shape prior to the loading (ρ=ρ0, Φ=Ψ=0, u=0, τ d=0). No elastic
energy is stored and the gravitational energy reaches the absolute minimum.
Since the total mass of the imposed surface load is zero, the loading is associated
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Figure 2.5: Time evolution of the gravitational (green), dissipative (blue) and elastic
(magenta) energy for non-rotating Earth model M3-L70-V01, loaded with a spherical
ice cap (for details, see Spada et al., 2011). The variation of the gravitational energy
is plotted with respect to the gravitational energy E0

grav of the undeformed body. The
sum of the three energies is shown by a black line.

with a redistribution of mass at the surface of the body. This, although partially
compensated by the instantaneous elastic deformation of the model due to the
loading, results in shape changes and thus in an increase of the gravitational
energy (Fig. 2.5, green curve). At the same time the elastic energy (plotted in
magenta) rises to a value that is about ten times smaller than the increase in the
gravitational energy. With increasing time, the system returns to equilibrium –
the gravitational energy decreases and is dissipated in heat (blue curve in Fig. 2.5).

Since the uppermost layer in model M3-L70-V01 is purely elastic, the final
equilibrium state is non-hydrostatic and the values of the elastic and gravita-
tional energies at time t→∞ are non-zero. The elastic energy does not decrease
monotonically, showing a local maximum at t ∼= 50 kyr. This maximum is a
consequence of a complex interplay between the elastic lithosphere, in which the
stored elastic energy monotonically increases in time, and the deeper mantle lay-
ers, where the elastic energy behaves non-monotonically, until it finally returns
to zero in the hydrostatic equilibrium. During the whole evolution, the sum of
the three considered energies is constant (black line in Fig. 2.5).

2.2.4.3 Energy balance of a damped Chandler wobble

We consider the Earth model M3-L70-V01 rotating with constant angular
velocity ω0 = [0, 0, 7.292115]×10−5 s−1. The Earth is initially in equilibrium and
has an oblate spheroidal shape. At time t=0, the direction of the rotational vector
is suddenly changed so that the angle between the figure axis and the rotational
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Figure 2.6: Time evolution of different types of energy for wobbling model M3-L70-
V01. The variations of energy are plotted with respect to the initial equilibrium state
in which the rotational vector is parallel to the main axis of the body. The wobble is
induced by changing the direction of the rotational vector by 2.69×10−2 degrees at time
t=0.

vector is 2.69×10−2 degrees, which is approximately the same as the angle by
which figure axis is shifted in the benchmark example in Spada et al. (2011) –
see Fig. 2.3a for comparison. This change induces a periodic motion (“wobble”)
of the axis of rotation, which is gradually damped due to dissipation. After a
few thousands of years, the axis of rotation returns to its initial position, but the
final rotational speed is smaller than the initial one since a part of the rotational
energy is transformed to heat (note that the angular momentum is not conserved
when shifting the axis at time t=0).

The time evolution of the individual types of energies associated with the
above process is shown in Fig. 2.6. All energies are plotted with respect to the
initial equilibrium state. In this state (corresponding to t < 0), the elastic energy
is non-zero only in the uppermost, purely elastic layer. The abrupt change of the
rotational vector at t=0 induces an instantaneous elastic deformation of the whole
body (except the liquid core) and the total elastic energy increases. Since the
deformation acts to reduce the flattening, both the gravitational and rotational
energies decrease at t=0. The rotational energy (red curve in Fig. 2.6) further
decreases with increasing time as it is dissipated through viscous deformation
(blue curve). The variations in the gravitational and elastic energies (green and
magenta curves, respectively) significantly contribute to the global energy budget
only in the beginning of evolution. For t→∞, both curves converge to negative
values which are close to zero, suggesting that the gravitational and elastic en-
ergies in the final equilibrium state are slightly smaller than those in the initial
equilibrium state. This difference is associated with the change of flattening due
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Figure 2.7: Time evolution of different types of energy for rotating model M3-L70-V01
loaded with an ice cap at t=0 (for details, see Spada et al., 2011). The variations of
energy are plotted with respect to the initial equilibrium state in which the rotational
vector is parallel to the main axis of the body. The results obtained using the NLE are
represented by coloured lines while the LLE solution is plotted in black.

to the decrease in the rotational speed.

2.2.4.4 Energy balance of GIA for a rotating Earth

The setting of this numerical experiment corresponds to the benchmark case
adopted from Spada et al. (2011), which was already discussed in section 2.2.3
(cf. Figs 2.2 and 2.3). The rotating Earth model M3-L70-V01, initially in equi-
librium state, is suddenly loaded with an ice cap. The loading and the associ-
ated deformation induce a PM (Fig. 2.3a) and changes in the rotational speed
(Fig. 2.3b), which are accompanied by large variations in the rotational and grav-
itational energy (Fig. 2.7, red and green curves, respectively). The amplitudes
of these variations are of the order of 1022 − 1023 J and they are three orders
of magnitude larger than the variations in the elastic (magenta) and dissipative
(blue) energy (cf. also Figs 2.5 and 2.6). During the whole evolution, the sum of
all energies is constant (full black line).

So far we have discussed the results computed using the NLE. In Fig. 2.7 the
variations of the gravitational and rotational energy obtained using the LLE are
shown by dashed and dotted black lines, respectively. While the curve for the
gravitational energy coincides almost exactly with that obtained using the NLE,
the accuracy in determining the rotational energy decreases with increasing time,
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resulting in a relative error of almost 100% after 5 kyr. Consequently, the total
energy of the system (dashed black line) is not conserved for the LLE solution.

As demonstrated in Fig. 7a, the large error in evaluating the rotational energy
is associated with determining the component m3, which is significantly larger
than the value obtained using the NLE, in contrast to components m1 and m2,
which are determined with high accuracy (see Fig. 2.3a). Figure 2.8b shows that
the predicted degree 2 shape of the Earth does not depend on whether we use
the NLE or LLE, suggesting that the displacement obtained using the LLE is
only slightly affected by the error in m3. This explains the good agreement
obtained for the gravitational energy which is a function of the radial component
of displacement (see eq. 2.52) and, unlike the rotational energy, does not depend
directly on m3.

Note that the difference between the NLE and LLE solution for m3 is not
related to the free wobble, as illustrated by the green line in Fig. 2.8a. The line
represents a case in which the ice cap is being imposed only gradually onto the
surface of the Earth, over the period of 5 yr, significantly reducing the amplitude
of the induced wobble but leading to the same long term behaviour as for the
instantaneous loading.

In the light of the results presented in section 2.2.3, the large error in compo-
nent m3 obtained using the LLE may be viewed as surprising. As demonstrated
in Fig. 2.3b, both the NLE and LLE predict the same LOD variation ∆LOD

given by eq. 2.33 (right), but m3 computed as m3 = −c33/C is still significantly
affected by the neglect of the nonlinear terms in the LE (Fig. 7a). To explain
this apparent paradox, we start from the formula (9.2.3) in Munk & MacDonald
(1960)

∆LOD

LOD
= −m3 =

c33

C
, (2.56)

and we describe the simplifications that were used in its derivation. The first
equality in eq. (2.56) can be derived by linearization of the exact formula for
∆LOD:

∆LOD

LOD
=

2πω−1 − 2πω−1
0

2πω−1
0

=
ω0 − ω
ω

∼= ω0 − ω
ω0

= 1−
√
m2

1 +m2
2 + (1 +m3)2 .

(2.57)
Using the binomial theorem and neglecting the higher-order terms, we obtain

∆LOD

LOD
∼= −m3 +

1

2

(
m2

1 +m2
2 +m2

3

)
, (2.58)

which, after neglecting the quadratic terms, gives the first equality in eq. (2.56).
The second equality in eq. (2.56) comes from the LLE for component m3. In
Appendix 2.B we derive the following higher-order approximation:

−m3 +
1

2
(m2

1 +m2
2 +m2

3) ∼= c33

C
. (2.59)
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Figure 2.8: a) Time evolution of m3 for the studied benchmark case (cf. Fig. 2.3). Red
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solution when the spherical ice cap is imposed on the surface of the Earth only gradually
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Combining eq. (2.59) with eq. (2.58) yields a more accurate version of the original
equation (2.56):

∆LOD

LOD
∼= −m3 +

1

2
(m2

1 +m2
2 +m2

3) ∼= c33

C
. (2.60)

The definition of ∆LOD in eq. (2.33) thus includes second-order accurate evalu-
ation of the LOD variation, while the equation m3 = −c33/C is only first-order
accurate, which explains the disagreement between the LLE and NLE solutions
in Fig. 2.8a.

The fact that the m3 component of the rotation vector is affected by a large
error does not invalidate the results of previous studies using the LLE solution.
As demonstrated above, the traditional equation for 4LOD, eq. (2.33), used in
these studies, is more accurate than the linearized equation form3 and it gives the
same LOD variation as the NLE equation (Fig. 2.3b), provided that excursions
of the rotation axis are small.

Our numerical tests (not presented in this paper) suggest that the shift of the
rotation axis must be larger than 1 degree for the nonlinearity to significantly (by
at least a few percent) affect the resulting PM and LOD. The ice cap considered
here is rather small and, since the characteristic time of equatorial bulge readjust-
ment is inversely proportional to the size of the load (Ricard et al., 1993), several
Myr would be needed to shift the pole by 1 degree. If we considered an unre-
alistic, ten times larger ice cap, the equatorial bulge readjustment would occur
faster and the linearized PM and LOD solutions would differ from the nonlinear
one by few percent already after about 200 kyr.

2.2.4.5 Energy balance as a tool for testing GIA models

The rotational feedback in the equation of motion has not been considered
in a number of papers dealing with modelling of GIA on the Earth (for details,
see Introduction in Martinec & Hagedoorn, 2014). While such approximation is
justifiable for the displacement component of degree 2 order 0 (ur,20 has nearly
identical evolution with and without the feedback), the displacement component
of degree 2 and order 1 behaves in time completely differently for the two cases.
A long term evolution of ur,21 is governed by the balance between the viscoelastic
relaxation of the model under the load and the viscoelastic readjustment of the
equatorial bulge. For a homogeneous model, these two mechanisms perfectly
cancel out each other for all times, as pointed out by Munk & MacDonald (1960),
Section 6.4, and Wu & Peltier (1984). The effect of the rotational feedback has
been recently discussed by Martinec & Hagedoorn (2014), who demonstrated that
it may have a significant impact on the prediction of ur,21 and sea level change.
It should be emphasized that including the variations of the centrifugal potential
into the field equations governing GIA-induced deformation of the Earth differs
from including them into the gravity appearing in the sea level equation (i.e. the
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Figure 2.9: Time evolution of different types of energy for a rotating model M3-L70-V01
loaded with a spherical ice cap at t=0 (for details, see Spada et al., 2011). The rotation
of the model is kept constant throughout the simulation.

rotational feedback on the sea level equation), which has already been addressed
in the previous studies (e.g. Milne & Mitrovica, 1998; Peltier, 1998) and which is
not a focus of our work.

Fig. 2.9 shows the time evolution of different types of energy when the rotation
of the Earth is held constant, that is, the LE is not being solved at all. Fig. 2.10
compares the rotational and gravitational energies for the cases with and without
the rotational feedback in the equation of motion, respectively. We can see that
the gravitational energies do not differ significantly. This can be explained by
the quadratic dependence of the gravitational energy on the radial component
of the displacement (cf. eq. (2.51)). While the hydrostatic value of ur,20 reaches
thousands of metres, the hydrostatic value of ur,21 is equal to zero. Since the
deformation induced by the ice cap reaches only few metres (Fig. 2.8b), the change
of the gravitational energy of the rotating body is dominated by the change of
ur,20. In addition, as discussed above, ur,20(t) is not affected by the rotational
feedback significantly.

The rotational energies, on the other hand, differ significantly for the two
cases. With the rotational feedback in the equation of motion, the rotational
energy evolves in time with the opposite sign than the gravitational energy in
order to conserve the total energy. Without considering the rotational feedback
(i.e. ω(t) = ω0), the rotational energy evolves in time similarly to the gravita-
tional energy. This is because the increment of (ω0 ·I ·ω0)/2 has, similarly to the
change of the gravitational energy, a positive linear dependence on the change of
ur,20 (see MacCullagh’s formula for c33 and insert for Φ20 from eq. (2.32)).

The detailed analysis of individual terms in the energy balance is given in
Appendix A. Fig. 2.11 shows the results of such analysis for the two simulations
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Figure 2.10: Comparison of time evolutions of the rotational and gravitational energies
from Figures 2.7 and 2.9. The energies from Fig. 2.7 are in colour, dashed black lines
show the curves from Fig. 2.9.

shown in Figs 2.7 and 2.9, for which the total energy of the Earth’s model is not
conserved. We can see that the energy imbalance is associated with the rotational
energy, that is, the power of the centrifugal force is not equal to the rate of change
of rotational energy.

Another example of the application of the energy analysis given in Appendix
A is related to the NLE solution presented in Sections 2.2.3 and 2.2.4.4. We run a
numerical experiment where the original time step of 1× 10−3 yr is made coarser
as 5 × 10−2 yr. The results are shown in Fig. 2.12a. Inspecting Fig. 2.12a we
can see that not all the powers match the corresponding rates of energies. Again,
it is the rotational energy that is not balanced. Hence, time step of 5 × 10−2

yr is too coarse in this case, which causes that the Liouville equation, but not
eqs (1)-(3), is violated. In the parallel numerical experiment, the original spatial
discretization of 460 radial nodes is reduced to 40 nodes only. Eqs (1)-(3) are
now violated which is seen from the fact that the forces depending on the spatial
derivatives of field variables do not match their corresponding energies.

We hope that such a posteriori diagnostic of numerical solutions may be of
interest also in other applications. For instance, in the case where the LE is
employed for determining the Q-factor of the Chandler wobble, as suggested
by Nakada & Karato (2012), the solution is numerically very sensitive to time-
stepping. An independent test of the solution could thus prove helpful.

2.2.5 Conclusions

In this paper, the temporal evolution of rotational, elastic, dissipative and
gravitational energies is studied in the context of GIA. We have derived spectral

71



-15

-10

-5

0

5

10

15

20

en
er

gy
(1

02
6

J)

a)

1

2 (integrated power)

2 (energy)

3a

3c

3b

4

-15

-10

-5

0

5

10

15

20

0 5 10 15 20

en
er

gy
(1

02
2

J)

time (kyr)

b)

1

2 (integrated power)

2 (energy)
3a

3c

3b

4

Figure 2.11: The energy integrals given in section 2.2.4 (black lines) and their equivalents
obtained by integrating the rate of mechanical work over the computational domain
and time (coloured lines). Two cases are considered: (a) the rotational feedback is
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formulae for computing the energies, overcoming the difficulty associated with
the use of a simplified expression for the perturbation of gravitational potential.
The energy evolution is then computed for several examples, demonstrating the
importance of rotational and gravitational energies in the resulting balance. Vis-
cous dissipation is proven relevant only for the damping of the Chandler wobble.
By summing all energies for a rotating Earth loaded with a spherical ice cap,
we show that the LLE is energetically inconsistent – the error resulting from an
inaccurate evaluation of the m3 component of rotation vector. Careful evalua-
tion of the energy balance for a rotating Earth loaded with an ice cap shows
that the omission of the rotational feedback in the momentum equation leads
to a significant violation of the energy conservation law, with both rotational
and gravitational energy increasing in time on a time scale typical of the Earth’s
glacial cycle. This finding underlines the importance of proper implementation
of rotation variations in GIA modelling.

Throughout the study we strictly use the Eulerian formulation for computing
the deformation of the planet, and solve the governing equations directly in time
domain. The equivalence with the Lagrangian formulation and Laplace domain
approach (normal mode theory) is demonstrated numerically by comparing the
Love numbers. The evaluation of the mechanical work of individual forces con-
sidered in the Eulerian formulation provides a versatile numerical tool, which can
be used to verify solutions to the problems dealing with small deformations of
planetary bodies.
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2.A Energy balance and the rate of mechanical
work

The energies given in section 2.2.4 can be matched with the rates of mechanical
work done by individual terms in the momentum eq. (2.17),

∇ · τ − (u · ∇ρ0) g0 − ρ0∇(Φ + Ψ) + ρ0g0 = 0 , (2.61)

where we substituted for the body force from eq. (2.24). Multiplication of eq. (2.61)
by the velocity vector, application of the tensor identity (∇·τ )·v = ∇·(τ ·v)−τ :

∇v and subsequent integration over the regular computational domain Sa−Sb gives

74



the balance equation of the rate of mechanical work:∫
Sa−Sb

(
−τ : ∇v+∇·(τ ·v)−(u·∇ρ0)g0·v−(ρ0∇Φ)·v−(ρ0∇Ψ)·v+ρ0g0·v

)
dv = 0 .

(2.62)
We now evaluate the integrals of the individual terms in eq. (2.62) to better
understand the relationship between the mechanical work and the different types
of energy discussed in the main text. The resulting expressions can be used as
an alternative to the energy integrals given in section 2.2.4 and demonstrate the
equivalence of the two approaches through a numerical test (Fig. 2.13).

In the following, we consider that v∼=∂u/∂t under the assumption of small de-
formations. In Appendices 2.A.4 – 2.A.6 we use two modifications of the Reynolds
transport theorem (e.g. Gurtin, 1982, p. 91, eq. 8):

d

dt

∫
v(t)

ρf dv =

∫
v(t)

ρ
Df
Dt dv , (2.63)

where v(t) is the total volume of the deformed body at time t and D/Dt denotes
the material derivative,

D
Dt =

∂

∂t
+ v · ∇ . (2.64)

2.A.1 Term −τ : ∇v
Since the body is incompressible (trace of ∇v is zero) and the Cauchy stress

tensor is symmetric, τ : ∇v can be rewritten as

τ : ∇v = τ d :
1

2

(
∇v + (∇v)T

)
. (2.65)

The strain rate 1
2

(
∇v + (∇v)T

)
can be expressed from the constitutive equation

(2.19):

1

2

(
∇v + (∇v)T

) ∼= ∂

∂t

[
1

2

(
∇u+ (∇u)T

)]
=

1

2µ

∂τ d

∂t
+
τ d

2η
. (2.66)

The integral of τ : ∇v then takes the form∫
Sa−Sb

τ : ∇v dv ∼=
∫

Sa−Sb

[
τ d : τ d

2η
+
τ d

2µ
:
∂τ d

∂t

]
dv =

∫
Sa−Sb

τ d : τ d

2η
dv +

d
dt

∫
Sa−Sb

τ d : τ d

4µ
dv .

(2.67)

Assuming that the liquid core is inviscid and neglecting the dissipation and elastic
energy within the small volumes corresponding to topographic anomalies, we can
replace the integrals over Sa−Sb on the right-hand side of eq. (2.67) by integrals
over v(t), resulting in the relation:∫

Sa−Sb

τ : ∇v dv ∼=
∫
v(t)

τ d : τ d

2η
+

d

dt

∫
v(t)

τ d : τ d

4µ
dv = Ėdiss + Ėel , (2.68)
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Figure 2.13: (a) Time derivatives of the energy integrals given in Section 2.2.4 (left)
and their equivalents obtained by evaluating the rate of mechanical work over the com-
putational domain (right). The numbers 1 and 2 correspond to deformation (blue) and
rotational (red) powers, respectively. The gravitational power is split into individual
terms derived in section 2.2.4.1. Number 3 (green) denotes the contributions due to
the deformation in a reference gravitational field of potential V0 while number 4 (yel-
low) corresponds to the power associated with incremental gravitational potential Φ.
(b) Numerical test of the formulae in panel a performed for the benchmark case by
Spada et al. (2011) (see also Sections 2.2.3 and 2.2.4.4). The coloured curves, obtained
by time integration of the power formulae given in panel (a) (right), match the black
curves computed directly from the corresponding energy formula. The colours and the
numbers correspond to those in panel (a).
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where we used eqs (2.36) and (2.37) from section 2.2.4. Equation (2.68) sug-
gests that the power represented by the term τ : ∇v is dissipated as heat or
stored as elastic deformation energy in the body. For numerical validation of the
relationship 2.68, see Fig. 2.13b, curve 1.

2.A.2 Term ∇ · (τ · v)

The volume integral of ∇ · (τ · v) can be transformed into a surface integral
using the Gauss theorem:∫

Sa−Sb

∇ · (τ · v) dv =

∫
∂Sa

v · τ · er ds−
∫
∂Sb

v · τ · er ds . (2.69)

Evaluating τ · er from boundary conditions (2.25) and (2.26) and omitting the
term σL (see the remark in the beginning of section 2.2.4.1), we obtain∫

Sa−Sb

∇·(τ ·v) dv =

∫
∂Sa

v ·(ur[ρ0]ag0) ds+

∫
∂Sb

v ·(ur[ρ0]bg0 + pcer) ds , (2.70)

where pc is the pressure in the core, pc = −ρc(V0+Φ+Ψ). The first surface integral
on the right-hand side of eq. (2.70) can be modified as∫
∂Sa

v · (ur[ρ0]ag0) ds ∼=
∫
∂Sa

∂u

∂t
· (ur[ρ0]ag0) ds

= −[ρ0]a g0(a)

∫
∂Sa

1

2

∂u2
r

∂t
ds = −1

2
[ρ0]a g0(a)

d

dt

∫
∂Sa

u2
r ds .

(2.71)

Analogously, ∫
∂Sb

v · (ur[ρ0]bg0) ds ∼= −1

2
[ρ0]b g0(b)

d

dt

∫
∂Sb

u2
r ds . (2.72)

To summarize,∫
Sa−Sb

∇·(τ ·v) dv = −1
2

d
dt

(
[ρ0]a g0(a)

∫
∂Sa

u2
r ds+ [ρ0]b g0(b)

∫
∂Sb

u2
r ds

)
+
∫
∂Sb

pcv·er ds ,

(2.73)
or, in terms of surface integrals∫

∂Sa

v · τ · er ds−
∫
∂Sb

v · (τ + pcI) · er ds =

− 1

2

d

dt

(
[ρ0]a g0(a)

∫
∂Sa

u2
r ds+ [ρ0]b g0(b)

∫
∂Sb

u2
r ds

)
. (2.74)

where I is the identity tensor. Comparison of eq. (2.73) with eq. (2.52) suggests
that the integral of ∇ · (τ · v) over the computation domain corresponds to the
changes of the gravitational energy due to the deformations of boundaries in the
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gravitational field of potential V0. For the numerical confirmation of eq. (2.74),
see Fig. 2.13b, curves 3a,b.

It is worth noting that the integral of ∇ · (τ · v) over the whole body v(t)

would be zero. Using the Gauss theorem and considering that the real surface is
stress-free, we obtain∫

v(t)

∇ · (τ · v) dv =

∫
∂S

v · τ · n ds = 0 , (2.75)

where ∂S now denotes the surface of the deformed body and n is the normal to
the surface (see also Appendix 2.A.7).

2.A.3 Term −(u · ∇ρ0) g0 · v
Considering that v∼= ∂u/∂t, g0 = −g0er and the functions g0 and ρ0 do not

depend on time, we obtain

−
∫

Sa−Sb

(u · ∇ρ0) g0 · v dv ∼=
∫

Sa−Sb

ur
∂ur
∂t

dρ0

dr
g0 dv

=
1

2

d

dt

∫
Sa−Sb

u2
rg0

dρ0

dr
dv =

1

2

d

dt

∫ a

b

dρ0

dr

∫
∂Sr

g0u
2
r ds dr , (2.76)

where the resulting integral can be identified with the rate of change of the
gravitational energy due to volumetric density changes in the gravitational field
of potential V0 (cf. the last integral in eq. (2.52); for the numerical comparison,
see Fig. 2.13b, curve 3c).

2.A.4 Auxiliary formulae for gravitational and centrifugal
potential

Before we proceed to the remaining terms in eq. (2.62) we derive two auxil-
iary formulae for the gravitational and centrifugal potentials valid for the whole
volume v(t) of the deformed body at time t. We first consider the energy balance
of a body in an inertial frame subject to gravitational body force −ρ∇V only,
where V is the gravitational potential generated by the body. If the surface of
the body is free,

d

dt

∫
v(t)

(
ρε+

1

2
ρv · v

)
dv = −

∫
v(t)

ρ∇V · v dv , (2.77)

where the expression on the left-hand side corresponds to the time change of
the internal and kinetic energies, ε denotes the internal energy density, and the
integral on the right-hand side is the total power of the gravitational force. Using
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the definition of material derivative eq. (2.77) can be rearranged as

d

dt

∫
v(t)

(
ρε+

1

2
ρv · v

)
dv +

∫
v(t)

ρ
1

2

DV
Dt dv =

∫
v(t)

ρ

(
∂V

∂t
− 1

2

DV
Dt

)
dv . (2.78)

The time derivative in the second integral on the left-hand side of eq. (2.78) can
be pulled in front of the integral using the modified Reynolds theorem, eq. (2.63),
and the integrand on the right-hand side can be reformulated by substituting for
the material derivative of V :

ρ

(
∂V

∂t
− 1

2

DV
Dt

)
= ρ

(
∂V

∂t
− 1

2

∂V

∂t
− 1

2
∇V · v

)
=

1

2
ρ

(
∂V

∂t
− v · ∇V

)
.

(2.79)
Eq. (2.78) then gives

d

dt

∫
v(t)

(
ρε+

1

2
ρv · v +

1

2
ρV
)

dv =
1

2

∫
v(t)

ρ

(
∂V

∂t
−∇V · v

)
dv . (2.80)

On the left-hand side we now have the sum of all energies in the system, including
the gravitational energy. The total energy must be conserved which implies that
the right-hand side of eq. (2.80) is equal to zero. Consequently,∫

v(t)

ρ∇V · v dv =

∫
v(t)

ρ
∂V

∂t
dv . (2.81)

A similar formula can be derived for the centrifugal potential Ψ. In this case,
however, we must consider the energy balance in a rotating frame which is fixed
with respect to the body and consider all relevant forces that act in the rotating
frame. In analogy to eq. (2.77), but this time not considering any gravitational
forcing, we can write

d

dt

∫
v(t)

(
ρε+

1

2
ρv · v

)
dv =

∫
v(t)

(
−ρ∇Ψ− ρω × v − ρdω

dt
× r
)
· v dv, (2.82)

where the terms in parentheses on the right-hand side represent the centrifugal,
Coriolis and Euler body force, respectively. The scalar product of the Corio-
lis force with the velocity vector is zero. The power of the Euler force can be
rearranged using the vector algebra identity a · (b× c) = b · (c× a):∫

v(t)

(
−ρdω

dt
× r
)
· v dv = −dω

dt
·
∫
v(t)

r × (ρv) dv = −dω

dt
· h , (2.83)

where h is the relative angular momentum. In the Tisserand frame (Munk &
MacDonald, 1960), h is equal to zero by definition, and the total power of the
Euler force is thus zero in such frame. Following the same procedure as above
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(eqs 2.78 – 2.80 where V is replaced by Ψ), we obtain

d

dt

∫
v(t)

(
ρε+

1

2
ρv · v +

1

2
ρΨ
)

dv =
1

2

∫
v(t)

ρ

(
∂Ψ

∂t
−∇Ψ · v

)
dv . (2.84)

On the left-hand side we have the sum of all energies of the now considered
system, when viewed from the inertial reference frame. The time derivative of
this sum must again be zero, giving∫

v(t)

ρ∇Ψ · v dv =

∫
v(t)

ρ
∂Ψ

∂t
dv . (2.85)

2.A.5 Term −(ρ0∇Φ) · v
We first evaluate the integral of −(ρ0∇Φ) · v over the volume v(t) of the

deformed body and then we transform it into an integral over the computational
domain Sa−Sb.

The potential V in auxiliary formula (2.81) can be expressed as the sum of
the reference potential V0, independent of time, and the increment Φ due to the
deformation, V (t) = V0 + Φ(t). Considering that ∂V0/∂t = 0,∫

v(t)

ρ∇(V0 + Φ) · v dv =

∫
v(t)

ρ
∂Φ

∂t
dv . (2.86)

The term ρ∇V0 ·v can be moved to the right-hand side and replaced by ρDV0/Dt:∫
v(t)

ρ∇Φ · v dv =

∫
v(t)

ρ

(
∂Φ

∂t
− DV0

Dt

)
dv . (2.87)

Adding
∫
v(t)

ρ∇Φ ·v dv to both sides of eq. (2.87), dividing the equation by 2 and
invoking the expression for the material derivative of Φ, we obtain∫

v(t)

ρ∇Φ · v dv =
1

2

∫
v(t)

ρ
D
Dt (Φ− V0) dv , (2.88)

where the time derivative on the right-hand can be pulled in front of the integral
using the Reynolds theorem (2.63):∫

v(t)

ρ∇Φ · v dv =
1

2

d

dt

∫
v(t)

ρ (Φ− V0) dv . (2.89)

The integral on the right-hand side of eq. (2.89) is formally the same as in
eq. (2.38) except that the sign of V0 is opposite. Thus, the integral can be
evaluated in an analogous manner as described in section 2.2.4.1, giving∫

v(t)

ρ∇Φ · v dv =
1

2

N∑
i=1

d

dt

∫
hi

[ρ0]iΦdv ∼= d

dt

[
1

2

N∑
i=1

[ρ0]i

∫
∂Si

Φur ds

]
(2.90)
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for a layered model and∫
v(t)

ρ∇Φ · v dv ∼= d
dt

[
1
2

(
[ρ0]a

∫
∂Sa

urΦds+ [ρ0]b

∫
∂Sb

urΦds−
∫ a

b

dρ0

dr

∫
∂Sr

urΦ ds dr
)]

(2.91)
for a continuous density profile. The terms on the right-hand sides of eqs (2.90)
and (2.91) correspond to the gravitational energy due to potential Φ induced by
the deformation (cf. eqs 2.47, 2.50 and 2.51).

Now we transform the integral on the left-hand side of eq. (2.89) into an
integral over the computational domain Sa−Sb:∫

v(t)

ρ∇Φ · v dv ∼=
∫

Sa−Sb

ρ0∇Φ · v dv + ρc

∫
Sb

∇Φ · v dv . (2.92)

where we omitted the second order term −δρ∇Φ (cf. eq. 2.24) and neglected the
contributions of ρ∇Φ · v within the small volumes corresponding to topographic
anomalies. The volume integral over Sb can be transformed into a surface integral
using the Gauss theorem. Considering that∇Φ·v = ∇·(Φv) for an incompressible
body, we get∫

v(t)

ρ∇Φ · v dv ∼=
∫

Sa−Sb

ρ0∇Φ · v dv + ρc

∫
∂Sb

(Φv) · er dv . (2.93)

Combining eqs (2.93) and (2.90) provides the sought relation between the power
of ρ0∇Φ over the computational domain and the associated energy rate:∫

Sa−Sb

ρ0∇Φ · v dv + ρc

∫
∂Sb

(Φv) · er dv ∼= d

dt

[
1

2

N∑
i=1

[ρ0]i

∫
∂Si

Φur ds

]
. (2.94)

An analogous expression is obtained for body with a continuous density profile
by combining eqs (2.93) and (2.91). The validity of eq. (2.94) is numerically
demonstrated by curve 4 in Fig. 2.13b.

2.A.6 Term −(ρ0∇Ψ) · v
Using eq. (2.85) and following the analogous procedure as above, we get∫

v(t)

ρ∇Ψ · v dv =

∫
v(t)

ρ
∂Ψ

∂t
dv =

1

2

∫
v(t)

ρ

(
∂Ψ

∂t
+∇Ψ · v

)
dv =

=
1

2

∫
v(t)

ρ
DΨ

Dt dv =
d

dt

∫
v(t)

1

2
ρΨ dv =

d

dt

(
1

2
ω · I · ω

)
. (2.95)

The integral of ρ∇Ψ · v over v(t) can be expressed as (cf. eq. 2.92)∫
v(t)

ρ∇Ψ · v dv ∼=
∫

Sa−Sb

ρ0∇Ψ · v dv + ρc

∫
Sb

∇Ψ · v dv . (2.96)
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Combining eqs (2.95) and (2.96) we obtain∫
Sa−Sb

ρ0∇Ψ · v dv + ρc

∫
Sb

∇Ψ · v dv =
d

dt

(
1

2
ω · I · ω

)
, (2.97)

see also Fig. 2.13b, curve 2.
Note that the derivations of eqs (2.94) and (2.97) rely on the auxiliary formulae

from Appendix 2.A.4, and as such they are only valid if the energy of the studied
system is conserved. In energetically ill-posed problems eqs (2.94) and (2.97) must
not be satisfied, as illustrated in Section 2.2.4.5 in the main text (cf. Fig. 2.11).

2.A.7 Term ρ0g0 · v
Since ρ0 and g0 are spherically symmetric and the body is incompressible

(
∫
∂Sr
v·er ds=0), the integral of the last term in eq. (2.61) over the computational

domain is equal to zero:∫
Sa−Sb

ρ0g0·v dv = −
∫

Sa−Sb

ρ0g0v·er dv = −
∫ a

b

ρ0g0

∫
∂Sr

v·er ds dr = 0 . (2.98)

Note, however, that the integral of ρg0 ·v over the real volume of the body v(t) is
non-zero, even if the density is constant within the mantle shell. For a body with
∇ρ0 equal to zero within the shell the integral is equal to the right-hand side of
eq. (2.70):∫

v(t)

ρg0 · v dv ∼=
∫
∂Sa

v · (ur[ρ0]ag0) ds+

∫
∂Sb

v · (ur[ρ0]bg0 + pcer) ds . (2.99)

This is because in this integral there are contributions from the non-zero Eulerian
density increments δρ = ±[ρ0]a,b in the vicinity of the boundaries (see Fig. 2.4).
If the computational domain is chosen regular (Sa − Sb) as in the present study,
these volumetric density increments are condensed into surface densities and we
encounter them in Appendix 2.A.2 in the form of boundary tractions (2.25) and
(2.26). For a body with ∇ρ0 6= 0 inside the mantle shell the term ρg0 · v also
includes a contribution from the internal Eulerian density increment −u · ∇ρ0,
which was discussed in Appendix 2.A.3.

2.A.8 Remark

Inspection of the left-hand side of Fig. 2.13a suggests that the formulae used to
evaluate the energy balance in the main text can be replaced by the corresponding
formulae for the rates of the mechanical work evaluated over the computational
domain Sa − Sb. However, there are three integrals over ∂Sb on the right-hand
side of Fig. 2.13a which are related to the body force −ρc∇(V0 + Φ + Ψ) in the
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core. The sum of these terms is equal to zero,

−
∫
∂Sb

(ρcΨv) · er ds−
∫
∂Sb

pcv · er ds−
∫
∂Sb

(ρcΦv) · er ds = 0 , (2.100)

since pc = −ρc(V0 + Φ + Ψ) and∫
∂Sb

ρcV0v · er ds = ρcV0

∫
∂Sb

v · er ds = 0 . (2.101)

2.B Second order correction to LLE

The third component of the NLE is

0 =
d

dt
(I · ω)3 + ε3jkωj (I · ω)k , (2.102)

where ε is the Levi-Civita symbol. Using the traditional notation,

ω = ω0 + |ω0|m and I =

A+ c11 c12 c13

c12 A+ c22 c23

c13 c12 C + c33

 , (2.103)

with ω0 equal to [0, 0, ω0] and cij,mi denoting small quantities, and inserting from
eq. (2.103) to eq. (2.102), we obtain

0 ∼= d

dt
[c33 + c13m1 + c23m2 + c33m3 + Cm3] + ω0m1c23 − ω0m2c13

= (ċ33 + ċ13m1 + ċ23m2 + ċ33m3 + c13ṁ1 + c23ṁ2 + c33ṁ3 + Cṁ3)

+ω0(m1c23 −m2c13), (2.104)

where third order terms are neglected, the dot abbreviates time derivative and Ċ
and ω̇0 are zero, since both C and ω0 are constants. Recalling the LLE for m1

and m2 (Munk & MacDonald, 1960):

ω0(C − A)

(
m1 −

Aṁ2

(C − A)ω0

)
= ω0c13 + ċ23 (2.105)

ω0(C − A)

(
m2 +

Aṁ1

(C − A)ω0

)
= ω0c23 − ċ13, (2.106)

we can insert for ċ23 and ċ13 in eq. (2.104) from eqs (2.105) and (2.106), introduc-
ing only a third order error, because ċ23 and ċ13 are both multiplied by a small
quantity in eq. (2.104). This leads to

0 ∼= ċ33 + Cṁ3 − Am1ṁ1 − Am2ṁ2 + ċ33m3 + ω0(m1c23 −m2c13)

+ω0[c23m1 − (C − A)m1m2 − c13m2 + (C − A)m1m2 + c13ṁ1 + c23ṁ2 + c33ṁ3] .

(2.107)
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The fifth term on the first line of eq. (2.107) can be expressed using the LLE for
m3, ċ33 = −Cṁ3, introducing only a third order error:

0 ∼= ċ33 + Cṁ3 − Am1ṁ1 − Am2ṁ2 − Cṁ3m3

+ω0[2c23m1 − 2c13m2 + c13ṁ1 + c23ṁ2 + c33ṁ3] . (2.108)

This can be rewritten as

0 ∼= ċ33 + C

(
m3 −

m2
1 +m2

2 +m2
3

2

)·

+

+ω0[2c23m1 − 2c13m2 + c13ṁ1 + c23ṁ2 + c33ṁ3] + (C − A)(ṁ1m1 + ṁ2m2),

(2.109)

which provides a second-order correction to the vertical component of the LLE.
The second equality in eq. (2.58) is obtained when the relative importance of the
second-order terms in eq. (2.109) are assessed: the terms on the second line are
negligible due to the multiplication by factors ω0 and C−A, which are both much
smaller than factor C.
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3. Stress memory effect in
viscoelastic stagnant lid convection

“But I should be very sorry if an interpretation founded on a most conjectural
scientific hypothesis were to get fastened to the text in Genesis... The rate of
change of scientific hypothesis is naturally much more rapid than that of Biblical
interpretations, so that if an interpretation is founded on such an hypothesis, it
may help to keep the hypothesis above ground long after it ought to be buried and
forgotten. ”
– James Clerk Maxwell, Letter to Rev. C. J. Ellicott (22 Nov 1876)

The following chapter was published in Geophysical Journal International,
Volume 209(3), p. 1462-1475, doi: 10.1093/gji/ggx102, 2017

V. Patočka1, O. Čadek1, P. J. Tackley2, and H. Čížková1

1Department of Geophysics, Faculty of Mathematics and Physics, Charles Uni-
versity, Prague, Czech Republic
2Institute of Geophysics, Department of Earth Sciences, ETH Zurich, Switzerland

Summary

Present thermo-chemical convection models of planetary evolution often as-
sume a purely viscous or visco-plastic rheology. Ignoring elasticity in the cold,
outer boundary layer is, however, questionable since elastic effects may play an
important role there and affect surface topography as well as the stress distribu-
tion within the stiff cold lithosphere. Here we present a modelling study focused
on the combined effects of Maxwell viscoelastic rheology and a free surface in the
stagnant lid planetary convection. We implemented viscoelastic rheology in the
StagYY code using a tracer-based stress advection scheme that suppresses sub-
grid oscillations. We apply this code to perform thermal convection models of the
cooling planetary mantles and we demonstrate that while the global characteris-
tics of the mantle flow do not change significantly when including viscoelasticity,
the stress state of the cold lithosphere may be substantially different. Transient
cooling of an initially thin upper thermal boundary layer results in a complex lay-
ered stress structure due to the memory effects of viscoelastic rheology. The stress
state of the lid may thus contain a record of the planetary thermal evolution.
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3.1 Introduction

Mantle dynamics of terrestrial planets is traditionally modelled using viscous
or viscoplastic rheology with viscosity strongly dependent on temperature and
pressure. High viscosity contrasts typical for present day temperatures result in
stagnant lid convection (Solomatov, 1995), which can explain the tectonic style
of most terrestrial planets. Surface topography and gravitational field are the
primary constraints on the internal structure and dynamics of terrestrial plan-
ets and both are strongly affected by the properties of the lid. A commonly
used assumption that this lid is purely viscous or viscoplastic is, however, ques-
tionable. There are multiple lines of evidence that planetary lithospheres show
elastic behaviour on geological time scales. For example, the height and width of
a forebulge associated with subduction and the response of a sedimentary basin
to surface loading can be successfully explained by the deflection of a thin elastic
plate (Turcotte & Schubert, 2002). Numerous studies have thus addressed the
effects of elasticity on the topography and geoid induced by internal dynamics of
a planet.

Zhong (2002) calculated the topography and geoid of a 3-D spherical vis-
coelastic shell with static internal loading, where this loading was derived from
the distribution of thermal buoyancy computed with a viscous flow solver. A dif-
ferent approach for combining the calculation of small deformations of an elastic
or viscoelastic spherical shell with a viscous mantle convection code is presented
by Golle et al. (2012), who used normal tractions from the mantle convection
simulation at a given depth as the boundary condition for the deformation of a
thin elastic shell. A more advanced approach involves the fully viscoelastic treat-
ment of mantle convection within the whole domain including the stagnant lid.
Such an approach allows the inclusion of lateral variations in the thickness of the
lithosphere and accounts for the possible feedback between viscoelastic features
in the lithosphere and sublithospheric internal dynamics.

Convection of a viscoelastic material on a planetary mantle scale was first
addressed by Ivins et al. (1982). Later, Harder (1991) performed numerical ex-
periments with a Maxwell medium with constant viscosity, the main focus being
on stationary solutions of thermal convection in a box with free slip bound-
aries. More elaborate models that could include pressure and temperature in-
duced lateral variations of viscosity, nonlinear stress-dependent rheologies and
variable thickness of the lithosphere emerged about a decade later. Muhlhaus
et al. (2006) found no significant deviations of statistical steady states in convec-
tion models with nonlinear rheology; only the transient phase was influenced by
considering viscoelasticity. Beuchert & Podladchikov (2010) demonstrated how
elasticity broadens the region of effective stress associated with a cold temper-
ature anomaly prescribed within the lithosphere. They also studied statistical
steady state convection. All of the above studies assumed a free-slip surface.
Thielmann et al. (2015) addressed the effects of viscoelasticity and a free surface
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on stagnant lid convection with temperature dependent viscosity. Their target
parameters were mean stress in the lithosphere and thickness of the stress bound-
ary layer. While the significance of a free surface was clearly demonstrated, the
effect of viscoelasticity seemed to be negligible for planetary parameters, as the
resulting dependencies of target parameters were rather flat for Deborah numbers
up to 1. The above mentioned works focus on the effect of viscoelasticity on the
horizontally averaged stress profile or on global characteristics of convection such
as the bottom and top Nusselt numbers. Little attention is paid to the effect of
stress memory, initial thermal conditions and topography.

The main focus of this study is to provide a detailed analysis of the effects of
viscoelasticity on surface topography and stress evolution within the parameter
range characteristic of planetary mantles. We will introduce a new viscoelastic
flow solver based on the formulation by Moresi et al. (2002), implemented in
StagYY (Tackley, 2008). With this tool we will first employ a simple composi-
tional model of a cylinder (representing plume head) rising below a stiff litho-
sphere to evaluate the response of a viscoelastic lid to convective loading. This
part is an extension of the viscous model introduced by Crameri et al. (2012) and
it demonstrates what are the combined effects of elasticity and a free surface on
the developed surface topography. We will compare the free surface topography of
the viscoelastic models to the topography calculated using the traditional instan-
taneous viscous flow (IVF) approach (e.g. Kiefer et al. (1996)), in which dynamic
topography is assumed to be proportional to the normal component of surface
traction. After examining the effects of elasticity on lithospheric deformation in
this basic model we will move to a more elaborate description of the cooling of
a planetary mantle. We will construct a model of thermal convection in a plane-
tary mantle with a free surface and evaluate the effects of viscoelastic rheology on
lithospheric stresses. We will focus on temporal changes in the stress distribution
during planetary cooling and we will demonstrate how the stress memory of the
lithosphere affects the formation of stress distribution in planetary mantles.

3.2 Governing equations and numerical methods

We employ two types of models. First, we perform models of purely compo-
sition driven convection with a simple density load (labeled as RC). A compo-
sitionally buoyant cylinder represents a rising plume head and we evaluate the
effects of elasticity and surface boundary condition on the topography. In the
second group of numerical experiments (labeled TC) we use viscoelastic thermal
convection models and concentrate on the stress evolution within the lithosphere.
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3.2.1 Governing equations

We assume an incompressible fluid with infinite Prandtl number with following
equations describing conservation of mass and momentum:

∇ · v = 0, (3.1)

−∇p+∇ · τ + ρg = 0. (3.2)

Here v is the velocity, ρ density, p pressure, g gravitational acceleration and τ
deviatoric stress. In case of the compositional models (RC) we further require
the conservation of composition:

∂ck
∂t

+ v · ∇ck = 0, (3.3)

where ck is the concentration (either 0 or 1) of kth material with the density ρk.
In the thermal convection models (TC), eqs (3.1) and (3.2) are supplemented

by conservation of energy in the Boussinesq approximation:

∂T

∂t
= κ4T − v · ∇T, (3.4)

and a linearized equation of state:

ρ = ρ0(1− α(T − T0)). (3.5)

where T is the temperature, κ is the diffusivity, α is the thermal expansivity
and ρ0 is the density at reference temperature T0. Both thermal expansivity and
diffusivity are assumed constant.

3.2.2 Maxwell viscoelastic rheology

The rheological description of a Maxwell viscoelastic material is given by

D = Dviscous + Delastic =
1

2η(p0, T )
τ +

1

2G

Dτ
Dt , (3.6)

where D is the deviatoric part of the strain rate tensor, η(p0, T ) is the viscosity
dependent on temperature and hydrostatic pressure p0, and G is the shear mod-
ulus. DDt denotes an objective tensor rate (e.g. Liu & Sampaio (2014)). Here we
adopt the Jaumann rate that is traditionally used in viscoelastic convection (see
appendix A in Thielmann et al. (2015) and Muhlhaus & Regenauer-Lieb (2005)
for a discussion of objective rates in geodynamical context):

Dτ
Dt :=

∂τ

∂t
+ v · ∇τ + (τW−Wτ ), (3.7)
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where W is the antisymmetric part of the velocity gradient (spin tensor)

W =
1

2

(
∇v − (∇v)T

)
. (3.8)

The corotational term (τW−Wτ ) accounts for rotation of a volume element
within the flow. Inserting (3.7) into (3.6) gives the following form of the consti-
tutive equation:

2ηD = τ +
η

G

(
∂τ

∂t
+ v · ∇τ + τW−Wτ

)
. (3.9)

We consider an Arrhenius viscosity that depends exponentially on temperature
and hydrostatic pressure p0:

η(p0, T ) = η0 · exp

(
Eact + p0Vact

RT

)
, (3.10)

where η0 is set such that η is the reference viscosity at T = 1600 K and p0 = 0

Pa, Eact is the activation energy, Vact is the activation volume and R is the
gas constant. In viscous models that will be used as a reference to evaluate
elasticity effects, G→∞ in Eq. (3.9) and viscosity follows the same pressure and
temperature dependency (Eq. (3.10)).

Following Moresi et al. (2002) we discretize Eq. (3.9) with a mixed Euler first-
order accurate scheme (implicit with respect to D, τ and viscosity, explicit with
respect to advectional and corotational terms) and obtain the equation for stress
in the nth time step:

τ n = 2ZηDn + (1− Z)τ̃ n−1, (3.11)

τ̃ n−1 := τ n−1 −4t (v · ∇τ + τW−Wτ )n−1 , (3.12)

Z =
4t

4t+ η/G
. (3.13)

The implementation of viscoelasticity into a viscous flow code thus consists
of replacing viscosity by numerical viscosity ηnum := Zη and evaluating an extra
term ∇ · [(1 − Z)τ̃ n−1], which accounts for the effect of stress that did not fully
relax within one time step. The importance of elastic effects is measured by
viscoelasticity parameter Z that is closely related to the Maxwell relaxation time
tM = η/G (Z→ 1 when η/G�4t). In nondimensional studies, the role of tM is
played by the Deborah number, De := ηκG−1D−2, with D denoting the domain’s
depth.

Let us consider a constant value of the shear modulus, G = 7 · 1010 Pa (repre-
sentative of the Earth’s uppermost mantle). Then, for viscosity (in the mantle)
equal to 1022 Pa s the relaxation time η/G is ∼ 4.5 kyr. With a typical computa-
tional time step of 100 kyr more than 95% of stress is relaxed within one time step
and the material behaves effectively as a viscous fluid. However, if the viscosity
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(in the lithosphere) is η = 1027 Pa s, the relaxation time is ∼ 450 Myr and for
the same computational time step only 0.02% of stress is relaxed within one time
step. Consequently, the material remembers its stress state from thousands of
previous time steps.

In order to evaluate the differences between different viscous and viscoelastic
models we introduce a scalar measure of stress, the second invariant of the stress
tensor, which we will refer to as the effective stress:

τeff :=

√
τ 2
xx + τ 2

zz

2
+ τ 2

xz , (3.14)

with τxx, τzz and τxz denoting the Cartesian components of τ .
Time derivative of τ in Eq. (3.9) implies the need for an initial condition on

the deviatoric stress. In all viscoelastic models we assume τ (t = 0) equal to zero.

3.2.3 Numerical implementation

Numerical solution of the governing equations is performed using the code
StagYY (Tackley, 2008), which has been extended to include viscoelastic rheology
by following the method described in Moresi et al. (2002) and Gerya & Yuen
(2007). The method introduced by Moresi et al. (2002) and Moresi et al. (2003)
was originally designed for finite elements. Here we apply it to a finite volume
discretization (some aspects of stress evaluation accuracy in context of finite
volume discretizations of elastic plate bending problems are discussed in Vaz
et al. (2009)). Benchmarks used to test the viscoelastic part of the code are
presented in Appendix 3.A. For technical details regarding the implementation
we refer the reader to Gerya & Yuen (2007), deviations from their approach are
described below.

We implemented both a grid-based and tracer-based advection of stress. Using
particles for advecting a quantity is optimal when the quantity remains constant
on each particle throughout the simulation. If so, only interpolation from tracers
to grid is needed. This is not the case with the stress tensor in viscoelastic media:
the first term on the right hand side of Eq. (3.11) is a contribution that is com-
puted each time step on the grid and is interpolated from grid to tracers. The
convenience of tracer-based advection thus depends on the relative importance of
the terms on the right hand side of Eq. (3.11). It performs slightly better than
the grid-based donor cell method when simulating the recovery of the original
shape of an elastic slab (see Appendix 3.A.2), as the stresses only gradually build
up in the slab and do not change much over computational time steps. The oppo-
site is true when simulating the flow described in Appendix 3.A.1, especially for
advecting stresses in regions of high vorticity on a sparse mesh. While the donor
cell method leads to a satisfactory fit to the reference stationary flow described in
Harder (1991), with tracer-based advection over a thousand tracers per cell are
required to reach comparable solution quality. In the thermal convection simula-
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tions reported below we use tracers to advect stress tensor components, but we
obtained qualitatively the same results with the donor cell advection scheme as
well.

Our implementation of the tracer-based variant differs from Gerya & Yuen
(2007) in the way the second term on the right hand side of Eq. (3.11) is treated.
In thermal convection simulations, subgrid oscillations of stress can occur in ad-
vection dominated regions. When the stress change is computed in a volume
integrated sense (i.e. on the nodes of the mesh) and subsequently interpolated to
tracers, then two tracers with a different stress history that at certain moment
are very close to each other can unphysically retain a mutual stress jump even
when entrained to an effectively viscous part of the domain (see App. 3.B and
Fig. 3.13 for more details). The problem is similar to the problem of subgrid
oscillations of temperature when this quantity is carried on tracers but diffusion
is computed on the mesh.

In order to reduce these oscillations Gerya & Yuen (2007) use subgrid diffu-
sion, controlled by additional numerical parameters (see their Eq. (24) and the
preceding paragraph). Here we introduce a novel approach that performs the re-
laxation procedure, that is, multiplication by factor (1−Z) in Eq. (3.11), directly
on tracers and not on the grid. Only then is the second term in Eq. (3.11) inter-
polated to the respective positions on the staggered grid. In effectively viscous
regions this procedure leads to individually zeroing out the stress from the pre-
vious time step on each tracer, regardless of the value of stress on neighbouring
tracers. As a result, the stress field is smooth and determined solely by 2ZηDn in
these regions. No additional (numerical) diffusion parameters are needed in our
simulations.

Another important issue that determines numerical stability is the choice of
time step. In the time-averaging approach of Moresi et al. (2003) the elastic time
step 4t in equations (3.12) and (3.13) can in general be chosen independently
on the advectional time step controlled by CFL condition. If one sets a lower
bound on 4t it means that material with relaxation time smaller than this limit
value 4tmin behaves effectively as viscous medium (c.f. Eq. (3.11)). This can
help to stabilize the numerical simulations in certain cases (see section “Elastic
Timestep” in Moresi et al. (2002) for details). Here we however did not need to
apply a lower bound 4tmin and use only one time step both in the constitutive
equation and for advecting the tracers (see the discussion in Appendix 3.A.1).
This time step is dictated by the CFL condition with Courant number equal to
0.5.

The tracers are advected using the fourth-order spatially accurate Runge-
Kutta method. We use linear tracer to node interpolation for the diagonal com-
ponents of the deviatoric stress (located at cell centres) and cell averaging in-
terpolation for the off-diagonal components (located at grid vertices, resp. edge
centres in 3-D).

To conclude this section, a note should be made of a positive side effect that
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comes with implementing viscoelasticity. The numerical viscosity, which numer-
ically plays the role of physical viscosity when solving the Stokes equation, has
much smaller spatial contrasts than the physical one (see Beuchert & Podlad-
chikov (2010) for details). The prefactor Z in eq. (3.13) is from the interval (0, 1),
and decreases with increasing viscosity for a given time step. Thus Z

.
= 0.95 for

mantle material with viscosity η = 1022 Pa s and shear modulus G = 7 × 1010

Pa if the computational time step is 100 kyr, while Z
.
= 0.0002 for lithosphere

with η = 1027 Pa s and the same shear modulus, that is, reducing the viscosity
contrast by four orders of magnitude. This improves the convergence of multigrid
iterations when solving the resulting system of linear equations.

3.3 Rising cylinder (RC models)

3.3.1 Model setup

We use the same model setup as Crameri et al. (2012), designed to mimic the
interaction of the stiff lithosphere with a rising plume head. Our model domain
is an isothermal 2-D box (2800 km × 700 km) with a no-slip bottom boundary
and impermeable free-slip side boundaries (Fig. 3.1). Viscous mantle (600 km
deep) with a viscosity of 1021 Pa s and density of 3300 kg m−3 is overlain by a
100 km thick, neutrally buoyant, viscoelastic lithosphere. We test three values of
lithospheric viscosity: 1023, 1025 and 1027 Pa s. The rising plume head is modelled
as a less dense cylinder initially located in the middle of the mantle layer. The
diameter of the cylinder is 100 km and it is characterized by a density of 3200 kg
m−3 and a relatively low viscosity of 1020 Pa s. Viscoelastic models have shear
modulus GL = 7×1010 Pa in the viscoelastic lithosphere and their mantle is kept
viscous (which is numerically achieved by using a high value of the shear modulus
in the mantle, GM = 1020 Pa). We use a regular grid resolution with 256× 1024

points and 100 particle tracers per cell.
Our models have either a free surface implemented using the sticky-air ap-

proach (Matsumoto & Tomoda, 1983; Schmeling et al., 2008) or an impermeable
free-slip surface. Sticky air is modelled as a 100 km thick layer of a very weak
material (ηA = 1018 Pa s) with negligible density (ρA = 10−3 kg m−3). Surface
topography in the free surface models is calculated by tracking the interface be-
tween the lithosphere and sticky-air. In free-slip models the surface topography
is assumed to be proportional to the normal component of surface traction (e.g.
Kiefer et al. (1996)) – we denote this here as the IVF response. For each litho-
spheric viscosity we run four models – with purely viscous or viscoelastic rheology
and with a free surface or a free-slip surface. We use very fine time steps here,
20× smaller than the values dictated by the CFL stability condition, in order to
resolve the initial evolution of topography.
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Figure 3.1: Model setup used in Section 3.3. Viscosity of the lid is varied. Simula-
tions with viscoelastic rheology have constant shear modulus GL = 7 × 1010 Pa. For
free surface simulations sticky air layer of thickness 100 km and viscosity 1018 Pa s is
employed.

3.3.2 Results: topography above a rising cylinder

First, let us discuss the topography developing above a cylinder rising through
the mantle towards the stiff lithosphere (Fig. 3.1). We use this simple model to
demonstrate the basic features of stress and topography development in a stiff
layer loaded by a viscous upwelling. We vary the viscosity of the stiff lithosphere
(1023, 1025 and 1027 Pa s) and for each viscosity we perform both the IVF model
(with impermeable free-slip surface) and the free surface model, and compare the
resulting topographies.

The buoyant cylinder needs about 10 Myr to rise from its initial position to-
wards the base of the lithosphere. During this time the traction acting at the
bottom of the lid due to the load steadily increases. Figure 3.2 depicts the maxi-
mum topography reached in the middle of the box above the rising cylinder as a
function of time. Solid lines show the viscoelastic models while dashed lines are
for corresponding viscous models (GL → ∞). The IVF topographies are insen-
sitive to lithospheric viscosity and almost identical for viscous and viscoelastic
models. Viscoelastic material transfers stresses to the top free slip boundary in a
similar way to viscous material when flexure is not allowed by the top boundary
condition. The IVF topographies gradually increase as the load becomes closer to
the surface and reach their maximum of about 800 m when the cylinder reaches
the base of the lithosphere. Free-surface topographies (red, blue and black lines),
on the other hand, do depend on the lithospheric viscosity and vary between the
viscous and viscoelastic models. In case of the lowest lid viscosity (1023 Pa s, red
line) the Maxwell relaxation time is ∼ 45 kyr and viscoelasticity thus plays little
role. At the beginning both topographies quickly increase (time is displayed on
logarithmic scale) and after few hundreds of kyr they get close to the IVF value,
which they follow afterwards because the Stokes time scale is larger than the
isostatic relaxation time of the lid (see Crameri et al. (2012) for details). Higher
viscosity lids (1025 and 1027 Pa s; blue and black lines) already cause visible
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Figure 3.2: Topographic response to a rising cylinder, different colours stand for different
values of ηL in Pa s. Solid lines show the evolution of maximum topography when
viscoelastic rheology is employed, dashed lines are for viscous rheology. Red dashed
curve is the response to Case 2 in Crameri et al. (2012). Green lines represent the
overlapping, traction derived topographies.

differences between viscous and viscoelastic models in topography development.
Topographies in viscous models are significantly reduced with respect to the IVF
response due to the resistance of a stiff lid to bending. Viscoelastic material on
the other hand responds with elastic deformation as well and developed topogra-
phy is higher (closer to IVF values). The large difference between the IVF and
free-surface topography of purely viscous models demonstrates a drawback of the
IVF approach: it yields topographies that are almost independent of the lid’s
viscosity, whereas free surface topographies differ significantly for lithospheric
viscosities which are commonly used as cut-off values in geodynamical models.

The evolution of topography formed by the viscoelastic lids is determined by
their respective Maxwell relaxation times (∼ 45 kyr for the solid red line, ∼ 4.5

Myr for the solid blue line, ∼ 450 Myr for the solid black line), with the exception
of the initial rise, which is controlled by viscosity of the mantle. The viscous
deformation of the mantle delays the (otherwise instantaneous) elastic flexure of
the lid (cca 160 m for the initial position of the load). Weak lithosphere (solid
red line) is characterized by a short Maxwell relaxation time, smaller than both
the Stokes time scale of the rising cylinder and the isostatic relaxation time of
a viscous lithosphere (for the given viscosity). The evolution of topography in
viscoelastic cases with higher lithospheric viscosity (solid blue and solid black
lines) is identical as long as the dominant deformation mechanism is the purely
elastic one (i.e. mechanism insensitive to ηL). The lines separate as soon as
viscoelastic relaxation starts to be significant for ηL = 1025 Pa s, slowly increasing
the observed topography by shifting from the elastic to the viscous limit. With
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Figure 3.3: Temporal evolution of vertical deviatoric stress τzz in models with a free
surface and ηL equal to 1027 Pa s. Left panel shows viscous model, right panel is for
viscoelastic model. Stress is plotted as a function of depth along a vertical line located
above the centre of the rising cylinder. Colour represents time in Myr.

ηL = 1027 Pa s the Maxwell relaxation time is much larger than the duration of
the simulation, and the solid black line thus represents a purely elastic response
(ηL →∞). The effect of elastic filtering, described in Golle et al. (2012), addresses
the difference between such response and a traction derived topography.

Figure 3.3 demonstrates stress evolution within the lithosphere with a free
surface. It shows the vertical deviatoric stress τzz as a function of depth plotted
above the centre of the rising cylinder in a model with the strongest lithosphere
(ηL = 1027 Pa s). Colour represents time: black and dark colours are for the
beginning of the calculation, while orange and yellow are for the time when the
cylinder reaches the bottom of the lid. The left panel shows the viscous model,
whereas the right panel is for the viscoelastic model. The initial stress in the
viscous model is large (∼ 200 MPa) and the pattern corresponds to bending.
The amplitude decreases as the cylinder rises and topography grows – the elevated
surface of the lid counteracts the effect of the upward push of the cylinder.

In the viscoelastic lid the stresses are significantly smaller and they simply
increase as the topography increases, because the stresses are fully determined
by the total strain in the effectively elastic lid.
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3.4 Thermal convection (TC models)

3.4.1 Model setup

After examining the basic characteristics of a viscoelastic response in free-
slip and free-surface models, we now proceed towards the convection models, in
which the flow is driven by thermal buoyancy and the viscosity is controlled by
the temperature distribution and the depth.

We concentrate on the effects of viscoelasticity on the transient behaviour of
the stiff lid and demonstrate how viscoelasticity affects stress evolution in the
lithosphere during its cooling and thickening. To that end we perform models of
two planetary bodies with different reference viscosities and thus different vigour
of convection in the transient phase. The first one is an Earth-sized body (E-
models) with a relatively high ηref and model parameters based on Crameri &
Tackley (2014). The other one is a Mars-sized body (M-models) with lower
ηref and parameters taken from Golle et al. (2012). For each planet we test two
scenarios – one with an initially thin lithosphere (controlled by the initial thermal
boundary layer thickness dTB = 30 km) and the other one with an initially 300
km thick lithosphere.

We assume basally heated convection with constant temperature top and bot-
tom boundaries, while the sides are insulating with zero normal heat flux. The
initial temperature distribution follows the relation:

T (z) = T0 + (Tsurf − T0) exp

( −z
dTB

)
+ (TCMB − T0) exp

(
z −D
dTB

)
, (3.15)

where T0 = 1900 K is the temperature at the mid-depth, Tsurf and TCMB are
surface and core-mantle boundary temperatures, dTB is the initial thickness of the
thermal boundary layer, D is the mantle thickness and z is the depth. Random
temperature perturbations with amplitude 20 K are used to initiate convection.
The model parameters are summarized in Table 3.1.

Each convection simulation starts with a transient stage in which the sublitho-
spheric flow evolves and the cold, stiff lithosphere gradually changes its thickness.
Then, a statistically steady state is reached and the lithospheric thickness remains
constant. The temperature T0 in the mid-mantle is initially set to 1900 K. For
E-models this is less than the statistically steady state mid-mantle temperature,
thus the central part of the model heats up during transient phase and the vigour
of convection increases. For the Mars-like parameter set, on the other hand, 1900
K represents an overheated mantle, mainly because of the smaller temperature
drop between the core-mantle boundary and surface. Due to the lower reference
viscosity, a vigorous, downwelling dominated convection initially develops in the
model and is gradually quelled as the mid-mantle temperature decreases down to
cca. 1700 K.

The model domain is a 2-D Cartesian box with aspect ratio 1 and a mantle
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Table 3.1: Parameters used in the convection calculations

Parameter Symbol Model Eel Model Mel Units
Mantle depth D 2890 1666 km
Gravitational acceleration g 9.81 3.7 m s-2
Reference density ρ0 3300 3300 kg m-3

Temperature drop 4T 2500 1500 K
Reference viscosity ηref 1023 9.316 · 1019 Pa s
Upper viscosity cut-off ηmax 1028 1028 Pa s
Thermal diffusivity κ 7.6 · 10−7 7.6 · 10−7 m2 s-1
Thermal expansivity α 3 · 10−5 3 · 10−5 K-1

Activation energy Eact 240 346 kJ mol-1
Activation volume Vact 8.9 · 10−7 2 · 10−7 m3 mol
Surface temperature Tsurf 289 230 K
Shear modulusa G 7 · 1010 7 · 1010 Pa
aModels Evis and Mvis are obtained by setting G→∞

depth of 2890 km for E-models and 1666 km for M-models. Impermeable free slip
boundaries are assumed at the bottom and sides of the box. The top boundary
is either assumed to be impermeable free slip, or similarly to the RC models, a
free surface using the sticky-air approach. Following Crameri & Tackley (2014)
we use a 150 km thick sticky-air layer with viscosity ηA = 1021 Pa s (given
our upper viscosity cut-off, this choice provides a reasonable balance between
obtained accuracy and the length of computational time step necessary to avoid
the “drunken seaman” instability described by Kaus et al. (2010) and Duretz et al.
(2011)). The mesh resolution is 256×256 nodes.

3.4.2 Results: free-slip surface

First let us discuss the Earth-size models with an impermeable free-slip surface
and initially thin lithosphere. Figure 3.4 shows a snapshot of viscosity in the whole
model domain (left column), effective stress in the upper half of the model domain
(middle column) and vertical deviatoric stress (right column), all taken after 4.6
Gyr. The upper row is for a purely viscous model Evis, while bottom row is for
a viscoelastic one Eel. Below the lithosphere the flow pattern is almost identical
for both rheologies (see Fig. 3.5) and we can thus compare responses to almost
identical loading. The viscous model results in a relatively simple smooth stress
distribution within the stiff lithosphere that reflects the distribution of upwelling
and downwelling features.

The viscoelastic model, on the other hand, shows a rather complex layered
stress pattern in the lower part of the lithosphere in the middle between the
two downwellings. The depth of the first “layer” indicates the thickness to which
the lithosphere cooled conductively with no accompanying deformation. The
stress layers themselves formed during the thickening period and reflect the lateral
movement of upwellings and downwellings during the history of the thickening
lithosphere. In general, when viscoelastic lithosphere grows, the accretionary
edge records the stresses caused by the upwelling and downwelling features active
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Figure 3.4: Model E with aspect ratio 1, T0 = 1900 K, dTB = 30 km and a free slip
upper boundary after approximately 4.6 Gyr. Top row shows the viscosity, effective
stress and vertical deviatoric stress τzz of model Evis, bottom row shows the simulation
with vicoelastic rheology (Eel). Stresses are shown in upper part of the domain only,
depth is in km.

Figure 3.5: Top and bottom Nusselt numbers and mean velocities in models Evis and
Eel with aspect ratio 1, T0 = 1900 K, dTB = 30 km and a free-slip upper boundary.
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at the time of the accretion. These stresses are remembered, but they are also
gradually altered as they relax and as new downwellings pull and new plumes
push throughout the entire thickness of the lid. The thickness and lateral extent
of the stress layers is determined by the spatial stability of the dynamical features
relative to the characteristic time of the cooling.

In case of the Mars-like body more vigorous convection develops during the
transition phase. The shorter wavelength structure of the downwellings in the
sublithospheric mantle is also reflected in the stress pattern in the lithosphere,
in both viscous and viscoelastic models. Figure 3.6(a) shows the vertical stress
component τzz at two snapshots taken during transient cooling and thickening of
the lithosphere at 1 Gyr and at 2 Gyr. Clearly, a complex layered lithospheric
stress pattern due to memory effects in a viscoelastic model (as described above)
is much more pronounced here. This is due to the relative instability and char-
acteristic wavelength of the downwellings. Additionally, the region of smooth
stresses is significantly reduced when compared to the less vigorous Earth-sized
model as the downwellings quickly develop in the early stages of the model evolu-
tion. When a steady state is reached and lithospheric thickness does not increase
further, frozen stress structures relax and within several Gyr this shallow, layered
stress structure resulting from memory effects of viscoelastic rheology is no longer
present. Viscoelastic models then have comparable stress magnitude and pattern
as viscous ones. The time that the structure needs to disappear is related to the
Maxwell relaxation time of the lithosphere (4.5 Gyr for the upper viscosity cut-off
1028 Pa s).

So far we have discussed the results of the models with an initially thin litho-
sphere. If we instead initially prescribe a thick lithosphere (dTB = 300 km) we ob-
serve none of the above described effects on stress development and the behaviour
of viscoelastic models is the same as that of viscous models (see Fig. 3.6b).

3.4.3 Results: free surface

In the previous paragraph we described the results of the models with a free-
slip surface. Now let us focus on the models with a free surface. Based on the
results of our numerical experiments with a rising cylinder, we may expect much
stronger effects of elasticity, as the lithospheric flexure can now fully develop.

Fig. 3.7 shows the stress evolution in the smaller Mars-like mantle models
Mvis and Mel – with initially thin lithosphere dTB = 30 km. In a purely viscous
model (left column) the stress pattern in the lithosphere reflects its bending due
to the pull of the sublithospheric downwellings (no plumes are initially present
due to the fact that the mantle is overheated). The wavelength of the lithospheric
undulations is controlled by the temporary distribution of the downwellings and
by the actual thickness of the lithosphere. As the lithosphere cools and thickens,
the wavelength of the undulations generally increases. In a viscoelastic case (right
column) the stress pattern is again much more complex. Stresses obtained during
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Figure 3.6: Normal stress component τzz in model Mvis (left column) and model Mel

(right column) after cca. 1 Gyr (top row) and 2 Gyr (second row). Both models have
aspect ratio 1, T0 = 1900 K and a free-slip surface. Depths only down to 700 km are
shown. Stress scale is clipped for better visibility of the memory effect. (a) Initially
thin lithosphere is prescribed, with dTB = 30 km. (b) The case with initially thick
lithosphere, dTB = 300 km.
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the bending of initially thin plate (easy to bend and thus reaching relatively
large strains) are remembered (’frozen’) until cca. 4 Gyr and during cooling
and thickening of the lid its deeper parts adopt and remember the stresses due
to later bending. The amplitude of the stress in the deeper layers is smaller
than the amplitude of the initial surface stress layer due to the fact that the
colder and thicker lid becomes increasingly difficult to bend. These large stresses
are preserved on time scales comparable to the surface value of tM (4.5 Gyr).
After 3 Gyr mantle has cooled down enough and plumes start to develop. Large
stresses associated with strong plumes pushing at the base of the lithosphere then
overprint the stress pattern associated with the cooling and early bending. Note
that the lithospheres of the models with a free surface exhibit bending stresses
that are order of magnitude larger than in the previously discussed simulations
with a free slip upper boundary.

Figure 3.8 shows vertical profiles of effective stress (horizontally averaged) in
both models Mvis and Mel, evenly sampled over the first 3 Gyr. It demonstrates
thickening of the viscous lithosphere with a typical bending/unbending pattern
(left panel) while the viscoelastic lithosphere with generally lower stresses shows
preservation of the bending pattern of the initially thin lithosphere (right panel).
Note that the stresses associated with bending of the 30 km thick lithosphere
are in tens of MPa, while we observed stresses of only a few MPa in the free-slip
surface simulations. In the viscoelastic model, the stresses below the 30 km depth
are similar as in the free-slip case.

After examining the effects of lithospheric thickening, let us now look at the
models in which the lithosphere is initially thick (dTB = 300 km). Such models
display no differences between viscous and viscoelastic rheology, in case that a
free slip condition is prescribed at the top (Section 3.4.2 above). In free surface
models we do observe differences, but of a different nature than the stress memory
effect described above.

In these models, the lithosphere is thinning and the layered stress structures
thus could not develop here. The stress patterns are dominated by the bending
stresses, and these are significantly smaller for the viscoelastic simulations (see the
last paragraph of Section 3.3.2 and Fig. 3.3). We demonstrate this in Figure 3.9,
which shows the time evolution of the effective stress in E-models within a 3 Gyr
long time window taken 12 Gyr after the initiation of the simulation.

Further evolution of the models is characterized by similar stress profiles as
depicted in Fig. 3.9 – the stress reduction is a general characteristic of statistically
steady state viscoelastic convection with a free surface (i.e. regardless of the value
of dTB), as long as the lithosphere is bending and unbending in the reached
statistically steady state.

For the M-models the statistically steady states are almost stationary, with
a stable plume in the centre and downwellings at the sides. Due to this steady
loading the lithosphere is permanently bent, and not flexing up and down as in the
previous case. It then reaches the viscous limit and the effects of viscoelasticity
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Figure 3.7: Vertical component of deviatoric stress τzz in model M with aspect ratio 1,
T0 = 1900 K, dTB = 30 km and a free surface. Stress scale is clipped for better visibility
of the memory effect. Negative depths (in km) show the sticky air layer.
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Figure 3.8: Temporal evolution of effective stress τeff in models Mvis and Mel with the
same parameters as in Figure 3.7. We show horizontally averaged radial profiles that are
evenly sampled in time. Colour represents the time in Gyr, only the transient behaviour
is shown.

Figure 3.9: Temporal scatter of effective stress τeff in models Evis and Eel with aspect
ratio 1, T0 = 1900 K, dTB = 300 km and a free surface. We show 100 horizontally
averaged depth profiles that are evenly sampled in time. Colour represents the time in
Gyr.
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Table 3.2: Summary of the viscoelastic effects in stagnant lid convection

Model characteristics “Frozen-in” stresses Stress reduction
Free-slip, initially thick lithosphere No No
Free-slip, initially thin lithosphere Yes No
Free surface, initially thick lithosphere No Yes
Free surface, initially thin lithosphere Yes Yes

Figure 3.10: Model Mel with T0 = 1900 K, dTB = 30 km and a free surface after 2
Gyr, computed in 2-D spherical annulus (left) and 3-D Cartesian (right) geometries.
Air is not shown in the 3-D model in order to reveal the surface stresses and the model
domain is thresholded by an isotherm of 1670 K to show the spatial distribution of
the downwellings. The stress scale is clipped in both cases to enhance the visibility of
the subsurface layered structures, with the exception of the surface stresses in the 3-D
simulation that are shown in their full range.

disappear (c.f. the last snapshot in Fig. 3.7).
Table 3.2 summarizes how the viscoelastic effects depend on the initial and

boundary conditions. Both effects are stronger when the vigour of convection is
higher.

3.4.4 Robustness of the results

The results presented above were obtained in a 2-D Cartesian geometry with
aspect ratio 1. In order to estimate the effects of model geometry we repeated
some of the simulations also in aspect ratio 4, 2-D spherical annulus (Hernlund
& Tackley, 2008), and 3-D Cartesian box. Based on these tests we can conclude
that the stress memory and the stress reduction effects discussed in previous
sections are robust, though the stress amplitudes differ in different geometries
(c.f. Figure 3.10).

In agreement with studies by Thielmann et al. (2015) and Muhlhaus & Regenauer-
Lieb (2005) the sublithospheric mantle convection was hardly affected by vis-
coelasticity or a free surface in our simulations. This does not imply that the
internal dynamics were equivalent for each pair (viscous vs. viscoelastic) of the
simulations we performed. Due to the chaotic nature of thermal convection we
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observed that some models get locked into a quasi-stable statistically steady state
for up to billions of years (e.g. having more, or distorted, convection cells when
compared to the stable statistically steady state). To our experience the likeli-
hood of such behaviour was not affected by the inclusion of viscoelasticity and
we avoided such cases in the presented work.

3.5 Discussion

We present here the results of numerical experiments focused on the effects
of viscoelasticity on the stress and surface topography development of internally
loaded lithosphere. First, we use the compositional model of a cylinder rising
below the stiff lithosphere introduced by Crameri et al. (2012) and we extended
their analysis for a viscoelastic stiff lid and also for higher lithospheric viscosi-
ties. We demonstrate that while for lower lithospheric viscosity (1023 Pa s) the
IVF topography (from a free-slip model) is in good agreement with free surface
topography, for higher lid viscosities the differences between free-slip and free-
surface models significantly increase. These differences, that is, the error of the
instantaneous IVF approach, are largely reduced if the lid is viscoelastic. Similar
conclusions were made by Zhong (2002) for stationary loading.

Second, we performed thermal convection models focused on the evolution of
planetary mantles. Lithospheric stresses were shown to differ considerably. If
a free surface is prescribed and stiff lithosphere is thus able to bend and build
topography, then viscoelastic models generally show lower stress amplitudes than
purely viscous models. If a planetary mantle is cooling from an initially hot
state with a thin lithosphere, then the memory effects associated with viscoelas-
tic deformation result in a complex layered stress pattern, in which the shallower
layers reflect preceding sublithospheric convective features active during the ear-
lier stages of the model evolution. These frozen-in stresses remain visible on a
time scale comparable to the Maxwell relaxation time of the lithosphere. The
described phenomenon is thus a transient feature and depends on the initial tem-
perature distribution. It is clearly favoured by the initially thin thermal boundary
layer that may result from cooling of a magma ocean (Solomatov, 2007). The
vigour of the initial convection increases the observed complexity of the stress
structure that is being recorded in the cooling and thickening lithosphere.

Thielmann et al. (2015) also observe non-smooth deviatoric stresses, while
presenting simulations with surface Deborah numbers up to Des = 105. Since the
Deborah number is given by the ratio of the lithosphere’s viscoelastic relaxation
time to the diffusion time, it takes approximately Des diffusion times for the
stresses to relax from a certain state. The simulations presented in Thielmann
et al. (2015) do not last multiples of the diffusion times, thus it is likely that the
stress state of the lithosphere is largely influenced by the initial conditions, even
though it cannot be seen from the Nusselt numbers or average velocity of the
flow.
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The key parameter controlling the importance of the memory effect is the
Maxwell relaxation time of the lithosphere. The viscosity of the crust and litho-
sphere that determines the relaxation time is, however, largely unknown. Its
estimates based on postglacial rebound inversions only give a lower bound, since
the glacial cycle occurs on a time scale of about 100 kyr. Layers with tM larger
than 100 kyr behave effectively as an elastic material to such loading (see Sec-
tion 3.3) and GIA (glacial isostatic adjustment) inversions are thus insensitive to
higher viscosities. The fact that subduction or loading due to sedimentation are
successfully modelled using a thin elastic plate theory again provides only the
lower bound on the viscosity, in the sense that that tM must be larger than the
characteristic time of these phenomena.

In our simulations the Maxwell relaxation time of the lithosphere was deter-
mined by the upper viscosity cut-off. Lowering its value directly decreases the
importance of the medium’s memory. The ability to quickly deform in an elastic
manner remains intact. One may thus expect the stress reduction effect to be in-
dependent on cut-off viscosity. However, less stiff purely viscous lids show smaller
resistance when compared to more stiff purely viscous ones, and decreasing the
cut-off value thus reduces the importance of both the stress memory and the
stress reduction when comparing viscous and viscoelastic models with the same
lithospheric viscosities. In a limited extent we still observed both effects when
lowering ηmax down to 1025 Pa s in thermal convection simulations with a free
surface.

The models presented here were designed to investigate the basic effects of
viscoelasticity on the evolution of a stiff planetary lid. As such they suffer from
several simplifying assumptions. The first and probably major one is that the
rheological description does not include any form of plastic yielding, even though
the brittle failure and ductile yielding are important deformation mechanisms in
the lithosphere and limit the resulting stresses. The second one is the simple
Boussinesq approximation of the energy equation that does not account for shear
heating. Viscous dissipation could play an important role in strain localization
in a visco-elasto-plastic model (e.g. Schmalholz & Duretz (2015)). In particular,
it was recently shown by Jaquet et al. (2016) that the release of elastic energy
promotes faulting induced by thermal softening. On the basis of our results we
may speculate that yielding or thermal softening would occur on shorter wave-
lengths in the models that include viscoelasticity. Especially in the early stages
of planetary evolution, when their thermal boundary layer is thin, viscoelasticity
in combination with plasticity could dramatically affect lithospheric deformation
or regime of convection. Indicative in this regard may be the results by Muhlhaus
et al. (2006), who demonstrate an increase in the frequency of overturns in the
episodic lid regime due to elasticity. Such a scenario should in future be tested
in visco-elasto-plastic models in three-dimensional spherical geometry.

Despite the above mentioned simplifications we believe that our models demon-
strate that including viscoelasticity is important if stress evolution and deforma-
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tion of the lithosphere in models of planetary mantles are addressed.
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3.A Benchmark tests

Our implementation of viscoelasticity was verified using two benchmark tests:
(i) a stationary viscoelastic flow in a 2-D box with aspect ratio 1 (Harder, 1991)
and (ii) the deformation of an elastic slab embedded in a viscous medium (Gerya,
2010).

3.A.1 Thermal convection of an isoviscous Maxwell fluid

In this benchmark we test the implementation of the advection and corotation
of the stress. We perform the simulation of thermal convection of an isoviscous
Maxwell fluid in a 1×1 Cartesian box. We assume the Boussinesq approximation
and reproduce results of Harder (1991) for Rayleigh number 9487 and Deborah
number 1.5 × 10−3 (Fig. 3.11) on a mesh with 40 × 40 grid points. We make a
visual comparison of the isolines of vorticity, temperature, deviatoric shear stress
and normal stress difference (the exact values of isolines are stated in Harder
(1991)).

In reproducing the stationary flow it is important to realize that the Weis-
senberg number, Wei := 2De‖D‖D2/κ, is close to 1 for De = 1.5× 10−3 and the
given model setup. A Maxwell body with Jaumann’s rate chosen as the stress
rate (i.e. the medium we study) exhibits shear softening in a simple shear flow
for Weissenberg number greater than 1 (see Muhlhaus & Regenauer-Lieb (2005)
for details) and shear softening leads to numerically unstable solutions. The vis-
coelastic convection simulation thus needs to be started from a state which is close
to the stationary solution (e.g. from the viscous stationary solution), in order not
to exceed the critical Weissenberg number when reaching the final state.

For Deborah numbers higher than 1.5× 10−3 we no longer reach a stationary
solution and the simulations become numerically unstable (the velocities go to
infinity). Setting a lower bound on the time step used in the rheological equations
(3.11) – (3.13) prevents such instabilities, largely extending the range of Deborah
numbers that can be modelled. Detailed analysis of the problem is beyond the
scope of this paper – in the convection simulations of planetary bodies presented
in the main text we are far from the critical Weissenberg number.

In this benchmark test we used a grid-based donor cell advection technique
instead of the tracer based advection scheme applied in all other calculations.
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Figure 3.11: Stationary flow of an isoviscous fluid in a 40 × 40 box with free slip
boundaries, De = 0.0015. See Harder (1991) for comparison with a viscous solution
and for exact values of the isolines. Left top picture shows streamlines of the extra
force term ∇ · [(1 − Z)τ̃ n−1], middle picture in the bottom row displays normal stress
differences.

Tracer based advection of stress does not perform well in this case, due to the
high vorticity gradient in the corners of the box (in combination with the low
resolution of the mesh). The number of tracers per cell needed to produce results
comparable to the grid-based approach is over 1000 here. The time step was
governed by the CFL stability criterion.

3.A.2 Recovery of the original shape of an elastic slab

Following Gerya (2010) we further examine the deformation of a hanging
slab due to gravitational force. An effectively elastic slab, attached to the left
boundary, is being steadily deformed over 20 kyr by gravity (g = 10 m s-2). After
20 kyr gravity is switched off and the original shape of the slab is recovered. The
slab viscosity is 1027 Pa s and its shear modulus is 1010 Pa. The effectively viscous
medium that surrounds the slab has a viscosity of 1021 Pa s and a shear modulus
of 1020 Pa. The density of the slab is 4000 kg m−3 while the surrounding material
has a density of 1 kg m−3. Extreme discontinuities in material parameters are
treated using harmonic averaging of the shear modulus in order to avoid high
numerical viscosity on the interfaces (Gerya, 2010). A resolution of 128 × 128

nodes with 100 particles per cell was used, time step of 2 yr was being gradually
increased after reaching 30 kyr. Results are summarized in Fig. 3.12(a). The
elastic (relaxation time ∼ 3 Gyr) slab fully recovered its shape while the viscous
medium sustained permanent deformation.

This particular example is rather challenging as the model includes sharp
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Figure 3.12: (a) Reproduction of numerical experiment by Gerya (2010). A slab with
high viscosity of 1027 Pa s and shear modulus 1010 Pa is attached to the left boundary
and surrounded by a weak viscoelastic medium with viscosity 1021 Pa s and shear
modulus 1020 Pa. Density of the slab is 4000 kg m-3, density of the surroundings is
only 1 kg m-3. (b) Comparison of the numerical methods used for advection of stresses.
Gravity is switched off after 35 kyr and not 20 kyr as in the upper case, left panel
shows the recovery when grid-based donor cell method is applied, right panel shows the
recovery when tracers are used to advect the stresses.
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interfaces with strongly varying properties. Numerical diffusion has to be kept to
a minimum when treating advection of quantities, including the stresses, in order
to retain clear interfaces as the slab is being deformed and then relaxed to its
original position. While both methods that we tested, that is, donor cell scheme
and storing stress on tracers, lead to a perfect recovery of the slab for the case
described above, the methods begin to differ if gravity is applied longer than for 20

kyr. Fig. 3.12(b) compares the recovery obtained when the gravity was switched
off only after 35 kyr (still a negligible time with respect to the relaxation time of
the slab). We see that numerical diffusion has slightly distorted the recovery when
grid-based donor cell method was used, especially near the unattached corners of
the slab. Quantities other than the stress (η, µ and ρ) were carried on tracers in
both cases.

Parts of the slab experience significant rigid body rotation during the studied
process and the corotational term in eq. (3.7) is thus crucial – omitting it would
lead to distorted recovery of the slab.

3.B Subgrid oscillations of stress

Similarly to advection of the temperature field, the problem with treating ad-
vection of stresses using the incremental update scheme by Gerya & Yuen (2007)
is that stress jumps on adjacent markers, resulting from flow-induced stirring,
cannot be damped out by grid-scale corrections.

Fig. 3.13 shows an example of such oscillations in a thermal convection sim-
ulation. The viscoelasticity parameter Z is close to one (cca. 0.8) in the circled
region and the stress should thus be governed by the viscous creep, forming
relatively smooth patterns. However, tracers with a different stress history are
transported close to each other in the selected region. The grid-scale updates of
stresses (eqs 22 and 23 in Gerya & Yuen (2007)) cannot relax such subgrid stress
differences and result in the depicted unphysical oscillations of the stress field.
The likelihood of such oscillatory behaviour increases with increasing resolution
and with the number of tracers per cell.

In our modification of the algorithm designed by Gerya & Yuen (2007), we use
directly Eq. (3.11) to evaluate the stress tensor on each tracer. First, the tracers
are advected and the corotational term, computed on the grid, is interpolated to
them. Then, the value of the viscoelasticity parameter is computed on the grid
and interpolated to each tracer, so that we can multiply the stress on each tracer
by (1− Z). Finally, the term 2ZηDn is computed on the grid and interpolated to
each tracer.

In regions with Z close to 1, the procedure leads to practically re-setting the
value of stress on each tracer to 2ZηDn at each time step, and two adjacent
tracers will thus carry similar stress tensors after the procedure, even if before
there was a mutual stress jump (consequently, the oscillations as depicted in
Fig. 3.13 are not observed). In regions with Z close to 0, the procedure behaves
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Figure 3.13: Stress oscillations in a viscoelastic thermal convection. Red circle points to
the oscillatory behaviour, right panel zooms in the respective part of the model domain
in a sequence of time steps. Model parameters are the same as in Fig. 3.4 from the
main text.

as an incremental update scheme: the stress tensor changes only slightly on each
tracer and mutual stress differences among the tracers are preserved. This is
important as interpolating the entire stress (instead of the stress change) from
grid to tracers would lead to spurious numerical diffusion in such regions.
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4. Spontaneous initiation of
subduction in mantle convection
models with elasticity and a free
surface

4.1 Introduction

The onset of plate tectonics on Earth is not well understood. For how long has
the Earth’s surface been covered by mutually colliding and subducting plates is
unknown – the geochemical and geological data provide only limited constraint,
with most estimates ranging from cca. 600 Myr to about 3.5 Gy (e.g. Dhuime
et al., 2015). Various mechanisms have been proposed to weaken the existing plate
boundaries and thus to allow for subductions to proceed, but only a few of these
can act to form a new lithosphere-scale shear zone inside of an unbroken plate.
In other words, many mechanisms that localize deformation within a narrow
zone and make the sliding of one plate under another possible require already
ongoing plate tectonics. This is the case for grain size reduction (e.g. Rozel
et al., 2011), shear heating (e.g. Thielmann & Kaus, 2012), hydration of the
subducted crust and mantle (Regenauer-Lieb et al., 2001), or sedimentary loading
(Cloetingh & Wortel, 1982). However, most of terrestrial bodies are currently in
a stagnant lid regime of convection (Moresi & Solomatov, 1995) and also the
early Earth’s mantle was likely to convect below a stagnant lid after the freezing
of its primordial magma ocean (Solomatov, 2007). Investigating the transition
from a stagnant lid to a plate-like mode of convection is thus of primary interest
when trying to explain the fundamental differences between tectonic behaviors of
terrestrial planets, or when deciphering the onset of plate tectonics on Earth.

There are two primary sources of forces acting to break a stagnant lid: lat-
eral variations of pressure resulting from the variations in lid thickness and basal
traction due to convection of the underlying mantle (e.g. Solomatov, 2004a). The
stresses that develop in the lithosphere due to these forces are much smaller than
the experimentally determined values of yield strengths of rocks (Kohlstedt et al.,
1995). In order to “break the lid” (form more plates out of one) in a numerical
model, one may assume that over geological time scales the strength of the litho-
sphere is actually small, and parametrize its brittle and ductile yielding by a
much smaller friction angle and yield stress value than measured in the labora-
tory. The critical yield stress value (the maximum strength one can prescribe
and still obtain lid failure) was found only very small (a few MPa) in models of
upper mantle, downwelling dominated convection (Solomatov, 2004a). Somewhat
stronger lithosphere may be assumed when plate-like behaviour is to be reached
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in a global-scale model of mantle convection (Tackley, 2000). More recently, Lu
et al. (2015) initiated subduction in a model that employed laboratory values of
rock strength, but the temperature anomaly driving the flow (and controlling the
amplitude of lithospheric basal traction) was imposed rather than self-consistently
developed in a convection simulation.

Once a subduction forms it may lead to a global overturn of the mantle,
completely resurfacing the planet and sweeping away any geological evidence of
the former lithosphere. The only method with a potential to see inside a planet
throughout such events is numerical modelling. However, the focus of global-
scale geodynamical models has traditionally been on the deeper parts of the
mantle rather than near its surface, and for this reason the codes developed in
the community have long suffered from two simplifications: 1) approximating
outer surface by a free-slip boundary, and 2) neglecting the elastic properties of
the lithosphere by assuming that it behaves as viscous rather than viscoelastic
fluid on geological time scales.

Recently, it was shown by Crameri & Tackley (2016) that initiating subduction
is easier when the traditional free-slip surface is replaced by a more realistic, free
surface upper boundary condition. Owing to the ability to build topography
and bend the lithosphere, stresses are much higher in models with a free surface,
raising the critical value of yield stress by tens of percent. While considering
a free surface increases the lithospheric stresses, considering viscoelasticity, on
the other hand, significantly reduces these. It is because accounting for elastic
in addition to viscous deformation lowers the lithospheric resistance to bend,
making it depend not only on the value of the plate’s viscosity but also on the
value of its shear modulus. As a result, one may easily exaggerate lithospheric
stresses by considering a free surface and neglecting elasticity, as was shown in
models of stagnant lid convection by Thielmann et al. (2015) and Patočka et al.
(2017). Here we test whether this also applies in models that include plasticity:
we systematically study the effects of a free surface and elasticity on the critical
value of yield stress defining the transition between stagnant lid and plate-like
mantle convection.

The outline of the chapter is as follows. First, we focus on small-scale, inter-
nally heated convection in the upper mantle, following the works of Solomatov
(2004a) and Crameri & Tackley (2016). We repeat a set of viscoplastic models
from Crameri & Tackley (2016) and extend it by performing also simulations
with visco-elasto-plastic rheology. Next we turn to global-scale models with hot
plumes rising up to the lithosphere-astenosphere boundary (LAB) where they
produce a strong basal drag on the lithosphere. Initiating subduction by a strong
plume is more probable than doing so by the small-scale convection, and such
events have already been reported both in numerical and analogue models (e.g.
Davaille et al., 2017; Lu et al., 2015; Crameri & Tackley, 2016). We evaluate the
influence of free surface and elasticity on such plume-induced subduction within
a model that contains many of the complexities present to the real Earth – phase
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transitions, compositional dependence of physical properties, and a combination
of internal and basal heating.

Parametric studies of mantle flow, such as the one presented here, have to
deal with the intrinsic chaoticity of thermal convection. Since two simulations
with identical parameters and only slightly different initial conditions may result
in quite different internal dynamics, it may be difficult to distinguish between an
effect of a varied parameter and mere randomness. In this paper we discuss how
comparing two sets of simulations, each set having identical initial conditions, can
lead to a misleading conclusion about the role of the parameter whose influence
is being tested.

4.2 Model setup

We test here two scenarios of subduction initiation – by small-scale convec-
tion and by plume-lithosphere interaction. Each of these scenarios has somewhat
different model setup. In the first group we repeat and extend the regional, 2-D
Cartesian models addressed in table 2 of Crameri & Tackley (2016). These as-
sume an incompressible, internally heated upper mantle and apply the Boussinesq
approximation. Their aspect ratio is 4. Viscosity is only temperature dependent
and follows Frank-Kamenetskii approximation:

η(T ) =
ρ3

0gαHD
5Cp

k2RaH
exp

(
− kθT

ρHD2

)
. (4.1)

The meaning of symbols is summarized in Table 4.1. The values of these model
parameters are obtained by dimensionalization (for details see Crameri & Tack-
ley (2016), only here we set the surface temperature to 0 K) of the original non-
dimensional models by Solomatov (2004a). In the original models only two pa-
rameters are needed to describe the η(T ) relationship: the heating-based Rayleigh
number RaH and Frank-Kamenetskii parameter θ. For the simulations presented
here RaH = 0.1 and θ = 60. The regional models are designed to assess litho-
spheric stresses resulting from small-scale convection, which may be occurring in
the upper mantle.

The second group of models is designed for investigating plume-induced sub-
ductions. We perform 2-D spherical models with parameters adopted from Lourenco
et al. (2016). These incorporate realistic parameter values descriptive of the
planet Earth and thus include compressibility, phase transitions, shear heating,
diffusion creep with pressure and temperature dependent viscosity, and are heated
both internally and from the bottom. Values of model parameters are summa-
rized in Tables 4.2 and 4.3 and are identical to the ones in Lourenco et al. (2016),
with the exception of internal heating rate and the half-life of radioactive ele-
ments. Here we study statistically steady states of convection and so we assume
a much lower and time-constant value than Lourenco et al. (2016) used in their
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evolutionary model. We use reference viscosity of 1021 Pa s – the relatively high
value allows for a clearer identification of regime boundaries (cf. fig. 1 in Lourenco
et al. (2016)).

The physical model assumes truncated anelastic Boussinesq approximation:

∇ · (ρv) = 0, (4.2)

−∇p+∇ · τ + ρg = 0, (4.3)

ρCp

(
∂T

∂t
+ v · ∇T

)
= −αTρ|g|vz +∇(k∇T ) + ρH + τ : Dvis, (4.4)

with τ being the deviatoric Cauchy stress tensor, p is the pressure, v is the
velocity, vz its radial component (z is the depth), T is the temperature, ρ is
the density, and Dvis is the viscous part of the strain-rate tensor (full strain-rate
tensor in non-elastic cases). The meaning of other symbols and their values are
given in Table 4.2.

The density ρ is equal to ρ̄(z)(1 − α(T−T̄ (z)), where ρ̄(z) and T̄ (z) are the
depth-dependent reference density profile and reference adiabat respectively. The
reference density is computed using the third-order Birch-Murnaghan equation
of state along the reference adiabat with a potential temperature of 1600 K. We
assume two mineralogical systems, labeled as “Olivine” and “Pyroxene-garnet”.
Each system corresponds to several (3 resp. 4 – see Table 4.3) mineral phases
that change with the depth z. For details and parameters used to compute the
reference state we refer to Lourenco et al. (2016) and the references therein. In
Fig. 4.1 we show the resulting reference density profile for both mineralogical
systems and the combined adiabat representative of the entire model, which is
obtained by assuming that the fraction of the “Olivine” system is 0.6 of total.

Rocks in the cold lithosphere have a finite strength which may be exceeded
due to the convective forces, resulting in brittle failures of the rocks. At higher
temperatures and pressures, that is, in the deeper parts of the lithosphere, a duc-
tile creep may similarly be activated. Both these mechanisms are parametrized
by a plastic flow rule with pressure dependent yield stress

τy = τ0 + µ p, (4.5)

where τy is the yield stress, τ0 is its surface value, µ is the friction coefficient
and p is the pressure. In the first group of models, repeating Crameri & Tackley
(2016), both τ0 and µ are varied. In the second group of models only τ0 is varied
and µ is fixed at the value of 0.0024. In both cases the tested values of rock
strength are generally much lower than laboratory measurements would suggest.
In view of this fact, the role of the friction coefficient is primarily to avoid yielding
in the deep mantle rather than to represent a realistic Byerlee’s friction law. It
is essentially the integrated strength of the lithosphere that matters when the
failure of a stagnant lid is investigated, as pointed out by Solomatov (2004a). We
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Figure 4.1: Reference density profile (center) and reference adiabat (right) for the two
considered mineral systems: “Olivine” (light blue) and “Pyroxene-garnet” (magenta).
Black lines are the combined profiles ρ̄(z) and T̄ (z) respectively. Left panel illustrates
how the profiles for each system are constructed: for each mineral phase we compute
the third-order Birch-Murnaghan equation of state along an adiabat (also computed
separately for each mineral phase) and combine these into one curve to match the
mineral phases with their respective depth ranges.

pay further attention to the parametrization of plasticity in the discussion.
For each tested value of τ0 and µ we perform three simulations: 1) with visco-

plastic (VP) rheology and a free-slip upper boundary (represented by red colour);
2) with VP rheology and a free surface (green); and 3) with visco-elasto-plastic
(VEP) rheology and a free surface (blue). Within this framework, the effects
of elasticity and free surface are systematically studied. Numerical solutions are
obtained with the code StagYY (Tackley, 2008), enhanced to model the flow
of VEP instead of VP material using the method originated by Moresi et al.
(2002). The details of the implementation of elasticity into StagYY and numerical
benchmarks are described in Patočka et al. (2017).

To approximate a free surface we use a sticky-air layer (Matsumoto & To-
moda, 1983; Schmeling et al., 2008). For our global-scale models the air layer has
thickness of 150 km and viscosity 1019 Pa s, for regional-scale models we follow
Crameri & Tackley (2016) and set these values to 30 km and 6.92 × 1019 Pa s.
In both cases the C-condition, determining whether the channel flow in the air
layer is putting up only little resistance to the mantle flow and thus a good ap-
proximation of a free surface is achieved, is well satisfied. In order to avoid the
‘drunken sailor effect’ a stabilization algorithm by Kaus et al. (2010) is employed
(see also Duretz et al., 2011).

In the first group of models the initial temperature distribution follows the
relation:

T (z) = T0

(
1− exp

( −z
dTB

))
, (4.6)
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Table 4.1: Parameters used in the regional-scale models

Parameter Symbol Value Units
Mantle depth D 600 km
Gravitational acceleration g 9.81 m/s2

Reference density ρ0 3300 kg/m3

Surface temperature Tsurf 0 K
Internal heating rate H 6.31×10−12 W/kg
Thermal expansivity α 3×10−5 K−1

Thermal conductivity k 3 W/K/m
Heat capacity Cp 1200 J/kg/K
Shear modulus G 7×1010 Pa

where T0 is the initial internal temperature (temperature below the thermal
boundary layer), dTB = 180 km is the initial thickness of the thermal bound-
ary layer, D = 600 km is the thickness of the upper mantle and z is the depth.
We perform three sets of simulations that differ by the value of T0, with its value
set to 650, 700 and 750 K, and label these sets r650, r700, and r750 respectively.
The symbol “r” stands for reflective side boundaries. In another set of simula-
tions, labeled w700, we deviated from Solomatov (2004a) and Crameri & Tackley
(2016) and set the side boundaries so that the model domain is wrapped around
at its sides (material leaving the right boundary appears on the left side and
vice versa). Random temperature perturbations with amplitude 25 K are used
to initiate convection. The values of dTB and T0 are such that convection only
gradually develops slowly thins the lithosphere. We aim to asses the critical value
of yield stress in statistically steady state of convection for each model – breaking
the lid in the initial transient stage of model evolution is not desired in the first
group of models.

In the second group of models the initial temperature distribution follows the
relation:

T (z) = T0 + (Tsurf − T0) exp

( −z
dTB

)
+ (TCMB − T0) exp

(
z −D
dTB

)
, (4.7)

where T0 = 1800 K is the temperature at the mid-depth, Tsurf = 300 K and TCMB

are surface and core-mantle boundary temperatures, dTB = 100 km is the initial
thickness of the thermal boundary layer, D = 2890 km is the mantle thickness
and z is the depth. In accord with the time-constant internal heating we also
assume a time-constant TCMB and set it so that the superadiabatic temperature
difference is 2500 K across the entire mantle (unlike in the evolutionary model
by Lourenco et al. (2016), where core cooling is taken into account).
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Table 4.2: Parameters used in the global-scale models (UM = upper mantle (dry
olivine); PV = Perovskite; PPV = Post-Perovskite)

Parameter Symbol Value Units
Mantle depth D 2890 km
Gravitational acceleration g 9.81 m/s2

Reference density ρ0 3300 kg/m3

Surface temperature Tsurf 300 K
Super-adiabatic temp. diff. 4T 2500 K
Reference viscosity ηref 1021 Pa s
Upper viscosity cut-off ηmax 1027 Pa s
Thermal diffusivity κ 7.6×10−7 m2/s
Thermal expansivity α 3×10−5 K−1

Heat capacity Cp 1200 J/kg/K
Gas constant R 8.3145 J/K/mol)
Internal heating rate H 5.2×10−12 W/kg
Half-life thalf ∞ Ga
Activation energy - UM Eol 300 kJ/mol
Activation volume - UM Vol 5.00 cm3/mol
pdecay - UM pdecayol ∞ GPa
Activation energy - PV Epv 370 kJ/mol
Activation volume - PV Vpv 3.65 cm3/mol
pdecay - PV pdecaypv 200 GPa
Activation energy - PPV Eppv 162 kJ/mol
Activation volume - PPV Vppv 1.40 cm3/mol
pdecay - PPV pdecayppv 1610 GPa
Shear modulus G 7×1010 Pa

Table 4.3: Phase change parameters ρsurf stands for surface density, ∆ρpc is the desity
jump across a phase transition and γ is the Clapeyron slope.

Depth Temperature ∆ρpc γ
(km) (K) (kg/m3) (MPa/K)

Olivine (ρsurf=3240 kg/m3)
410 1600 180 2.5
660 1900 400 -2.5
2740 2300 61.6 10.0

Pyroxene-garnet (ρsurf=3080 kg/m3)
60 1000 350 0.0
400 1600 150 1.0
720 1900 400 1.0
2740 2300 61.6 10.0
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4.3 Results: small-scale convection

4.3.1 Influence of elasticity and a free surface on the critical
value of yield stress

At the beginning of our simulations the upper mantle is rather cold and the
thermal boundary layer thick. The conductive heat flux near the surface does not
balance out the internal heat production and the internal temperature is rising in
effect. Downwellings (sinking plumes) develop and get stronger as the tempera-
ture difference across the thermal boundary layer is increasing. As a result, grad-
ually deeper plastic yielding gets triggered in the thinning lithosphere, eventually
reaching the LAB in some of the simulations. The formation of lithospheric-scale
shear zones may cause the entire lid to “break” and sink into the mantle. We
adopt the notation by Solomatov (2004a) and call these subduction events, even
though they are missing some of the defining features of Earth-like subductions
as discussed below.

In Table 4.4 we show the time that elapsed before the first subduction event
occurred in each of the performed simulations. If failure of the lid did not occur
within 10 Gy we mark the time as infinity. In Table 4.5 we summarize the
results from Table 4.4 and compare them with the previous results by Crameri &
Tackley (2016). For each yield stress profile we show two numbers, the first one
is the percentage of simulations that experienced a subduction event within the
first 10 Gy and the second number (in parentheses) is the harmonic mean of the
first-event times from Table 4.4.
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As expected, the results show that increasing the average strength of the
lithosphere makes subduction events less likely. However, they also suggest that
neither free surface nor elasticity have significant influence on the likelihood of
subduction initiation. This is surprising for two reasons. First, it contradicts
the previous findings by Crameri & Tackley (2016) who observed a free surface
boundary condition to result in an increase of the critical yield stress for all three
types of considered yield stress profiles (Byerlee-type, depth-constant, composite).
Second, a significant increase of lithospheric stresses was reported in numerical
experiments of stagnant lid convection with a free surface when compared to
the free-slip surface, this increase being much smaller when also elasticity was
included (Thielmann et al., 2015; Patočka et al., 2017) – a shift in the critical yield
stresses defining the stagnant lid to plate-like behaviour is likely to be expected
for both features.

In order to explain the negative results we analyze stress profiles and their
fluctuations. Let us start by analyzing cases with no plastic yielding – we extend
the set r700 by computing three additional simulations with τy = ∞, that is,
with no plastic yielding. Fig. 4.2 depicts the depth profile of the deviatoric
part of the Cauchy stress tensor in these additional simulations. Each line is
the horizontal average of stress for a given time and we show all the recorded
profiles from the time window of 5 to 6 Gy to display the fluctuations once
a statistically steady state is reached. We see that, when viscous rheology is
assumed, the simulation with a free surface shows higher near-surface stresses
when compared to the simulation with a free-slip surface. This increase is reduced
upon employing viscoelastic rheology and a region of increased stresses appears
deeper in the lithosphere. Such findings are consistent with previous studies by
(Beuchert & Podladchikov, 2010; Thielmann et al., 2015; Patočka et al., 2017),
but they are less pronounced. Due to the rapid exponential decrease of viscosity
right below the surface (cf. left panel of Fig 4.9) the mutual differences between
the three stress profiles are confined mostly to the very narrow near-surface stress
boundary layer. In the previous studies a relatively large upper viscosity cut-off
was controlling the value of viscosity in a layer of certain finite thickness, and the
stress differences could display more fully within such layer.

Nevertheless, the stress profiles do respond to changing the upper boundary
condition and including elasticity. However, these differences are much smeared
out when the deviatoric stress is integrated over the entire stagnant lid – see
Fig. 4.3. The lid is defined by a 750 K isotherm, approximately matching the
velocity-based definition by Solomatov & Moresi (2000) in the statistically steady
state of the simulation. Solomatov (2004a) derives and validates a scaling law
that relates the integral of the vertical component of deviatoric stress in the
stress boundary layer with stresses caused by sinking plumes in the simulation.
Such theory neglects stresses caused by bending of the lithosphere. The fact that
volume averages of stress in the lid are not much influenced by either the upper
boundary condition or elasticity, demonstrated in Fig. 4.3, implies that bending
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Figure 4.2: Depth profiles of horizontally averaged deviatoric stress. We show profiles
recorded within one 1 Gy after reaching a statistically steady state in simulations r700
without plastic yielding. Red colour stands for the numerical experiment with a free-slip
surface and VP rheology, green colour is for a free surface and VP rheology, and blue
colour stands for a free surface and VEP rheology. Only the top 200 km are shown. The
negative depths of -30 to 0 km correspond to the sticky air layer when a free surface is
employed.
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Figure 4.3: Temporal evolution of the deviatoric stress integrated over the lid (defined
by 750 K isotherm) and divided by the area of the lid. We show the reference simulations
(i.e. without plastic yielding) for the set r700. Red curve is the numerical experiment
with a free-slip surface and VP rheology, green curve is with a free surface and VP
rheology, and blue colour stands for a free surface and VEP rheology.

does not play a significant role in these simulations.
When plastic yielding is allowed the stress boundary layer disappears as

stresses are spread over a larger volume of the lithosphere due to the presence of
yielding. Since the volume averages of stress are comparable for the three inves-
tigated scenarios (VP with free-slip surface, VP with a free surface, VEP with
a free surface), also the maximum depths of yielding are similar, as already sug-
gested by the results in Tables 4.4 and 4.5. We illustrate the yielding depths and
their fluctuations in Fig. 4.4, plotted are the maximum stresses for simulations
r700 with τ0 = 7.3 MPa. The figure is obtained similarly as Fig. 4.2, only instead
of the horizontal mean for each depth we show the maximum value of stress for
each depth.

4.3.2 Short-term fluctuations and locked convection cells

In Fig. 4.5 we show the mean velocities of the flow for the simulations analyzed
in Figs 4.3 and 4.2. The statistically steady state is reached after cca. 5 Gy
and only short-term fluctuations are observed afterwards, corresponding to the
birth of new downwellings, their sinking down the upper mantle, and the lateral
movement of their roots along the LAB. When comparing the time window of
5-10 Gy in Figs. 4.5 and 4.3 one can see that the time evolution of the average
lithospheric stresses is dominated by these short-term fluctuations, but that also
some longer-lasting phenomena are present.
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Figure 4.4: Depth profiles of maximum deviatoric stress. We show profiles recorded
within one 1 Gy after reaching a statistically steady state in simulations r700 with
constant yield stress τ0 = 7.3 MPa. Red colour stands for the numerical experiment
with a free-slip surface and VP rheology, green colour is for a free surface and VP
rheology, and blue colour stands for a free surface and VEP rheology. Only the top 200
km are shown, negative depths correspond to the sticky air layer.

Figure 4.5: Temporal evolution of the average flow velocity in the simulations from
Fig. 4.3.

124



Figure 4.6: Temperature field (top) and τzz component of the deviatoric stress (bottom)
in a simulation with no plastic yielding and a free-slip surface, taken from the set r700.
A locked convection cell appears near the right boundary, where a downwelling forms
below a regio with positive topography (see the negative values of τzz in the right
upper corner of the model domain). Arrows indicate the velocity field and the model
domain is thresholded by an isotherm when plotting τzz in order to reveal the roots of
downwellings.

For instance, the red curve in Fig. 4.3 rises by over 2 MPa after 6 Gy and
stays elevated for several Gy until its mean gradually returns to the value it
had around 6 Gy. Careful analysis of the respective simulation reveals that the
increase of the mean stress is related to the spatial organization of downwellings
near the right edge of the model domain. When free-slip is assumed at the sides,
the position of a sinking plume that gets pushed to an edge is locked in one
direction, making such downwelling much more spatially stable when compared
to other downwellings which are not constrained in their lateral movement. Thus,
the observed increase of stress is generated by a downwelling getting pushed to
the right edge of the model domain and being locked there for several Gy. The
velocity field suggests that without the side wall the sinking plume would move
further to the right. Since it cannot go there, a smaller than usual convection cell
develops and the stresses are increased.

The “locked states” appear randomly and they increase the amplitude of stress
fluctuations in the simulations, making the value of critical yield stress less con-
strained. In order to avoid them (and also to avoid subduction events in which
the lid is broken along a side boundary of the model domain – see below), we
perform the set w700, in which sides of the model domain are wrapped around.
The lid stresses for simulations with such permeable sides and no plasticity are
depicted in Fig. 4.7. Their mean seems more steady when compared to Fig. 4.3,
but some long-term fluctuations are still present. It is because the average stress
depends on the number of convection cells and their size, and these characteristics
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Figure 4.7: Same as Fig. 4.3, only for the set w700, that is, for the simulations without
reflective side boundaries.

vary in time even when no side walls confine the flow.

4.3.3 Role of the initial temperature perturbation

Since we do not observe a systematic increase of the critical yield stress value
due the effect of a free surface in Table 4.5, how come it was observed by Crameri
& Tackley (2016)? Note that if only one set of simulations was considered, for
example the set r700, we would record a systematic effect of a free surface, but
an exactly opposite to the one reported by Crameri & Tackley (2016) – we would
conclude that in simulations with a free surface the lid is less likely to break.
However, if the only set at hand was the set r750, we could systematically confirm
the findings of Crameri & Tackley (2016), the lid being easier to break due to a
free surface for all the three tested yield stress profiles.

To explain the apparent controversy one must realize the role of the initial
perturbation of temperature that is used to initiate convection in our simulations
(and in the simulations by Crameri & Tackley (2016)). When a parametric study
of mantle convection is performed, typically the only parameters changed in the
input files to run the code are the ones whose effect is being investigated. Thus,
the only numbers changed in the input files that were used to run the simulations
with a free-slip surface and viscoplastic rheology labeled as r700 (all the red num-
bers in Table 4.4) were the values of τ0 and µ. In all these simulations the initial
temperature field is exactly the same because the initial geometry and position
of tracers is the same (most programming languages take random numbers from
a predefined set of numbers that follows a desired probability distribution). In
effect, the first downwellings develop at the very same positions in space and time
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Figure 4.8: Temperature field in a simulation with Byerlee-type yield stress profile
(top), µ = 0.006, and with a composite yield stress profile (bottom), τ0 = 10.2 MPa
µ = 0.0063. Both cases have a free-slip surface and are taken from the set r700.
Subduction event occurrs after lithosphere-deep yielding takes place in the right upper
corner of the model domain (cf. also Fig. 4.6).

and since the interplay between the stagnant lid and sublithospheric dynamics is
limited, the internal dynamics in all the simulations is nearly identical for sev-
eral Gy, unless of course a subduction event occurs, which dramatically disrupts
internal dynamics.

The trend observed for the set r700, that is, the “red” simulations being more
likely to result in a subduction initiation, is a result of these simulations falling
into the locked state discussed above. In Fig. 4.8 we compare the simulations that
appear anomalous in Table 4.4 (composite and Byerlee-type yield stress profiles,
with the highest of the tested values of τ0 and µ) and show how the lid gets broken
near the right edge of the model domain due a locked convection cell. When a
free surface is employed, the initial geometry is different due to the presence of
a sticky-air layer and the spatial position of the first downwellings is different to
the one observed in the simulations with a free-slip surface. It is, however, the
same for all the “green” and “blue” simulations with the same initial temperature
T0, that is, for each of the performed sets of simulations.

In order to obtain results that are independent on a particular initial con-
figuration we performed at least three sets of simulations with different initial
temperature field (r650, r700, r750). Another option would be to perform several
sets in which the initial temperature T0 was the same but a different seed for
random numbers was chosen for each set. Note also that no systematic increase
or decrease of the critical yield stress is observed for the set w700, as “locked”
states seem to be related to the side boundary conditions, with open walls being
more convenient in this regard (and are also more realistic).
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Figure 4.9: Viscosity profile corresponding to the initial temperature profile in the
regional-scale (left) and the global-scale (right) models. We show part of the global
viscosity profile also in the left panel for comparison.

4.4 Results: global-scale convection

4.4.1 Plume-induced subduction

The lithospheric stresses resulting from small-scale convection, discussed above,
are much smaller than the strength of rocks determined in laboratory measure-
ments. In effect, downwelling dominated convection in the upper mantle is not
very likely to initiate subduction on the real Earth if a pre-existing weak zone is
not prescribed (Solomatov, 2004b). However, when mantle flow is dominated by
a strong upwelling, the basal drag acting on the bottom of the lithosphere builds
significantly larger lithospheric stresses, and can result in initiation of subduc-
tion even for realistic rock strengths (Lu et al., 2015). In this section we test
such a scenario in Earth-like models, with rising plumes being self-consistently
developed in the simulations.

Similarly as in the previous section, we vary the value of τ0, and for each value
we compare three cases: 1) with visco-plastic (VP) rheology and free-slip upper
boundary (represented by red colour), 2) with VP rheology and a free surface
(green), and 3) with visco-elasto-plastic (VEP) rheology and a free surface (blue).
In this section we test much larger values of τ0, ranging from 20 to 200 MPa, with
a step of 20 MPa. The friction coefficient µ is set to 0.0024 in all 30 cases.

In Fig. 4.9 we show the initial viscosity profile in these global-scale experi-
ments and compare it to the initial viscosity profile in the regional-scale models.
We see that the global-scale models have a few tens of km thick layer near the
surface where viscosity reaches its maximum allowed value, making their dynam-
ics more likely to be affected by considering a free surface and elasticity. Due to
its pressure and compositional dependence, the sub-lithosphere viscosity is lower
in the transition zone than in the lower mantle. In effect, the first convectional
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Figure 4.10: (left) The formation of small-scale convection in the upper mantle of our
global-scale models. (right) Strong plumes form and rise through the mantle, dominat-
ing the global pattern of the studied flow. Black rectangle marks the area to which is
zoomed in the following figures.

instabilities that develop in the model are sub-lithospheric downwellings, result-
ing after few tens of My in the formation of small convection cells in the upper
mantle (see left panel of Fig. 4.10). Shortly after, plumes develop near the CMB
and start rising, reaching the transition zone after a few hundreds of My (cf. right
panel of Fig. 4.10). We depict only the VEP model with a free surface, but the
initial evolution is identical for the VP model with a free surface and very similar
to the initial evolution of the VP model with a free-slip upper boundary.

The initial temperature of the mantle is chosen so that the relative temper-
ature difference (and thus the relative buoyancy) of the first plumes is rather
large, making them ideal candidates for initiating subduction. High stresses (up
to 160 MPa in absence of a predefined yield stress) develop in the lithosphere
above the plume head and plastic yielding is activated, allowing for the plume
to push the softened lithosphere to the sides and rise nearly to the outer surface
(Fig. 4.11a). At this point the situation resembles the initial set-up considered
by Lu et al. (2015). The stresses are low in the region of elevated temperatures
and the convection cell is producing a basal drag on the lithosphere, building-up
lithospheric stresses in the direction away from the center of the former plume
head (Fig. 4.11b, see also Fig. 4 in Lu et al. (2015) for a comparison). For low
friction angles Lu et al. (2015) reported a “symmetric” subduction mode and
since the friction angle considered here is very low, we also observe this mode of
subduction in our simulations – see Fig. 4.12.

When the value of τ0 is sufficiently high, the plume cannot penetrate into
the lithosphere, reducing the basal drag it produces, and it is also harder to
form the shear zones that are necessary for the symmetric subduction to take
place. Thus, for a certain critical value of τ0 the lid does not fail and stagnant
lid is maintained throughout the simulation. When free-slip upper boundary is
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Figure 4.11: Penetration of a rising plume into the lithosphere in our global-scale model
with τ0 = 100 MPa, only the region selected in Fig. 4.10 by a rectangle is shown.
Stresses are low in the region of the former plume head and build up away from it
due to the basal drag. As a result, shear zones with lower viscosities, dominated by
plastic yielding, develop in the lithosphere. (a) Viscosity field (b) Second invariant of
the deviatoric stress. White line is the isotherm denoting the LAB, small vectors display
the velocity field.

Figure 4.12: The formation of of “symmetric subduction”, similar to the one described
by Lu et al. (2015). After the “un-necking” phase, displayed on the left panel of the
figure, the lithosphere accummulates and starts sinking into the deep mantle (right).
We show the simulation with visco-elasto-plastic rheology and a free surface, τ0 = 100
MPa, only the region selected in Fig. 4.10 by a rectangle is shown.
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Figure 4.13: Plume-induced asymmetric subduction, similar to that described by
Crameri & Tackley (2016). For lower values of rock strength the hot material from
the plume spreads above the lithosphere, forming the wedge necessary for asymmetric
subduction to start. We show the simulation with visco-elasto-plastic rheology and a
free surface, τ0 = 80 MPa, only the region selected in Fig. 4.10 by a rectangle is shown.

assumed and elasticity is neglected, we observe this transition to be somewhere
between 80 and 100 MPa, that is, for 80 MPa the lid fails and for 100 MPa
does not. When a free surface is assumed the stresses above plumes are larger
because the lid can bend. As a result, for τ0 = 100 MPa we still observe the lid
to fail, but already for 120 MPa stagnant lid is maintained, placing the critical
value of yield stress somewhere between 100 and 120 MPa. When elasticity is
included, the bending stresses are reduced (e.g. Kaus & Becker, 2007; Patočka
et al., 2017), which could potentially decrease the critical value of τ0. However,
within the framework presented here, that is, when τ0 is sampled rather coarsely
by 20 MPa, we do not record such phenomena: for 100 MPa the lid still fails and
for 120 MPa stagnant lid is maintained.

The “symmetric” subduction mode, discussed above, was only observed for
near-critical values of τ0. For lower values of yield stress the material from the
rising plume pushes the lithosphere not only to the sides but also downwards,
as it tends to accumulate near the surface. In effect, we observe an asymmetric
subduction for lower values of τ0, similar to the one reported in the numerical
experiment of a global overturn event in Crameri & Tackley (2016) – see Fig. 4.13.
This mode of plume-induced subduction is recently gaining attention, as it may
be currently happening on Venus (e.g. Davaille et al., 2017), or may have triggered
plate tectonics on Earth (Gerya et al., 2015).

4.5 Discussion

The models of small-scale convection presented here are rather simplified when
compared to state-of-the-art regional-scale modelling of subduction, partly be-
cause they lack compositional variation of physical properties of rocks and phase
transitions of minerals. However, the goal of this study is to systematically evalu-
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ate the effect of elasticity and a free surface on the stresses built in the lithosphere
by small-scale convection and for this purpose the models are instructive. They
also have the advantage of having been used by a previous parametric study by
Crameri & Tackley (2016) to which we can make comparisons.

The global-scale models shown in Section 4.4 are, on the other hand, much
more complex in terms of compositional dependence of physical properties. But
there is one simplification that remains in all of the presented models – the way
brittle and ductile yielding is parametrized. We tested only very low (when com-
pared to laboratory measurements) values of friction angles to simulate the plastic
yielding. It is a common approach in many geodynamical simulations where spon-
taneous formation of deep shear zones is sought. Some advocate the use of low
friction angles on the grounds of averaging rapid events into the geological time
frames but it is viewed as controversial within the community. Moreover, using
low friction angles results in poorly localized shear-zones, with yielding activated
in much larger volumes of the lithosphere than observed in nature, where rel-
atively narrow zones of localized shearing are found. Interesting methods have
been proposed in the last decade to overcome the discrepancy, either through a
strain-rate dependence of the friction angle (e.g. van Dinther et al., 2013), or by
considering structural inheritance of the lithosphere (Duretz et al., 2016). We
note that the effects of viscoelasticity in these new models may be more dramatic
than in the traditional models presented here, especially when elastic energy from
a large volume of the model domain gets released within a narrow shear zone as
observed in a numerical experiment of lithospheric shortening by Jaquet et al.
(2016).

The technique used here to approximate a free surface is to prescribe a low-
viscosity, low-density layer of “sticky-air” on top of the model domain. Its viscosity
is chosen so that the C-condition (Crameri et al., 2012) is well satisfied in the
stagnant-lid regime. In the global-scale models, once the lid is broken and hot
material from the deep mantle rises right below the new and very thin thermal
boundary layer, the viscosity contrast between the sticky-air and the hot mantle
material may be too small for the sticky-air to approximate a free surface well.
For this reason we, with the exception of the paragraph below, refrain from
commenting on the entire evolution of our models and focus on the initiation of
subduction only.

When lid failure does occur in our models, it usually results in an overturn of
the entire lid. Such event cools the mantle down and curbs convection – it takes
several Gy before convective stresses are strong enough to result in another lid
overturn in such episodic-lid regime. A more continuous, mobile-lid regime was
obtained only for low values of τ0 up to 40 MPa. In the regional-scale models
lid overturns often occur in an unphysical manner. Due to the low values of
yield stress that are being tested it is often large portions of the model domain
where the critical stress is reached during a subduction event, triggering very
distributed and domain-deep yielding rather than narrow localized shear zones.
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Such behaviour is often related to some material being locked by a side wall –
domain-deep yielding does not occur in the set w700, confirming that periodic
sides are a better choice for these type of simulations.

4.6 Conclusions

We investigated the effects of a free surface and viscoelasticity on the value
of yield stress that is necessary to break a stagnant-lid and initiate subduction.
First we performed models of the upper mantle that originate from the work of
Solomatov (2004a). Contrary to previous findings of Crameri & Tackley (2016), in
these models of small-scale convection we found no significant shift of the critical
yield stress due to a free surface. When plastic deformation is suppressed, the
radial profiles of stress are to some extent affected by considering a free surface
and elasticity, but once plastic yielding is allowed the differences are smeared out
and the maximum depths of yielding are similar. In other words, the critical yield
stress does not depend on the upper boundary condition or the consideration of
elasticity in these models.

Short-term and long-term fluctuations, intrinsic to thermal convection simula-
tions, can complicate the evaluation the critical yield stress in a numerical model
of given parameters. Short-term fluctuations are caused by the lateral movement
and formation of sinking and rising plumes. Long-term fluctuations are related
to the existence of locked, or meta-stable, convective states. We illustrated how
the occurrence of a locked convective state can lead to observing a false trend in
a parametric study: what appears to be the effect of the studied parameter can
in fact result from the formation of meta-stable convective state in a particular
set of simulations.

In global-scale models with Earth-like parameters we observed two types of
plume-induced subduction. One is the symmetric subduction described by Lu
et al. (2015) and the other is asymmetric subduction that originates directly
above a plume head, recently reported by Crameri & Tackley (2016); Gerya et al.
(2015); Davaille et al. (2017). We found the lid failure to be more likely in models
with a free surface than with a free-slip surface, but the shift of the critical yield
stress value was no more than 20 MPa in our simulations.

Whether or not the average lithospheric stresses are significantly influenced by
a free surface and/or elasticity depends primarily on how much bending can occur,
which is governed by the viscosity profile. Profiles with a thick high-viscosity layer
of essentially rigid (or elastic) material favor bending, while profiles with viscosity
exponentially decaying directly below the surface do not.
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Conclusions and perspectives
Numerical models that evaluate the internal deformation of planetary mantles

are important for various applications. Perhaps the most unknown parameter en-
tering such calculations is the rock rheology, with the two end-member material
models being the elastic solid and viscous fluid. In the traditional view, elastic
models describe the short-term behaviour and viscous models the long-term be-
haviour of rocks. However, there are observations implying that elasticity plays
an important role in the lithosphere even on very long time scales (for a review,
see Watts et al., 2013).

The medium that combines both models in a simple way – by assuming that
both mechanisms are connected in series – is referred to as Maxwell-type vis-
coelastic material. The general idea on which the rheology is based was proposed
in the 19th century, but the exact form of its constitutive equation is still subject
to an open debate (see e.g. Málek & Průša, 2016). The traditional formula that
appears in the literature has only the partial time derivative standing for the
stress rate. However, such formula is applicable only to problems dealing with
small deformations of a body. For a general deformation it is physically incon-
sistent because it violates the condition of material objectivity. Several objective
tensor rates have been proposed to complete the traditional formula, but one is
usually left without any physical argument that could help to choose a particu-
lar one, leaving the choice to experimental means. In Chapter 1 we review the
physical interpretation of the commonly assumed objective tensor rates. Based
on geometrical considerations, we argue that the so-called lower convected tensor
rate fits the original idea of Maxwell material the best.

In studies of glacial isostatic adjustment the use of viscoelastic models has
always prevailed. Postglacial rebound of the Earth’s surface is essentially caused
by a viscoelastic relaxation of its interior, and Maxwell model seems to provide
a good first-order fit to the observed data (e.g. Sabadini et al., 2016). In Chap-
ter 2 we investigate GIA from a rather overlooked perspective – its energetical
balance. We derive a numerical tool for analyzing the changes in the rotational,
gravitational, and elastic energies of a rotating planet that is subject to surface
loads. The tool is used to test the accuracy of the linearized Liouville equation in
determining the changes in Earth’s rotation induced by GIA. We show that the
predicted changes in the magnitude of the angular velocity vector are significantly
affected by the linearization of the Liouville equation.

Earth’s deformation associated with postglacial rebound is very small and
there is no need for other than the traditional Maxwell constitutive formula. In
mantle convection this is no longer the case. Chapters 3 and 4 are devoted to
numerical modelling of mantle convection and assume the mantle rocks to behave
as Maxwell viscoelastic fluid with the constitutive relation containing an objective
stress rate. This is a step towards more realistic mantle convection models, as
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present-day simulations usually ignore elasticity.
One of the primary constraints on the internal structure and dynamics of

terrestrial planets is given by their surface topography. At the same time, surface
topography is an observable that is likely to be affected by considering elasticity
in the lithosphere, and so a number of studies have already addressed its potential
effects. In Chapter 3 we compute lithospheric flexure above a rising plume in a
fully viscoelastic model with a free surface and observe an elastic filtering of the
resulting topography, consistently with previous findings by authors who used
more simplified approaches (e.g. Golle et al., 2012).

We also observed an unforeseen effect in our mantle convection simulations.
While in GIA modelling it is obvious that current deformation depends on the
past (the observed uplift is caused by glaciers that no longer exist), in mantle
convection this is usually not assumed. Two common exceptions, in which the
internal dynamics at a given moment depend on the history of preceding flow,
are simulations with grain size evolution and simulations with a predefined weak
zones. In the first case, shearing can reduce the grain size in some regions, forming
zones of low viscosity that further localize deformation (e.g. Rozel et al., 2011). In
the latter case, predefined weak zones are supposed to represent some structural
inheritance, that is, material that got weakened by deformation that preceded the
numerical experiment (recently e.g. Duretz et al., 2016). We observe a new type
of history dependence. When a planet cools down from its initially hot state,
its lithosphere is thin at the beginning and gradually grows in thickness. Due
to convective forcing, the thin lithosphere undergoes severe bending resulting in
large stresses. In Chapter 3 we describe how these bending patterns can “freeze”
into the growing lithosphere and are remembered there long after the sinking
and rising plumes that caused the bending have disappeared. The relaxation
of these features is governed by the Maxwell relaxation time of the lithosphere,
which depends on the poorly constrained value of lithospheric viscosity, and can
be comparable with the geological time scales.

We merely provide a proof of concept for the stress memory effect. 3-D spher-
ical simulations that would confirm our hypothesis in a model with realistic pa-
rameters suited for a particular planet or moon are yet to be done. Especially
interesting may be to study how the different spatial wavelengths of surface to-
pography evolve throughout viscoelastic convection of a cooling planet. An ideal
stagnant lid candidate seems to be the planet Mars, where the effective elastic
thickness Te of the lithosphere is observed to decrease with increasing age of
surface loads (e.g. McGovern et al., 2002). This may either indicate “frozen-in”
topography, consistent with the memory effect described here, or it can simply
be the result of viscoelastic relaxation under the surface loads (i.e. not related
to the changes of lithospheric thickness). Another open question is how much of
the stress that accumulates in the initially thin lid in our simulations would get
released if a realistic description of brittle and ductile yielding was involved. To
answer the question, global-scale numerical simulations with complex lithospheric
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rheology and high near-surface resolution must be performed.
While the behaviour of the lithosphere is altered substantially by including

elasticity into mantle convection simulations, sub-lithospheric dynamics seem to
be unaffected. The ability of our models to quickly build surface topography,
the resistance of this process being governed by the elastic shear modulus (and
not by the high value of lithospheric viscosity as in purely viscous runs), could
potentially stabilize or destabilize mantle upwellings and downwellings in their
spatial position, or change the number and stability of convection cells. However,
we have not observed any such changes in the internal dynamics, at least for
convection experiments in stagnant lid regime.

A convective regime that exhibits stronger interaction of the deep mantle
with the lithosphere is the one observed on Earth. In a plate-like regime the
thermal boundary layer breaks into plates which are being continuously created
and subducted. One of the outstanding problems of numerical simulations of
plate tectonics is that the highest possible (critical) value of yield stress that one
may prescribe and still obtain a plate-like regime is much lower than the values
suggested by laboratory measurements. This problem could be even worse when
elastic properties of rocks are accounted for. Considering an additional deforma-
tion mechanism lowers the lithospheric resistance, reducing the convective stresses
that develop in the lithosphere (to some extent, though in different settings, the
effect is observed in the works of Kaus & Becker, 2007; Beuchert & Podladchikov,
2010; Thielmann et al., 2015; Patočka et al., 2017). In Chapter 4 the critical yield
stress value is analyzed in a parametric study. We compare sets of visco-plastic
and visco-elasto-plastic simulations with a free surface and with a free-slip sur-
face. We find that the importance of elasticity and a free surface depends on
the viscosity profile. If low viscosity is assumed, or if the viscosity exponentially
decreases right below the surface (i.e. without forming an effectively elastic layer
of non-negligible thickness), then little to no shift of the critical yield stress is
observed. A shift appears when a high-viscosity layer several tens of km thick
is assumed – the critical yield stress is higher in cases with a free surface when
compared to the cases with free-slip surface. However, no first-order differences
are observed between the visco-plastic and visco-elasto-plastic simulations with
a free surface. This may seem surprising, because in models with comparable
internal dynamics, presented in Chapter 3, the horizontally averaged lithospheric
stresses differed by up to tens of MPa between viscous and viscoelastic models.

To fully understand the role of elasticity in numerical models of planetary evo-
lution, it is necessary to perform global-scale experiments that employ complex
treatment of brittle and ductile yielding in the lithosphere. The pseudoplastic
yielding, commonly used to generate plate-like behaviour in global-scale convec-
tion models (e.g. Tackley, 2000), which is also used here in Chapter 4, is not
suitable to capture the complexities of lithospheric deformation. Especially when
low values of surface yield stress and low friction angles are employed the resulting
yielding is distributed into relatively large volumes of the lithosphere instead of
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forming narrow shear zones. Such behaviour disfavors the display of viscoelastic
effects. These can fully develop only in settings in which elastic stresses build up
in a large portion of the model domain and are subsequently released within a
localized shear zone – significantly promoting the extent of deformation accom-
modated therein. An example of such setting was demonstrated by Jaquet et al.
(2016), who performed simulations of continental collision.

The methodological division between regional and global geodynamical mod-
elling is slowly falling apart. In numerical studies of single regions the boundary
conditions are often critically questioned. It is becoming increasingly obvious that
for many segments of Earth we cannot cut out a part of the mantle and model
its deformation without considering the feedback from the rest of the mantle.
That is, without considering how the region’s boundary conditions change in
reaction to what is happening inside the region. On the other hand, in global
simulations of plate-like or episodic lid convection it is the lid behaviour that has
first-order influence on the internal dynamics. However, regional modelling im-
plies that a high-resolution lithosphere with non-linear, composition dependent
rheology that combines various creep mechanisms is necessary to capture the lid
behaviour correctly. One can thus expect the future models to be global-scale, but
with complexities typical for regional-scale models. The enhancement of StagYY
presented in this thesis is one of the necessary steps towards such models.
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