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Résumé

The thesis is aiming at mathematical studies of problems coming from the new concept in quantum
mechanics where observables are represented by non-self-adjoint operators. We focus on criteria
of similarity of non-self-adjoint unbounded operators to self-adjoint and normal operators and the
structure of the similarity transforms; and on spectral and psudospectral properties of Schrédinger
operators with complex potentials and non-self-adjoint boundary conditions.

The main achievements are represented by new models for which the similarity transforms can be
found in a closed form; by the proof of absence of Riesz basis property for the imaginary cubic
oscillator and other paradigmatic models in physics theories; by the development of theory of
quantum graphs with non-self-adjoint boundary conditions together with a new classification; and
by a first systematic and general non-semi-classical approach for the construction of pseudomodes
of Schrédinger operators with complex potentials.
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Studying non-self-adjoint operators is like being a vet rather than a doctor:
one has to acquire a much wider range of knowledge, and to accept that one
cannot expect to have as high a rate of success when confronted with particular
cases.

E. B. Davies, Linear operators and their spectra (Cambridge 2007)
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Preface

At the turn of the millennium, physicists came up with the idea to extend quantum mechanics by considering
observables represented by non-self-adjoint operators. The rapid advance of the subject since that date is
reflected in the exponential growth of articles by distinct research groups throughout the world published in
prestigious physics journals, including Nature and Physical Review Letters. It is striking that this non-self-
adjoint representation was overlooked for almost 100 years since the advent of quantum mechanics and it
unquestionably deserves a serious attention from the scientific community.

Unfortunately, the heuristic approach of the majority of the physics works reveals a vast area of statements
that are unjustified on a rigorous level and often leads to paradoxes and puzzling discussions among the various
research groups involved. The principal objective of this thesis is to contribute to the new area of physics
by providing a mathematically rigorous approach for a correct implementation of the interesting idea and by
resolving some of the puzzlements with help of standard as well as unconventional methods of modern operator
theory. More generally, the thesis is concerned with spectral theory of non-self-adjoint differential operators.

The core of the thesis is formed by my research articles published on the topic since 2006. In view of my
distinct focuses on various aspects of quantum mechanics with non-self-adjoint operators in the recent years,
in this thesis I divide the articles into the following key groups:

1. toy models,
II. waveguides,

III. pseudospectra.

ad I. Motivated by the needs of nuclear physics, Scholtz, Geyer and Hahne suggested in 1992 [59] an inter-
esting representation of observables in quantum mechanics by operators which are not necessarily self-adjoint
but merely quasi-self-adjoint, that is, similar to self-adjoint operators. Then it is enough to change the inner
product in the underlying Hilbert space with help of a metric operator obviously related to the similarity
transform. The interest in this class of operators was renewed in 1998 when Bender et al. [6] suggested that
a large class of non-self-adjoint operators possess real spectra as a consequence of an antilinear parity-time
(PT) symmetry. However, it is not easy to decide whether a non-self-adjoint operator is quasi-self-adjoint. In
fact, only a few examples were available in the physics literature at that time and, moreover, the majority of
the approaches were mathematically unjustifiable constructions based on formal infinite series of unbounded
operators.

The lack of simple rigorous models was the main motivation for me to enter the research field in 2006 with
a paper [39] (Chapter B]), in which we introduce a very simple PJT-symmetric Sturm-Liouville-type operator
and establish a closed formula for the metric. This formula is further simplified in [36] (Chapter @). In [46]
(Chapter Bl we eventually succeed to write down also the self-adjoint counterpart as a simple albeit non-local
operator and study the problem in a more general context. A physical interpretation of the model in terms of
scattering is given in [27] (Chapter [d). Finally, in [42] (Chapter [[]) and [33] (Chapter B) we extend the model
to curved manifolds and operator matrices of Pauli type, respectively.

In [34] (Chapter [@) we employ the notion of quasi-self-adjointness to explain the reality of the spectrum of
the generator of a stochastic process modelling the Brownian motion with random jumps from the boundary.
Here the problem is not originally quantum-mechanical, but the tools are motivated by the new concept in
quantum mechanics.

The title “toy models” of group I essentially means “one-dimensional models”. I include in it also a more
general class of models of [29] (Chapter [[0)), where we develop a systematic study of the Laplacian on finite
metric graphs, subject to various classes of non-self-adjoint boundary conditions imposed at graph vertices.
Among other things, we describe a simple way to relate the similarity transforms between Laplacians on certain
graphs with elementary similarity transforms between matrices defining the boundary conditions.

xiii
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ad II. The simplicity of the toy model of [39] is due to the fact that the non-self-adjoint operator is just
the one-dimensional Laplacian in a bounded interval, subject to complex Robin boundary conditions. In [I1]
(Chapter [[1]) we make the problem richer by considering this type of PT-symmetric boundary conditions, not
necessarily homogeneous now, on a two-dimensional infinite strip. We show that the essential spectrum is real,
establish sufficient conditions which guarantee the existence of real discrete spectra and compute weak-coupling
asymptotics of the corresponding eigenvalues. Further spectral results are established in [47] (Chapter [I2]) with
help of numerical simulations. In particular, it turns out that the spectrum is not always real, but there
might be complex-conjugate eigenvalues for large values of a boundary-coupling parameter. In an invited
open-problem note [38] (Chapter [[3]) we point out the need for a robust method establishing the existence of
isolated eigenvalues for non-self-adjoint operators possessing an essential spectrum.

In [I2] (Chapter [[4) we extend the model of [I1] to higher dimensions and derive an effective (self-adjoint)
operator to which the non-self-adjoint Robin Laplacian converges in a norm-resolvent sense when the width of
the hyper-strip tends to zero. A generalisation of this result to tubular neighbourhoods of curved hypersurfaces
in a much more general context is given in [41] (Chapter [I5]).

In [35] (Chapter [I6) we consider another type of model, where the non-self-adjoint operator is the Laplacian
in the whole Euclidean space of any dimension with a complex delta interaction supported by two parallel
hypersurfaces. We analyse spectral properties of the system in the limit when the distance between the
hypersurfaces tends to zero.

In [20] (Chapter [[T7) we establish the absence of point spectra for electromagnetic Schrédinger operators
with complex electric potentials under various conditions and by two different methods: the Birman-Schwinger
principle and the method of multipliers. Finally, in [40] (Chapter [I8]) we introduce a closed Dirichlet realisation
of non-accretive electromagnetic Schrodinger operators with complex electric potentials on arbitrary open sets
and show that the eigenfunctions corresponding to discrete eigenvalues satisfy an Agmon-type exponential
decay.

The title “waveguides” of part I is a bit artificial. In particular, the geometrical setting of [4I] is much
more general, while there is no tubular geometry in [20]. The common point of the papers in part IT is that the
models are higher dimensional, the operators possess an essential spectrum, there is a non-trivial interaction
due to complex fields or boundary conditions and the emphasis is put on spectral properties.

ad ITI. The most significant contribution — at least from the point of view of impact and the acceptance by the
community — is probably contained in part III. Here we group together our papers in which the mathematical
concept of pseudospectra as the right tool to capture and rigorously describe non-self-adjoint features of the
PT-symmetric and other non-self-adjoint operators considered in the physics literature in recent years was
suggested.

In [6I] (Chapter [[9) we show that the eigenfunctions of the imaginary cubic oscillator, which has been
considered as the fons et origo of PT-symmetric quantum mechanics, are complete but do not form a Riesz
basis. This results in the existence of a bounded metric operator having intrinsic singularity reflected in the
inevitable unboundedness of the inverse. Consequently, the model is not relevant quantum-mechanically as a
representative of a physical observable. The proof is based on a semiclassical construction of pseudomodes.
This concise paper written for the physics community is followed by a more detailed survey [45] (Chapter 20)), in
which the concept of pseudospectra is suggested in the context of quasi-self-adjointness in quantum mechanics
with many concrete examples.

In [26] (Chapter [21]) we develop a spectral and pseudospectral analysis of the Schrodinger operator with
an imaginary sign potential on the real line. It turns out that the pseudospectra of this operator are highly
non-trivial. One of the interests of the paper [20] is due to the fact that it cannot be turned to a semiclassical
operator and, moreover, the semiclassical construction of pseudomodes requires that the potential is at least
continuous. In view of this lack of semiclassical tools, in the most recent paper [44] (Chapter 22]) we develop a
first systematic and very general non-semi-classical approach for the construction of pseudomodes of Schrodinger
operators with complex potentials.

This thesis may be considered as a research report mostly based on the aforementioned papers of the
author obtained in the last few years. On the other hand, in the following introductory Chapter [[l we provide
a concise summary of the new concept of quasi-self-adjointness in quantum mechanics and review the basic
material which is needed. Furthermore, in Chapter 2] we give a brief and intentionally informal summary of the
main results obtained in the papers. In this sense we believe that the two chapters represent a self-contained
treatment of the recent research, accessible to non-specialists and, in particular, to students interested in the
topics where functional analysis (especially spectral theory) meets quantum mechanics.

The thesis thus consists of four main parts. Part 0 consists of the two introductory Chapters [H2] while
Parts [[HITT (Chapters BH22)) contain the published material as described above. At the end of the document,
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we add Appendix [Al which is a book chapter [43] summarising some standard material from operator theory in

the context of quasi-self-adjoint quantum mechanics.
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Non-
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waveguide, J. Phys. A: Math. Theor. 41 (2008),
244013.

.....
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Equations Operator Theory 73 (2012), 1-2.

The
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non-Hermitian Robin-type boundary conditions,

Asympt. Anal. 76 (2012), 49-59.

Chapter D. Krejéifik, N. Raymond, J. Royer, and
P. Siegl, Reduction of dimension as a conse-
quence of norm-resolvent convergence and appli-

cations, arXiv:1701.08819 [math-ph] (2017).

spectral analysis in colliding leaky quantum lay-
ers, J. Math. Anal. Appl. 446 (2017), 1328—
1355.

Chapter [I7] L. Fanelli, D. Krejcitik, and L. Vega,
Spectral stability of Schrodinger operators with
subordinated complex potentials, J. Spectr. The-
ory, to appear.

Chapter I8 D. Krejcirik, N. Raymond, J. Royer,
and P. Siegl, Non-accretive Schrédinger opera-
tors and exponential decay of their eigenfunc-
tions, Israel J. Math., to appear.

Chapter 19 P. Siegl and D. Krejciiik, On the metric
operator for the imaginary cubic oscillator, Phys.

Rev. D 86 (2012), 121702(R).

Chapter 20] D. Krejcifik, P. Siegl, M. Tater, and
J. Viola, Pseudospectra in non-Hermitian quan-
tum mechanics, J. Math. Phys. 56 (2015),
103513.

Chapter 21I] R. Henry and D. Krejcitik, Pseudospec-

tra of the Schrédinger operator with a discontin-
uous complex potential, J. Spectr. Theory, to
appear.

Chapter D. Krejcitik and P. Siegl, Pseudomodes
for Schrodinger operators with complex poten-
tials, arXiv:1705.01894 [math.SP] (2017).

spectral theory without the spectral theorem, In
Non-selfadjoint operators in quantum physics:
Mathematical aspects (432 pages), F. Bagarello,
J.-P. Gazeau, F. H. Szafraniec, and M. Znojil,
Eds., Wiley-Interscience, 2015.

Except for unifying cosmetical amendments, the contents of Chapters BH22] and Appendix [A] coincide with

the published versions of the building papers and book chapter. This decision leads to two counter effects.
First, the notation introduced in Part 0 (Chapters[[H2)) may occasionally differ from that used in the individual
articles presented in Parts [[HIIIl (Chapters BH22]) and Appendix[Al This is balanced by the fact that each of the
Chapters BH22l and Appendix [Al can be read as an independent research work, in its original version. Second,
more importantly, we decided not to correct misprints and possible mistakes we have encountered after the
publication of some of the papers and the book chapter. Errare humanum est. In fact, we are aware of just
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a few cases, which are treated in this thesis by adding a short errata section after the list of references of the
corresponding chapter.

The present thesis is thematically orthogonal to my Doctor of Science (DSc) thesis [37], defended in 2012,
which was formed by my articles in spectral geometry and thus essentially self-adjoint. None of the papers of
my DSc thesis is presented in this thesis. At the same time, my other recent articles which do not fit into the
present subject are not included in this thesis either.

I conclude by thanking the large number of people who have stimulated my interest in quantum mechanics
with non-self-adjoint operators over the last fifteen years, particularly in relation to the content of this thesis.
The most important of these has been Petr Siegl, my principal co-author and a good friend, who moreover
read a previous version of this thesis and offered invaluable comments. I am also very grateful to my other
co-authors from the above papers and to many other good friends and colleagues. I am particularly indebted
to Miloslav Znojil whose persistence eventually made me become involved in non-self-adjoint spectral theory.
Finally I want to record my thanks to my wife and our children; I would never have been able to write this
thesis without their support.

Prague, Czech Republic
September 2017 David Krejcirik
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Chapter 1

Introduction

1.1 Physical motivations

Many physical systems can be described by partial differential equations and the latter can often be viewed
as generating abstract operators between Banach spaces. A typical example is quantum mechanics, where the
state of the system is described by a vector ¢ in a Hilbert space and its time evolution is governed by the
Schrodinger equation

Oy (1.1)

Yot ~ v '
with H being a linear self-adjoint operator (so-called Hamiltonian) representing the total energy of the system.
In other areas of physics a more general class of operators is necessary to describe a process in Nature, where
the non-self-adjointness is typically related to non-conservative phenomena like for instance dissipation. In this
thesis, we almost exclusively focus on the role of non-self-adjoint operators in quantum mechanics, which is an
intrinsically conservative theory because the solution of (L)) is clearly given by the unitary group

e itH (1.2)
applied to an initial state. Hence the following question may seem to be an odd kind of connection:
Can quantum theory be extended by non-self-adjoint operators playing the role of observables?

This question is both tempting and misleading. First of all, it is important that the non-self-adjointness
is restricted to observables, because in different contexts quantum mechanics is in fact full of non-self-adjoint
operators. Indeed, the resolvent of H for complex energies so as the propagator (L2]) are non-self-adjoint
operators, but here the non-self-adjointness is unimportant because these examples are obtained as functions of
self-adjoint operators. More importantly, non-self-adjoint operators play an important role in topics as diverse
as the solution of the spectral problem for the harmonic oscillator via the creation and annihilation operators,
study of resonances by the method of complex scaling and the effective models for dynamics of open systems.
However, the non-self-adjointness arises there as a result of a technical method or a useful approximation to
attack a concrete physical problem involving observables correctly described by self-adjoint operators.

The question above is tempting because, naively, an “extension” of quantum theory might potentially cover
processes in Nature that we are currently unable to explain via “standard” quantum mechanics. Here we use
quotation marks because quantum theory is intrinsically conservative and it is a well known mathematical fact
(Stone’s theorem) that generators of unitary groups are necessarily self-adjoint operators. That is why the
question above is misleading and the subject of the present thesis might be regarded as inappropriate at this
point.

Adopting a less fundamental approach, however, the question above can be given an affirmative answer.
This is the content of the so-called quasi-Hermitian quantum mechanics that we explain now.

1.1.1 Quasi-Hermitian quantum mechanics

Motivated by the needs of nuclear physics, in 1992 F. G. Scholtz, H. B. Geyer and F. J. W. Hahne [59] came
up with the idea that a consistent (conventional) quantum-mechanical interpretation holds for an observable
represented by a non-self-adjoint operator H, provided that it satisfies the quasi-Hermitian relation

H*=0HO! (1.3)
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with some positive, bounded and boundedly invertible operator O called metric and the inner product (-, -) in
the underlying Hilbert space is simultaneously modified to (-, © -). That is, like in Einsteins theory of relativity,
there is an intertwining relationship between the space and its constituents.

Notice that the special choice ® = I in (3] corresponds to H being self-adjoint, i.e. H* = H. An
operator H satisfying (I3) with a general positive, bounded and boundedly invertible operator © will be called
quasi-self-adjoint in this thesis. It is easy to see that H is quasi-self-adjoint if, and only if, it is similar to a self-
adjoint operator, i.e. there exists a self-adjoint operator h and a bounded and boundedly invertible operator €2
such that

h=QHQ . (1.4)

Indeed, if H satisfies (IL3), then h from (L) is self-adjoint provided that we set Q := ©/2. Vice versa, an
operator H satisfying ([4) is quasi-self-adjoint with © := Q*Q.

Summing up, a consistent quantum mechanics can be built for an observable represented by a non-self-
adjoint operator provided the latter is similar to a self-adjoint operator. Let us stress that the concept of
quasi-self-adjointness is by no means any extension of quantum mechanics, it is just a non-standard (and
potentially useful) representation.

The concept of operators satisfying the type of relations (I.3]) was previously considered by the mathemati-
cian J. Dieudonné in 1961 [I8]. Tt is surprising that the quasi-self-adjoint representation of observables was
overlooked for so many years since the foundations of quantum mechanics and it is even more surprising that
the more recent physically motivated work [59] did not attract enough attention from the scientific community
shortly after its appearance. In fact, the strong impetus to consider quasi-self-adjoint operators in quantum
mechanics came only after the advent of another new concept of physicists: PT-symmetric quantum mechanics.

1.1.2  PT-symmetric quantum mechanics

In 1998 C. M. Bender and P. N. Boetcher [6] noticed that a large class of operators possess real spectra
as a consequence of certain physical-like antilinear symmetries instead of the self-adjointness and suggested
extending quantum mechanics by these operators. For Schrodinger operators —A+V in L?(R?) with V : R —
C, the considered symmetry means the commutation relation

[H,PT] =0, (1.5)

where (Py)(z) := ¢(—x) is the linear space-reversal or parity operator and (T¢)(z) := ¢(x) is the antilinear
time-reversal operator (notice that the time reversal ¢ — —t is equivalent to the complex conjugation i — —i
in the context of scalar Schrédinger equation (TLTI)).

The paradigmatic example of [6] was the imaginary cubic oscillator (sometimes also referred to as Bender’s
oscillator)

d2

dx?
The arguments of [6] were actually based on a numerical study of eigenvalues of (LL6]) and other one-dimensional
Schrodinger operators with polynomial PT-symmetric potentials. The proof that the eigenvalues of (L8] are
indeed real was provided by P. Dorey, C. Dunning and R. Tateo in 2001 [19] (see also [60] and [22]).

In a series of papers from the period 2002-2003 [50} 511 52], A. Mostafazadeh suggested that the correct
implementation of PT-symmetric operators in quantum mechanics should be given through the previously in-
troduced concept of quasi-self-adjointness. Although his arguments typically works only in finite-dimensional
Hilbert spaces, the main idea is there: a PT-symmetric operator is quantum mechanically relevant as a repre-
sentative of a physical observable only if it is quasi-self-adjoint.

Once again, let us emphasise that, contrary to what one can occasionally read in physics papers, PJ-
symmetric quantum mechanics is by no means any sort of extension of quantum mechanics. Anyway, the simple
symmetry relation (LX) provides a useful test which sometimes (but not always!) indeed guarantees that the
spectrum of a non-self-adjoint operator H is real (¢f Section[[21]). More importantly, PT-symmetric quantum
mechanics of Bender et al. has stimulated a new interest of various physical and mathematical communities in
non-self-adjoint operators (including the author of the present thesis).

Apart from the conceptual applicability of quasi-self-adjoint PT-symmetric operators in quantum mechanics,
there has been a sudden availability of experiments with PT-symmetry-like structures in optics [48] 58] 57, 4], 65].
This is due to the analogy of the time-dependent Schrodinger equation for a quantum particle subject to an
external electromagnetic field and the paraxial approximation for a monochromatic light propagation in optical
media. The physical significance of PT-symmetry in this case is a balance between gain and loss [I3]. At the
same time, Schrodinger operators with complex potentials have been recently employed in experiments with
Bose-Finstein condensates, where the imaginary part of the complex coupling models the injection and removal
of particles [14].

+iz®  in L*(R). (1.6)
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1.2 Mathematical challenges

From the mathematical point of view, the theory of self-adjoint operators is well understood, while the non-
self-adjoint theory is still in its infancy. Or maybe more appropriate would be to say that the theory is “under-
developed”. Indeed, according to the account given in [64] p. viii], the first pioneering works of G. D. Birkhoff
from 1908-1913 [8, [0} [10] on non-self-adjoint boundary value problems were written almost at the same time
as D. Hilbert’s famous papers from 1904-1910 (¢f [28]) that initiated self-adjoint spectral theory. But it was
not until M. V. Keldys’ work from 1951 [32] when first abstract results on non-self-adjoint problems appeared
in the literature, while the self-adjoint theory was already enjoying all the pleasures of life due to the needs of
quantum mechanics at that time.

It is frustrating that the powerful techniques of the self-adjoint theory, such as the spectral theorem and
variational principles, are not available for non-self-adjoint operators. Moreover, recent studies have revealed
that this lack of tools is fundamental; the non-self-adjointness may lead to new and unexpected phenomena.
Although there exist many interesting observations coming from physics and numerical studies of non-self-
adjoint problems, the deep theoretical understanding is still missing and there is a need for new ideas and
techniques.

The problem is that the non-self-adjoint theory is much more diverse and it is difficult, if not impossible,
to find a common thread. Indeed it can hardly be called a theory. This is a quotation from the preface
of E. B. Davies 2007 book [I6], where a significant amount of work on spectral theory of non-self-adjoint
operators can be found. He continues by the sentences on page [x] that the present author has chosen as a
motto of this thesis.

We particularly agree that the way how “to acquire the much wider range of knowledge” is by studying
many distinct cases. This thesis is particularly concerned with various cases coming from the rapidly developing
fields of quasi-Hermitian and PJT-symmetric quantum mechanics.

Let us now formulate a couple of specific mathematical problems related to non-self-adjoint operators.

1.2.1 Location of the spectrum

The spectrum of any self-adjoint operator is real and non-empty. On the other hand, there exist examples
of non-self-adjoint operators for which the spectrum is the whole complex plane or empty. For instance, the
spectrum of the imaginary Airy oscillator

2

-~z tir  im L*(R) (1.7)

considered on its maximal domain is easily seen to be empty (indeed, by the shift  — x + ¢ with ¢ € C, the
whole complex plane would must belong to the point spectrum, which however contradicts the fact that (.7
is an operator with compact resolvent). In general, it turns out that even the very existence of a spectrum for
a non-self-adjoint operator might be a highly non-trivial task (like for example for higher-dimensional versions
of (L7) on a half-space, subject to Dirichlet boundary condition [3]).

Even if ignoring the question of existence of a spectrum, how to locate the complex regions where the
possible spectrum could exist? The minimax principle provides a powerful tool to estimate the location of
discrete eigenvalues of a self-adjoint operator. Unfortunately, no variational replacement of this type is available
in the non-self-adjoint case. It is true that the spectrum of any operator H satisfying some extra assumptions
(such as m-sectoriality) is a subset of the numerical range

Num(H) := {(, HY) : ¥ € D(H), ||| =1}, (1.8)

but such estimates are typically very rough and not useful in concrete examples. For instance, the spectrum
of ([IL7) is empty, while the numerical range coincides with the right complex half-plane. Summing up, providing
good estimates on the spectrum of a non-self-adjoint operator is typically a hard task.

Why the spectrum of a non-self-adjoint PT-symmetric operator might be expected to be located on the real
line? A simple argument goes as follows. Let Hy in L2(R?) be a self-adjoint operator with compact resolvent
and assume that all the eigenvalues of Hy are simple (a concrete example is the one-dimensional quantum
harmonic oscillator). Consider a PJT-symmetric bounded potential V : RY — C (i.e. V(—z) = V() for all
x € RY). Tt is easy to see that the symmetry (5] ensures that the eigenvalues of H := Hy + V are either real
or come in complex-conjugate pairs. By standard perturbation theory, the perturbed eigenvalue of H remain
simple, and therefore real, provided that ||V|| is small. Furthermore, assuming some extra hypotheses (like for
instance that the gaps between the eigenvalues of Hy are bounded from below by a positive constant), it is
even possible to ensure that the total spectrum of H is empty. Of course, such an argument is not applicable
for the imaginary cubic oscillator (L)), because the cubic potential is by no means a small perturbation of the
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Laplacian. In general, it is difficult to prove that the spectrum of a PT-symmetric operator is purely real, and
in many examples it is not even true (in fact, it is generically not true [62]).

Many parts of this thesis are concerned with spectral analysis of non-self-adjoint differential operators, most
of them being PT-symmetric. We shall be particularly interested in the location of the essential spectrum and
in establishing conditions which guarantee the existence or absence of eigenvalues.

1.2.2 Basis properties

The spectral theorem implies that the eigenvectors of a self-adjoint operator with compact resolvent can be
chosen in such a way that they form an orthonormal basis. This useful property does not hold for non-self-
adjoint operators. What is worse, the eigenvectors of a non-self-adjoint operator with compact resolvent might
not be even complete in the sense that their span is not dense in the underlying Hilbert space (an obvious
example is given by the imaginary Airy operator (IT), for which there are no eigenfunctions). There are also
examples of non-self-adjoint operators (some appear in the body of the thesis below) for which the eigenvectors
form a complete set but not a (Schauder) basis in the sense that not every vector from the Hilbert space can be
uniquely decomposed into the eigenvectors. Conditions guaranteeing that the eigenvectors (possibly together
with the generalised eigenvectors) of non-self-adjoint operators form a kind of basis have been studied since
the beginning of spectral theory (see [23] for an early survey), and it is also one of the interests of the present
thesis.

In the context of quasi-Hermitian quantum mechanics, the natural requirement is that the normalised
eigenvectors {1;}; of a non-self-adjoint operator form at least a Riesz basis in the sense that they form the
basis and there exists a positive constant C' such that for every vector ¢ of the Hilbert space the following
inequalities hold

CTHWI? <D [y, 0)* < Cll|. (1.9)
i

Indeed, for an operator with compact resolvent and purely real eigenvalues, the eigenfunctions form a Riesz
basis, if and only if, the operator is quasi-self-adjoint. Notice that eigenfunctions of a self-adjoint operator
can be chosen in such a way that (L9) is satisfied with C' = 1 (Parseval’s equality). Again, the literature on
Riesz basis properties of non-self-adjoint operators is enormous (see [49] and references therein). Quasi-self-
adjoint quantum mechanics has brought a new source of motivations, particularly for Schrodinger operators
with complex potentials.

Let H be a quasi-self-adjoint operator with compact resolvent. Then its normalised eigenfunctions 1;
form a Riesz basis. Denoting by ¢; the eigenfunctions of the adjoint H* satisfying the biorthonormal relation
(5, ¥r) = 651 for all j, k, it is easy to see that the metric operator © from (L3) can be constructed according
to the formula

ezzcj¢j<¢ja'>a (1.10)

where ¢; are positive numbers satisfying the inequalities C~! < ¢; < C for all j with some positive constant C
(independent of j). Different choices of ¢; lead to different operators ©, which reflects the well known non-
uniqueness of the metric operator. In infinite-dimensional Hilbert spaces, one cannot expect to be able to sum
up the series in (ITI0), even if the eigenfunctions are known explicitly. One of the main contributions of this
thesis is to provide models and techniques which make possible to turn (II0) into a closed form.

1.2.3 Pseudospectra

The spectrum of any self-adjoint operator is stable in the sense that it is moved in the complex plane at most
by the norm of the (possibly non-self-adjoint) perturbation. On the other hand, non-self-adjoint operators
can be highly unstable in the sense that the spectrum of a small perturbation of a non-self-adjoint operator
can be very far from the unperturbed spectrum. Given any positive number ¢, let us quantify these spectral
instabilities by introducing the notion of e-pseudospectra

o:(H):= |J oH+V), (1.11)
IVil<e

where H is a closed operator and V' is an arbitrary bounded operator.
If H were self-adjoint, then the set o.(H) would be just the e-tubular neighbourhood of the spectrum o (H).
This follows from an equivalent characterisation of the pseudospectrum

o-(H)=0c(H)U{2€C\o(H): |(H-2)"">¢}
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and the well known identity ||(H—z)~!|| = dist(z,0(H)) ™" for self-adjoint (or more generally normal) operators.
For general operators, however, one has only the inequality ||(H — z)~!|| > dist(z,0(H))~! and therefore just
the inclusion

{zeC: dist(z,0(H)) <&} Co.(H) (1.12)

and there exist examples of non-self-adjoint operators for which the set on the right-hand side is much larger.
The existence of large pseudospectra has in particular drastic consequences for numerical analysis of non-
self-adjoint operators. We refer to by now classical monographs by L. N. Trefethen and M. Embree [63] and
E. B. Davies [16] for more information on the notion and properties of pseudospectra and many references.
The reader can also consult Appendix [Al
One of the main objectives of this thesis is to advocate the usage of pseudospectra instead of spectra in
quantum mechanics with non-self-adjoint operators. The main idea is that the quasi-self-adjointness of an
operator ensures that its pseudospectrum cannot be too wild. More specifically, it is easy to see that if H is
quasi-self-adjoint, then its pseudospectrum is trivial in the sense that there exists a constant C' such that, for
all positive ¢,
o-(H)C {z€C: dist(z,0(H)) < Ce}. (1.13)

Notice that for a self-adjoint (or more generally normal) operator the inclusion (ILI3]) holds with C' = 1.
Hence, an operator is quantum-mechanically relevant as a representative of a physical observable only if its
pseudospectrum is trivial. We shall see that the pseudospectra of many paradigmatic PT-symmetric operators
like (LE) are highly non-trivial, and therefore quantum-mechanically irrelevant in this context.
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Chapter 2

Presentation of results

This chapter is devoted to a brief and intentionally somewhat informal summary of the results presented in
the subsequent chapters. The latter represent research articles of the author and are divided into the following
three parts:

I. toy models,
II. waveguides,

III. pseudospectra.

This division may seem a bit artificial and there are indeed intersections. However, the individual papers were
initially motivated by various objectives and this is reflected in different types of operators or results typically
considered in the respective parts.

Part I is mainly motivated by the lack of rigorous approach to quasi-self-adjointness and unavailability
of closed formulae for the metric operator (ILI0) in the literature, at least at the time the presented papers
appeared. The models presented in this part are typically Sturm-Liouville operators on a bounded interval
with purely discrete spectrum.

On the other hand, Part II collects our papers on non-self-adjoint partial differential operators on unbounded
domains (not necessarily tubes). Here the operators possess an essential spectrum and the main task is about
the existence and location of possible eigenvalues.

Finally, Part III is motivated by our original observation that the paradigmatic models of PT-symmetric
quantum mechanics like (0] are not quasi-self-adjoint. For these results we advocate the mathematical notion
of pseudospectrum as the right tool to rigorously describe the quasi-self-adjointness and other non-self-adjoint
aspects of spectral theory. Here the considered operators are typically (but not exclusively) one-dimensional
Schrédinger operators with complex potentials on an unbounded interval.

2.1 Ad Part I: Toy models

Shortly after the advent of PT-symmetric quantum mechanics at the turn of the millennium, it was commonly
accepted by the physics community that it is the quasi-self-adjointness which is behind the reality of the
spectrum of non-self-adjoint PT-symmetric operators like (IG). There have been many sustained attempts to
calculate the metric operator using formula (ILI0) for various PT-symmetric models of interest. Because of the
complexity of the problem, however, it is not surprising that most of the available results were just approx-
imative, usually expressed as leading terms of formal perturbation series. Moreover, there was a systematic
lack of rigorous approach, leaving aside the domain issue of unbounded operators appearing in the series and
making thus the results unjustified on a mathematically rigorous level. (In part IIT we shall see that this lack
of rigorous approach is in fact fundamental and many of the paradigmatic PT-symmetric models actually do
not possess a regular metric.)

The state of the art at that time motivated the present author to enter the community and introduce a
new model for which the metric operator and other related objects can be computed in a closed form (and in
a rigorous way). The obtained results in this direction are presented in the following subsection. The other
subsections contain our results on a model arising in a stochastic process and on non-self-adjoint graphs.
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2.1.1 Complex Robin boundary conditions
The model and its quasi-self-adjointness

In the joint work [39] (Chapter B]) with H. Bila and M. Znojil, we introduce the operator H, in the Hilbert space
L? ((fa, a)) that acts as the Laplacian in the bounded interval (—a, a) with a > 0 and the only non-self-adjoint
interaction comes from complex boundary conditions of Robin type:

Hotp = =", Y € D(H,) = {¢p € W*?((—a,a)) : ¢ +iap =0at La}, (2.1)

where o € R. Since H} = H_,, the operator H, is not self-adjoint unless a = 0, but it is PT-symmetric in the
sense of (LH). The Sobolev space W22((—a,a)) consisting of functions that belong to L?((—a,a)) together
with their first and second weak derivatives makes H, well defined as an m-sectorial operator with compact
resolvent. Consequently, the spectrum of H,, is composed of isolated eigenvalues of finite algebraic multiplicities
located in a sector in the complex plane.

The eigenvalue problem H,1 = k% admits explicit solutions giving the spectrum

« lf n = 07
O’(Ha) = {ki}n:O with kj = nmw if n>1 (2.2>
2a -

The corresponding set of (unnormalised) eigenfunctions {¢, }52, can be chosen as

() = cos (kn(z +a)) — i ki sin (kn(z + a)) . (2.3)
n
Surprisingly, the spectrum of H, is purely real. However, notice that if « € k1 Z \ {0}, then H, admits an
eigenvalue of geometric multiplicity one and algebraic multiplicity two (a Jordan block); in this case H, cannot
be similar to a self-adjoint operator. Apart from these exceptional values of a, it is shown in [39] that H, is
quasi-self-adjoint. Moreover, using ([LI0) and the explicit form of the eigenfunctions [23), a closed formula for
the metric © satisfying the quasi-self-adjointness relation (3]) is found.
We are honoured that our model (1)) was included by B. Helffer in his new book, ¢f [24, Ex. 13.5].

Alternative formulae for the metric and more

In [36] (Chapter M), an alternative form for the metric is found with help of a backward use of the spectral
theorem. This new idea is inspired by the observation that the eigenfunctions (23) for n > 1 are a sum of
eigenfunctions of the (self-adjoint) Dirichlet and Neumann Laplacians in LQ((fa, a)). In this way, the metric
operator O of [30] is expressed in terms of resolvents of these operators.

In the joint work [46] (Chapter ) with P. Siegl and J. Zelezny (author’s student), using a special normali-
sation of (Z3)) and explicit formulae for the resolvents of the Dirichlet and Neumann Laplacians, we obtain a
particularly simple formula for the metric operator

0=I+K with K(z,y) == ae @) [tan(aa) — isgn(y — )], (2.4)
where K denotes the integral kernel of K. Furthermore, we eventually manage to find a self-adjoint operator
hatp i= =" + 2 x5 (XYY, ), Y €D(hy) = {¢ € W2’2((fa, a)): ' =0at +a}, (2.5)

to which H,, is similar in the sense of (L)) (with a metric © = Q*Q different to (Z4)), where x{'(z) := 1/v2a
is the first eigenfunction of the Neumann Laplacian in (—a, a). Since h, is just a rank-one perturbation of the
Neumann Laplacian, the spectral picture (2.2]) is clearly explained.

In fact, in [46], we proceed in a much greater generality by allowing « in (2.1]) to be complex and achieving
possibly different values at +a (leading thus to a not necessarily PT-symmetric model). General properties of
the similarity transforms to self-adjoint and normal operators are studied in detail.

Physical interpretations

Notice that the self-adjoint counterpart h, of H, given in (23] has the form of the Friedrichs Hamiltonian,
which has been used in various circumstances in quantum mechanics, ¢f [30]. In this way, our work [46] provides
a potential interpretation of the model (Z1]) as an unconventionally represented quantum Hamiltonian.

In the joint work [27] (Chapter [6) with H. Hernandez-Coronado and P. Siegl, we propose another quantum-
mechanical interpretation of the model ([Z1I), this time directly in terms of a perfect-transmission scattering.
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The idea is that the one-dimensional scattering problem —1” 4+ V1) = k2?1 on the whole real line in the regime
of perfect transmission, where k is a positive (wave) number and the scattering potential V : R — R is bounded
and supported in [—a, al, leads to the non-linear problem

—"+Vy=k* in [-a,a],
W —ikp=0 at =+a.

This operator-pencil problem (the boundary condition depends on energy) can be solved by considering the
associated one-parametric (linear) spectral problem
1 :
-+ Vi = in [—a,a],
1/1/ | ¥ = [~a,a] (2.6)
P —tap =0 at +a,

where 1 = p(a) plays the role of eigenvalue and « is a real parameter. Indeed, the energies corresponding to
the perfect-transmission states are found as those points satisfying

pla) = a®.
Clearly, (2.6) is just the eigenvalue problem for H_,, + V with H, being our toy model from (ZI]).

Finally, let us mention that the boundary conditions employed in our model ([27I]) are known as impedance
boundary conditions in electromagnetism. In a quantum-mechanical context, they have been used previously
by H.-Ch. Kaiser, H. Neidhardt and J. Rehberg in [31] to model open systems in semiconductor physics. In their
setting, the parameter i« is allowed to be complex but its imaginary part has opposite signs on the boundary
points such that the system is dissipative. In our case 21, we actually deal with radiation/absorption
boundary conditions in the language of theory of electromagnetic field and the PT-symmetry is reflected in the
gain/loss balance. Related scattering experiments in optics were performed in [4].

Curved spaces

In the joint work [42] (Chapter[7]) with P. Siegl, we consider the Laplace-Beltrami operator in tubular neighbor-
hoods of curves on two-dimensional Riemannian manifolds, subject to complex Robin-type boundary conditions.
We focus on manifolds of constant curvature, when the spectral problem reduces to the study of Sturm-Liouville
operators in L?((—a, a)), subject to boundary conditions of the type of ().

For zero curvature, we recover the pure Laplacian case (Z]). If the curvature is positive, it turns out that the
spectrum is purely real. More precisely, it is proved only for higher eigenvalues, but our numerical simulations
suggest that it is always the case. For negative curvature, we prove that there are also complex-conjugate
eigenvalues. In any case, if the spectrum is simple, it follows that the Sturm-Liouville operator is similar to a
self-adjoint or at least normal operator.

The Pauli equation

In the joint work [33] (Chapter ) with D. Kochan, R. Novdk (author’s student) and P. Siegl, we extend the
model () to operator matrices

subject to general boundary conditions
V' (£a) + AFp(+a) =0,

where b is a real parameter (magnetic field) and the matrices AT € C2?*2 model a possibly non-self-adjoint
interaction. We are again concerned with spectral properties and with the question of quasi-self-adjointness.
A remarkable property of this model is that the time-reversal operator T differs from the complex conjugation
and satisfies 72 = —I (as usual for fermionic systems).

2.1.2 Stochastic physics meets quantum mechanics

In the joint work [34] (Chapter @) with M. Kolb, we apply the ideas of quasi-self-adjoint quantum mechanics to
give an insight into peculiar properties of a stochastic process. Consider a Brownian particle with a constant
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quadratic variation in the bounded interval (—%, %) and wait until it hits one of the boundary points =75. At

the hitting time, the Brownian particle gets restarted in an interior point Fa with a € (—1,1) and repeats the
process at the previous step. The generator of this process can be described by the non-self-adjoint operator

Hip =", Y eDH):={p e W>*(-%,2)): v(-%) =v¢(Za)=¢(3)}, (2.7)

in the Hilbert space L*((—%,Z)).
It has been known to probabilists (including my co-author) that the eigenvalues of this operator are purely
real and that the spectral gap coincides with the second eigenvalue of the Dirichlet Laplacian in LQ((fg, g))

(this is also true for more general models, ¢f [5]). In fact, the eigenvalue problem for ([Z71) can be solved
explicitly. What is the mechanism behind these properties?

In our paper [34], we prove that H is an m-accretive operator with compact resolvent, so that the total
spectrum of H is indeed purely real (for it is composed of eigenvalues only). The main idea is to compute the
adjoint H*, which also enables us to determine the geometric and algebraic multiplicities of the eigenvalues. It
turns out that spectral characteristics of H depends on Diophantine properties of a. If a is irrational, then all
eigenvalues are algebraically simple. If a is rational, then there exist eigenvalues of geometric multiplicity two
and algebraic multiplicity three (Jordan blocks).

In either case, the eigenfunction of H do not form a basis (not even Schauder’s, though the eigenfunctions
are always minimally complete if a is irrational). Consequently, the quasi-self-adjointness relation (3] cannot
hold with bounded and boundedly invertible ©. If a is irrational, however, we show that the weaker relation

H*© = OH (2.8)

does hold with a bounded positive operator © (which is not necessarily boundedly invertible). Consequently,
H is “quasi-self-adjoint” in a generalised sense. Moreover, using the special form of eigenfunctions of the
adjoint H*, we provide a spectacularly simple formula for the metric operator

© = ¢o(¢o,") + Po+ P Py .

Here ¢g is an eigenfunction of H* corresponding to the zero eigenvalue, Fy is the antisymmetric projection with

respect to the middle point 0 of (-7, %), the direct sum is with respect to the decomposition LQ((fg, g)) =
L*((=%,%2a)) ® L?*((3a, %)), P- is the antisymmetric projection with respect to the middle point —Z(1 — a)

272
of (=%, 5a) and Py is the antisymmetric projection with respect to the middle point 7 (1 + a) of (Fa, 5).

2.1.3 Non-self-adjoint graphs

In the joint work [29] (Chapter [[0) with A. Hussein and P. Siegl, motivated by the growing interest in network

models and in quasi-self-adjoint quantum mechanics, we consider the Laplacian on metric graphs, subject

to general (possibly non-self-adjoint) interface or boundary conditions on the graph vertices. We regard the

graphs as an intermediate step between Sturm-Liouville operators on intervals and partial differential operators,

moving naturally from the one-dimensional toy models of Part [l to higher-dimensional structures of Part [Tl
The Hilbert space of a metric graph I' is the direct sum

N

L*(1) .= @ L*((0,a,)) ,

J=1

where N is a natural number denoting the number of graph edges (0,a;), where each length a; is either a
positive number or infinity. The natural number

d := #(unbounded edges) + 2 #(bounded edges)
is called the dimension of the graph. On this Hilbert space, we consider the operator
Hy:=—¢", ¢ eDH):={ypeW?*I): AyY+ By =0},
where 9 is a d-dimensional vector composed of boundary values of 1) and A, B € C¥*4 are arbitrary matrices.
The operator H is self-adjoint if, and only if, AB* = BA*, and this case is well studied in the literature due
to applications in quantum nanostructures (see references given in Chapter [I0). On the other hand, in [29] we
are primarily interested in non-self-adjoint graph realisations, which is essentially an unexplored area.

There are several objectives of our paper [29]. First of all, we propose a new classification of the boundary
conditions, calling the graph regular if A+ ikB is invertible for some k € C, and irreqular otherwise. That this
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classification is indeed useful is illustrated on many ezamples of regular and irregular graphs. The spectrum of
irregular graphs is typically quite singular: either empty or covering the whole complex plane. On the other
hand, we show that the spectrum of regular graphs is neither empty nor the whole complex plane and establish
some general spectral properties about the point, residual and essential spectra. For instance, the closure of
the point spectrum is a discrete set and the residual spectrum exists only for graphs with both bounded and
unbounded edges, and in this case it is a discrete subset of the essential spectrum [0, 00). On compact graphs,
we investigate the existence of a Riesz basis of projectors and similarity transforms to self-adjoint Laplacians.

The most interesting result of [29] is probably the following simple way how to relate the similarity transforms
between Laplacians on certain graphs with elementary similarity transforms between the matrices defining the
boundary conditions. For graphs with bounded edges of the same length, we show that if A’ = G~'AG and
B’ = G7'BG with an invertible matrix G : C* — C?, then there exists a bounded and boundedly invertible
transform Qg : L?(T') — L?(T") such that (¢f (L4)

H =Q5'HQ¢,

where H' is defined as H but with A’, B" instead of A, B. In particular, if H' is self-adjoint (i.e., A’B™* = B’ A™),
then H is quasi-self-adjoint.

2.2 Ad Part II: Waveguides

In this part we collect author’s papers on non-self-adjoint partial differential operators. Chapters [[THIT are
concerned with “genuine waveguides” in the sense of a tubular geometry, while Chapters [I6 [[7 and [I§ are
included mainly because of the similarity with waveguides via the presence of an essential spectrum.

2.2.1 Complex Robin boundary conditions
The model and discrete real eigenvalues

In the joint work [11] (Chapter [[I) with D. Borisov, we extend the toy model (Z1]) to higher dimensions by
considering the two-dimensional operator

Hytp = —Av, ¢ € D(Hy) == {¢p € W*?(R x (—a,a)) : Ozt +iay =0 on R x {£a}}, (2.9)

where a : R — R is a Lipschitz function. Again, since H} = H_,, the operator is not self-adjoint unless
a = 0, but it is a well-defined m-sectorial operator in L? (]R X (—a, a)), which is PT-symmetric with respect to

(PY)(x1,x2) := Y(x1, —x2) and (TY)(x) := ¥(x). In [II] we additionally remark that H, is T-self-adjoint in
the sense that H = TH,7, which generally implies that the residual spectrum of H, is empty.

Assuming that the boundary conditions are homogeneous in the sense that a(x;) = ap € R for all z; € R,
we show that the spectrum of H,, is purely real and essential,

. . T2
0(Hpy) = Oess(Hay) = [ug,oo) with H(Q) := min {ag, (2_a) } .

In [11] we are interested in local perturbations of H,,. Assuming that «(z) tends to a constant «q as |z| — oo,
we show that the essential spectrum of H, coincides with the spectrum of H,,. Our main interest is in the
existence of discrete eigenvalues. Writing a(z1) = ag+¢B(x1) with 3 € CZ(R) and positive ¢, we show that H,
has no eigenvalues converging to u3 as € — 0 provided that ap = 0 or ap fRﬂ > 0. On the other hand, if
o fR B < 0, we show that H, possesses a simple (and therefore real) eigenvalue A, satisfying the asymptotic
formula

Ae = pg — %o ([ B)? + O(?) as e—=0. (2.10)

We also establish existence/absence results in the critical case fR £ = 0 and, if the eigenvalue exists, we improve
the asymptotic formula by finding the term of order €% as well.

The approach of [II] to the discrete spectrum of H, is based on the method of matched asymptotic
expansions. Author’s student R. Novdk later established similar results (also for a three-dimensional waveguide)
by the Birman-Schwinger method [55]. The latter enables one to relax the regularity hypothesis about 3, but
only the low-order asymptotics (ZI0) is found.
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Numerical analysis and non-real eigenvalues

The asymptotic study of [11] leaves open the question whether the model ([2.9]) may possess non-real eigenvalues
as well. To this purpose, in the joint work [47] (Chapter [I2]) with M. Tater, we investigate the existence/absence
of eigenvalues of H, by numerical methods. In addition to obtaining a good agreement with the asymptotic
formula ([ZI0), we identify regimes of ap and 8 for which there exist complex-conjugate pairs of eigenvalues
together with real spectra. We particularly invite the reader to watch the animation on author’s homepage:

http://gemma.ujf.cas.cz/~krejcirik/KT.html

Open problems

Based on the study performed in [I1] and [47] as well as on the previous experience of the author with self-adjoint
waveguides, in the short invited note [38] (Chapter [[3]), we point out the need for a robust method establishing
the existence of eigenvalues for non-self-adjoint operators possessing an essential spectrum. Another open
problem is about the absence of eigenvalues for non-self-adjoint operators (¢f Chapter [I7T).

Thin waveguides and other results

In the joint work [I2] (Chapter [[4) with D. Borisov, we study the operator ([2.9) in the limit when the width
of the waveguides tends to zero. More specifically, we establish the operator convergence
2

H, + a(z1)? (2.11)

w0 Al
in a norm-resolvent sense. Since the operator on the right-hand side is self-adjoint, we obtain a heuristic
support for the existence of real spectra of H,. Moreover, the eigenvalue asymptotics of the self-adjoint
operator coincides with (ZI0). The results of [I2] are more general in the sense that we consider the limit for
an analogue of the model (23) in the layer R4~ x (—a, a) of arbitrary dimension d > 2.

In the joint work [4I] (Chapter [[H) with N. Raymond, J. Royer and P. Siegl, we extend the convergence
result (ZII)) to the case of the Laplacian —Af in an a-tubular neighbourhood of an arbitrary hypersurface ¥
in R, subject to more general Robin boundary conditions. For illustration, restricting the very general result
of [1] to the two-dimensional case of 3 being a curve and keeping the boundary conditions as in (23], we can

write
2

d
— Al — 1= + a(s)? —ia(s) k(s) (2.12)

in a norm-resolvent sense, where x and s is the curvature and arc-length of 3, respectively. Comparing (212)
with 2IT), we clearly see the role of curvature on spectral properties of nga asa— 0.

Let us emphasise that the objectives and results of [4I] are much more universal than presented here. We
actually provide an abstract approach for obtaining dimensional reductions via the norm-resolvent convergence.
Our applications to the semiclassical Born-Oppenheimer approximation, shrinking tubular neighborhoods of
hypersurfaces, etc, are just illustrative examples of the general scheme.

2.2.2 Singular interactions

In the joint work [35] (Chapter [I0) with S. Kondej, we consider the operator formally written as
H.:=-A+a;0s, +a_ds . in L*RY), (2.13)

where a4 are two complex numbers and X4, := {g £ en(q) : ¢ € o} are parallel surfaces at the distance € of
the boundary Yo := 99 of a smooth bounded open set Q C R%, d > 1, with n : ¥9 — R? denoting the outer
unit normal to €. It is standard to give a rigorous meaning to the Schrédinger operator with Dirac interactions
of the type ([ZI3) as an m-sectorial operator associated with a closed quadratic form. In this way, (ZI3) can
be considered as an extension of a curved variant of ([Z3)) to the whole space (in all dimensions). Contrary
to (2.9), the singular interaction of (2I3]) may achieve different values on X4, but it is assumed to be constant
on each of the parallel surfaces. The operator H. is non-self-adjoint unless the constants a are real.
It is natural to expect that H. will converge, in a certain sense, to the operator

Hy:=—-A+(ay +a_)ds, in  L*R?Y).

The purpose of the paper [35] is to show that the convergence holds in the norm-resolvent sense and to
establish asymptotic expansions for semisimple discrete eigenvalues of H, as ¢ — 0. We stress that, because of
the singular dependence of H. on €, the eigenvalue asymptotics is not a consequence of analytic perturbation
theory and a non-trivial rigorous approach is needed to reveal a geometric term in the asymptotic formula.

In the self-adjoint case, the results of [35] quantify the effect of tunnelling in coalescing heterostructures.
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2.2.3 Absence of eigenvalues

In the joint work [20] (Chapter [[7)) with L. Fanelli and L. Vega, we consider electromagnetic Schrédinger
operators
Hay:=(—iV+A?+V in L*RY), (2.14)
where A4 : RY — R? is the magnetic (vector) potential and V : R? — C is the electric (scalar) potential. In
recent years, there have been an enormous increase of interest in Schrodinger operators with complex poten-
tials, particularly motivated by the attempts to extend the Lieb-Thirring inequalities for the eigenvalues to the
non-self-adjoint case (see references in Chapter [I7). The main objective of [20] is to provide sufficient condi-
tions which guarantee the absence of eigenvalues of H,4 v, including eigenvalues embedded in the continuous
spectrum.
The first result of [20] is based on the Birman-Schwinger principle and it shows that the smallness form-
subordinated condition

o<1, wew®), [ ViwP<af [vuP (2.15)
R3 R3

implies that the spectrum of the purely electric operator Hy v in three dimensions coincides with the spectrum
of the free Hamiltonian,
o(Ho,v) = 0c(Ho,v) = [0,00). (2.16)

In particular, the point and residual spectra of Hyy are empty. Condition ([ZI5) is an improvement upon
existing results in the literature (¢f [2I]), in particular potentials with critical singularities satisfying |V (x)| <
a/(4|z|?) can be included. It is also an improvement upon an analogous result in the self-adjoint case stated
in terms of Rollnik-class potentials (¢f [56, Thm. XIII.21]). We leave as an open problem whether the d-
dimensional version of ([ZIH) is sufficient to conclude with (ZI8) for every d > 3.

The other sufficient conditions of [20] are based on the method of multipliers and they imply the absence
of eigenvalues of the operator H4y in all dimensions d > 3 and possibly under the presence of magnetic
field. By this method, we have not been able to fully reach condition (ZI8). On the other hand, some of the
alternative hypotheses are not “smallness”, but rather sort of “repulsiveness” conditions. Let us also stress
that the conditions on the magnetic field are stated in a gauge-invariant form.

2.2.4 Non-accretive Schrodinger operators and Agmon-type estimates

In the joint work [40] (Chapter[I8) with N. Raymond, J. Royer and P. Siegl, we also consider the electromagnetic
operator H, y from (2I4), but now it can be restricted to a subdomain Q2 C R¢, subject to Dirichlet boundary
conditions.

Our main interest is to provide a closed realisation of H,4 y with non-empty resolvent set in non-accretive
situations, i.e. when the numerical range of the operator is not contained in a complex half-plane. It typically
happens if the real part of V' is not bounded from below. An illustrative example is given by the operator

2

d
— 2 +iz* in L*R), (2.17)

for which the numerical range covers the whole complex plane. In [40], we are able to give a meaning to (Z.17)
and even to potentials with a much wilder growth at infinity and/or oscillations.

Our approach is based on the generalised Lax-Milgram-type theorem of Y. Almog and B. Helffer [2] involving
a new idea of weighted coercivity. We essentially require that the potentials are smooth and

YV (@)| +VB(@)| = o (([V(@)| +|B@))*” +1),

(RV(2))- = oIV (@)| +|B(@)| + 1),

as |z| — oo, where (RV')_ is the negative part of RV and B := dA is the magnetic tensor. Notice that (RV')_
can be compensated not only by SV, but also by the magnetic field. Again, we stress that our conditions on
the electromagnetic potentials are stated in a gauge-invariant form.

The ultimate goal of the paper [40] is to show that any eigenfunction ¢ corresponding to a discrete eigen-
value A satisfies the Agmon-type exponential decay

e's W@y e [2(),
where € € (0,1) is arbitrary and dag is the Agmon distance satisfying

[Vdag(@)* = (11[V(2)] = RA = [SA] = 72)

with suitable constants ;3 > 0 and 2 € R. For ([ZI7) the result yields e5|x|5/21/) € L?(R) with some positive J.
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2.3 Ad Part III: Pseudospectra

Now we probably turn to the most significant results of the author. The next papers to be presented are
interlinked by the appearance of the mathematical notion of pseudospectra.

2.3.1 The semiclassical fall of PT-symmetric quantum mechanics
On the metric of the imaginary cubic oscillator

The imaginary cubic oscillator (L8] can be considered as the fons et origo of PT-symmetric quantum mechanics
whose origin can be dated to 1998 [6]. The problem of similarity of the operator (L6) to a self-adjoint operator
was investigated in several works, see, e.g., [7, 53]. However, due to the complexity of the task, the approach
used in these papers was necessarily formal, based on developing the metric into an infinite series composed of
unbounded operators. There existed no proof of quasi-self-adjointness of the imaginary cubic oscillator as late
as 2012, when an important meeting of the PT-symmetry community took part in Paris [66]. The reason was
very simple: ([LL6]) is not quasi-self-adjoint, at least not in the sense of (L3). This property was established
in the joint work [6I] (Chapter [[9) with P. Siegl. More specifically, denoting by H the maximal (m-accretive)
realisation of (LG,

(Hy)(z) = —¢"(2) +iz*y(z), ¢ € D(H) = {y € L*(R): Hy € L*(R)}, (2.18)

we prove the following important facts about (L6]):

1. There exists a bounded metric.  More pre- 2. The metric is necessarily singular. That is, no
cisely, there exists a positive bounded operator © bounded metric operator © with bounded inverse
such that the weaker quasi-self-adjointness rela- satisfying (2.8]) exists.

tion (Z8) holds.

Mathematically, the first (positive) property is a consequence of the completeness of eigenfunctions of H
that we prove as a new result in [61]. The second (negative) property means that the eigenfunctions do not
form a Riesz basis. We conclude that the paradigmatic example (L6) is not relevant as a representative of a
physical observable in quantum mechanics.

The original idea of [61] to establish the absence of bounded and boundedly invertible similarity transfor-
mation of H to a self-adjoint operator is based on the concept of pseudospectra. More specifically, we show
that the pseudospectrum of H is not trivial in the sense that the inclusion (ILI3)) is violated. By contradiction,
let us assume that the pseudospectrum of H is trivial. Performing the scaling (Upt))(z) := h~Y/%¢(h=%/%x)
with any positive number A, we cast H into a semiclassical operator

2

d
UnHUG ' =™ Hy,  where  Hpi= —h*—— +ia®.
T

Then, for any fixed z € C with Rz > 0 and 3z # 0, we have

c S C
h=6/5|Sz| ~ dist (h=9/52,0(H))

> (H = n=%P2) 7Y = k% ||(Hp = 2) | 2 en ",

where the first inequality follows from the fact that the spectrum of H is real, the second inequality is due to
the assumption that the pseudospectrum of H is trivial, the equality employs the scaling above and the last
inequality (the crucial step) follows from known semiclassical results for non-self-adjoint Schrodinger operators
that ensure that the resolvent of H), diverges faster than any power of A~ as & — 0. More specifically, it follows
from E. B. Davies’ result [I5] that there exists a positive kg and for each positive n a positive constant ¢, such
that, for all /i € (0, hp), the last inequality holds. Comparing the extreme left- and right-hand sides of the chain
of inequalities above, we get a contradiction for all sufficiently small A. Therefore the spectrum of H cannot
be trivial.

Let us finally mention that our result from [61] about the absence of Riesz basis for (2.I8) was later improved
by R. Henry [25] who showed that the eigenfunctions do not even form a (Schauder) basis. The proof that
the pseudospectrum of the modified model with a harmonic potential added to the imaginary cubic term is
non-trivial was given by author’s student R. Novak [54].
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Transition from spectra to pseudospectra

The paper [61] was a brief account for the physics community in which we focus on the paradigmatic exam-
ple ([LH). However, the methods of the paper, namely the disproval of quasi-self-adjointness based on the
semiclassical pseudospectra, does not restrict to the particular model. Moreover, the pseudospectra instead of
spectra universally seems to be the right concept to describe the subtleties of quantum mechanics with non-self-
adjoint operators. This was our motivation to follow [61] with the joint work [45] (Chapter R0 with P. Siegl,
M. Tater and J. Viola, in which we make a sort of overview of the notion of pseudospectra in the context of
quasi-self-adjoint quantum mechanics. The abstract results are illustrated on many concrete examples familiar
from PT-symmetric quantum mechanics and elsewhere. We also perform a numerical analysis of the models.
To briefly summarise the usefulness of the concept of pseudospectra as advocated in [45], let us have a look
at Figure ZIl On the left picture, there is a numerically computed pseudospectrum of the imaginary cubic
oscillator (ZIF). The blue curves correspond to the level lines ||(H — z)7!|| = ¢~! in the complex z-plane for
different small values of e. We clearly see that the pseudospectrum can be located very far from the spectrum
(the red dots corresponding to the real eigenvalues), resulting therefore in spectral instabilities due to (L)) in
accordance with our semiclassical analysis above. The pseudospectrum is thus obviously non-trivial and already
this simple numerical check suggests that the operator cannot be quasi-self-adjoint. On the other hand, the
right picture depicts numerically computed pseudospectra for a self-adjoint analogue of (ZI8) and we clearly
see that the e-pseudospectrum is just the e-tubular neighbourhood of the spectrum. For a quasi-self-adjoint
operator, the pseudospectrum should be located at least in a tubular neighbourhood of the spectrum, ¢f (LI3)).

40
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Figure 2.1: Pseudospectra of cubic oscillators. (Courtesy of Milos Tater.)

One of the main new results obtained in [45] is the proof of a non-trivial pseudospectrum for the imaginary

shifted harmonic oscillator
d2
—q2t (x+4)?* in  L*R) (2.19)

considered on its maximal domain. Notice that the scaling as above does not help, because the imaginary
part of the potential is a small perturbation of the real part, so the known results about the semiclassical
pseudospectrum do not apply here. Nevertheless, the desired result can be obtained by a standard construction
of semiclassical pseudomodes even in this case.

2.3.2 The imaginary sign potential
In the joint work [26] (Chapter 2I)) with R. Henry, we introduce a new non-self-adjoint PT-symmetric model
a2
Hi=-—5+ isgn(z) in  L*(R) (2.20)

with natural domain D(H) := W22(R). Our main motivation to consider this operator is the fact that it cannot

be cast to a semi-classical operator. Moreover, the known techniques to study the semiclassical pseudospectra

were restricted to Schrodinger operators with smooth (at least continuous) potentials. On the other hand, the

simplicity of the model enables one to study the spectral and pseudospectral properties of H in a great detail.
It is easy to see that the numerical range of H coincides with the closure of the set

§:=1[0,+00)+i(—1,1).
It is also possible to show that the spectrum of H is given by two complex semi-axes

0(H) = 0uss(H) = [0, +00) + i {—1,+1}.
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By constructing the resolvent kernel of H, we show a much less evident fact that H possesses a highly non-trivial
pseudospectrum inside 8. Indeed, for each z € 8, there exists a positive constant C' depending only on $z such
that

C'Rz < |(H -2 <CRz. (2.21)

Consequently, the resolvent norm tends to infinity as Rz — oo inside 8.

In [42] we also study the influence of [Z2T) on spectral instabilities of H. More specifically, we show that
the perturbed operator H + ¢V with V' : R — C may possess discrete eigenvalues with the distance to the
spectrum of H bounded from below by a positive constant (independent of ¢) for all small e. Explicit examples
of piece-wise constant and Dirac potentials are presented.

2.3.3 Pseudomodes

An equivalent characterisation of the pseudospectrum ([LTT)) of a closed operator H is given by
oe(H)=o(H)U{z € C: 3y e D(H), |[(H-2)¢|<e|v]},

where the number z and the vector ¢ are respectively called the pseudoeigenvalue (or approzimate eigen-
value) and pseudoeigenvector (or pseudomode). Locating the pseudospectrum of H thus consists in finding the
spectrum and the set of pseudoeigenvalues (the latter depends on ).

Given a complex-valued function V € L (R), let us consider the Schrédinger operator

d2

Hi=——
dz?

+V(r) in  L*R) (2.22)
on its maximal domain. There exists by now a quite extensive literature on semiclassical pseudospectrum of
non-self-adjoint Schrédinger operators, see notably the pioneering work [I5] and the subsequent improvements
[T7, 67]. This approach consists in introducing an artificial small parameter A2 in front of the kinetic part of
the potential
d2
Hyp:=-h*—+V(z) in L*R) (2.23)
dx?
and in looking for semiclassical pseudomodes ¥y and pseudoeigenvalues zp of Hp, which means that the limit
[(Hr — zr)¥n|l/l|¥k]| — 0 holds as h — 0. This construction is perturbative, based on the Liouville-Green
approximation, also known as the JWKB method. By scaling for some special potentials (like for instance
for the imaginary cubic oscillator (6] as explained above), it is possible to use these semiclassical pseudo-
modes for showing that there are pseudomodes corresponding to large energies of the original operator (Z22)).
Unfortunately, this scaling approach is typically limited to polynomial-type potentials. Moreover, the stan-
dard perturbative approach requires that the potential V is at least continuous to construct a semiclassical
pseudomode.

The objective of our joint paper [44] (Chapter 22)) with P. Siegl is to develop a systematic non-semiclassical
approach for constructing pseudomodes of ([222) corresponding to large pseudoeigenvalues. We achieve in
covering a wide class of previously inaccessible potentials, including discontinuous ones. Applications of the
results to higher-dimensional Schrédinger operators are also discussed in [44].

In fact, we were initially motivated by the simple example ([220)) where the potential is discontinuous and,
moreover, the operator does not have a semiclassical counterpart (meaning that the version of (Z23]) with
V(z) := isgn(x) is just equivalent to (Z22))). However, much more general potentials are covered by [44]. Tt
is also worth mentioning that in this paper we eventually solve an open problem raised during the 2015 AIM
workshop [I, Open Problem 10.1].

The main approach of [44] is again based on the JWKB method, but now we consider the inverse of the
spectral parameter z € C as a small parameter. The idea is as follows. If V were constant, i.e. V(x) = V for
all z € R, exact solutions of the differential equation —g” + Vg = zg would be given by

eiifo“” Vz—Vo dt ) (2.24)

For a variable potential V', we still take (2.24) with Vj replaced by V as a basic Ansatz to get approximate
solutions to HY = z1¢ as Rz — oco. Nonetheless, usually more terms are needed for unbounded potentials or
when V is sufficiently regular and more information on the decay rates are sought. In general, we therefore
take

g(x) = exp (— 3w zmx)) (2.25)

k=-1
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with some natural number n > 0. Here functions v, are determined by n + 1 ordinary differential equations
obtained after requiring that the terms in the expression G(z) := —¢g” + Vg — zg corresponding to the lowest
powers of z vanish. Not surprisingly, ¥_; is determined by and eikonal-type equation an reads v _1(z) :=
iz~ 1/2 fol vz =V (t)dt. The goal is to end up with a negative power of z in G(z) representing the decay of the
pseudomode as Rz — co. For larger n one gets a better decay rate, but the price to pay is a higher regularity
of V.

To obtain admissible pseudomodes, the procedure above is additionally complicated by employing a z-
dependent cut-off of the basic Ansatz ([2.24). There are also some other technical complications, typically
related to unbounded potentials. In fact, one of the main contributions of [44] is the determination of a
right class of admissible potentials for which the perturbative scheme works. Instead of presenting the general
hypotheses to be found in Chapter 22] here we just mention the following illustrative examples covered by [44]:
all polynomial potentials of the form V (z) := 2 4+iz” with v > 0 odd and v > (8—2)/2 and their perturbations
(in particular (6l and (ZI9) are covered); exponential potentials of the form V' (x) := acosh(z) + ¢sinh(z)
with a > 0; smooth version V(z) := i arctan(z) of the imaginary sign potential ([2.20)); and many others.

To include discontinuous potentials, we develop a robust method of z-dependent mollifications. This new
idea enables us to particularly cover the imaginary sign potential (Z20) and even its unbounded step-like
versions.

Finally, let us mention that the semiclassical pseudomodes follow as a special case of our more general
approach.
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