Univerzita Karlova v Praze
Matematicko-fyzikalni fakulta

BAKALARSKA PRACE

Marek Krcal

Vypocetni slozitost testovani rovinnosti grafu

Katedra aplikované matematiky

Vedouci bakalarské prace: Mgr. Martin Balek, Institut teoretické informatiky

Studijni program: matematické struktury

2006

Acknowledgement: I thank prof. Eric Allender for proposing the me to try to solve the
problem by devising a reduction to the degree three graphs and for advising my thesis.
I also thank Martin Bélek for giving me many useful notes on my thesis.

Prohlasuji, ze jsem svou bakalarskou praci napsal samostatné a vyhradné s pouzitim cito-
vanych pramenti. Souhlasim se zaptjcéovanim prace a jejim zvefejnovanim.

V Praze dne Marek Kréal

Contents

1 Introduction

2 Preliminaries
2.1 Complexity background

2.2 Definitions, notation . .

3 Graph planarity preserving reduction
3.1 Structure of the degree reduction

3.2 Local replacement

3.3 Splitting of oriented and non-oriented ears
3.4 Splitting based on st-numberingo

3.5 Splitting of parallel ears

4 Conclusion

oo

14
14
15
17
20
22

29

Nazev prace: Vypocetni slozitost testovani rovinnosti grafu
Autor: Marek Kréél

Katedra (tstav): Katedra aplikované matematiky

Vedouci bakalarské prace: Mgr. Martin Balek

e-mail vedouciho: balek@kam.mff.cuni.cz

Abstrakt: V tomto ¢lanku ukéZeme, Ze testovani planarity je v SL (symetricky nedeter-
ministicky LOGSPACE). Hlavni ¢&st naseho ditkazu je redukce na problém testovani rovin-
nosti grafu s maximalnim stupném tii. Povsiméte si, Zze obvyklé nahrazovani vrcholt vétsich
stupnt ”"malymi kruznicemi” muze rovinnost pokazit, musime si poc¢inat Sikovnéji. Testovani
rovinnosti grafu s maximalnim stupném t¥i uz bylo vyfeseno ve ¢lanku ”Symmetric comple-
mentation” Johna Reifa.

Uz diive Meena Mahajan a Eric Allender (” Complexity of planarity testing”) ukézali, Ze
testovani rovinnosti je v SL. Jejich dikaz se vsak sestava z SL implementace velmi slozitého
paralelniho algoritmu od Johna Reifa a Vijayi Ramachandran (”Planarity testing in paral-
lel”). Ten je vSak nejspiSe zbyteéné komplikovany pro tcely prostorové slozitosti.

Tento vysledek spolu s neddvnym prilomem Omera Reingolda dokazujiciho, ze SL = L
(" Undirected ST-connectivity in log-space”) zcela Fesi otdzku slozitosti testovani planarity,
protoZze to je tézké pro L (toto je téz dokazéno v ”Complexity of planarity testing”). Zkon-
struujeme algoritmus pouzivajici logaritmicky prostoru, ktery pievede vstupni graf G na G’
s maximalnim stupném 3 tak, ze ze G je rovinny tehdy a jen tehdy, kdyz G’ je rovinny.

Klic¢ova slova: planarita grafu, LOGSPACE, slozitost

Title: Computational Complexity of Graph Planarity Testing
Author: Marek Krc¢al

Department: Department of applied mathematics

Supervisor: Mgr. Martin Balek

Supervisor’s e-mail address: balek@kam.mff.cuni.cz

Abstract: In this paper we will show that the problem of planarity testing is in SL (symmetric
nondeterministic LOGSPACE). The main part of our proof is a reduction of the problem to
planarity of graphs with maximal degree three. Note that usual replacing vertices of degree
bigger than three by ”little circles” can spoil planarity, we need to be smarter. Planarity of
graphs with maximal degree three was already solved in paper ”Symmetric complementation”
by John Reif.

Previously Meena Mahajan and Eric Allender have already proved this in (” Complexity
of planarity testing”), but their proof is the pure SL implementation of a parallel algorithm
by John Reif and Vijaya Ramachandran (”Planarity testing in parallel”). But it is possibly
unnecessarily complex and sophisticated for the purposes of the space complexity.

This result together with recent breakthrough by Omer Reingold that SL = L (”Undi-

rected ST-connectivity in log-space”) completely solves the question of complexity of pla-
narity problem, because planarity is hard for L (it is again shown in ” Complexity of planarity
testing”). We construct logarithmic-space computable function that converts input graph G
into G’ with maximal degree three such that G is planar if and only if G’ is. This together
with

Keywords: graph planarity, LOGSPACE, complexity

Chapter 1

Introduction

The problem of determining if a graph is planar has been studied from several perspectives
of algorithmic research. We focus on space complexity of the problem: we will show that it
lies in SL class. This together with very recent result [Rei05] stating that SL = L completely
solves complexity of planarity testing, because in [AMO04] is shown, that it is hard for L
under projection reducibility. (L denotes problems decidable by algorithms that involve only
logarithmic amount of memory.)

This is the same result as one given by [AMO04], but we hopefully provide more intuitive
proof, than was pure SL implementation of a highly efficient parallel algorithm by Ramachan-
dran and Reif [RR94], which is probably unnecessarily complicated for purposes of SL. We

give only FLSL reduction to already SL-solved problem ([Rei84]) of graphs of maximal de-
gree three. This idea come out of the advisor of this work Eric Allender and is put down in
introductory summary of his paper together with Meena Mahajan [AMO04]:

In a recent survey of problems in the complexity class SL [AGO00], the planarity
testing problem for graphs of bounded degree is listed as belonging to SL, but
this is based on the claim in [Rei84| that checking planarity for bounded degree
graphs is in the ”Symmetric Complementation Hierarchy”, and on the fact that
SL is closed under complement [NTS95] (and thus this hierarchy collapses to
SL). However, the algorithm presented in [Rei84] actually works only for graphs
of degree 3, and no straightforward generalization to graphs of larger degree is
known. (This is implicitly acknowledged in [RR94, pp. 518,519].)

So we give the generalization to general biconnected graph.

Why is it sufficient to work only with biconnected graph? It is well known fact, that
an arbitrary graph G is planar if and only if all its components of connectivity are planar.
And because all components of biconnectivity can be found in FLSE ([AMO04]), algorithm
for biconnected graph can be extended for general graph.

Summerized, our goal is to show a FLSL function (and its algorithm), which converts
given biconnected graph to a reduced graph with maximum degree 3 or rejects. If it rejects,

the input graph is not planar, otherwise the reduced graph is planar, if and only if the
original graph was planar.

Our work is organized as follows:

Chapter 2 contains all necessary background for our work. Section 1 gives basic definitions
from the complexity theory. Section 2 introduces notation and concepts from the graph
theory important for our task.

Chapter 3 section 1 contains general explanation how the whole algorithm works. Then
follow sections with detail description of all steps of the algorithm including proofs of their
correctness.

Chapter 2

Preliminaries

2.1 Complexity background

Throughout we only use some well known facts from the theoretic complexity. But intent of
this work is not to study the theoretic complexity classes. We only use them for defining the
problem and to restrict algorithms which we can use. Therefore we give olny basic definitions
needed and refer the reader interested in complexity theory to some of many books as [Sip96].

Definition 2.1. By L=LOGSPACE we denote the class of decision problems solvable by a
Turing machine restricted to use an amount of memory logarithmic in the size of the input,
n. (The input itself is not counted as part of the memory.)

By NL we denote the class of decision problems solvable by a nondeterministic Turing
machine restricted to use an amount of memory logarithmic in the size of the input. An
important NL complete problem is the reachability problem for directed graphs (is there a
path from vertex s to vertex t?).

By SL we denote the class of problems that are logarithmic space reducibile to the reach-
ability problem for undirected graphs.

By FL we denote class of functions computable on a Turing machine with the same
memory restrictions as the class L has.

By FLSL we denote class of functions computable on a Turing machine with the same
memory restrictions as the class L has and with oraculum for deciding the reachability problem
for undirected graphs.

Also note that because of [Rei05] L = SL and also FL = FLSE but we will still distinguish
between them to denote when an algorithm contains some "non-trivially L implementable
part” equivalent to the reachability problem for undirected graphs.

The NL class will not be used in this work. We give its definition to show the most
important complexity superclass of L and SL and show its similarity to SL.

2.2 Definitions, notation

Definition 2.2. Open ear decomposition of a biconnected graph G starting from adja-
cent vertices s and t is sequence of paths (called ears) (P° = (s —t), Pt,..., P*). Every
ear P', i > 0 has the first and the last vertex called endpoints (the remaining are called
internal vertices) contained in some ear with lower index number and every other vertex
of P' is mot contained in any ear with lower index number. Ears which have common (up
to switching) endpoints are called parallel.

For any v # s,t be ear(v) the unique number, such that P®
vertex. By shortcut P,y we will denote pear().

") contains v as an internal

Basic fact about open ear decomposition is that any graph has it if and only if it is
biconnected.

Definition 2.3. Be G biconnected graph, {s,t} € E(GQ), (P° = (s —t), P, ..., P¥) its open
ear decomposition. Let’s define graph G s to be any orientation of G, such that

e s —1t
e cvery ear is oriented in one direction
e there is mo oriented cycle in the graph G

Although this definition also gives the notion of Gy, we will be more restrictive and define
pair G, Gis of a graph G such that G4 fulfils the previous conditions, and Gy is the inverse
of Gy, i.e. we get Gys by changing the direction of every edge of G .

In oriented ear in Gy graph, the first endpoint we UPPer endpoint
will denote as upper endpoint, the last endpoint we
will denote as lower endpoint (in accordance with the

pictures). lower endpoint

Associated st-numbering of G, graph is such numbering that, s = 1, t = n and
end-vertex of every edge is bigger than its start-vertex. This numbering fulfills standard
definition of st-numbering (for every vertex v, there exists adjacent vertices u,w such
that, w < v < w). For short we will further use st-numbering always meaning associated
st-numbering.

T tree of a graph G is a rooted directed tree, that you get by deleting the last edge in
every ear of G except P° and rooting it in s.

Note that, by the same definition, we get also Ty tree.

A path from any vertex v # ¢ to the root s in the Ty tree (denote it (v — s)) can be
constructed inductively: (1) Start in vertex v and (2) from any vertex x which is internal
vertex of an ear P, continue along the edge of P,y adjacent to x and oriented towards x (go
against to direction of P;)) and reach vertex 2’ (which by definition has smaller st-number
than the x has): 2/ < x.

The step (2) si well defined except the vertex z = s and because of that the st-number
strictly decreases, all the vertices of the path are different and the path has to eventually
reach the root s = 1.

Because Ty, is a tree, the path is unique.

Definition 2.4. When u,v € Gg4,v # t and u lies on the unique path in Ty tree from v to s
(v — s) then by st-path (v —="u) we mean the segment of the path (v — s) from v to u.

Lemma 2.5 (st-properties). For all R = (v—>u) st-path:
Forallz,y # vy € R such that R = (v — y — ¢y — x — w) holds:

1. The edge y —y' belongs to the ear P.
2. <y <y
3. ear(x) < ear(y)

Proof. 1. and 2.: Follows from the construction of (v — s).

3.: By the definition of ear decomposition ear number of endpoint of any ear P* is less
than k. And by the construction of (v — s) the only place, where ear number can change
is the edge x — 2’ such that 2’ is the upper endpoint of an ear F,). O]

Definition 2.6. In a rooted tree we denote by Ica(vy,ve) the least common ancestor of vy
and vy, which is a common ancestor (a common point on the unique paths to the root
(v1 — 8),(va — 8)) such that every other common ancestor x is an ancestor of the Ica
({lca—>=x)). By lca of an ear P we mean Ica of its two endpoints.

There are FLSLalgorithms for finding a spanning tree in each connected component of
a graph G, finding open ear decomposition, orienting ears to have acyclic directed graph
G, associated st-numbering, finding a path from any vertex to root in a rooted tree and
counting Ica. The reader is referred to [AMO4].

Definition 2.7. A graph is planar if it can be drawn on the plane so that the edges intersect
only at end vertices. Such a drawing is a planar drawing.

Denote by E'(G) the set of arcs of G: {(u,v), (v,u);{u,v} € E(G)}.

A combinatorial embedding ¢ of G is a permutation of arcs ¢ : E'(G) — E'(G) such
that for any vertex v, ¢ restricted on edges going from v is a cycle.

Let R maps each arc to its inverse. Then ¢ is a planar combinatorial embedding if and
only if the number of orbits f in (¢ o R) satisfies Euler’s formula n + f = m + 1 + ¢. (Here,
n,m,c are the number of vertices, undirected edges, connected components respectively.)
For more background, see [Whi84, Section 6-6].

Definition 2.8. By cyclic ordering at v based on the edge (v, x) denote sequence
(v,2),0(v,2), $*(v,2),...,0 (v, 2))

10

Uy V=1
Us cyclic ordering

U1

Figure 2.1: Embedding on one side

Let C' is a path or a cycle containing vertices u, v. Let there exist paths P and @) edge
disjoint with C' such that (u,up) € P and (v,vp) € Q. Then (u,up) and (u,uq) (also P
and Q) are embedded on one side of C' means that there ezists edges (u,uy), (u,us) in C,
(v,v1), (v,v2) such that after deleting another edges from cyclic orderings at u and v we get
((v,v1), (v,vp), (V,v2)) and ((u,uy), (u,uq), (u,uz)) respectively, where the edges (v,v1) and
(u,u1) have the same orientation in P.

Stmilar definition is in the case, when u = v. But we think that figure 2.1 gives a better
insight rather than formal definition.

Proposition 2.9 (basic planarity preseving operations). When a graph G contains vertex
v with adjacent edges ey, €a, ... €n, f1, fo, ., fm, then (i) < (ii):

(i) G is planar and one of its planar embedding ¢ satisfies that there exist permutations
i,J such that cyclic ordering at v is (€i,, .. €, fivs---s fim)

(1t) Make G’ from G by replacing v by edge (u,w) and detaching e, to u, f, to w (for all
x,y). Such G’ is planar. (Note that G = G’ - (u,w).)

All propositions 2.9, 2.11 and 3.12 in this paper are basic claims about planarity and
could be proved by use of the Euler formula, but this is not purpose of this work, thus we
left them unproved.

Definition 2.10. A subbridge of a subgraph C' is a path which intersects with the C in
it’s two endpoints.

We premise that most time C' will be a cycle.

Proposition 2.11 (basic non-planar embeddings). When any graph G contains one of the
following graphs as a subgraph and has embedding as follows (all explicit descriptions of cyclic
orderings are cyclic orderings after deleting edges not contained in the subgraphs) then G is
not planar:

1. Cycle C = (u — v — u) and edge disjoint path connected on v and u P = (u — v).
First and last edge of P is embedded on the opposite sides of C'.

11

Figure 2.2: Basic non-planar embeddings

2. AcycleC=(u—v—a—b—u), P=(v—0b), Q= (u— a) its disjoint subbridges.

Then when P and Q) are embedded on one side of C' (we say, that subbridges P and Q
interlace).

3. The same situation as in 2. occurs, when v = u and with extra condition given,

that cyclic ordering at v (after deleting another edges) is ((v -5 b),Q, P, (v -5 a)) or

{({(v-5b), (vSa), P,Q) (which is stronger than being embedded on one side). We again
say, that subbridges P and @ interlace.

4. Two cycles P and Q intersect only in vertex v. The ordering at v is (ep,eq, fr, fo),
where ep, fp € P and eq, fg € Q.

Further we will often use another representation of combinatorial embedding ¢ of G:
Definition 2.12. For any graph G with G4 and its combinatorial embedding ¢, let us define

function f : E'(G) — Z, such that for any vertex v # s,t, when (x — v — y) is a subpath of
P(v); then

1. f(v,2)=0
2. For each e edge leaving v: e # (v,y) = f(¢(e)) = f(e) +1
3. f(¢(v,y)) = f(v,y) +1 — deg(v)

Figure 2.3: Representation of a combinatorial embedding ¢ by a function f

12

We will again confuse edges and ears ending with them when it is clear which end it is

(e.g- by (f(P1) we mean f(e1))).
Note also that ears P, and P, adjacent on v are embedded on one side of F,) if and only

if sgn(f(FPr)) = sgn(f(~)).

13

Chapter 3

Graph planarity preserving reduction

3.1 Structure of the degree reduction

The degree reduction will consist of five parts. Here is a simple diagram:

1. 2. 3. 4. D.
GOLocal replacement> Gl DSP splitting;> G2 St sglittingl G3 Parallel ears joining= G4 Parallel ears splitting= G5

Every arrow represents an FL algorithm (we will show later) that converts input graph G;
into G;41 such that G; is planar if and only if G;,4 is planar (which we will show later). This
gives existence of a single FL algorithm, that converts input graph G into G5 of maximal
degree 3, because the class FL is closed under composition: two subsequent algorithms can
be composed into one such way, that in the second algorithm we substitute every attempt to
read from the input tape by the whole run of the first algorithm which gives us the desired bit
(because it has the tape as its output tape) and for which we need only another logarithmic
amount of memory.

Also important is the representation of input and output of every algorithm: the input
will always be an open ear decomposition with some (G;) orientation which means a list
(Py, ..., P*) where P is the list of vertices in their G orientation. This of course does not
hold for input graph Gy hence we have to put in extra preparation phase of this format:

Gy as an adjacency matrix (e.g.) FLobalgorithmg, (3 (as a list of oriented ears) --»

For the third algorithm we also need the st-numbering, hence we need to put in extra
preparation phase:

. : SLalyori
--» (3 (as a list of oriented ears) FL=algorithmy, @ 4 the same format, table of st-numbers --»

FLoL

Where arrows represent algorithms. Their existence is proved as we have already

noticed in [AMO4].

14

Every algorithm outputs again list of oriented ears except for the fifth algorithm where
keeping the ear format would make the algorithm less transparent and, in addition, after
that we need no ears any more.

We should make a note about the descriptions of the algorithms: they are slightly inac-
curate, because they uses terms like Replace vertex v in a path P by a path (v, —
UV — Ugown)- But the LOGSPACE Turing machine does not have a read write tape (except
the logarithmic size tape which is too small to contain the description of the whole graph)
to perform this operation literally. The command should rather read Output the list of
vertices in ear P where v will be replaced by the sequence Vup >V s Vdown - Some-
times the correct LOGSPACE implementation is not so straightforward, but it would be
much less transparent than our description, but we namely focus on understandability of the
algorithms and leave the proper implementation as an easy part of the job to the reader.

Let us compare our approach to the one in [RR94]. There appears a precomputation tech-
nique called "local replacement”, which has two main stages: the first we used as algorithm
1, the second slightly extended is our algorithm 5.

What do the algorithms do? In general they replace some vertices by connected graphs,
in algorithms 1 they are trees, in algorithm 4 edges and in algorithm 5 circles. Algorithms
2 and 3 (which are the main part of our contribution) could be implemented as one, that
replaces vertices by paths along the original vertices’ ears:

This gives an important semiresult - the graph G3, where every vertex has at most one
ear starting in it (i.e. the vertex has maximal degree three) except some pairs of vertices
that can be connected by more parallel ears.

3.2 Local replacement

This technique was introduced earlier, it is described in [RR94].

The purpose of the local replacement is technical: its aim is to avoid this "bad case”: an
ear P has endpoints v and v and there is a path (u ——> v) that is disjoint with an ear P,
(it arrives to the v on another ear). So we want to retach the P (to a new copy of v, call it
in our example v;) such way that new P,,) will contain at least the last edge of (u—=1v,).
The illustration of such situation is on the figure 3.1

The algorithm goes as follows:

15

For each vertex v
For each ear P’ with v as endpoint
Make a copy v; of v and replace v in PJ by (o
End For
End For
Leave ear P?= (s —t) unchanged
For each ear P’ for i from 1 to k
Denote by v upper endpoint, by u lower endpoint
1) If ear(v) < ear(u)
Connect u; to u (add u as a new lower endpoint to P?)
Trace the path R:= (u—>s)
If v¢ R or the edge before v in R is in P,
Connect v; to v (add v as a new upper endpoint to P*)
Else be P’ such ear that edge before v in R is in P/
Connect v; to v; (add v; as a new upper endpoint to P')
End if
2) If ear(v) > ear(u)
Do the same as in 1) with uw and v swaped
and for R use ts-path instead of st-path.
End if
End for

- ---- example of path R - R := (u—>s)

Figure 3.1: Local replacement algorithm

Theorem 3.1. The resulting graph (call it G1) is planar, if and only if G is planar. Moreover
obtained set of paths forms an open ear decomposition of Gy in a (G1)g orientation.

Proof. This is again discussed in [RR94]. O

For any ear P’ of G; be P the corresponding ear of GGy with endpoints v and v, ear(v) <
ear(u). If the "bad case” happens, i.e. (u —— v) arrives to v on an ear P/ # P, the

16

algorithm set endpoint of P’ to a new vertex v; on P/ hence now (u—-wv;)’ arrives to v; on
ear PV = P(’vj). If the bad case does not happen, v remains being endpoint and either at

least the last edge of (u—-wv) is also the last edge of (u——>v)’, or the st-path does not exist
in both of the graphs. Hence the "bad case” is avoided.

3.3 Splitting of oriented and non-oriented ears

You might note that local replacement made some of the degree reduction but most work is
still to do.
For further processing we will need an useful tool:

Definition 3.2. There is (Oriented) Double Simple Path from v to u (v 2%u) if and
only if there exists x such that v—>x and u——z. The path is (v—>x < —u).

Unoriented Double Simple Path between v and u ((v<=5u)) is either (v=5u) or
(u=50).

Lemma 3.3 (DSP between ear endpoints). DSP between two endpoints u and v (without

loss of generality u225v) of an ear P’ can use neither vertex nor edge of the ear.
Proof. From the definition of open ear decomposition follows that ear(u) < i. By st-
properties lemma 2.5 for any vertex y € (u——xz) ear(y) < ear(u) < i, hence y ¢ P".

The same reasoning works for the st part of the DSP path. n

DSP,

Lemma 3.4 (DSP-property). For each path P = (v =5 u) and path (w =5 y) such that
y € P there is a path v 25 w.

Proof. By definition of DSP, there exists x such that P = (v —> x <~ u). Two cases can
occur:

(i) y € (v—>x) then (v ">5y<—w) is DSP.

(i) y € (x<u) then (v ">y "z —w) is DSP. O

Since now we will work with the list of st-oriented ears of local replacement graph G,
obtained by algorithm of 2.3. The algorithm is as follows:
For each v (with more ears starting in it)
Make copies of v vy, and Vgown
Replace v in P by 3 vertex path (vVy, — ¥ — Ugown)
For each ear P having v as endpoint
Denote u the other endpoint of P
If there is DSP (v<—>u) then
If u <v change P endpoint to vy,
If u > v change P endpoint to Uqown
End If
End For
End For
Let’s denote the resulting graph Go

17

- =

/) =,

Figure 3.2: DSP splitting algorithm

Uus

Theorem 3.5 (DSP-splitting). Gy is planar if and only if G is planar.

Proof. =: this part is easy and is common for every proof of this type theorems: since G is
obtained from Gy by collapsing a connected graph (in this particular case (vyp — v — Vdown))
into a vertex which can be done by subsequent contracting of its edges, which by basic
planarity preserving operations proposition 2.9 preserves planarity. We get this lemma:

Lemma 3.6 (collapsing of subgraph). Let G be a planar graph having connected graph T as
an induced subgraph and let G' be G with T replaced by a single vertex. Then G’ is planar.

<: This part is more difficult but many ideas will be repeated in proofs of following
theorems. For arbitrary embedding of G; for arbitrary vertex v let’s consider a bunch of
ears (edges) embedded on one side of P,). We want to use two times the basic planarity
preserving operations lemma 2.9 to know that replacing v by new edge (v,, — v) and than
again by (v — Vgoun) does not spoil the planarity. To get assumption of the lemma we show
not only there exists the one ”special planar embedding ¢” but that all planar embeddings
of Gy are ”special”. Hence our goal is to show, that edges belonging to ears with the other
endpoint u such that there exists oriented DSP u 2% v can be planarly embedded only
around the edge "above” v. Then edges belonging to ears such that there exists oriented
DSP v 2% 4 can be planarly embedded only around the edge "below” v. And finally edges
belonging to ears with u and v DSP unconnected (u+>>v) are in between. Formally using
the f representation of ¢: for all P, P, with one common endpoint v and others wuy, us
respectively, planarly embedded on one side of P (i.e. sgn(f(P1)) = sgn((f(F2)))):

1. If uy 250 and v 25 uy then [f(P)] < |f(P)].
2. If uy <% v and v =5 uy then |f(P)| < |f(P)].
3. If uy 25 v and v« uy then | f(Py)| < |f(P2)].

We will show it indirectly: When P and P, are embedded on one side of P,y and 1., 2.
or 3. do not hold, the embedding is not planar:

18

1.

= .- -~ 1L1
- \ ? --- Cycle C
v /‘_ --------- Interlacing subbridges
U2“ :

Figure 3.3: DSP splitting correctness

P, and P, are embedded on one side of P, and u; v and v =5 uy and |f(P)] >
DSP DSP ts

|f(P,)] : Take cycle C' = (s <™ u; —>v=">uy ——t — s). It has subbridges P; and P,
but they interlace.

We only need to check, whether embedding of P, and P on one side of I,y implies
their embedding on one side of C' (we will denote the situation ”the sides of P, and C
at the vertex v correspond”). For which it is sufficient to show that edges in C' incident
on v are from P,). Let’s discuss the "lower” edge(the first on (v="5u,)): If the vertex
x from the definition of the DSP wasn’t v, then ts-path v —— z would depart v using
the P, edge by st-properties lemma 2.5-1. If 2 = v then by local replacement we
know, that (u——wv = z) arrives to v on an edge from F,).

We get this lemma:

Lemma 3.7 (st-paths after local replacement). For any (G1)s with an arbitrary ear
P with endpoints u and v and arbitrary vertex x holds:

(a) If x < v, then the edge by v in (x <—v) is from Py. (Of course holds even
when v is substituted by u.)

(b) If v, then the edge by v in (v<—u) is from Py. (This is where the local
replacement is needed.)

(¢c) (From a and b we get that) when v<=>5u than the edge by v in (v<=5u) is also
from P).

Note that the lemma also yields that the "upper” v’s edge in C'is also in P,,.

P, and P, are embedded on one side of P, and u, <& v and v =S uy and |f(Py)| >
|f(P)] : Take cycle C' = (s <&~ v =5 uy —“5 t — s). It has a subbridge P, and a
subbridge (v — u; =% ¢). Where ¢ is the first vertex on st-path from u; belonging
to C' (There must be always one because there is lca(v,u1)). Vertex ¢ cannot be from
the subpath of C' (v 225 u,), otherwise there was a DSP from v to uy (DSP-property
lemma 3.4). Moreover P is disjoint with C' (DSP between ear endpoints lemma 3.3).

Hence again we have a cycle C' with interlacing subbridges P, and (v LS —S0).

19

We again did not check that sides of P,y and C' at v correspond, but this is by st-paths
after local replacement lemma 3.7.

3. Py and P, are embedded on one side of P, and u; 22 v and v <5 uy and |f(P1)] >
|f(Py)| : it is analogous to 2 (it is sufficient to swap s and ¢ and also P, and P, and
use the proof of 2).

O

Let us note that the local replacement preprocessing is not necessary for the correctness
of the DSP splitting (i.e. there is no general planar biconnected graph that would be trans-
formed into non-planar by the DSP splitting) but the proof would be more complicated. In
addition, we will inevitably need the argument of the st-paths after local replacement lemma
3.7 in following sections.

3.4 Splitting based on st-numbering

Since now we will work with the list of st-oriented ears of (G3)s obtained by the DSP
splitting algorithm and with a list of st-numbers of all vertices. In this step we will split
all non-parallel ears with one common endpoint. The algorithm will be very simple, we will
replace each vertex by a bunch of vertices placed along the original vertex’s ear, which will
be sorted accordingly to st-numbering of non-common vertices:
For each v (with more ears starting in it)
For each u;, s.t. d ear P: v and u; are endpoints of P
Make a copy v; of v
For each ear P with endpoints w; and v
Replace the vertex v in P by v;
End For
End For
If (v<=>uw;) for all i then //type Vup OT Udown
Sort (v;); vertices accordingly to —st-number(u;)
Else //type v
Sort (v;); vertices accordingly to st-numbers(u;)
Replace v in P, by a path of sorted v;
End For
Let’s denote the resulting graph G

Theorem 3.8 (st-splitting). G3 is planar if and only if G is planar.

Proof. =: Again by collapsing of subgraph lemma 3.6.

«<: We want to show, that some orderings around any vertex in G5 are not possible
when embedding is planar. This will be done by considering arbitrary ears P, P, with one
common endpoint v and u; and uy as other endpoints: without loss of generality u; < us.

20

/
'(v — type) vy)

(Ydown — type)) 2
O

<z L

Figure 3.4: St splitting algorithm

Note that DSP-splitting algorithm made in graph G, three type of vertices (not men-

tioning that of degree less or equal 3). Hence v can be:

(1) Vagown-type: = v 25wy and v =5 uy (case 2).

(ii) vup-type: = u; =50 and ug =5 v. We won’t handle this case separately, because it can
be reduced to case 2 by swapping vertices s and t).

(iii) v-type: = v<F>u; and v+ >uy (case 1).

Given that P, and P, are embedded on one side of P, we would like to show that
when case 1 occurs and |f(P;)| > |f(F2)|, embedding is not planar. In case 2 the same for
F(P)] < IF(P)].

For the purposes of the proof let’s denote Ica; = Ica(v, u;) in Ty and lca’; = Ica(v, u;) in
Tis tree for i € {1,2}.

1. ve5u; and v uy and |f(P)] > | f(P)]:

\ (b) We will illustrate two subcases: (a) u; <%

lea = lcay f - _I:\ ug and (b) u; <5 uy. For the subcase (a)

v* QUI] it even holds (and the proof could be easily

DT extended to show) that when P; and P, are

) " 52-"‘ embedded on one side of F,), the embedding

1ca’2’- _______ lcal lcan- _ _, is not planar at all. But this is more than we
actually need to proof.

Figure 3.5: st splitting correctness - case 1

Take the cycle C' = (v = lca; < u; — lca’; <= v). One subbridge is P;. The
other is R = (v—% uy <= ¢), where ¢ € C' is the nearest vertex to uy along the path
(ug —lca’y <=~ lca’y) (possibly ¢ = uy. By <~ we mean arbitrary path in T}, tree.

The only nontrivial question about disjointness is disjointness of P; and R’ = (uy —
Ica’s). But if R entered P, it would follow it until reach u; (contradiction with us > u;)
or reach v (contradiction with v <225 uy).

Also note that all Icas have to be nonequal to v, otherwise there would be v <=5, or
v u,. Hence we get interlacing subbridges P; and R.

21

2.

v<=5uy and v <5 uy (without loss of generality v 225 u; and v ="5uy) and |f(P))] <
|f(P)]:

\\ C’.~.—l \5"-“’
Ug = C

Figure 3.6: st splitting correctness - case 2

Let’s take a cycle C = (s <™ v 2% y; —*+¢ — s). One subbridge is P;. The other is

more complicated. It is a path R = (v —2uy % ¢), where c is the first vertex on the
ts-path from uy belonging to C' (possibly ¢ = uy). It holds, that ¢ > uy > uy = ¢ > u;.
Subbridge P; and R interlaces.

We need to check, that sides of C' at v corresponds with sides of F,). but this holds
by DSP after local replacement lemma 3.7.

Now remains disjointness of paths. We need to check part of C' (v =5 ;) versus P.
By definition (v 25 wu;) = (v -2 <> u;) but because v # v (by st-paths after local
replacement lemma 3.7), the (x <= u;) cannot enter P,, because otherwise it would
follow P, until reach v hence again it would x = v. (The ts-part cannot enter P,
because ear numbers decreases by st-properties lemma 3.) Hence (v =) is disjoint

]

3.5 Splitting of parallel ears

Since now we will work with list of oriented ears of (G3, we obtained from the st splitting
algorithm. In this easy preparation step we will make all parallel ears sit on a common ear.

The algorithm follows:

For all maximal sets of parallel ears P ={F,..., D}
(denote their endpoints u and v)
If v and v don’t lie on a common ear
Make copies of u and v named v and .
Add v’ and v’ to P, as new endpoints (u and v become internal)
Replace u and v in Py and P by « and v’
End If

22

Figure 3.7: Parallel ears joining algorithm

End For

Let’s denote the resulting graph Gj.
Theorem 3.9 (parallel ears joining). G is planar, if and only if G4 is planar.

Proof. Again, non trivial part is "=": Suppose for contradiction that, there is a planar
embedding of GG3 which cannot be (by basic planarity preserving operations lemma 2.9)
transformed into embedding of G4, which means there are parallel ears P, and P, in G3
with common endpoints « and v that are embedded on opposite sides of (without loss of
generality) P,). Two cases follows:

1

~ O

s ——— The C, cycle
v

Figure 3.8: Parallel ears joining correctness

1. P, has lower ear-number than P, then we can consider cycles P = (v —5 u <> v)
and C, = (v—=5s — t«<—wv). Then v is the only point in their intersection (all other
vertices on C, lies on an ear with less or equal ear-number than P,y has and all other
vertices on P has bigger ear number). Hence P and Cy are interlacing cycles, which
is a contradiction (by basic non-planar embeddings proposition 2.11).

2. P has greater ear-number than F,). Now if u does not lie on C,, (case a), the previous
reasoning leads to contradiction. If does (case b),

(i) we still know by previous reasoning, that P, and P, are embedded on one side of
Cy.

23

(ii) But by st-paths after local replacement lemma 3.7 we know that sides of C, and
C, at u correspond (C, N C, contains not only u but also its two neighbors (in C,)).

Thus (i) together with (ii) gives that P, and P, are at the vertex u embedded on
one side of C,. And it gives another non-planar configuration from basic non-planar
embeddings proposition 2.11.

]

The very last step deals with all parallel ears of the G4. Here we need to have s and ¢
of maximal degree 2, which can be achieved by making two auxiliary vertices on (old) (s,t)
edge and giving them names new-s and new-t.

For the purposes of this last section let us define set of symbols [n] = {r,0,1,...,n}.

Parallel ears splitting algorithm follows:

For all maximal sets of parallel ears P ={P, F,...,P,}
Denote their endpoints w and v
Denote Fy = <v<ﬂﬂ->u) //Because of the previous algorithm F,) = Fy)
Denote P, = (v—=55 —t<=u)

1. Make new vertices v,,vy,V1,...,Up
For all ears P ¢ P with endpoints p and ¢
Trace vertices z € (p——s) from = =p in the path order
until there is a such that z € P, //(there is at least x=s€ P,.)
Trace vertices x € (¢——s) from z = ¢ in the path order
until there is b such that z € B, //(there is at least z =s€ P,)
If a#b
Connect v, and v
End If
End For
Denote the constructed subgraph V
2. If V has vertex of degree 3 or more
Reject
If V has a cycle containing not all vertices {v;,i € [n]}
Reject
//1f we did not reject, V is consisting of disjoint paths
//or one cycle
3. Make V :=V + arbitrary matching s.t. V is cycle
//i.e. arbitrarily join the paths of V' into one cycle

4. Make new vertices U,,Ug, Ui, .., Uy
Form with them a cycle the same way as v,,...,v, do
5. "Replace" v and uw in P., Fy, P;,..., P, by corresponding copies
End For

24

Figure 3.9: Parallel ears splitting algorithm

First consider what are the parts P,., Py, Py, ..., P,. For the definition of F, as a part of
common ear of u and v we get necessity of parallel ear joining. Also note that we assured
before, that degree of s and ¢ is at most three, hence v and v cannot be s and ¢ and thus is
P, # P,. That’s why P;,i € [n] are well defined disjoint subbridges of C' = {u, v} in G. The
goal of the algorithm is to find paths between them disjoint with them. We just don’t need
to find all paths, we need to find for every subbridge any, if there are some connecting it to
the rest of the world. More exactly:

Lemma 3.10 (connectivity detecting). For all i,j € [n], if there is a path O disjoint with
defined subbridges connecting P; and Pj, then there exist ko, ..., k, € [n], s.t. i = ko, j = ks
and for all 3 € {0,..,x — 1} vy, is connected by the algorithm with vy, .

Proof. Every edge of path O belongs to some ear. Hence we can take sequence of ears
Pl P% ... PYwhose edges are visited by O (in this order, indeces do not mean ear number).
For every pair of consequent ears P*, P> define ™! to be st-path starting from the vertex,
where P* and P°*! meet (denote it w?™) going to the root s (thus 2T = (wott =% 5)).
Hence we have sequence Ig, I7,..., I¥™ (we just need to extend the definition by setting
PY:= P, and PVt!:= P;).

Let us examine these paths in the same way the algorithm did with the st-paths starting
from endpoints: define a mapping w : {st-paths} — [n] by setting for any vertex w w({w —=
s)) := ¢, where ¢ € [n] and P, has the intersection with (w — s) nearest to the w among
all ears P, Py, ..., P,. Thus you can notice that computations of w are done in the step 1.:
a:=w((p—>s)) and b := w((¢g—>35)).

Let’s have a look at the sequence w(lg),w(I7),...,w(Iy™). It starts with i and ends
with j. Now for every pair ¢ |, 1ot w(I |) # w(I2T!) yields that one of the w®_; and
w2t which both lies in P® has to be the lower endpoint of P®. Otherwise both st-paths
I* |, 1" would join even before leaving the ear P* and hence their w property would be
the same. But this yields that the step 1. after examining the ear P* connects v,,») and

'Uw(Ingl).

25

Hence the desired sequence (kg)f_, is obtained from sequence (w(I3*))Y_, by replacing
every maximal subsequence of the same letter by the single letter. O]

Note, that the proof could have been done by induction on the length of the path O using
the same central argument and less words, but we think this way gives a better insight into
the problem.

Corollary 3.11 (components of connectivity). Let the graph V' has components of connectiv-
ity Vi,...,Viu. Foranyl € 1,...,m and V] let us define A; C [n] such that A; = {a;v, € V}}.
Then G4\{u, v} consists of components of connectivity G*, ..., G™ and for alll € {1,...,m}
G! contains all ears P,,a € A;.

Proof. Every path in G4\ {u,v} can be decomposed into parts disjoint with the defined sub-
bridges and for every such part, we have path in V' as the connectivity detecting lemma 3.10
shows. And trivially for every edge (and hence for every path) in V' we have corresponding
path in G'\ {u,v}. Hence we get the desired correspondence of components of connectivity

between V' and Gy \ {v,u}. O

Note that after the step 2. of the algorithm if we did not reject, the components of
connectivity (when there are more than one) must be all paths. Hence for all [€ {1,...,m}
there exists a labelling of elements of A;: A; = {ay,...,a,} such that V; = (vy, — Vg, — ... —
Va,)-

We can consider the parallel ears splitting algorithm to be composition of two sequential
steps. The first would be this:

Proposition 3.12 (triconnectivity sticking). For each planar graph G and for all u,v €
V(QG), if G\ {u,v} has components of connectivity G*, ..., G™ then following graph G* is
planar (U is disjoint union):

V(G™Y) := (V(G) \ {u,v}) U0, .. o™t o u™)

E(G"") := B(G)|V(G*"*) U {(},2); (v,2) € BE(G) Aw € G'YU{(v',0?),..., (v™,v")}U
U{(u,2); (u,z) € BE(G) Az e GYu{(u',u?),. .., (™ u')}

Note that G*" is planar for any numbering of components of connectivity, hence we can
often choose more ways in the step 3. of the algorithm and we will always be successful.

Now we will show that when two subbridges P; and P; are connected by a path disjoint
with subbridges in P, it makes them strongly dependent in the planar embedding:

Lemma 3.13 (ear adjacency). Take assumptions of the main step of the algorithm. When
subbridges P; and P; are connected by a path O disjoint with all subbridges in P (specially
when the algorithm connects v; and v;), then in any planar embedding of G4 P; and P; are
adjacent in cyclic ordering around both v and u. Formally ¢(v, P;) = P; or ¢(v, P;) = P,.
Same holds, when v is replaced by wu.

26

Figure 3.10: Triconnectivity sticking

Proof. Subbridges P; and P; form a cycle, denote it C. O is its subbridge. Denote inside of
C to be the area, where O is embedded. For contradiction suppose there is an ear P € P
that is embedded also inside the C'. But O is connected on C' at internal vertices of P,
and P;, whereas P is connected on C' at u and v. Hence P and O interlaces. This yields
contradiction. O

Corollary 3.14 (rejecting). When algorithm rejects, G4 is not planar.

Proof. When algorithm rejects at first condition of step 2., there is a vertex v in a V of
degree 3 or more. By ear adjacency lemma 3.13 it means that there must be three adjacent
subbridges to the v’s subbridge. But in the plane this is impossible. Formally exist P, P;,
P;, P, with endpoints u,v : ¢(P;) = P and ¢(P) = P;, but then ¢(P) = Py or ¢(FPy) = P
cannot occur.

When algorithm rejects at the second condition of step 2., there is a cycle in V' containing
not all v’s vertices, but by the ear adjacency lemma 3.13 there must be the same cycle in ¢,
but then it is not proper cyclic ordering around the vertex v (and also u). Il

Theorem 3.15 (final). G4 is planar, if and only if algorithm does not reject and Gs is
planar.

Proof. <=: This is again trivial, because G5 is G4 with some vertices replaced by connected
graphs (in this case by the cycles).

= Rejecting lemma 3.14 gives the first half of the implication.

Because of the triconnectivity sticking proposition 3.12, we have to prove that if G"* (v
and u replaced by a cycles of v!,... v™ and u!,...u™) is planar then Gj is planar. This
will be proved by basic planarity preserving operations 2.9 if we show, that there is a planar
embedding of Gy"" ¢: for all [€ {1,...,m} and for corresponding path V; = (v,, — v, —
... —U,,) holds that ¢(v,P,)) = P, ,, and ¢(u', P, ,,) =P, ,forally=1,...,z—1.

By the assumption that G is planar and by ear adjacency lemma 3.13 we know, that
there is a planar embedding ¢’ : forall y =1,...2—1: ¢ (v, P,,) = P, ,, (case a) or for all
y=1,...2—=1:¢'(v, P, .,) = P, (case b). In case a) set ¢ := ¢. In case b) set ¢ := ¢/
(It is also planar, because we get the same faces as before, we can imagine it as mirroring of
the drawing.)

27

The very last step is to prove, that now ¢(u!, Py . ,)=PF, forally=1,...,2—1. By
contradiction for all y =1,...,2 — 1 ¢(uv', P,) = P, ., (by ear adjacency lemma 3.13 there
is no other possibility), hence also ¢(u!, P,.) = P,. and ¢(u', P,.) = P where P is a path
from ! to v' disjoint with both P, , and P,_,,. But P plus P, _, forms a cycle and P,_ is

a a subbridge of the cycle embedded on both sides of the cycle: contradiction.

Ul

Paz,1

(o

z

Figure 3.11: Final theorem

28

Chapter 4

Conclusion

So we have proven that the planarity testing of maximal degree three graphs can be extended
to solve the general case. The main motivation for investigating this was to come up with
an algorithm focused on space complexity rather than on practical effectiveness. This proof
is still rather difficult to give a talk about it but it is probably due to the difficulty of the
planarity problem.

There is another approach probably still left unaddressed (and is mentioned in [AMO04]):
to ”tune” the parallel algorithm in [RR94]| for the purposes of the space complexity.

29

Bibliography

[AMO4]

[Rei84]

[Rei05|

[RR94]

[Sip96]

[Whi84]

Eric Allender and Meena Mahajan. The complexity of planarity testing. Inform.
and Comput., 189(1):117-134, 2004.

John H. Reif. Symmetric complementation. J. Assoc. Comput. Mach., 31(2):401—-
421, 1984.

Omer Reingold. Undirected ST-connectivity in log-space. In STOC’05: Proceedings
of the 37th Annual ACM Symposium on Theory of Computing, pages 376-385, New
York, 2005. ACM.

Vijaya Ramachandran and John Reif. Planarity testing in parallel. J. Comput.
System Sci., 49(3):517-561, 1994.

Michael Sipser. Introduction to the Theory of Computation. International Thomson
Publishing, 1996.

Arthur T. White. Graphs, groups and surfaces, volume 8 of North-Holland Mathe-
matics Studies. North-Holland Publishing Co., Amsterdam, second edition, 1984.

30

