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Abstract
The term coevolution describes the situation when two or more species or biomole-
cules reciprocally affect each others’ evolution. On the protein level, it is thought
to be the main mechanism ensuring correct folding, interactions and function of
a protein, and it can be observed both on the level of interacting protein families
and individual amino acid residues. Coevolution studies have been proved to be
a powerful tool for prediction of protein structure, function, interaction partners,
etc. In this thesis, different algorithms used for detection of protein coevolution
are described, as well as their applications and limitations.

Keywords: coevolution, protein family, protein structure prediction, interac-
tion partners, correlated mutations, mirrortree, mutual information, direct cou-
pling analysis
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Abstrakt
Slovem koevoluce popisujeme stav, kdy dva či více druhů nebo biomolekul vzá-
jemně ovlivňují svou evoluci. Na proteinové úrovni je koevoluce považována za
jeden z hlavních mechanismů zajišťujících správné sbalení, interakce a funkci pro-
teinů. Pozorována může být jak na úrovni interagujících proteinových rodin, tak
na úrovni jednotlivých aminokyselinových residuí. Studium koevoluce může být
užitečným nástrojem při predikci struktury proteinů, jejich funkce, interakčních
partnerů, apod. V této práci jsou popsány algoritmy, které jsou používány k
detekci koevoluce proteinů, stejně jako jejich možné aplikace a omezení.

Klíčová slova: koevoluce, proteinová rodina, predikce struktury proteinů, in-
terakční partneři, korelované mutace, mirrortree, vzájemná informace, analýza
přímého párování

iv



Contents

1 Introduction 1
1.1 What is coevolution? . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 A brief history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Coevolution of proteins . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Objectives of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Residue-residue coevolution 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Local methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Test statistics . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Properties of amino acids . . . . . . . . . . . . . . . . . . 8
2.2.3 Detecting groups of coevolving residues . . . . . . . . . . . 9
2.2.4 Assessment of significance . . . . . . . . . . . . . . . . . . 9

2.3 Global methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Maximum entropy approach . . . . . . . . . . . . . . . . . 10
2.3.2 PSICOV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Bayesian network approach . . . . . . . . . . . . . . . . . 11

2.4 Fusion methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Specifics of detecting inter-protein coevolving pairs . . . . . . . . 12

3 Protein-protein coevolution 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Coevolution of protein families . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Phylogenetic profiling . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Tree similarity . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 Enrichment of correlated mutations . . . . . . . . . . . . . 17
3.2.4 MSA-free approaches . . . . . . . . . . . . . . . . . . . . . 17

3.3 Coevolution of individual proteins . . . . . . . . . . . . . . . . . . 18
3.4 Fusion methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Applications of coevolution methods 19
4.1 Residue-residue level . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Protein-protein level . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Limitations 22

6 Conclusion 24

List of Abbreviations 25

Bibliography 26

v



1. Introduction
1.1 What is coevolution?
The term ‘coevolution’ is commonly defined as ‘reciprocal evolutionary change in
interacting species’ [1], i.e. it describes the situation when two or more species
or biomolecules reciprocally affect each others’ evolution. Coevolution may be
observed at the level of:

• Species: Coevolution is the underlying principle of the so called ‘Red
Queen hypothesis’ [2], which describes e.g. the relations between a host
and a parasite, or between symbiotic species. It is also the underlying
mechanism of the phenomenon of mimicry [3, 4].

• Populations: The gene pool of a population may be adapted so that an
average individual has as high fitness as possible. This was described e.g.
by T. Dobzhansky for populations of Drosophila pseudoobscura [5, 6].

• Chromosomes: Coevolution operating on chromosomal level is not very
common, because in most cases chromosomes are not inherited as a whole
due to recombination. However, if recombination is prevented by massive
chromosomal changes (e.g. inversions), coevolution of chromosomal types
may occur as described by Dobzhansky [5, 6].

• Biomolecules: Physically interacting and/or functionally related biomo-
lecules (proteins, DNA, RNAs, etc.) tend to have similar evolutionary his-
tories [7, 8].

• Residues: Finally, coevolution is acting on functionally or physically in-
teracting residues (amino acids, nucleotides) of biomolecules, typically to
maintain the function or structure of the molecule [9, 10].

1.2 A brief history
The basic description of a coevolutionary process may be found already in the
works of Charles Darwin: in the Origin of Species [11] and mainly in his work
on orchids and their pollinators [12]. Here Darwin describes orchid Angræcum
sesquipedale (now also known as Darwin’s orchid; see figure 1.1(a)) from Mada-
gascar which has an extremely long nectary (up to 30 cm) with only the lower
4 cm filled with nectar. Darwin suggests that there must exist a moth with
proboscis approx. 26 cm long in Madagascar (no such moth was known at that
time) and depicts the mutual dependence of the moth and the orchid on each
other: ‘If such great moths were to become extinct in Madagascar, assuredly the
Angræcum would become extinct.’ In 1903 such a moth was really discovered by
Walter Rotschild and Karl Jordan and named Xanthopan morganii praedicta [13]
(see figure 1.1(b)).

In 1879 Fritz Müller was the first one to describe the already known phe-
nomenon of mimicry by means of natural selection, and thus coevolution [3],
including also quantitative statements about the benefit of involved species with
respect to relative population sizes.
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(a) (b)

Figure 1.1: Angræcum sesquipedale (a) and its pollinator Xanthopan morganii praedicta
(b). The existence of an orchid with an extremely long nectary led Darwin to prediction
of a moth with an equally long proboscis. Both pictures downloaded from Wikimedia
Commons (https://commons.wikimedia.org).

The first description of coevolution operating also at lower than species level
was made by Theodosius Dobzhansky in the middle of 20th century [5, 6]. He
studied different chromosomal types of Drosophila pseudoobscura. In natural
populations, carriers of different chromosomal types differed in their fitness, and
heterozygotes showed higher fitness than homozygotes (phenomenon known as
heterosis). But interestingly, no heterosis effect occurred when flies from two
isolated populations were crossed. Dobzhansky suggests that the chromosomal
types in a population are ‘coadapted’ so that heterozygotes have higher fitness.

The term ‘coevolution’ is usually attributed to Paul Ehrlich who studied re-
lations between butterflies and their food plants and defined coevolution as ‘re-
ciprocal selective responses between ecologically closely linked organisms’ [14].

1.3 Coevolution of proteins
Cellular processes are mostly sustained by protein interactions and protein-cataly-
zed reactions. In general, both of these processes are highly specific: proteins
recognize very limited range of targets and bind them in highly regular manner,
and the enzymes are specialized to perform one or only a few reactions. The
specificity of the interactions is determined by structural and physicochemical
properties of the protein. As a result, the sequence and structure of the proteins
are under certain evolutionary constraints [15, 16]: The amino acids must pack
correctly against each other to sustain such a structure, that the protein can
interact with (and only with) correct partner in a correct way; the amino acids
in the catalytic center must perform the correct reaction, so that the whole bio-
chemical pathway the protein is involved in will not stop, etc. As a result, neither
the amino acid residues, nor the whole proteins act in isolation, and coevolution

2

https://commons.wikimedia.org


may be observed both on the level of individual amino acid positions and on the
level of whole proteins [7, 9, 10].

However, the process of speciation, common to all protein families, causes
evolutionary histories of all protein families to look somewhat similar. As a re-
sult, correlations resembling the signature of coevolution may be observed even
for proteins/residues which are not coevolving at all. Thus, if we want to search
for coevolving proteins/residues, we must carefully distinguish the true coevolu-
tionary signal from the ‘phylogenetic noise’.

In this review, we will describe different approaches of coevolution detection,
as well as their applications and limitations. All of these topics will be discussed
on the level of both protein-protein and residue-residue interactions.

1.4 Terminology
Throughout the thesis, we will use the following terminology:

• Words residue, site or position all refer to a position in the protein primary
sequence, regardless of the amino acid type occurring there; we suppose
that a given residue is homologous throughout the whole protein family.

• The row of a multiple sequence alignment (MSA) corresponds to the pri-
mary sequence of a single protein; the column corresponds to amino acids
occurring at given position in individual proteins.

• The size of an MSA refers to number of sequences, i.e. number of rows; the
length to the length of these sequences, i.e. number of columns.

• Intra-protein pairs are pairs of residues located both in one protein molecule;
inter-protein pairs are pairs of residues coming one from one protein and
second from another one.

1.5 Objectives of the thesis
The objectives of this thesis are:

• to review different approaches for detection of protein coevolution, both for
protein-protein and residue-residue interactions,

• to discuss the reliability of these methods, and
• to show the possible applications, as well as limitations of coevolution pre-

diction.
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2. Residue-residue coevolution
2.1 Introduction
An amino acid residue is the smallest unit on which evolution may operate in a
protein. Each site’s evolution is constrained by its relations with plenty of other
residues: the residue must pack correctly against them, may cooperate with them
to perform the catalytic activity of the protein or be crucial in binding or recog-
nition of other macromolecules, etc. [17]. A mutation of the residue then changes
also the ‘evolutionary landscape’ of these related residues – mutations that would
be highly unfavourable previously may become advantageous and vice versa. In
other words, a substitution at one site will potentially affect the substitution
rates at other sites, and the mutations at these sites will tend to cluster together
[18]. This mechanism is called compensatory mutations and it is used for the most
commonly used definition of amino acid coevolution. According to this definition,
two sites are coevolving if they undergo compensatory mutations.

In general, protein sequence changes much more rapidly than its structure [19].
Compensatory mutations thus most often compensate for the changes in volume,
charge or hydrophobicity of amino acids, ensuring thus the correct folding and
function of the protein. Experimentally, they were observed in many studies, e.g.
[20, 21, 22, 23, 24, 25]. The compensatory mutation may occur either in the same
protein or in its interaction partner and complicated chains of interactions may
lead to compensatory mutations occurring at spatially distant residues, not only
at residues being in direct contact [23, 26, 27].

Since late 1980’s several research groups have computationally studied the
phenomenon of intra-protein compensatory mutations (e.g. [28, 29, 30, 31]).
Technical differences in their approaches led to somewhat conflicting results re-
garding the mechanism, importance and intensity of this phenomenon. However,
all of them concluded that residues showing similar substitution patterns are
generally closer to each other in the three-dimensional structure than average.

Studies searching for inter-molecular pairs of residues showing correlated mu-
tations are less common (e.g. [32, 33, 34, 35]). However, they also show that
residues with similar substitution patterns tend to be in closer proximity than
average. Nonetheless, not all protein-protein interfaces do show coevolution [35].

However, there exists also a broader definition of coevolution. According to
this definition, coevolution is viewed simply as similarity of evolutionary histo-
ries [36]. Of course, compensatory mutations cause the evolutionary histories to
mirror each other, and are thus one of the possible causes of the coevolution in
the broader sense. Another possible cause of such similarity is a situation when
structurally or functionally important regions are changing simultaneously in or-
der to obtain new function, e.g. after gene duplication [37]. Yet another source
of coevolution may be so called heterotachy. Heterotachy is defined as within-site
variation in substitution rate over time [38]. If some structural or functional con-
straints are relaxed in a lineage, residues involved in these constraints may mutate
more freely, and thus they cumulate mutations. This may be then observed as
correlated (i.e. simultaneously happening) mutations, although the mutations
are not functionally dependent on each other [36].
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When searching for coevolving residues, we usually want to define coevolu-
tion in the narrower sense, as compensatory mutations carry the structural and
functional meaning we are usually looking for. However, it is not easy (if not
impossible) to distinguish true compensatory mutations from other events which
are exhibited similarly.

In the following sections, we will give an overview of the methods used for
detection of coevolving residues. They will be divided into two groups: older local,
covariance-based methods and newer global approaches. The most important
difference between these two groups is that while the older methods simply look
at one pair of residues at a time, compute a test statistics and based on its value
mark the pair as coevolving or not, the newer ones are optimizing the whole set of
possible relations. As a result, the global methods are able to disentangle which
of the observed correlations stem from direct physical contact of given residues
and which do not. Of course, most of the modern approaches use some of the
older ones at some time in the computation.

Selected implementations, available either as web servers or downloadable pro-
grams, of the below described algorithms are listed in table 2.1, and comparison
of their prediction accuracy is depicted on figure 2.1 – both can be found at the
end of this chapter.

2.2 Local methods
Detection of coevolving sites is naturally possible only if we have some (at least
indirect) information about the evolutionary history of the protein family. This
information is usually represented by an MSA, some methods also use a phyloge-
netic tree. The approaches for the local detection of correlated mutations further
differ by the statistics used to measure non-independence (e.g. correlation coef-
ficient, mutual information), by the way they account for biochemical properties
of different amino acids (if they do), the size of detected groups and the way they
assess significance of the results. In the following sections, we will briefly discuss
all of the points mentioned above.

2.2.1 Test statistics
Here, we will shortly introduce some of the test statistics commonly used in
the local detection of coevolution. We will focus mainly on those of them that
proved to be useful and thus they are used also in the contemporary methods of
coevolution detection.

In the following text, N is the number of sequences in the MSA, p[i] is the
amino acid located at position i in protein p, s(A, B) is the similarity of amino
acids A and B (given by an amino acid similarity matrix, see section 2.2.2), vi is
a vector of length N of some physicochemical property (e.g. volume, hydropho-
bicity; see section 2.2.2) of amino acids at position i and P (X i) is the probability
of finding amino acid X in the i-th column.

Pearson correlation coefficient [30, 39] Degree of coevolution Rij between
residues i and j may be computed as weighted Pearson correlation coefficient of
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the pairwise similarities of amino acids at positions i and j:

Rij = 1
N2

N∑
p=1

N∑
q=1

wpq(s(p[i], q[i]) − µi)(s(p[j], q[j]) − µj)
σiσj

(2.1)

where wpq is a measure of distance of the p-th and q-th sequence (e.g. fraction of
residue mismatches over the whole alignment), µi is the mean value of pairwise
similarities of residues at position i and σi is their standard deviation.

Equation 2.1 may be modified e.g. by using physicochemical properties of
amino acids instead of their pairwise similarities [39], by omitting the weighting
by wpq [40, 41], or by replacing the similarity values with their ordinal ranking
number [42].

OMES [24, 43] Observed Minus Expected Squared (OMES) statistics mimics
the χ2-test, well known from statistics.

The score Rij for columns i and j is given by

Rij =
∑
X,Y

(Nobs − Nexp)2

N
(2.2)

where X and Y go over all distinct amino acids occurring in columns i and j,
respectively, Nobs is the number of times each distinct pair was observed (X in
column i and Y in column j) and Nexp is the number of times we would expect
residues X and Y to co-occur in columns i and j, respectively, given their single
occurrences in columns i and j. The value of Nexp may be computed as follows:

Nexp = NXiNY j

N
(2.3)

where NXi is the number of times amino acid X occurs in column i and NY j is
the number of times amino acid Y occurs in column j.

Statistical coupling analysis [44, 45, 46] Statistical coupling analysis (SCA)
is an example of a method based on a perturbation of the MSA. For each column i
of the MSA, we construct a subalignment as follows: Let X be the most prevalent
amino acid in column i, then the subalignment is composed from only those
sequences in which there is X on i-th position. In other words, we fix i-th amino
acid to X and then we examine how the composition of other positions has
changed.

In the original publications [44, 45, 46], correlated mutation score ∆Gij was
expressed as an ‘energetic term’ mimicking the equation for Gibbs free energy.
The idea was that it should represent the degree of thermodynamic coupling
between residues i and j [44]. However, no such meaning was confirmed in latter
studies [41, 47], and thus the equation was simplified to [47]:

∆Gij =
√∑

X

(ln P (X i|δj) − ln P (X i))2 (2.4)

where X goes over all amino acids, P (X i|δj) is the probability of finding amino
acid X in column i in the subalignment pertubated according to column j, and
the probability P (X i) is estimated by the corresponding frequency.
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The idea of MSA perturbation was used also in the algorithm of Dekker et al.
[48]. They introduce ‘explicit likelihood of subset covariation’, a statistics that,
briefly speaking, measures what part of subalignments of a given size would have
the same composition in individual columns as the observed subalignment.

Mutual information [49, 50, 51] Mutual information (MI) measures how
much information one random variable provides about another one [52]. Mutual
information between residues i and j is computed as follows:

MIij =
∑
X,Y

P (X i, Y j) log P (X i, Y j)
P (X i)P (Y j) (2.5)

where X and Y go over all amino acids occurring in columns i and j, respectively,
and the probabilities are estimated by the corresponding frequencies.

The simple MI was shown to perform relatively poorly in comparison with
the other covariance-based methods [33, 41, 53] (see also figure 2.1(a)). However,
modifications accounting for the noise generated by the shared evolutionary his-
tory of all sequences, small number of observations and data redundancy were
suggested [54, 55], and these improved its overall performance. Nowadays, MI
with the corrections is probably the most often used method for detection of
correlated residues in the modern algorithms (see section 2.3 for details).

Mapping substitutions on phylogenetic tree [31, 36, 37] The main pit-
fall of the previously described covariance-based methods is their inability to
distinguish the functional signal (resulting from true coevolution) from the sig-
nal generated only because of the shared history of all sites (see also figure 5.1).
Detection accuracy may be increased by mapping the substitution events on the
phylogenetic tree, which allows us to compare only those changes that happened
at the same evolutionary interval [37].

First of such methods was proposed in 1994 by Shindyalov et al. [31]. Let us
have an MSA of length L and a corresponding phylogenetic tree with K branches
and (K − 1) vertices. Leaves of the tree correspond to the sequences from the
MSA, inner vertices to the ancestral sequences (predicted when computing the
tree). Define matrix M of dimensions L × K as follows:

Mik =

⎧⎨⎩1 if the amino acids at position i differ at the ends of k-th branch,
0 otherwise

(i.e. multiple or back mutations are not taken into account).
Substitutions at positions i and j are told to be correlated if they occur on

the same branch k of the phylogenetic tree, i.e. if MikMjk = 1. The total number
of correlated mutations for pair i and j is then simply the sum over all branches,
and using probability theory, we can estimate the probability of observing this
number of correlated mutations by chance.

This approach was then transformed several times. Instead of assigning 1/0
value to each branch of the tree, we can assign physicochemical distance of amino
acids observed at the ends of the branch [36, 37, 56], or we can estimate the true
number of substitutions (including back and multiple mutations) [36, 56]. As the
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ancestral sequences in the inner nodes of the tree are only estimated, reliability of
the prediction may be increased by averaging the number of substitutions over all
possible pairs of ancestral states [36, 56]. The similarity of substitution histories
of residues i and j may be computed as correlation coefficient [36, 37, 56].

Other approaches for mapping substitutions on the phylogenetic tree include
Bayesian mutational mapping [57] or simulation of the evolution by Markov chain
process followed by maximum likelihood [58].

Other methods The previous list of algorithms is by no means complete.
Other statistics suggested for coevolution detection include e.g. so called quartets
[59], clustering based on pairwise similarities [60], prediction using neural net-
works [61], multiple interdependency [62], and many others. However, as these
are not used any more in practice, they will not be discussed here in detail.

2.2.2 Properties of amino acids
The effects of a substitution depend greatly on the nature of the original and the
substituted amino acid. While some substitutions do not change the stability or
functionality of a protein at all, others may be fatal [20]. Thus, physicochemi-
cal or evolutionary properties of amino acids are often taken into account when
searching for coevolving positions.

Physicochemical properties used include side chain volume, charge, hydropho-
bicity or Grantham formula combining atomic composition, polarity and volume
[63]. Of course, several properties may be combined to form a vector [64]. For
the comparison of two amino acids, similarity matrices may be used, e.g. by
McLachlan [65], Dayhoff [66], Miyata [67] or Taylor and Jones [68]. As expected,
using different properties or similarity matrices leads to different results obtained
(analyzed e.g. in [37] or [60]).

When physicochemical properties are used, one may be interested not only
in the magnitude of the change, but also in its direction, and search for true
compensatory substitutions, i.e. such substitutions that the total value of the
followed property (e.g. volume) remains conserved. The amount of conservation
of given property between residues i and j may be expressed as compensation
index Cij [36]:

Cij = 1 − ∥ṽi + ṽj∥
∥ṽi∥ + ∥ṽj∥

(2.6)

where ṽi is the vector of signed changes of the property at site i and ∥ṽi∥ is
the L2-norm of vector ṽi. When the substitutions at positions i and j tend to
compensate themselves (i.e. ∥ṽi + ṽj∥ is close to 0⃗), the compensation index is
close to 1, when the changes tend to be in the same direction, the compensation
index is close to 0.

Although incorporating the physicochemical properties of amino acids was
shown to improve the prediction accuracy in some studies [37], there are also some
arguments against. First, different similarity matrices often give very different
scores to a given pair of amino acids (the correlation coefficient for McLachlan
and Miyata matrices is only 0.32 [33]). Second, it is known that in some protein
families, substitution even to a very similar amino acid may lead to drastic effects
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[69]. Also, not all correlated mutations may be explained in terms of physico-
chemical properties – it was reported that only half of all correlated pairs in SH3
domains is compensating for volume or charge [24].

2.2.3 Detecting groups of coevolving residues
All of the previously described methodologies search only for pairs of correlated
residues. However, bigger groups of coevolving residues may also provide valuable
information, although it is not always related to direct contacts. Such groups are
often connected with the functionality or specificity of the protein – they can
form e.g. the clusters that make up ligand binding site [70, 71, 72] or the chains
of residues responsible for allosteric changes [73]. Thus, some researchers tried
to develop methods able to detect groups of coevolving residues instead of just
pairs. Extending the definition of the test statistics from a pair to bigger groups
is usually possible. However, exhaustive testing of coevolution on all groups of
arbitrary size is extremely computationally demanding due to the high number of
possible combinations. Thus, more efficient methods have to be employed, such
as principal component analysis [37] or clustering techniques [36].

2.2.4 Assessment of significance
After computing the test statistics, statistical significance of the obtained values
should be determined.

The oldest studies [30, 32] simply sorted the pairs according to the test statis-
tics and declared the top C pairs to be coevolving, where C is a function of length
L of the protein (e.g. C = L/2). This, unfortunately, has no statistical support.

Probability theory may be used to assess the significance of the results (e.g.
in [24, 31, 41, 43, 60, 62]), especially if we know the theoretical distribution of the
test statistics under the null (independence) hypothesis. If this distribution is not
known, is not precise or if we want to account for the specific set of proteins we
are working with, simulation of independent data by bootstrap is common (e.g.
in [24, 36, 37, 50, 51, 56, 58]).

2.3 Global methods
Nowadays, the most common application of coevolution detection is in protein
structure prediction, i.e. we want to find residues being in direct contact – this
problem is sometimes called direct coupling analysis (DCA). However, the old
local methods often fail in this task as reported by many studies (e.g. [41, 64, 74,
75, 76]). Two reasons identified in 1999 by Lapedes et al. [77] are:

• Bias is introduced into the calculation of the test statistics due to the fact
that biological sequences are generally related by a phylogenetic tree.

• Linked chains of correlations (i.e. residue i is correlated with residue j
and j is correlated with k, thus i shows some correlation with k) lead to
pairs of sites showing correlation although they are not spatially proximate
[44, 46, 74]. (Note that this is not in contradiction with the definition of
coevolution: Such residues definitely are affecting each other and are thus
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coevolving. If we are searching for coevolving residues in general, we do not
mind reporting such a pair.)

The first point mentioned above may be overcome by incorporating the evo-
lutionary information into the computation (see section 2.2.1, or e.g. [54, 62]).
The second problem, i.e. inferring interactions from observations of instances,
has already been studied in statistical physics, machine learning (so called model
learning) and statistics [78]. Thus, it comes as no surprise that knowledge and
algorithms from these fields were used also to solve DCA.

2.3.1 Maximum entropy approach
Maximum entropy approach to coevolution detection was introduced, although
purely theoretically, already in 1999 by [77], and further improved in many studies
(e.g. [76, 78, 79, 80]). We assume that pairs being in direct contact are a subset
of the pairs identified by a covariance-based method as described in section 2.2
(mutual information with corrections by [54] is used most often). The task is to
determine which of the identified pairs are truly in contact and which are not.

This can be done by finding a model given by parameters eij, determining
the amount of direct coupling between residues i and j, and hi, determining the
composition bias (i.e. preference for some amino acids) at position i. Of course
we want the model to describe well the observed data, i.e. the probability of
observing single amino acids and amino acid pairs given by the model should
match the observed frequencies (we could require the same for triplets, quartets,
etc., but it would be computationally untractable). As a second condition, we
want the model to be as simple as possible, which is equivalent to the set of the
parameters having maximum possible entropy (i.e. maximally even distribution).
This is called maximum entropy model.

Finding such a model is computationally extremely difficult, however, several
very diverse approximate approaches, inspired by similar problems e.g. in statis-
tical physics or information theory, were suggested. The first one, mpDCA [79],
was, though approximate, still highly computationally intensive, and is thus not
used any more. However, the following approaches – mfDCA [76, 81], plmDCA
[78] or GREMLIN [75, 80] – are, thanks to their accuracy and speed, nowadays
widely used.

2.3.2 PSICOV
PSICOV (Protein Sparse Inverse COVariance) algorithm [82] is based on inversion
of the covariance matrix.

The covariance covAB
ij between amino acids A on position i and B on position

j can be estimated as:

covAB
ij = f(Ai, Bj) − f(Ai)f(Bj) (2.7)

where f(Ai) is the frequency of amino acid A on the i-th position, and similarly,
f(Ai, Bj) is the frequency of the pair of amino acids A and B occurring in columns
i and j, respectively. These values are stored in one covariance matrix indexed
by the pair consisting of the position and an amino acid.
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As discussed earlier, covariance (or correlation) is not a good measure of direct
coupling between two variables. This can be overcome by computing an inverse
covariance matrix (so called precision or concentration matrix) Θ where, instead
of covariances, partial correlations between the two variables are given. Partial
correlation of variables X and Y is the correlation between X and Y conditioned
on (i.e. with controlling effect of) all other variables [83, 84]. In other words,
it gives us a measure of direct coupling between variables X and Y . Thus, the
off-diagonal elements of Θ which are significantly greater than 0 are identifying
pairs of residues which are likely to be in spatial proximity.

However, the empirical covariance matrices for protein sequences are very
sparse (i.e. there are a lot of 0’s) and thus singular, and precise inverse matrix
does not exist. Thus, approximate inverse matrix must be estimated.

The final score Sij for residues i and j giving the ‘amount of direct contact’
between i and j can be then computed simply as

Sij =
∑
A,B

|ΘAB
ij | (2.8)

where A and B run over all amino acids and ΘAB
ij is the partial correlation of

amino acid A at position i with amino acid B at position j.

2.3.3 Bayesian network approach
Bayesian network approach [74] is based on the idea of chains of contacts as
described in the introduction to section 2.3. In [74] it was shown that these
chains of contacts are responsible for a large part of not directly interacting,
but correlated residues. Thus, directly interacting residues may be identified
by excluding those correlated pairs which can be explained by chains of other
correlations.

The implementation is based on the previous article by the same authors
[85]. A dependency tree is determining the interacting residues: edge going from
vertex i to vertex j means that residue j depends on residue i. For simplicity,
each residue (except the root of the tree) depends on exactly one other residue.
Using Bayesian statistics, statistical weight of each dependency tree is determined.
Trees with higher statistical weight should be composed mainly from those edges
whose dependency cannot be explained by chains of other edges. The posterior
probability of residues i and j interacting directly can then be quantified by
calculating the sum of the statistical weights of all the dependency trees in which
the edge (i, j) appears.

A big advantage of this approach is that, in contrast to the maximum entropy
approach, we do not use any free parameters, which results in much shorter com-
putation time when compared both with DCA algorithms [74] and PSICOV [82].
Also, incorporating prior information about known contacts is easy. However,
it was reported that accuracy of both the methods using maximum entropy and
PSICOV is higher [76, 81, 82], and the Bayesian network approach is nowadays
scarcely used.
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2.4 Fusion methods
To further increase the accuracy of residue-residue contact prediction, several
methods combining one or more coevolution algorithms with physicochemical
information, sequence conservation, secondary structure prediction, molecular
modelling, machine learning and deep learning approaches have been proposed
[86, 87, 88, 89, 90, 91, 92, 93]. These so called fusion methods were reported to
be more accurate than coevolution methods described in the previous sections,
with metaPSICOV [89] being the most reliable [94].

2.5 Specifics of detecting inter-protein coevolv-
ing pairs

Most of the methods described above concentrate on detecting intra-molecular
correlated pairs. However, in some applications (e.g. detecting docking interface
between a receptor and its ligand) we need to know inter-protein coevolving
residues. Unfortunately, detecting inter-protein coevolution has some specifics.

There are scarcely any methods designed specifically for detecting inter-prote-
in coevolving pairs; an example may be the approach described by Thattai et al.
[34]. Usually, inter-protein coevolution is detected by concatenating the sequences
of the two proteins and using some of the methods described above. The simple
covariance-based methods’ success in identifying inter-protein coevolving pairs
varied [32, 33, 43, 95], however, the newer, direct contact searching methods were
shown to be in general successful in this task [35, 81, 96, 97]. Still, there are two
issues which have to be overcome:

1. MSA quality: The concatenated sequence is longer than a sequence of a
single protein. To avoid false positives, this must be compensated by larger
number of homologous sequences in the data set [35].

2. Forming orthologous pairs: If there is only one homolog of both studied
genes in each organism, forming interacting pairs properly is easy. However,
if more homologs are present, there is a need to infer which two of these
homologs are really interacting in vivo. The most stringent approach is to
exclude all such organisms from the analysis, as we cannot be sure which
of the sequences form the actual interacting pairs [98]. This approach,
however, may greatly limit the number of analyzed sequences, and thus also
reduce the power of the test. In procaryotes, the genome structure may be
exploited, as the functionally linked genes are often located in the same
operon [35]. Another possibility is to detect interacting pairs by protein-
protein coevolution algorithms which are described in the next chapter.
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Name Algorithm Reference Website
Residue-residue level

CCMpred GREMLIN,
plmDCA 2.3.1, [99] https://github.com/

soedinglab/ccmpred

CoMap
mapping

substitutions
on phyl. tree

2.2.1,
[36, 56] jydu.github.io/comap/

DCA mfDCA 2.3.1, [81] dca.rice.edu/portal/
dca/

EVfold mfDCA,
plmDCA 2.3.1, [76] http://evfold.org/

evfold-web/evfold.do

FreeContact mfDCA,
PSICOV

2.3.1, 2.3.2
[100]

https:
//rostlab.org/owiki/
index.php/FreeContact

i-COMS
mfDCA, MI,

plmDCA,
PSICOV

2.2.1, 2.3.1,
2.3.2, [101] i-coms.leloir.org.ar/

MetaPSICOV fusion 2.4, [89] bioinf.cs.ucl.ac.uk/
MetaPSICOV/

MISTIC2 MI 2.2.1, [102] mistic2.leloir.org.ar

PconsC3 plmDCA,
PSICOV

2.3.1, 2.3.2,
[86, 103] pconsc3.bioinfo.se/

plmDCA plmDCA 2.3.1, [78] plmdca.csc.kth.se/

PSICOV PSICOV 2.3.2, [82] bioinfadmin.cs.ucl.ac.
uk/downloads/PSICOV/

RaptorX fusion 2.4, [104] raptorx.uchicago.edu/
Protein-protein level

MirrorTree mirrortree 3.2.2, [105] csbg.cnb.csic.es/
mtserver/

MMM
identifying
interacting

pairs
3.3, [106]

wwwlabs.uhnresearch.ca/
tillier/MMMWEBvII/

MMMWEBvII.php

PPIDFT

biochemical
distances by

Fourier
transform

3.2.4, [107] https://github.com/
cyinbox/PPI

Table 2.1: A selection of web servers and downloadable programs for coevolution anal-
ysis. All links checked on 24 April 2018.
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(a)

(b)

Figure 2.1: Comparison of the accuracy (true positives rate) of different algorithms for
coevolution prediction.
(a) Local methods (see section 2.2), data from two different studies: Fodor and Aldrich
[41] (analysis of 224 Pfam families) and Halperin et al. [33] (analysis of 15 yeast fusion
protein families), results for 75 top scoring positions given in both cases.
(b) Global and fusion methods (see sections 2.3 and 2.4), data from a study by de
Oliveira et al. [94] (analysis of 3458 protein families), average results for top L and top
L/10 scoring positions, L is the length of the protein.
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3. Protein-protein coevolution
3.1 Introduction
It has been shown that phylogenetic trees of interacting or functionally related
proteins tend to have similar topologies [7, 108], as well as that interacting pro-
teins exhibit similar evolutionary rates [109]. Both these facts are a result of
protein-protein coevolution, as described in sections 1.3 and 2.1. Interestingly,
similarity of evolutionary rates was observed also for functionally related, though
not directly interacting proteins [8]. As a result, protein-protein coevolution may
be seen as an indicator of protein-protein interaction, or at least functional de-
pendency.

There are two main classes of protein-protein coevolution algorithms. One of
them tries to find out if two protein families as a whole are or are not coevolving
(these algorithms will be discussed in section 3.2). The second one attempts
to disentangle which proteins from the first family coevolve with which proteins
from the second family (section 3.3).

All of the methods described below may be used also to detect domain-domain
coevolution. Selected implementations of the algorithms are listed in table 2.1.

3.2 Coevolution of protein families

3.2.1 Phylogenetic profiling
A simple, yet often powerful method detecting protein-protein coevolution is
the so-called phylogenetic profiling (see figure 3.1(a)). A phylogenetic profile
is the pattern of presence/absence of given protein in a set of genomes [110, 111].
Two proteins may be coevolving if they have similar phylogenetic profiles. The
underlying assumption is that if the two proteins need each other to perform a
given function, they necessarily must be present in the same organisms – the
situation when a pair of genes is lost or gained together independently several
times may be seen as an extreme consequence of coevolution [112, 113].

Originally, phylogenetic profiles were just binary vectors, as described in the
previous paragraph [110, 111]. The 0/1 information was later successfully re-
placed e.g. by Protein BLAST E-values [114, 115, 116] or number of paralogs
appearing in the genome [117], the latter being of special use for complex eucary-
otic gene families. Similarity of phylogenetic profiles may be evaluated using e.g.
number of mismatches [111], co-ocurrence probability [118], Pearson correlation
coefficient [119], Euclidean distance [117] or mutual information [114, 120].

Despite its name, classical phylogenetic profiles do not make any use of the
phylogenetic information, and thus cannot distinguish correlations stemming from
the common ancestry from those that indicate several independent gains/losses of
the gene. By including evolutionary information, as done e.g. in [121, 122, 123],
the accuracy was significantly increased.

However, although useful in some cases, phylogenetic profiles have many
weaknesses. First of all, the method is applicable only to completely sequenced
genomes/proteomes (otherwise, we cannot be sure of the absence of the protein).
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(a) (b)

Figure 3.1: Schematic representation of two computational methods for detection of
protein-protein coevolution. (a) Phylogenetic profiling: Absence/presence of given gene
in a set of genomes is encoded as 0/1 vector, and these vectors are then compared. (b)
Mirrortree: For each protein family, distance matrix is computed and compared with
distance matrices of other proteins.

Next, it cannot be used with ubiquitous proteins present in almost all organisms,
as well as with proteins specific for a given genome.

3.2.2 Tree similarity
As interacting proteins tend to have similar topologies of phylogenetic trees [7,
108], we can detect protein-protein coevolution through the similarity of their
phylogenetic trees (see figure 3.1(b)). This approach is usually called mirrortree,
after one of the first of such methodologies [124].

The first approaches quantified the similarity of two phylogenetic trees as
Pearson correlation coefficient between distance matrices of the two protein fami-
lies [124, 125] – in other words, the test statistics is identical to equation 2.1 with
the only difference being that now we are iterating over all pairs of sequences
instead of residues and we omit the weighting factor wpq. The distance matrices
may be constructed either from the pairwise sequence similarities (in this case,
there is no need for phylogenetic tree construction) [124, 125], or by conversion
from the phylogenetic tree [126]. The pair of protein families is considered to
be coevolving if the value of the correlation coefficient is higher than a given
threshold (value 0.8 was suggested in [124]).

However, phylogenetic trees of all proteins are likely to look somewhat similar
as they basically respect the ‘tree of life’. Thus, the original mirrortree approach
has high false positives rate, and more complex approaches with corrections for
the shared evolution are needed for more reliable prediction. Roughly speaking,
we want to subtract the ‘phylogenetic distance’ of the species from the observed
distances of their proteins, and thus exclude the phylogenetic relationships from
the analysis. The phylogenetic distances may be obtained either from a canon-
ical tree of life (constructed e.g. from the sequences of 16S rRNA) [126, 127],
or inferred from the actual data by averaging them or by identifying the main
tendencies by principal component analysis [127, 128]. Such modified algorithms
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were reported to produce much less false positives than the original mirrortree
method, on the other hand, they also have much lower sensitivity [127, 128].

Another source of noise in the computation is the fact that a given protein
often interacts with many others. As a result, the coevolution signal within its
tree is composed of the influences of all the interactions. This problem may be
solved, similarly as when deciphering direct physical contacts in residue-residue
coevolution (see section 2.3), by looking at the whole network of protein-protein
pairs, thereby taking into account each protein’s coevolutionary context. The
method, called ContextMirror [129], first computes the tree similarities for all
pairs of proteins and then the specificity of the coevolution between two pro-
teins is evaluated by calculating their partial correlation given all of the other
proteins. ContextMirror method was shown to be highly accurate and able to
predict interactions with a degree of accuracy and coverage comparable with that
of high-throughput experimental techniques [129].

3.2.3 Enrichment of correlated mutations
If we perform the coevolution analysis for individual domains, we can see stronger
signal for physically interacting domains than for the non-interacting ones. The
same holds if we restrict the analysis to residues belonging to protein interfaces
[32, 35, 130]. In other words, protein-protein coevolution is a local phenomenon
that can be circumscribed to certain residues, and we can predict protein-protein
interactions by searching for inter-protein pairs of correlated residues (reviewed
in chapter 2, especially in section 2.5).

If the simpler local techniques (see section 2.2) with high false positives rate
are used, one has to compare the distribution of correlated intra- and inter-
protein pairs, and find pairs of proteins showing relative abundance of inter-
protein correlated pairs. This was done e.g. in so called i2h approach [42].
If more specific global techniques (see section 2.3) are used, two proteins may
be considered interacting with quite high probability if they show at least one
significantly coevolving inter-protein pair [97].

3.2.4 MSA-free approaches
All of the above described methods need an MSA prior to the analysis and rely
heavily on its quality. To overcome this, several MSA-free approaches were sug-
gested.

In the method of Yin and Yau [107], the protein sequences are represented
numerically by biochemical properties of individual amino acids, and the distance
matrices of the two protein families are computed using discrete Fourier trans-
form. As described previously, distance matrices of coevolving proteins should
be strongly correlated.

Yet another approach detects coevolution through the expression levels: It
was reported that expression levels of the genes encoding interacting proteins are
strongly correlated [131, 132], and that misexpression of protein complex sub-
units has more severe consequences than misexpression of non-interacting proteins
[133]. Thus, pairs of coevolving proteins can be detected also through correlated
expression levels [134, 135]. Gene expression level may be estimated (besides
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experimentally) e.g. through codon bias [134]. Although correlated expression
techniques are not very accurate, they can be used e.g. for the verification of
protein interactions [135].

3.3 Coevolution of individual proteins
If we are working with a protein family with a lot of paralogs with different
binding specificities, we often want to know the corresponding pairs, i.e. which
paralogs within one family interact with those in the other. Several computational
approaches to solve this problem have been suggested.

One possibility is to use distance matrices, similarly as in the mirrortree ap-
proach (section 3.2.2). The basic assumption is that the correct ‘mapping’ (set of
links) will yield the highest correlation between the two trees. Given two protein
families, their distance matrices are aligned to each other such that the root-
mean-square difference between corresponding elements is minimal. Interactions
are then predicted between the proteins corresponding to aligned columns of the
two matrices [136, 137]. However, for distance matrix of size N × N , the exhaus-
tive exploration of all possible mappings would need N ! calculations, which is
unfeasible for large families. Thus, computationally effective implementations of
the above mentioned principle were provided e.g. by [106, 138, 139].

Interacting and non-interacting pairs of proteins can also be distinguished
using residue-residue coevolution (see section 3.2.3) [140, 141].

Another, completely different approach using Bayesian statistics was sug-
gested by Burger and van Nimwegen [85]. This approach, similarly as the ap-
proaches described in section 3.2.3, supposes that protein-protein coevolution is
exhibited through residue-residue coevolution. Using the model described in sec-
tion 2.3.3 and Markov Chain Monte Carlo simulation, it samples the posterior
distribution of P (a|D), where a is the assignment of candidate interacting pairs
and D the observed data. Those pairs appearing in assignments with the highest
value of P (a|D) are then considered to be interacting.

3.4 Fusion methods
Similarly as for residue-residue coevolution, also protein-protein coevolutionary
information has been combined with several other methods of prediction of prote-
in-protein interactions (such as expression level, domains fusion or protein co-
localization) in order to obtain more reliable results [142, 143].
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4. Applications of coevolution
methods
4.1 Residue-residue level
Structure prediction The main motivation for introducing methods detect-
ing protein coevolution at the residue level was the desire to predict protein 3D
conformation from its sequence [30, 31]. It was reported that only one contact
in twelve allows accurate topology modelling [144], and thus, if we were able to
predict residue-residue contacts precisely, we would greatly constrain the confor-
mational space. However, although the residues showing correlated mutational
behaviour were shown to be generally closer to each other in the three-dimensional
structure than average, the specificity of the oldest methods was too low to be
able to predict structure from the scratch [28, 29, 30, 31].

Soon, methods combining coevolutionary information with other methods of
protein structure prediction started to emerge [145]. These approaches were able
to predict quite accurate structures of small globular proteins [40, 146, 147, 148,
149], however, they still failed on β-strands rich proteins and proteins longer than
110 amino acids [150].

Introduction of the modern approaches into coevolution detection led to dra-
matic improvement. In CASP12 benchmark (The Critical Assessment of protein
Structure Prediction, [151]), significant improvement since CASP11 was observed
[152], mainly because most of the participating methods included also coevolution
data into the computation. RaptorX [104], a deep learning method predicting
contacts by integrating evolutionary coupling and sequence conservation informa-
tion through an ultra-deep neural network, was ranked the best in the benchmark.

Nowadays, even fully automated pipelines for ab initio protein structure pre-
diction based on evolutionary information exist – these include e.g. PconsFold
[153] or EVfold [76].

The predicted structures offer plenty of tempting applications: In silico, it
is possible to model alternative conformations and temporary functional states
[43, 96, 154, 155, 156, 157, 158], as well as to predict the potential of forming
an ordered structure for apparently disordered proteins [159], both of which is
not achievable using classical experimental methods like X-ray crystallography.
The approximate computed structures may be used to assist in crystallographic
protein structure determination, e.g. to help to solve the phasing problem [160], as
well as to validate the experimentally obtained structure [161]. Coevolutionary
information has assisted also in identifying domain boundaries [162, 163] and
assembling of monomers into homomultimers [164, 165, 166].

All of the above mentioned applications are of special interest for proteins
whose 3D structure is challenging to determine by experimental methods, e.g.
membrane proteins (reviewed in [167]).

Protein docking The inter-protein predicted contacts may be used for docking
prediction [32, 35, 79, 97, 168]. Similarly to the de novo structure prediction
discussed above, techniques using coevolution proved to be powerful in this task:
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In CAPRI (Critical Assessment of PRediction of Interactions, [169]) rounds 28-
35, a method integrating coevolutionary inferred links with other approaches was
the best one [170], and protein docking approach termed MAGMA (Molecular
dynamics And Genomics for Macromolecular Assembly) was shown to predict
structures of protein complexes with crystal resolution accuracy, provided that
the structures of individual proteins were available [171].

Functionally important residues Another group of applications is derived
from the fact that coevolution techniques are able to identify functionally im-
portant residues, e.g. residues of the catalytic site, those responsible for protein
specificity or allosteric changes [37, 172, 173, 174, 175, 176]. This information
may then be used for guided mutagenesis in order to e.g. change enzyme speci-
ficity [25, 95], improve the thermostability of the protein [177] or even create
synthetic proteins with a given specificity [178, 179]. Based on the covariance
between residues, it is even possible to predict effects of mutations [160].

Other applications Coevolutionary information has been used also in struc-
ture alignment [180], assessment of protein model quality [181, 182] or to predict
the order in which macromolecular complexes assemble [183]. It was suggested
that it could be used also to develop ‘coevolution-aware’ aligners [33] or, as coe-
volving sites will tend to support the same tree topology, to improve the phylo-
genetic reconstructions [184].

4.2 Protein-protein level
Protein-protein interactions The major application of protein-protein co-
evolutionary information is the prediction of protein-protein interactions. De-
spite being cheaper and faster than the experimental techniques, the computa-
tional methods for the prediction of protein interactions have been shown to have
similar levels of accuracy [129, 185]. They can be used to predict interactions
de novo [186], to validate the results of high-throughput experimental techniques
[135, 187] or to guide experiments by restricting the number of pairs to be tested
experimentally. Computational prediction of protein-protein interactions may
be of special use in discovery of non-canonical interactions and crossreactivity
[186, 188].

Predicted protein-protein interactions may be further used to decipher the
structure of multiple-subunits complexes by predicting which subunits interact
with each other [97, 189]. Domain-domain interactions are in turn useful for
molecular docking [190].

Functional annotation From the coevolutionary relationships a protein is in-
volved in, we can predict its function [126]. Coevolutionary information was thus
used in genome functional annotation [115, 191, 192, 193] or to refine the pre-
diction of function by dividing members of a pathway into subclusters [113], as
well as to identify new members of a pathway [194], to discover novel pathways
[114, 195] or functionally equivalent, but not homologous proteins [196]. Coevo-
lution has been also used to discover some unexpected functional connections,
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e.g. between proteins involved in redox homeostasis and circadian rhythms [197],
or to provide statistical support to hypotheses of evolution, such as coevolution
between male and female fertilization proteins [198, 199], predicted by the theory
of sexual selection.

Other applications Besides the above mentioned, protein-protein coevolution
has been also used to predict sub-cellular locations of proteins [200] and could be
helpful in identification of horizontal gene transfer and other alternative phylo-
genetic events [126].
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5. Limitations
Although the coevolution prediction methods may provide valuable biological in-
sights under certain circumstances (see chapter 4), there are still many drawbacks
that limit their performance.

As most of the nowadays approaches (both on the residue-residue and protein-
protein level) rely solely on the MSA, it comes as no surprise that their perfor-
mance is crucially dependent on its quality [80, 152]. The MSA should contain
as many sequences as possible and we should strive to include sequences from
diverse organisms, so that the MSA carries enough statistical significance [167].
The MSA should also respect the true course of evolution; using a phylogenetic
tree to guide the MSA can both improve its quality and the confidence in the
results [46, 166].

The number of sequences needed for reliable residue-residue coevolution pre-
diction was estimated to 5L, where L is the lenght of the alignment [80]. Ac-
cording to this measure, approximately 25 % of the proteins families on Pfam
database [201] would have a sufficient number of sequences for reliable coevolu-
tion prediction [80]. However, we can assume that this number will grow quickly
thanks to the fast progress in sequencing technologies. Oliveira et al. [94] es-
timated the number of sequences needed for true positives rate greater than 50
% to be ca 1500 for PSICOV [82], ca 1100 for FreeContact [100] and EV-fold
[76] and ca 400 for CCMpred [99], metaPSICOV [89] and GREMLIN [80]. To
conclude, only large and well sequenced protein families may become a subject
of a coevolution analysis.

Besides alignment size, the results of a coevolution analysis greatly depend
also on the choice of organisms. This was reported especially for phylogenetic
profiles [116, 202, 203] and mirrortree [204] methods. To overcome these prob-
lems, methods automatically looking for species were the coevolutionary signal is
particularly strong were developed [205, 206].

As discussed in sections 1.3 and 2.1, correlations resembling coevolutionary
signal may stem also from other processes: the common evolutionary history
of the sequences, heterotachy, etc. When searching for intra-molecular pairs of
coevolving residues, it is very difficult to distinguish correlations caused by intra-
molecular contact and those caused by monomer-monomer interactions [80, 160].
Generally speaking, coevolution predictions are bad for all-α and membrane pro-
teins, probably mainly due to the low number of available sequences [94].

Last but not least, questions about the correctness of the current hypothesis
of coevolution were raised recently. Talavera et al. [207] showed that covariation
approaches such as MI are unable to differentiate between very different evo-
lutionary scenarios, one including correlated mutations and one not (see figure
5.1), and claim that the signal detected by these methods arise mainly from small
number of independent changes at otherwise highly conserved sites (the tendency
of covariance-based methods to give high scores to conserved sites was observed
also previously e.g. in [56, 208]). This, however, explains why the covariation
methods are quite successful in identifying contacting residues, as highly con-
served sites tend to be clustered in the protein core. Talavera et al. also show
by computer simulation that the primary effect of a coevolutionary pressure is
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Figure 5.1: Different evolutionary scenarios for a hypothetical molecule with two binary
sites. Each site can be in state 0 or 1, observed states in the leaves of the tree shown
at the ends of branches. Before the first split, the molecule is in state 01. Mutual
information of the two sites is 1.0 for the top two trees (if we know the state of the first
site, we know the state of the second site with 100 % accuracy) and 0.0 for the bottom
two trees (the two sites are independent). Number of double changes (full circles) grows
from left to right, number of single changes (half circles) grows from top to the bottom,
covariation grows from bottom to the top. Reproduced after [207].

reduction in substitution rates and formulate the following ‘coevolution paradox’:
The strength of coevolution required to cause coordinated changes means that
the evolutionary rate is so low that such changes almost cannot be observed.

Similar observation was made for protein-protein coevolution by Hakes et
al. [209]. They claim that compensatory mutations are very unlikely to be
responsible for the correlated evolution of proteins and that this correlation is
caused mainly by the fact that interacting proteins are under similar evolutionary
constraints.

Both of the above mentioned papers raise the question whether the hypoth-
esis underlying the current coevolution methods is justifiable. The coevolution
approaches surely are successful in many applications, however, the reason why
they are successful may be totally different from what we thought.
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6. Conclusion
Coevolution, coordinated evolution of two species or biomolecules, is one of the
key concepts of the evolutionary theory. In this thesis, we summarized different
computational approaches to coevolution detection on protein level. In chapter
2 we described the methods used for the detection of residue-residue coevolution
and in chapter 3 the methods used for the detection of protein-protein coevolution.
In chapter 4 we mentioned some of the possible applications of these methods.
Finally, in chapter 5 we identified some of their weaknesses.

We have seen many diverse algorithms detecting coevolution on both residue-
residue and protein-protein level. This shows not only the long-lasting interest
of the scientific community in this problem, but also its difficulty. Comparison of
the reliability of different approaches and their suitability to different datasets is
crucial. The accuracy and limitations of residue-residue coevolution methods have
been studied quite extensively. However, we were not able to find a single study
comparing the performance of the protein-protein approaches. Similarly, while
there are plenty of publicly available programs for residue-residue coevolution,
this is not true for the protein-protein level.

Coevolution has been shown to be a powerful tool in solving many biological
questions. Nonetheless, since the field is relatively new and dynamic, there still
remain many problems waiting to be overcome. The following problems are in
our opinion the most important ones:

1. The current programs require MSAs with large number of sequences, which
limits the coevolution analysis only to large and well-sequenced protein
families. Programs able to reliably detect coevolutionary relationships in
smaller datasets would be extremely useful.

2. Most of the nowadays used algorithms do not use the phylogenetic tree of the
protein(s) under study at all. This makes it difficult to distinguish the true
coevolution from other processes. Development of algorithms employing
the evolutionary information could lead to substantial improvement in the
field.

3. We believe that it would be useful to take the process of coevolution into
account also when solving other problems, such as inferring phylogeny. The
present-day evolutionary models consider all the sites to evolve indepen-
dently, but this does not have to be true.

4. As questions about the true nature of the coevolutionary process were raised
recently, the process should be studied carefully to confirm or refute the
contemporary hypothesis.

The author has used several of the described methods in a study of fish inter-
feron gamma and its receptors. The paper is now under review.
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List of Abbreviations
DCA direct coupling analysis
MI mutual information
MSA multiple sequence alignment
OMES observed minus expected squared
SCA statistical coupling analysis
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