
Univerzita Karlova v Praze
Matematicko-fyzikální fakulta

BAKALÁŘSKÁ PRÁCE

Marek Krčál

Výpočetní složitost testování rovinnosti grafu

Katedra aplikované matematiky

Vedoucí bakalářské práce: Mgr. Martin Bálek, Institut teoretické informatiky

Studijní program: matematické struktury

2006

Acknowledgement: I thank prof. Eric Allender for proposing the me to try to solve the
problem by devising a reduction to the degree three graphs and for advising my thesis.

I also thank Martin Bálek for giving me many useful notes on my thesis.

Prohlašuji, že jsem svou bakalářskou práci napsal samostatně a výhradně s použitím cito-
vaných pramenů. Souhlasím se zapůjčováním práce a jejím zveřejňováním.

V Praze dne Marek Krčál

2

Contents

1 Introduction 6

2 Preliminaries 8
2.1 Complexity background . 8
2.2 Definitions, notation . 9

3 Graph planarity preserving reduction 14
3.1 Structure of the degree reduction . 14
3.2 Local replacement . 15
3.3 Splitting of oriented and non-oriented ears 17
3.4 Splitting based on st-numbering . 20
3.5 Splitting of parallel ears . 22

4 Conclusion 29

3

Název práce: Výpočetní složitost testování rovinnosti grafu
Autor: Marek Krčál
Katedra (ústav): Katedra aplikované matematiky
Vedoucí bakalářské práce: Mgr. Martin Bálek
e-mail vedoucího: balek@kam.mff.cuni.cz

Abstrakt: V tomto článku ukážeme, že testování planarity je v SL (symetrický nedeter-
ministický LOGSPACE). Hlavní část našeho důkazu je redukce na problém testování rovin-
nosti grafu s maximálním stupněm tři. Povšiměte si, že obvyklé nahrazování vrcholů větších
stupňů ”malými kružnicemi” může rovinnost pokazit, musíme si počínat šikovněji. Testování
rovinnosti grafu s maximálním stupněm tři už bylo vyřešeno ve článku ”Symmetric comple-
mentation” Johna Reifa.

Už dříve Meena Mahajan a Eric Allender (”Complexity of planarity testing”) ukázali, že
testování rovinnosti je v SL. Jejich důkaz se však sestává z SL implementace velmi složitého
paralelního algoritmu od Johna Reifa a Vijayi Ramachandran (”Planarity testing in paral-
lel”). Ten je však nejspíše zbytečně komplikovaný pro účely prostorové složitosti.

Tento výsledek spolu s nedávným průlomem Omera Reingolda dokazujícího, že SL = L
(”Undirected ST-connectivity in log-space”) zcela řeší otázku složitosti testování planarity,
protože to je těžké pro L (toto je též dokázáno v ”Complexity of planarity testing”). Zkon-
struujeme algoritmus používající logaritmický prostoru, který převede vstupní graf G na G′

s maximálním stupněm 3 tak, že že G je rovinný tehdy a jen tehdy, když G′ je rovinný.

Klíčová slova: planarita grafu, LOGSPACE, složitost

Title: Computational Complexity of Graph Planarity Testing
Author: Marek Krčál
Department: Department of applied mathematics
Supervisor: Mgr. Martin Bálek
Supervisor’s e-mail address: balek@kam.mff.cuni.cz

Abstract: In this paper we will show that the problem of planarity testing is in SL (symmetric
nondeterministic LOGSPACE). The main part of our proof is a reduction of the problem to
planarity of graphs with maximal degree three. Note that usual replacing vertices of degree
bigger than three by ”little circles” can spoil planarity, we need to be smarter. Planarity of
graphs with maximal degree three was already solved in paper ”Symmetric complementation”
by John Reif.

Previously Meena Mahajan and Eric Allender have already proved this in (”Complexity
of planarity testing”), but their proof is the pure SL implementation of a parallel algorithm
by John Reif and Vijaya Ramachandran (”Planarity testing in parallel”). But it is possibly
unnecessarily complex and sophisticated for the purposes of the space complexity.

This result together with recent breakthrough by Omer Reingold that SL = L (”Undi-

4

rected ST-connectivity in log-space”) completely solves the question of complexity of pla-
narity problem, because planarity is hard for L (it is again shown in ”Complexity of planarity
testing”). We construct logarithmic-space computable function that converts input graph G
into G′ with maximal degree three such that G is planar if and only if G′ is. This together
with

Keywords: graph planarity, LOGSPACE, complexity

5

Chapter 1

Introduction

The problem of determining if a graph is planar has been studied from several perspectives
of algorithmic research. We focus on space complexity of the problem: we will show that it
lies in SL class. This together with very recent result [Rei05] stating that SL = L completely
solves complexity of planarity testing, because in [AM04] is shown, that it is hard for L
under projection reducibility. (L denotes problems decidable by algorithms that involve only
logarithmic amount of memory.)

This is the same result as one given by [AM04], but we hopefully provide more intuitive
proof, than was pure SL implementation of a highly efficient parallel algorithm by Ramachan-
dran and Reif [RR94], which is probably unnecessarily complicated for purposes of SL. We

give only FLSL reduction to already SL-solved problem ([Rei84]) of graphs of maximal de-
gree three. This idea come out of the advisor of this work Eric Allender and is put down in
introductory summary of his paper together with Meena Mahajan [AM04]:

In a recent survey of problems in the complexity class SL [AG00], the planarity
testing problem for graphs of bounded degree is listed as belonging to SL, but
this is based on the claim in [Rei84] that checking planarity for bounded degree
graphs is in the ”Symmetric Complementation Hierarchy”, and on the fact that
SL is closed under complement [NTS95] (and thus this hierarchy collapses to
SL). However, the algorithm presented in [Rei84] actually works only for graphs
of degree 3, and no straightforward generalization to graphs of larger degree is
known. (This is implicitly acknowledged in [RR94, pp. 518,519].)

So we give the generalization to general biconnected graph.
Why is it sufficient to work only with biconnected graph? It is well known fact, that

an arbitrary graph G is planar if and only if all its components of connectivity are planar.

And because all components of biconnectivity can be found in FLSL ([AM04]), algorithm
for biconnected graph can be extended for general graph.

Summerized, our goal is to show a FLSL function (and its algorithm), which converts
given biconnected graph to a reduced graph with maximum degree 3 or rejects. If it rejects,

6

the input graph is not planar, otherwise the reduced graph is planar, if and only if the
original graph was planar.

Our work is organized as follows:
Chapter 2 contains all necessary background for our work. Section 1 gives basic definitions

from the complexity theory. Section 2 introduces notation and concepts from the graph
theory important for our task.

Chapter 3 section 1 contains general explanation how the whole algorithm works. Then
follow sections with detail description of all steps of the algorithm including proofs of their
correctness.

7

Chapter 2

Preliminaries

2.1 Complexity background

Throughout we only use some well known facts from the theoretic complexity. But intent of
this work is not to study the theoretic complexity classes. We only use them for defining the
problem and to restrict algorithms which we can use. Therefore we give olny basic definitions
needed and refer the reader interested in complexity theory to some of many books as [Sip96].

Definition 2.1. By L=LOGSPACE we denote the class of decision problems solvable by a
Turing machine restricted to use an amount of memory logarithmic in the size of the input,
n. (The input itself is not counted as part of the memory.)

By NL we denote the class of decision problems solvable by a nondeterministic Turing
machine restricted to use an amount of memory logarithmic in the size of the input. An
important NL complete problem is the reachability problem for directed graphs (is there a
path from vertex s to vertex t?).

By SL we denote the class of problems that are logarithmic space reducibile to the reach-
ability problem for undirected graphs.

By FL we denote class of functions computable on a Turing machine with the same
memory restrictions as the class L has.

By FLSL we denote class of functions computable on a Turing machine with the same
memory restrictions as the class L has and with oraculum for deciding the reachability problem
for undirected graphs.

Also note that because of [Rei05] L = SL and also FL = FLSL but we will still distinguish
between them to denote when an algorithm contains some ”non-trivially L implementable
part” equivalent to the reachability problem for undirected graphs.

The NL class will not be used in this work. We give its definition to show the most
important complexity superclass of L and SL and show its similarity to SL.

8

2.2 Definitions, notation

Definition 2.2. Open ear decomposition of a biconnected graph G starting from adja-
cent vertices s and t is sequence of paths (called ears) (P 0 = 〈s − t〉, P 1, . . . , P k). Every
ear P i, i > 0 has the first and the last vertex called endpoints (the remaining are called
internal vertices) contained in some ear with lower index number and every other vertex
of P i is not contained in any ear with lower index number. Ears which have common (up
to switching) endpoints are called parallel.

For any v 6= s, t be ear(v) the unique number, such that P ear(v) contains v as an internal
vertex. By shortcut P(v) we will denote P ear(v).

Basic fact about open ear decomposition is that any graph has it if and only if it is
biconnected.

Definition 2.3. Be G biconnected graph, {s, t} ∈ E(G), (P 0 = 〈s− t〉, P 1, . . . , P k) its open
ear decomposition. Let’s define graph G st←→ to be any orientation of G, such that

• s → t

• every ear is oriented in one direction

• there is no oriented cycle in the graph G

Although this definition also gives the notion of Gts, we will be more restrictive and define
pair Gst, Gts of a graph G such that Gst fulfils the previous conditions, and Gts is the inverse
of Gst, i.e. we get Gts by changing the direction of every edge of Gst.

In oriented ear in Gst graph, the first endpoint we
will denote as upper endpoint, the last endpoint we
will denote as lower endpoint (in accordance with the
pictures).

upper endpoint

lower endpoint

Associated st-numbering of Gst graph is such numbering that, s = 1, t = n and
end-vertex of every edge is bigger than its start-vertex. This numbering fulfills standard
definition of st-numbering (for every vertex v, there exists adjacent vertices u,w such
that, u < v < w). For short we will further use st-numbering always meaning associated
st-numbering.

Tst tree of a graph G is a rooted directed tree, that you get by deleting the last edge in
every ear of Gst except P 0 and rooting it in s.

Note that, by the same definition, we get also Tts tree.

A path from any vertex v 6= t to the root s in the Tst tree (denote it 〈v −→ s〉) can be
constructed inductively: (1) Start in vertex v and (2) from any vertex x which is internal
vertex of an ear P(x) continue along the edge of P(x) adjacent to x and oriented towards x (go
against to direction of P(x)) and reach vertex x′ (which by definition has smaller st-number
than the x has): x′ < x.

9

The step (2) si well defined except the vertex x = s and because of that the st-number
strictly decreases, all the vertices of the path are different and the path has to eventually
reach the root s = 1.

Because Tst is a tree, the path is unique.

Definition 2.4. When u, v ∈ Gst, v 6= t and u lies on the unique path in Tst tree from v to s
〈v −→ s〉 then by st-path 〈v st−→u〉 we mean the segment of the path 〈v −→ s〉 from v to u.

Lemma 2.5 (st-properties). For all R = 〈v st−→u〉 st-path:
For all x, y 6= y′ ∈ R such that R = 〈v −→ y − y′ −→ x −→ u〉 holds:

1. The edge y − y′ belongs to the ear P(y).

2. x ≤ y′ < y

3. ear(x) ≤ ear(y)

Proof. 1. and 2.: Follows from the construction of 〈v −→ s〉.
3.: By the definition of ear decomposition ear number of endpoint of any ear P k is less

than k. And by the construction of 〈v −→ s〉 the only place, where ear number can change
is the edge x− x′ such that x′ is the upper endpoint of an ear P(x).

Definition 2.6. In a rooted tree we denote by lca(v1, v2) the least common ancestor of v1

and v2, which is a common ancestor (a common point on the unique paths to the root
〈v1 −→ s〉, 〈v2 −→ s〉) such that every other common ancestor x is an ancestor of the lca
(〈lca st−→x〉). By lca of an ear P we mean lca of its two endpoints.

There are FLSLalgorithms for finding a spanning tree in each connected component of
a graph G, finding open ear decomposition, orienting ears to have acyclic directed graph
Gst, associated st-numbering, finding a path from any vertex to root in a rooted tree and
counting lca. The reader is referred to [AM04].

Definition 2.7. A graph is planar if it can be drawn on the plane so that the edges intersect
only at end vertices. Such a drawing is a planar drawing.

Denote by E ′(G) the set of arcs of G: {(u, v), (v, u); {u, v} ∈ E(G)}.
A combinatorial embedding φ of G is a permutation of arcs φ : E ′(G) → E ′(G) such

that for any vertex v, φ restricted on edges going from v is a cycle.

Let R maps each arc to its inverse. Then φ is a planar combinatorial embedding if and
only if the number of orbits f in (φ ◦R) satisfies Euler’s formula n + f = m + 1 + c. (Here,
n,m, c are the number of vertices, undirected edges, connected components respectively.)
For more background, see [Whi84, Section 6-6].

Definition 2.8. By cyclic ordering at v based on the edge (v, x) denote sequence

〈(v, x), φ(v, x), φ2(v, x), . . . , φ−1(v, x)〉

10

v = u

v

u

P

Q
P

Q

v1

v2

u1

u2 uQ

vP

cyclic ordering

Figure 2.1: Embedding on one side

Let C is a path or a cycle containing vertices u, v. Let there exist paths P and Q edge
disjoint with C such that (u, uP) ∈ P and (v, vP) ∈ Q. Then (u, uP) and (u, uQ) (also P
and Q) are embedded on one side of C means that there exists edges (u, u1), (u, u2) in C,
(v, v1), (v, v2) such that after deleting another edges from cyclic orderings at u and v we get
〈(v, v1), (v, vP), (v, v2)〉 and 〈(u, u1), (u, uQ), (u, u2)〉 respectively, where the edges (v, v1) and
(u, u1) have the same orientation in P .

Similar definition is in the case, when u = v. But we think that figure 2.1 gives a better
insight rather than formal definition.

Proposition 2.9 (basic planarity preseving operations). When a graph G contains vertex
v with adjacent edges e1, e2, . . . , en, f1, f2, . . . , fm, then (i) ⇔ (ii):

(i) G is planar and one of its planar embedding φ satisfies that there exist permutations
i, j such that cyclic ordering at v is 〈ei1 , . . . , ein, fj1 , . . . , fjm〉

(ii) Make G′ from G by replacing v by edge (u,w) and detaching ex to u, fy to w (for all
x, y). Such G′ is planar. (Note that G = G′ · (u,w).)

All propositions 2.9, 2.11 and 3.12 in this paper are basic claims about planarity and
could be proved by use of the Euler formula, but this is not purpose of this work, thus we
left them unproved.

Definition 2.10. A subbridge of a subgraph C is a path which intersects with the C in
it’s two endpoints.

We premise that most time C will be a cycle.

Proposition 2.11 (basic non-planar embeddings). When any graph G contains one of the
following graphs as a subgraph and has embedding as follows (all explicit descriptions of cyclic
orderings are cyclic orderings after deleting edges not contained in the subgraphs) then G is
not planar:

1. Cycle C = 〈u → v → u〉 and edge disjoint path connected on v and u P = 〈u → v〉.
First and last edge of P is embedded on the opposite sides of C.

11

u

v

C

P1 2 3 4v = u

v a

b

a

u b

P

Q

P

Q vP
Q

ePfQ

fP

eQ

Figure 2.2: Basic non-planar embeddings

2. A cycle C = 〈u → v → a → b → u〉, P = 〈v → b〉, Q = 〈u → a〉 its disjoint subbridges.
Then when P and Q are embedded on one side of C (we say, that subbridges P and Q
interlace).

3. The same situation as in 2. occurs, when v = u and with extra condition given,
that cyclic ordering at v (after deleting another edges) is 〈〈v C→ b〉, Q, P, 〈v C→ a〉〉 or
〈〈v C→b〉, 〈v C→a〉, P, Q〉 (which is stronger than being embedded on one side). We again
say, that subbridges P and Q interlace.

4. Two cycles P and Q intersect only in vertex v. The ordering at v is 〈eP , eQ, fP , fQ〉,
where eP , fP ∈ P and eQ, fQ ∈ Q.

Further we will often use another representation of combinatorial embedding φ of Gst:

Definition 2.12. For any graph G with Gst and its combinatorial embedding φ, let us define
function f : E ′(G) → Z, such that for any vertex v 6= s, t, when 〈x− v − y〉 is a subpath of
P(v), then

1. f(v, x) = 0

2. For each e edge leaving v: e 6= (v, y) ⇒ f(φ(e)) = f(e) + 1

3. f(φ(v, y)) = f(v, y) + 1− deg(v)

v

0
1

2

3

45

−1

5 + 1− 8 = −2

Gst :
P(v)

x

y

Figure 2.3: Representation of a combinatorial embedding φ by a function f

12

We will again confuse edges and ears ending with them when it is clear which end it is
(e.g. by (f(P1) we mean f(e1))).

Note also that ears P1 and P2 adjacent on v are embedded on one side of P(v) if and only
if sgn(f(P1)) = sgn(f(P2)).

13

Chapter 3

Graph planarity preserving reduction

3.1 Structure of the degree reduction

The degree reduction will consist of five parts. Here is a simple diagram:

G0 G1 G2 G3 G4 G5
Local replacement DSP splitting St splitting Parallel ears joining Parallel ears splitting

1. 2. 3. 4. 5.

Every arrow represents an FL algorithm (we will show later) that converts input graph Gi

into Gi+1 such that Gi is planar if and only if Gi+1 is planar (which we will show later). This
gives existence of a single FL algorithm, that converts input graph G0 into G5 of maximal
degree 3, because the class FL is closed under composition: two subsequent algorithms can
be composed into one such way, that in the second algorithm we substitute every attempt to
read from the input tape by the whole run of the first algorithm which gives us the desired bit
(because it has the tape as its output tape) and for which we need only another logarithmic
amount of memory.

Also important is the representation of input and output of every algorithm: the input
will always be an open ear decomposition with some (Gi)st orientation which means a list
〈P0, . . . , P

k〉 where P i is the list of vertices in their Gst orientation. This of course does not
hold for input graph G0 hence we have to put in extra preparation phase of this format:

G0 as an adjacency matrix (e.g.) G0 (as a list of oriented ears)FL
SLalgorithm

For the third algorithm we also need the st-numbering, hence we need to put in extra
preparation phase:

G3 in the same format, table of st-numbers
FL
SLalgorithmG3 (as a list of oriented ears)

Where arrows represent FLSL algorithms. Their existence is proved as we have already
noticed in [AM04].

14

Every algorithm outputs again list of oriented ears except for the fifth algorithm where
keeping the ear format would make the algorithm less transparent and, in addition, after
that we need no ears any more.

We should make a note about the descriptions of the algorithms: they are slightly inac-
curate, because they uses terms like Replace vertex v in a path P by a path 〈vup →
v → vdown〉. But the LOGSPACE Turing machine does not have a read write tape (except
the logarithmic size tape which is too small to contain the description of the whole graph)
to perform this operation literally. The command should rather read Output the list of
vertices in ear P where v will be replaced by the sequence vup,v,vdown. Some-
times the correct LOGSPACE implementation is not so straightforward, but it would be
much less transparent than our description, but we namely focus on understandability of the
algorithms and leave the proper implementation as an easy part of the job to the reader.

Let us compare our approach to the one in [RR94]. There appears a precomputation tech-
nique called ”local replacement”, which has two main stages: the first we used as algorithm
1, the second slightly extended is our algorithm 5.

What do the algorithms do? In general they replace some vertices by connected graphs,
in algorithms 1 they are trees, in algorithm 4 edges and in algorithm 5 circles. Algorithms
2 and 3 (which are the main part of our contribution) could be implemented as one, that
replaces vertices by paths along the original vertices’ ears:

This gives an important semiresult - the graph G3, where every vertex has at most one
ear starting in it (i.e. the vertex has maximal degree three) except some pairs of vertices
that can be connected by more parallel ears.

3.2 Local replacement

This technique was introduced earlier, it is described in [RR94].
The purpose of the local replacement is technical: its aim is to avoid this ”bad case”: an

ear P has endpoints u and v and there is a path 〈u st−→ v〉 that is disjoint with an ear P(v)

(it arrives to the v on another ear). So we want to retach the P (to a new copy of v, call it
in our example v2) such way that new P(v2) will contain at least the last edge of 〈u st−→v2〉.
The illustration of such situation is on the figure 3.1

The algorithm goes as follows:

15

For each vertex v
For each ear P j with v as endpoint
Make a copy vj of v and replace v in P j by vj

End For
End For
Leave ear P 0 = 〈s− t〉 unchanged
For each ear P i for i from 1 to k

Denote by v upper endpoint, by u lower endpoint
1) If ear(v) < ear(u)

Connect ui to u (add u as a new lower endpoint to P i)
Trace the path R := 〈u st−→s〉
If v /∈ R or the edge before v in R is in P(v)

Connect vi to v (add v as a new upper endpoint to P i)
Else be P j such ear that edge before v in R is in P j

Connect vi to vj (add vj as a new upper endpoint to P i)
End if
2) If ear(v) ≥ ear(u)

Do the same as in 1) with u and v swaped
and for R use ts-path instead of st-path.

End if
End for

s

t

P2

P3

v v
v2

v3

P2

P3

s

t

example of path R - R := 〈u st−→s〉

u

w w

u

u3

w2

P1

t1

s1

P1

Figure 3.1: Local replacement algorithm

Theorem 3.1. The resulting graph (call it G1) is planar, if and only if G is planar. Moreover
obtained set of paths forms an open ear decomposition of G1 in a (G1)st orientation.

Proof. This is again discussed in [RR94].

For any ear P ′ of G1 be P the corresponding ear of G0 with endpoints u and v, ear(v) <
ear(u). If the ”bad case” happens, i.e. 〈u st−→ v〉 arrives to v on an ear P j 6= P(v), the

16

algorithm set endpoint of P ′ to a new vertex vj on P j hence now 〈u st−→vj〉′ arrives to vj on
ear P ′j = P ′

(vj). If the bad case does not happen, v remains being endpoint and either at

least the last edge of 〈u st−→v〉 is also the last edge of 〈u st−→v〉′, or the st-path does not exist
in both of the graphs. Hence the ”bad case” is avoided.

3.3 Splitting of oriented and non-oriented ears

You might note that local replacement made some of the degree reduction but most work is
still to do.

For further processing we will need an useful tool:

Definition 3.2. There is (Oriented) Double Simple Path from v to u (v DSP−→u) if and
only if there exists x such that v ts−→x and u st−→x. The path is 〈v ts−→x st←−u〉.

Unoriented Double Simple Path between v and u (〈v DSP←→u〉) is either 〈v DSP−→u〉 or
〈u DSP−→v〉.
Lemma 3.3 (DSP between ear endpoints). DSP between two endpoints u and v (without
loss of generality u DSP−→v) of an ear P i can use neither vertex nor edge of the ear.

Proof. From the definition of open ear decomposition follows that ear(u) < i. By st-
properties lemma 2.5 for any vertex y ∈ 〈u ts−→x〉 ear(y) ≤ ear(u) < i, hence y /∈ P i.

The same reasoning works for the st part of the DSP path.

Lemma 3.4 (DSP-property). For each path P = 〈v DSP−→ u〉 and path 〈w st−→ y〉 such that
y ∈ P there is a path v DSP−→w.

Proof. By definition of DSP, there exists x such that P = 〈v ts−→ x st←− u〉. Two cases can
occur:
(i) y ∈ 〈v ts−→x〉 then 〈v ts−→y st←−w〉 is DSP.
(ii) y ∈ 〈x st←−u〉 then 〈v ts−→y ts−→x st←−w〉 is DSP.

Since now we will work with the list of st-oriented ears of local replacement graph G1

obtained by algorithm of 2.3. The algorithm is as follows:
For each v (with more ears starting in it)

Make copies of v vup and vdown

Replace v in P(v) by 3 vertex path 〈vup → v → vdown〉
For each ear P having v as endpoint

Denote u the other endpoint of P
If there is DSP 〈v DSP←→u〉 then

If u < v change P endpoint to vup

If u > v change P endpoint to vdown

End If
End For

End For
Let’s denote the resulting graph G2

17

v

u1

u2

s

t

u3
v

u1

u2

s

t

u3

vup

vdown

Figure 3.2: DSP splitting algorithm

Theorem 3.5 (DSP-splitting). G2 is planar if and only if G1 is planar.

Proof. ⇒: this part is easy and is common for every proof of this type theorems: since G1 is
obtained from G2 by collapsing a connected graph (in this particular case 〈vup − v− vdown〉)
into a vertex which can be done by subsequent contracting of its edges, which by basic
planarity preserving operations proposition 2.9 preserves planarity. We get this lemma:

Lemma 3.6 (collapsing of subgraph). Let G be a planar graph having connected graph T as
an induced subgraph and let G′ be G with T replaced by a single vertex. Then G′ is planar.

⇐: This part is more difficult but many ideas will be repeated in proofs of following
theorems. For arbitrary embedding of G1 for arbitrary vertex v let’s consider a bunch of
ears (edges) embedded on one side of P(v). We want to use two times the basic planarity
preserving operations lemma 2.9 to know that replacing v by new edge 〈vup − v〉 and than
again by 〈v − vdown〉 does not spoil the planarity. To get assumption of the lemma we show
not only there exists the one ”special planar embedding φ” but that all planar embeddings
of G1 are ”special”. Hence our goal is to show, that edges belonging to ears with the other
endpoint u such that there exists oriented DSP u DSP−→ v can be planarly embedded only
around the edge ”above” v. Then edges belonging to ears such that there exists oriented
DSP v DSP−→u can be planarly embedded only around the edge ”below” v. And finally edges
belonging to ears with u and v DSP unconnected (u 6DSP←→v) are in between. Formally using
the f representation of φ: for all P1, P2 with one common endpoint v and others u1, u2

respectively, planarly embedded on one side of P(v) (i.e. sgn(f(P1)) = sgn((f(P2)))):

1. If u1
DSP−→v and v DSP−→u2 then |f(P1)| < |f(P2)|.

2. If u1 6DSP←→v and v DSP−→u2 then |f(P1)| < |f(P2)|.
3. If u1

DSP−→v and v 6DSP←→u2 then |f(P1)| < |f(P2)|.
We will show it indirectly: When P1 and P2 are embedded on one side of P(v) and 1., 2.

or 3. do not hold, the embedding is not planar:

18

v

u1

u2

s

t

v

u1

u2

s

t

1. 2.

Cycle C

Interlacing subbridges

c

Figure 3.3: DSP splitting correctness

1. P1 and P2 are embedded on one side of P(v) and u1
DSP−→ v and v DSP−→u2 and |f(P1)| >

|f(P2)| : Take cycle C = 〈s st←−u1
DSP−→v DSP−→u2

ts−→ t− s〉. It has subbridges P1 and P2

but they interlace.

We only need to check, whether embedding of P1 and P2 on one side of P(v) implies
their embedding on one side of C (we will denote the situation ”the sides of P(v) and C
at the vertex v correspond”). For which it is sufficient to show that edges in C incident
on v are from P(v). Let’s discuss the ”lower” edge(the first on 〈v DSP−→u2〉): If the vertex
x from the definition of the DSP wasn’t v, then ts-path v ts−→x would depart v using
the P(v) edge by st-properties lemma 2.5-1. If x = v then by local replacement we
know, that 〈u st−→v = x〉 arrives to v on an edge from P(v).

We get this lemma:

Lemma 3.7 (st-paths after local replacement). For any (G1)st with an arbitrary ear
P with endpoints u and v and arbitrary vertex x holds:

(a) If x st←− v, then the edge by v in 〈x st←− v〉 is from P(v). (Of course holds even
when v is substituted by u.)

(b) If v st←− u, then the edge by v in 〈v st←− u〉 is from P(v). (This is where the local
replacement is needed.)

(c) (From a and b we get that) when v DSP←→u than the edge by v in 〈v DSP←→u〉 is also
from P(v).

Note that the lemma also yields that the ”upper” v’s edge in C is also in Pv.

2. P1 and P2 are embedded on one side of P(v) and u1 6DSP←→ v and v DSP−→u2 and |f(P1)| >
|f(P2)| : Take cycle C = 〈s st←− v DSP−→ u2

ts−→ t − s〉. It has a subbridge P2 and a
subbridge 〈v P1−→ u1

st−→ c〉. Where c is the first vertex on st-path from u1 belonging
to C (There must be always one because there is lca(v, u1)). Vertex c cannot be from
the subpath of C 〈v DSP−→u2〉, otherwise there was a DSP from v to u2 (DSP-property
lemma 3.4). Moreover P1 is disjoint with C (DSP between ear endpoints lemma 3.3).

Hence again we have a cycle C with interlacing subbridges P1 and 〈v P1−→u1
st−→c〉.

19

We again did not check that sides of P(v) and C at v correspond, but this is by st-paths
after local replacement lemma 3.7.

3. P1 and P2 are embedded on one side of P(v) and u1
DSP−→ v and v 6DSP←→u2 and |f(P1)| >

|f(P2)| : it is analogous to 2 (it is sufficient to swap s and t and also P1 and P2 and
use the proof of 2).

Let us note that the local replacement preprocessing is not necessary for the correctness
of the DSP splitting (i.e. there is no general planar biconnected graph that would be trans-
formed into non-planar by the DSP splitting) but the proof would be more complicated. In
addition, we will inevitably need the argument of the st-paths after local replacement lemma
3.7 in following sections.

3.4 Splitting based on st-numbering

Since now we will work with the list of st-oriented ears of (G2)st obtained by the DSP
splitting algorithm and with a list of st-numbers of all vertices. In this step we will split
all non-parallel ears with one common endpoint. The algorithm will be very simple, we will
replace each vertex by a bunch of vertices placed along the original vertex’s ear, which will
be sorted accordingly to st-numbering of non-common vertices:
For each v (with more ears starting in it)

For each ui, s.t. ∃ ear P: v and ui are endpoints of P
Make a copy vi of v
For each ear P with endpoints ui and v

Replace the vertex v in P by vi

End For
End For
If 〈v DSP←→ui〉 for all i then //type vup or vdown

Sort 〈vi〉i vertices accordingly to −st-number(ui)
Else //type v

Sort 〈vi〉i vertices accordingly to st-numbers(ui)
Replace v in P(v) by a path of sorted vi

End For
Let’s denote the resulting graph G3

Theorem 3.8 (st-splitting). G3 is planar if and only if G2 is planar.

Proof. ⇒: Again by collapsing of subgraph lemma 3.6.
⇐: We want to show, that some orderings around any vertex in G2 are not possible

when embedding is planar. This will be done by considering arbitrary ears P1, P2 with one
common endpoint v and u1 and u2 as other endpoints: without loss of generality u1 < u2.

20

u1

v(vdown − type)

u2

s

t

v
′(v − type)

u
′

1

u
′

2

u1

v2

u2

s

t

v
′

2

u
′

1

u
′

2

v1

v
′

1

Figure 3.4: St splitting algorithm

Note that DSP-splitting algorithm made in graph G2 three type of vertices (not men-
tioning that of degree less or equal 3). Hence v can be:
(i) vdown-type: ⇒ v DSP−→u1 and v DSP−→u2 (case 2).
(ii) vup-type: ⇒ u1

DSP−→v and u2
DSP−→v. We won’t handle this case separately, because it can

be reduced to case 2 by swapping vertices s and t).
(iii) v-type: ⇒ v 6DSP←→u1 and v 6DSP←→u2 (case 1).

Given that P1 and P2 are embedded on one side of P(v), we would like to show that
when case 1 occurs and |f(P1)| > |f(P2)|, embedding is not planar. In case 2 the same for
|f(P1)| < |f(P2)|.

For the purposes of the proof let’s denote lcai = lca(v, ui) in Tst and lca′i = lca(v, ui) in
Tts tree for i ∈ {1, 2}.

1. v 6DSP←→u1 and v 6DSP←→u2 and |f(P1)| > |f(P2)|:

v
u1 u2

lca′
2

lca′
1
= c

lca1

c

lca1 = lca2

u1

u2

lca′
1
= lca′

2

v

(a) (b) We will illustrate two subcases: (a) u1 6DSP←→
u2 and (b) u1

DSP←→ u2. For the subcase (a)

it even holds (and the proof could be easily

extended to show) that when P1 and P2 are

embedded on one side of P(v), the embedding

is not planar at all. But this is more than we

actually need to proof.

Figure 3.5: st splitting correctness - case 1

Take the cycle C = 〈v st−→ lca1
st←− u1

ts−→ lca′1
ts←− v〉. One subbridge is P1. The

other is R = 〈v P2−→u2
ts←→ c〉, where c ∈ C is the nearest vertex to u2 along the path

〈u2
ts−→ lca′2

ts←→ lca′1〉 (possibly c = u2. By ts←→we mean arbitrary path in Tts tree.

The only nontrivial question about disjointness is disjointness of P1 and R′ = 〈u2
ts−→

lca′2〉. But if R′ entered P2, it would follow it until reach u1 (contradiction with u2 > u1)
or reach v (contradiction with v 6DSP←→u2).

Also note that all lcas have to be nonequal to v, otherwise there would be v DSP←→u1 or
v DSP←→u2. Hence we get interlacing subbridges P1 and R.

21

2. v DSP←→u1 and v DSP←→u2 (without loss of generality v DSP−→u1 and v DSP−→u2) and |f(P1)| <
|f(P2)|:

c

v

u1
u2

s

t

v

u1

u2 = c

s

t

(a) (b)

Figure 3.6: st splitting correctness - case 2

Let’s take a cycle C = 〈s st←− v DSP−→ u1
ts−→ t − s〉. One subbridge is P1. The other is

more complicated. It is a path R = 〈v P2−→u2
ts−→ c〉, where c is the first vertex on the

ts-path from u2 belonging to C (possibly c = u2). It holds, that c ≥ u2 > u1 ⇒ c > u1.
Subbridge P1 and R interlaces.

We need to check, that sides of C at v corresponds with sides of P(v). but this holds
by DSP after local replacement lemma 3.7.

Now remains disjointness of paths. We need to check part of C 〈v DSP−→u1〉 versus P2.
By definition 〈v DSP−→u1〉 = 〈v ts−→x st←−u1〉 but because x 6= v (by st-paths after local
replacement lemma 3.7), the 〈x st←− u1〉 cannot enter P2, because otherwise it would
follow P2 until reach v hence again it would x = v. (The ts-part cannot enter P2

because ear numbers decreases by st-properties lemma 3.) Hence 〈v DSP−→u1〉 is disjoint
with P2.

3.5 Splitting of parallel ears

Since now we will work with list of oriented ears of G3, we obtained from the st splitting
algorithm. In this easy preparation step we will make all parallel ears sit on a common ear.

The algorithm follows:

For all maximal sets of parallel ears P = {P1, . . . , Pj}
(denote their endpoints u and v)
If u and v don’t lie on a common ear
Make copies of u and v named u′ and v′.
Add u′ and v′ to P1 as new endpoints (u and v become internal)
Replace u and v in P(u) and P(v) by u′ and v′

End If

22

v u v u
v
′ u

′

P1 P1

Figure 3.7: Parallel ears joining algorithm

End For

Let’s denote the resulting graph G4.

Theorem 3.9 (parallel ears joining). G3 is planar, if and only if G4 is planar.

Proof. Again, non trivial part is ”⇒”: Suppose for contradiction that, there is a planar
embedding of G3 which cannot be (by basic planarity preserving operations lemma 2.9)
transformed into embedding of G4, which means there are parallel ears P1 and P2 in G3

with common endpoints u and v that are embedded on opposite sides of (without loss of
generality) P(v). Two cases follows:

s

t

v

uP1

P2

1 2 - a

vu
P1

P2
s

t v

u
P1

P2
s

t

2 - b

The Cv cycle

Figure 3.8: Parallel ears joining correctness

1. P(v) has lower ear-number than P(u), then we can consider cycles P = 〈v P1−→u
P2←− v〉

and Cv = 〈v st−→ s − t ts←− v〉. Then v is the only point in their intersection (all other
vertices on Cv lies on an ear with less or equal ear-number than P(v) has and all other
vertices on P has bigger ear number). Hence P and CV are interlacing cycles, which
is a contradiction (by basic non-planar embeddings proposition 2.11).

2. P(v) has greater ear-number than P(u). Now if u does not lie on Cv (case a), the previous
reasoning leads to contradiction. If does (case b),

(i) we still know by previous reasoning, that P1 and P2 are embedded on one side of
Cu.

23

(ii) But by st-paths after local replacement lemma 3.7 we know that sides of Cu and
Cv at u correspond (Cu ∩ Cv contains not only u but also its two neighbors (in Cu)).

Thus (i) together with (ii) gives that P1 and P2 are at the vertex u embedded on
one side of Cv. And it gives another non-planar configuration from basic non-planar
embeddings proposition 2.11.

The very last step deals with all parallel ears of the G4. Here we need to have s and t
of maximal degree 2, which can be achieved by making two auxiliary vertices on (old) (s, t)
edge and giving them names new-s and new-t.

For the purposes of this last section let us define set of symbols [n] = {r, 0, 1, ..., n}.
Parallel ears splitting algorithm follows:

For all maximal sets of parallel ears P = {P1, P2, . . . , Pn}
Denote their endpoints u and v
Denote P0 = 〈v P(v)←→u〉 //Because of the previous algorithm P(v) = P(u)

Denote Pr = 〈v st−→s− t ts←−u〉
1. Make new vertices vr, v0, v1, . . . , vn

For all ears P /∈ P with endpoints p and q
Trace vertices x ∈ 〈p st−→s〉 from x = p in the path order
until there is a such that x ∈ Pa //(there is at least x = s ∈ Pr)

Trace vertices x ∈ 〈q st−→s〉 from x = q in the path order
until there is b such that x ∈ Pb //(there is at least x = s ∈ Pr)

If a 6= b
Connect va and vb

End If
End For
Denote the constructed subgraph V

2. If V has vertex of degree 3 or more
Reject

If V has a cycle containing not all vertices {vi, i ∈ [n]}
Reject

//If we did not reject, V is consisting of disjoint paths
//or one cycle

3. Make V := V + arbitrary matching s.t. V is cycle
//i.e. arbitrarily join the paths of V into one cycle

4. Make new vertices ur, u0, u1, . . . , un

Form with them a cycle the same way as vr, . . . , vn do
5. "Replace" v and u in Pr, P0, P1, . . . , Pn by corresponding copies

End For

24

1, 2 3 4, 5

P4

P3

P2

P1

P0

Pr

Pr

v4

vr

v0 v1

v2

v3

v4

v0 v1

v2

v3

vr

P4

P3

P2

P1
P0

Pr

Pr

v

u

Figure 3.9: Parallel ears splitting algorithm

First consider what are the parts Pr, P0, P1, . . . , Pn. For the definition of P0 as a part of
common ear of u and v we get necessity of parallel ear joining. Also note that we assured
before, that degree of s and t is at most three, hence u and v cannot be s and t and thus is
Pr 6= P0. That’s why Pi, i ∈ [n] are well defined disjoint subbridges of C = {u, v} in G. The
goal of the algorithm is to find paths between them disjoint with them. We just don’t need
to find all paths, we need to find for every subbridge any, if there are some connecting it to
the rest of the world. More exactly:

Lemma 3.10 (connectivity detecting). For all i, j ∈ [n], if there is a path O disjoint with
defined subbridges connecting Pi and Pj, then there exist k0, ..., kx ∈ [n], s.t. i = k0, j = kx

and for all β ∈ {0, .., x− 1} vkβ
is connected by the algorithm with vkβ+1.

Proof. Every edge of path O belongs to some ear. Hence we can take sequence of ears
P 1, P 2, . . . , P y whose edges are visited by O (in this order, indeces do not mean ear number).
For every pair of consequent ears Pα, P α+1 define Iα+1

α to be st-path starting from the vertex,
where Pα and Pα+1 meet (denote it wa+1

a) going to the root s (thus Iα+1
α = 〈wα+1

α
st−→ s〉).

Hence we have sequence I1
0 , I2

1 , . . . , Iy+1
y (we just need to extend the definition by setting

P 0 := Pi and P y+1 := Pj).
Let us examine these paths in the same way the algorithm did with the st-paths starting

from endpoints: define a mapping ω : {st-paths} → [n] by setting for any vertex w ω(〈w st−→
s〉) := c, where c ∈ [n] and Pc has the intersection with 〈w st−→ s〉 nearest to the w among
all ears Pr, P0, . . . , Pn. Thus you can notice that computations of ω are done in the step 1.:
a := ω(〈p st−→s〉) and b := ω(〈q st−→s〉).

Let’s have a look at the sequence ω(I1
0), ω(I2

1), . . . , ω(Iy+1
y). It starts with i and ends

with j. Now for every pair Iα
α−1, I

α+1
α ω(Iα

α−1) 6= ω(Iα+1
α) yields that one of the wα

α−1 and
wα+1

α which both lies in Pα has to be the lower endpoint of Pα. Otherwise both st-paths
Iα
α−1, I

α+1
α would join even before leaving the ear Pα and hence their ω property would be

the same. But this yields that the step 1. after examining the ear Pα connects vω(Iα
α−1) and

vω(Iα+1
α).

25

Hence the desired sequence (kβ)x
β=0 is obtained from sequence (ω(Iα+1

α))y
α=0 by replacing

every maximal subsequence of the same letter by the single letter.

Note, that the proof could have been done by induction on the length of the path O using
the same central argument and less words, but we think this way gives a better insight into
the problem.

Corollary 3.11 (components of connectivity). Let the graph V has components of connectiv-
ity V1, . . . , Vm. For any l ∈ 1, . . . , m and Vl let us define Al ⊆ [n] such that Al = {a; va ∈ Vl}.
Then G4\{u, v} consists of components of connectivity G1, . . . , Gm and for all l ∈ {1, . . . ,m}
Gl contains all ears Pa, a ∈ Al.

Proof. Every path in G4 \{u, v} can be decomposed into parts disjoint with the defined sub-
bridges and for every such part, we have path in V as the connectivity detecting lemma 3.10
shows. And trivially for every edge (and hence for every path) in V we have corresponding
path in G \ {u, v}. Hence we get the desired correspondence of components of connectivity
between V and G4 \ {v, u}.

Note that after the step 2. of the algorithm if we did not reject, the components of
connectivity (when there are more than one) must be all paths. Hence for all l ∈ {1, . . . ,m}
there exists a labelling of elements of Al: Al = {a1, . . . , az} such that Vl = 〈va1 − va2 − . . .−
vaz〉.

We can consider the parallel ears splitting algorithm to be composition of two sequential
steps. The first would be this:

Proposition 3.12 (triconnectivity sticking). For each planar graph G and for all u, v ∈
V (G), if G \ {u, v} has components of connectivity G1, . . . , Gm then following graph Gu,v is
planar (∪̇ is disjoint union):

V (Gu,v) := (V (G) \ {u, v}) ∪̇{v1, . . . , vm, u1, . . . , um}

E(Gu,v) := E(G)|V (Gu,v) ∪ {(vl, x); (v, x) ∈ E(G) ∧ x ∈ Gl} ∪ {(v1, v2), . . . , (vm, v1)}∪
∪ {(ul, x); (u, x) ∈ E(G) ∧ x ∈ Gl} ∪ {(u1, u2), . . . , (um, u1)}

Note that Gu,v is planar for any numbering of components of connectivity, hence we can
often choose more ways in the step 3. of the algorithm and we will always be successful.

Now we will show that when two subbridges Pi and Pj are connected by a path disjoint
with subbridges in P , it makes them strongly dependent in the planar embedding:

Lemma 3.13 (ear adjacency). Take assumptions of the main step of the algorithm. When
subbridges Pi and Pj are connected by a path O disjoint with all subbridges in P (specially
when the algorithm connects vi and vj), then in any planar embedding of G4 Pi and Pj are
adjacent in cyclic ordering around both v and u. Formally φ(v, Pi) = Pj or φ(v, Pj) = Pi.
Same holds, when v is replaced by u.

26

v

u

v
1

v
2

v
3

u
1 u

2

u
3

Figure 3.10: Triconnectivity sticking

Proof. Subbridges Pi and Pj form a cycle, denote it C. O is its subbridge. Denote inside of
C to be the area, where O is embedded. For contradiction suppose there is an ear P ∈ P
that is embedded also inside the C. But O is connected on C at internal vertices of Pi

and Pj, whereas P is connected on C at u and v. Hence P and O interlaces. This yields
contradiction.

Corollary 3.14 (rejecting). When algorithm rejects, G4 is not planar.

Proof. When algorithm rejects at first condition of step 2., there is a vertex v in a V of
degree 3 or more. By ear adjacency lemma 3.13 it means that there must be three adjacent
subbridges to the v’s subbridge. But in the plane this is impossible. Formally exist P , Pi,
Pj, Pk with endpoints u, v : φ(Pi) = P and φ(P) = Pj, but then φ(P) = Pk or φ(Pk) = P
cannot occur.

When algorithm rejects at the second condition of step 2., there is a cycle in V containing
not all v’s vertices, but by the ear adjacency lemma 3.13 there must be the same cycle in φ,
but then it is not proper cyclic ordering around the vertex v (and also u).

Theorem 3.15 (final). G4 is planar, if and only if algorithm does not reject and G5 is
planar.

Proof. ⇐: This is again trivial, because G5 is G4 with some vertices replaced by connected
graphs (in this case by the cycles).

⇒: Rejecting lemma 3.14 gives the first half of the implication.
Because of the triconnectivity sticking proposition 3.12, we have to prove that if Gu,v

4 (v
and u replaced by a cycles of v1, . . . , vm and u1, . . . um) is planar then G5 is planar. This
will be proved by basic planarity preserving operations 2.9 if we show, that there is a planar
embedding of Gu,v

4 φ: for all l ∈ {1, . . . , m} and for corresponding path Vl = 〈va1 − va2 −
. . .− vaz〉 holds that φ(vl, Paγ) = Paγ+1 and φ(ul, Paγ+1) = Paγ , for all γ = 1, . . . , z − 1.

By the assumption that Gu,v
4 is planar and by ear adjacency lemma 3.13 we know, that

there is a planar embedding φ′ : for all γ = 1, . . . z − 1 : φ′(v, Paγ) = Paγ+1 (case a) or for all
γ = 1, . . . z − 1 : φ′(v, Paγ+1) = Paγ (case b). In case a) set φ := φ′. In case b) set φ := φ′−1

(It is also planar, because we get the same faces as before, we can imagine it as mirroring of
the drawing.)

27

The very last step is to prove, that now φ(ul, Paγ+1) = Paγ for all γ = 1, . . . , z − 1. By
contradiction for all γ = 1, . . . , z − 1 φ(ul, Paγ) = Paγ+1 (by ear adjacency lemma 3.13 there
is no other possibility), hence also φ(ul, Paz−1) = Paz and φ(ul, Paz) = P where P is a path
from ul to vl disjoint with both Paz−1 and Paz+1 . But P plus Paz−1 forms a cycle and Paz is
a a subbridge of the cycle embedded on both sides of the cycle: contradiction.

v
l

u
l

Paz−1

Paz

P

Figure 3.11: Final theorem

28

Chapter 4

Conclusion

So we have proven that the planarity testing of maximal degree three graphs can be extended
to solve the general case. The main motivation for investigating this was to come up with
an algorithm focused on space complexity rather than on practical effectiveness. This proof
is still rather difficult to give a talk about it but it is probably due to the difficulty of the
planarity problem.

There is another approach probably still left unaddressed (and is mentioned in [AM04]):
to ”tune” the parallel algorithm in [RR94] for the purposes of the space complexity.

29

Bibliography

[AM04] Eric Allender and Meena Mahajan. The complexity of planarity testing. Inform.
and Comput., 189(1):117–134, 2004.

[Rei84] John H. Reif. Symmetric complementation. J. Assoc. Comput. Mach., 31(2):401–
421, 1984.

[Rei05] Omer Reingold. Undirected ST-connectivity in log-space. In STOC’05: Proceedings
of the 37th Annual ACM Symposium on Theory of Computing, pages 376–385, New
York, 2005. ACM.

[RR94] Vijaya Ramachandran and John Reif. Planarity testing in parallel. J. Comput.
System Sci., 49(3):517–561, 1994.

[Sip96] Michael Sipser. Introduction to the Theory of Computation. International Thomson
Publishing, 1996.

[Whi84] Arthur T. White. Graphs, groups and surfaces, volume 8 of North-Holland Mathe-
matics Studies. North-Holland Publishing Co., Amsterdam, second edition, 1984.

30

