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ABSTRACT

Neurological disorders affect more than 14% of the population worldwide and together
with traumatic brain and spinal cord injuries represent major health, public and economic
burden of the society. Incidence of inherited and idiopathic neurodegenerative disorders and
acute CNS injuries is growing globally while neuroscience society is being challenged by
numerous unanswered questions. Therefore, research of the CNS disorders is essential. Since
animal models of the CNS diseases and injuries represent the key step in the conversion of the
basic research to the clinics, we focused our work on generation of new animal models and on
their use in pre-clinical research. We generated and characterized transgenic minipig model of
Huntington’s disease (HD) which represents the only successful establishment of a transgenic
model of HD in minipig which should be valuable for testing of long term safety of HD
therapeutics. Next, we crossed the well characterized R6/2 mouse HD model with the gad
mouse model which lacks the expression of UCHL1 which led to results that support the
theory of “protective” role of mutant huntingtin aggregates and suggest that UCHL1
function(s) may be affected in HD disturbing certain branches of Ubiquitin Proteasome
System. Traumatic spinal cord injury and Amyotrophic Lateral Sclerosis (ALS) are the two
most severe and common disorders of the spinal cord in humans. Thus, the two animal models
we used in our human neural stem cells (HSSC) grafting experiments were: i) mutant
SOD1%%* transgenic rat model of ALS (SOD1 rat) and ii) the rat model of acute lumbar (L3)
compression injury developed in our lab. Intraspinal grafting of clinical grade HSSC used in
our experiments led to local protection of a-motoneurons residing in the close proximity of the
grafted cells in immunosuppressed SOD1 rats and demonstrated progressive and significant
improvement in motor and sensory function in immunosuppressed rats with previous L3
contusion injury. Our numerous xenogeneic grafting experiments led us to the development of
new immunosuppressive tacrolimus-loaded pellets which are now commercially available and
provide steady drug release for up to 3 months, making delivery labor efficient, minimally
invasive, and producing stabilized blood concentration levels. Our work resulted in generation
of one of the first large animal models of Huntington’s disease, revealed the possible role of
UCHLL1 in HD and demonstrated the therapeutic potential of neural stem cell therapy in spinal
cord disorders. These results were already successfully applied in experimental and human
clinical settings and we believe that will further stimulate and accelerate translational research
of CNS disorders.



ABSTRAKT

Neurologické poruchy postihuji vice nez 14 9% svétové populace a spolecné s
traumatickym poskozenim mozku a michy pfedstavuji vyznamnou zdravotni a
socioekonomickou zatéz. Vyskyt dédi¢nych a idiopatickych neurodegenerativnich poruch a
akutnich poSkozeni CNS navic zaznamenava globalni narGst a neurovédecka komunita je
proto stavéna pied mnozstvi nezodpovézenych otazek. To je divodem, pro¢ lze pokladat
vyzkum poruch CNS za klicovy. Vzhledem k tomu, Ze zvifeci modely nemoci a
traumatickych poskozeni CNS maji nepostradatelnou ulohu v projekci vysledkt zakladniho
vyzkumu do klinické praxe, tato prace je zaméfena na vytvoreni novych zvifecich modelt a
jejich vyuziti v preklinickém vyzkumu. Vytvoftili a charakterizovali jsme transgenni model
miniaturniho prasete pro Huntingtonovu chorobu, jenz je doposud jedinym prase¢im modelem
a predstavuje velice hodnotny subjekt pro dlouhodobé testovani bezpecnosti 1é¢by. Déle jsme
zktizili jiz charakterizovany mys$i model Huntingtonovy choroby s mys$im modelem gad
postradajicim expresi UCHLI s vysledky, které potvrzuji teorii o “ochranné” funkci agregatu
mutovaného huntingtinu a vedou k predpokladu, Ze funkce UCHL1 v ubiquitin
proteazomoveho systému mohou byt v Huntingtonové chorobé naruSené. Traumatické
nejcastéj$imi poruchami michy u lidi. K experimentiim s transplantaci lidskych nervovych
kmenovych bun¢k byly vyuzity dva potkani modely, transgenni model s ALS (SODng3A) a
model akutniho posSkozeni michy zplsobeného kompresi. Intraspinalni transplantace u
imunosuprimovanych SOD1 ALS transgennich potkant vedla k lokalni ochrané a-
motoneuroni a dale k vyraznéemu zlepSeni motorickych a senzorickych funkci
imunosuprimovanych potkani s akutnim poskozenim michy. Pocetné xenogenni
transplantacni experimenty vedly k vyvoji novych pelet s imunosupresivy, které jsou nyni jiz
komer¢né dostupné a zajist'uji fizené uvoliovani léCiva az po dobu tii mésict, piicemz zplisob
podani je velice efektivni, minimalné invazivni a umoznuje udrzeni stabilni hladiny v krvi.
Nase prace vedla ke vzniku jednoho z prvnich velkych zvifecich modeltt Huntingtonovy
choroby, odhalila u tohoto onemocnéni ulohu UCHLI a rovnéz terapeuticky potencial
nervovych kmenovych bunék v 1é¢bé poruch a poskozeni michy. Vysledky této prace jiz byly
uspésné aplikovany v experimentalnich podminkach a téZ v klinické praxi. Pevné véfime, Ze
naSe prace bude dale stimulovat translaéni vyzkum poruch CNS.
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CHAPTER 1

Huntington’s disease
Huntington’s disease transgenic minipig

UCHLL1 in Huntington’s disease



1.1. HUNTINGTON’S DISEASE

Huntington's disease (HD) is fatal autosomal dominant hereditary neurodegenerative
disorder clinically characterized by progressive motor dysfunction, cognitive decline, and
psychiatric disturbance (Ross and Tabrizi 2011). Causative mutation of HD is an expansion of
the polyglutamine (CAG) repeat sequence in the coding region of exon 1 of the huntingtin
gene localized on chromosome 4 (HTT; IT-15) leading to expression of mutant huntingtin
protein with expanded poly-glutamine (polyQ) tract (1993) which induces progressive and
devastating neurodegenerative changes in the whole brain with striatum, cerebral cortex
(Vonsattel and DiFiglia 1998) and white matter (Dumas et al. 2012; Tabrizi et al. 2012) being
the most affected regions.

Prevalence of the mutation/disease is about 4-10 per 100 000 in populations of Western
European and North American descent, with many more at risk of the disease (having
inherited the mutant gene) (Vonsattel and DiFiglia 1998; Tabrizi et al. 2011). Prevalence is
much lower in Asian (Pringsheim et al. 2012) and African (Sturrock and Leavitt 2010)
populations. CAG repeats longer than 40 are associated with nearly full penetrance by age 65
years (Langbehn et al. 2004; Ross and Tabrizi 2011). Longer CAG repeats predict earlier
onset of the disease (Langbehn et al. 2004) (Fig. 1) accounting for up to 50-70% of variance
in age of onset (Ross and Tabrizi 2011), with the remaining variance most likely to be
attributed to modifying genes (40% of remainder) and the environment (60% of remainder)
(Wexler and Res 2004). Individuals with less than 35 CAG repeats will not develop HD, those
with 36 to 39 may or may not develop HD, and those with 40 or more will develop the disease
(Vonsattel and DiFiglia 1998; Langbehn et al. 2004). An intermediate CAG repeat length
between 29 and 35 does not cause the disease but may expand into the pathogenic range in
future generations (Novak and Tabrizi 2010).

Most HD patients have expansions ranging from 40—55 CAG repeats (Vonsattel and
DiFiglia 1998; Langbehn et al. 2004) leading to the onset of the disease symptoms in the
middle age (40 years in average) while juvenile onset (under the age of 20) is associated with
CAG repeats 60 or longer (Langbehn et al. 2004). Disease progresses over 15-20 years from
onset and culminates in death (Novak and Tabrizi 2010). Diagnosis of Huntington’s disease is
formally made on the extrapyramidal motor signs of chorea, dystonia, bradykinesia, or
incoordination in an individual at risk. However, many patients have substantial cognitive or
behavioural disturbances before onset of diagnostic motor signs (Ross and Tabrizi 2011). The
motor phenotype can be assessed in manifest HD patients using the motor component of the
Unified Huntington Disease Rating Scale (UHDRS). The UHDRS is a widely used clinical
and research tool developed by the Huntington Study Group (HSG) (1996) for the
measurement of the motor, cognitive, psychiatric, and functional performance in HD (Sturrock
and Leavitt 2010).

HD gene was cloned 20 years ago and important advances have been made in the clinical,
genetic, pathological, and biochemical understanding of this disease yet there is no effective
treatment for Huntington’s disease available. Most drugs currently used in HD are designed to
attenuate the symptoms of the disease and improve quality of life including psychiatric agents
for the control of behavioral symptoms, motor sedatives, cognitive enhancers, and



neuroprotective agents (Frank and Jankovic 2010; Novak and Tabrizi 2010; Zuccato et al.
2010). Nonetheless, promising disease modifying and/or delaying treatments are currently
being tested in animal models (Zuccato et al. 2010) with huntingtin lowering approaches being
the most promising ones (Johnson and Davidson 2010; Sah and Aronin 2011; Kordasiewicz et
al. 2012; Southwell et al. 2012). Moreover, recent research revealed broad spectra of potential
biomarkers which could be used in future clinical trials to better assess their potential (Hersch
and Rosas 2011; Weir et al. 2011).
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Fig. Population estimates of the mean age of onset of HD for CAG repeat lengths 36-60.

The e symbols and solid line indicate the range of data that was used to fit the exponential curves.
The o symbols and long dashed lines indicate CAG lengths for which the model’s predictions were
extrapolated. Small dashed lines indicate 95% confidence intervals, larger spaces between dashes
indicate the region where the model’s predictions were extrapolated. (Taken from Langbehn et al.
2004).

1.1.1. History

Huntington’s disease is also known as Huntington’s chorea. It was first described as an
epidemic of dancing mania in 1374 and it was Paracelsus who first used the term chorea
suggesting its origin in central nervous system (CNS). In 17" century, English colonists used
the name “that disorder” or “San Vitus” dance to refer to HD. In those days, people with
chorea, because of the involuntary muscle jerks and twitches characteristic of HD, were often
thought to be possessed by the devil (Zuccato et al. 2010). The first accurate description of the
disease was written by young American doctor George Huntington in 1872 after whom was
this disorder originally named Huntington’s chorea. The name has later changed to



Huntington’s disease to reflect the fact that chorea is not the only important manifestation of
the disease (Novak and Tabrizi 2010).

After the rediscovery of Gregor Mendel’s theory in 1900, the British geneticist William
Bateson established definitively (in 1909) that Huntington’s chorea was inherited as a
Mendelian autosomal dominant disease (Wexler 2010). Then in an era when eugenics
attracted scientists, physicians, and intellectuals of all political stripes a Connecticut
psychiatrist Percy R Vessie introduced prejudice and misunderstanding that characterized
families affected by HD in early 20™ century. Vessie portrayed HD individuals more as
villains than as victims and later called for their “rigid sterilization” (Wexler 2010).

Fortunately, later in the 1950s, Dr. Amerigo Negrette diagnosed HD in a large community
of people living around Lake Maracaibo in Venezuela which 20 years later became the center
of discovery of the HD gene, made possible thanks to the remarkable efforts of Nancy Wexler
(Zuccato et al. 2010). The gene responsible for HD was mapped to the short arm of
chromosome 4 in 1983 (Gusella et al. 1983) and 10 years later, IT15 gene comprised of 67
exons and containing expanded CAG trinucleotide repeat was located on 4p16.3 (1993).

1.1.2. Clinical presentation of Huntington’s disease

Characteristic symptoms of HD are often described as adult-onset triad of motor, cognitive
and psychiatric changes (Novak and Tabrizi 2010). The onset of the disease is currently
defined as the point at which characteristic motor signs develop as assessed by the motor
component of the Unified Huntington Disease Rating Scale (UHDRS) (1996) which was
updated and expanded in 1999 (UHDRS '99) enhancing all of the components of the UHDRS
(group 1999). This is when the patient is diagnosed as having “manifest” HD. However, most
patients develop “soft” motor, cognitive or psychiatric symptoms during the prodromal (“pre-
manifest”) period, often many years before any motor signs are seen (Novak and Tabrizi 2010;
Sturrock and Leavitt 2010).

Typical age of adult onset of HD is between 35 and 50 years (Zuccato et al. 2010). HD
can be characterized as a movement, cognitive, psychiatric and metabolic disorder (for review
see (Novak and Tabrizi 2010; Sturrock and Leavitt 2010). Early stages of HD are associated
with progressive movement, psychiatric and cognitive disturbances. Motor impairments in HD
can be typically divided into two categories: involuntary movements such as chorea (rapid,
random and uncontrollable movements), and impaired voluntary movements, which cause
limb incoordination and impaired hand function (Novak and Tabrizi 2010). Motor symptoms
change over the course of the disease progression with declining chorea being replaced by
dystonia (involuntary muscle contractions that cause slow repetitive movements or abnormal
postures), rigidity and bradykinesia (decrease of movement speed) (Ross and Tabrizi 2011).
Typical cognitive deficits including subtle personality changes, slow speed of cognitive
processing, olfaction, and memory recall can be detected some 15 years prior the motor
symptoms are diagnosed (Paulsen 2011). Depression, irritability, anxiety, apathy are the most
frequent psychiatric signs in HD (Duff et al. 2007). Obsessive compulsive and aggressive
behaviors, psychotic symptoms occur less often (van Duijn et al. 2007) and alterations in
sexual behavior are also common (Rosenblatt 2007). Early occurring sleep disturbances,



catabolic weight loss are also present and together with alternation is sexual behavior can be
partially explained by hypothalamic dysfunction (Politis et al. 2008). Subtle psychiatric
symptoms can be observed as early as 10 years before the first motor changes (Duff et al.
2007).

Two CAG-length depended variant forms of HD exist. Juvenile HD, which is
characterized by early disease onset (within the first two decades) and which accounts to about
5-10% of all HD. Juvenile HD is associated with 60 or more CAG repeats (Sturrock and
Leavitt 2010) and is generally inherited from the father as the instability of CAG repeat tracts
during male gametogenesis is much greater than in females (Ranen et al. 1995). In addition to
early onset, juvenile HD is more severe and rapidly progressing (mean survival of between 8
and 9.3 years). Senile chorea or more precisely late-onset HD represents 25% of all HD cases.
Patients present their initial symptoms after age 50 and onset at age 80 or above may occur
(Sturrock and Leavitt 2010). The clinical features of late-onset HD resemble those of mid-life
HD, but the illness progresses more slowly and is usually less functionally disabling than
adult-onset disorder (Britton et al. 1995).

Because of progressive motor dysfunction, dementia and psychiatric disturbances, HD
patients become unable to walk, perform daily tasks including planning and organization, have
dietary problems and eventually will become unable to take care of themselves and will
require long-term 24 hour institutional care (Zuccato et al. 2010). Emergencies in HD
generally involve life threatening complications which may results from injuries related to
falls (trauma), pneumonia and chocking, nutritional deficiency, infection or sepsis. 15-20
years after the disease onset most HD patients eventually decease due to aspiration pneumonia
and poor nutrition because of swallowing difficulties (Lanska et al. 1988; Sorensen and
Fenger 1992).

1.1.3. Neuropathology

Despite the ubiquitous mutant huntingtin (mHTT) expression HD pathology is remarkably
brain specific with the most prominent neuronal cell loss and brain atrophy in the striatum and
cerebral cortex (Vonsattel and DiFiglia 1998) and severe loss of white matter as recently
discovered using new imaging techniques (Dumas et al. 2012; Tabrizi et al. 2012). Total brain
weight can be reduced by 200 — 300g (see Fig. 3 for comparison of HD and normal brain)
(Vonsattel et al. 1985). The first and most commonly used grading system for
neuropathological classification of HD was developed by Jean Paul Vonsattel in 1985
(Vonsattel et al. 1985). This grating system was developed through examination of 238 post-
mortem half-brain HD specimens and is based on the severity and pattern of striatal (mainly
caudate nucleus) degeneration. Vonsattel and colleagues distinguished 5 grades of
neuropathological severity in HD (0-4). Grade 0: Gross examination shows features appears
indistinguishable from normal brains after gross examination (Vonsattel et al. 1985) but 30-
40% neuronal loss can be detected in the head of caudate nucleus without reactive astrogliosis
(Vonsattel and DiFiglia 1998). Grade 1 shows atrophy, neuronal loss and astrogliosis of the
tail, head and in some cases body of the caudate nucleus. Cell counts show 50% or greater
neuronal loss in the head of caudate nucleus. Gross striatal atrophy is mild to moderate in



Grade 2 and severe in Grade 3. The microscopical changes are more severe than in Grade 1. In
Grade 4, striatum is severely atrophic showing 95% or higher neuronal loss (Vonsattel and
DiFiglia 1998) (see Fig. 2 for gross anatomy pictures of VVonsattel grades).

Fig. 2 Vonsattel HD grades. Luxol fast-blue hematoxylin and eosin stain. A) Control, and grades 0
and 1. No abnormality on gross examination. B) Grade 2. The caudate nucleus is atrophic, but
maintains its convex medial outline. C) Grade 3. The striatal atrophy is moderate to severe and the
medial outline of the caudate nucleus is no flat, forming a nearly straight line. The cross-section
outline of the anterior limb of the internal capsule has likewise lost its medial convexity. The
putamen is atrophic. D. Grade 4. Very severe atrophy of the caudate nucleus and putamen, with
markedly concave medial outline of both caudate nucleus and internal capsule. Taken and modified
from Vonsattel et al. 1985.

Further histological examination of the HD brains revealed that striatal neuronal
degeneration is relatively selective for GABAergic medium size spiny neurons (MSNs) which
represent up to 90% neurons of the striatum and which represent the output neurons of the
striatum projecting to substantia nigra pars reticulata and to globus pallidus (Shoulson and
Young 2011). On the contrary, interneurons expressing Somatostatin/neuropeptideY/NADPH
diaphorase/NO synthetase (Ferrante et al. 1985) and large aspiny cholinergic neurons (AChE
and ChAT+) are relatively spared (Ferrante et al. 1987) and without the presence of mHTT
aggregates (Davies et al. 1997). First neurons which degenerate in early and middle stages of
HD are those MSNs expressing GABA/encephalin and projecting to the external globus
pallidus (these are more vulnerable than GABA/Substance P+ MSNs projecting to internal
pallidal segment) (Reiner et al. 1988; Albin et al. 1992). The loss of these neurons most likely
leads to development of chorea (Reiner et al. 1988; Shoulson and Young 2011). MSNs
expressing GABA/substance P and projecting to substantia nigra pars reticulata die later and
are more vulnerable than MSNs expressing GABA/substance P and projecting to substantia
nigra pars compacta (Reiner et al. 1988). Loss of GABA/Substance P (direct pathway) MSNs
then causes motor incoordination (Shoulson and Young 2011). In addition to the striatum
cerebral cortex (mainly layers 11, V and V1), globus pallidus, thalamus, subthalamic nucleus,
substantia nigra, cerebellum and white matter are affected (Vonsattel and DiFiglia 1998).

Development of imaging techniques revealed that the hypothalamus is also atrophied in
HD (Politis et al. 2008). Recent results of the TRACK-HD MRI study showed that whole
brain atrophy, ventricular expansion, caudate, putamen, and overall white and grey matter
atrophy had statistically significantly greater mean annual change in early HD patients



(including pre-manifest individuals) and thus brain imaging could potentially serve as
biomarker in HD (Tabrizi et al. 2011; Tabrizi et al. 2012).

Fig. 3 Comparison of normal brain (right) to a
brain of a late stage Huntington's Disease
patients (left). Atrophy of the HD brain is visible
in all brain areas with the most severe atrophy
apparent in the striatum. Photo courtesy of the
Harvard Brain Tissue Resource Center.

1.2. Huntingtin protein

1.2.1. Wild-type huntingtin

Wild-type (WT) huntingtin is a 3144 amino acids, 348-kDa large soluble protein (see Fig.
4 for schematic diagram) with no sequence homology with other proteins which is
ubiquitously expressed in human and rodents (Cattaneo et al. 2005), with highest expression
levels the CNS neurons and the testes (Van Raamsdonk et al. 2006; Van Raamsdonk et al.
2007). Huntingtin is particularly enriched in cortical pyramidal neurons in layers 1l and V that
project to the striatal neurons (Fusco et al. 1999). Subcellularly, mammalian huntingtin is
associated with most of the organelles including the nucleus (Kegel et al. 2002), endoplasmic
reticulum, Golgi complex (Hilditch-Maguire et al. 2000) and the mitochondrion (Rockabrand
et al. 2007; Orr et al. 2008). Huntingtin is also localized within synaptic vesicles (DiFiglia et
al. 1995) and associated with microtubules (Hoffner et al. 2002). Because of its large size
(348-kDa), huntingtin crystallization is hampered and thus, there are no clear data on the
structure of the protein (Zuccato et al. 2010). Recently, crystals of both wilt-type (Kim et al.
2009) and mutant N-terminal fragments (Kim 2013) were analyzed confirming the previous
predictions that the expanded mHTT polyQ region adopts a B-sheet structure (Kim 2013).

Huntingtin contain multiple important sites including its polyQ site which begins at the
18™ amino acid. Huntingtin orthologs multialignment revealed that the polyQ is an ancient
acquisition of huntingtin and it has been postulated that at the base of protostome-
deuterostome divergence, the huntingtin ancestor possesses a huntingtin protein with a single
Q or no Q in the corresponding position. The polyQ has then expanded gradually in mammals
to become the longest and most polymorphic polyQ in humans with rodents show a shorter
polyQ (7 and 8 Q in mouse and rat, respectively) inverting the evolutionary trend (Tartari et
al. 2008; Zuccato et al. 2010). Recent findings suggest that anti-apoptosis may have been one
of huntingtin ancestral function(s), and that in deuterostomes, huntingtin evolved to acquire a
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unique regulatory activity for controlling interactions between neuroepithelial cells by
regulating a critical cell-cell adhesion pathway involving ADAM10 and Ncadherin activities,
with implications for brain evolution and development (Lo Sardo et al. 2012).

Downstream to the polyQ, huntingtin contains 36 HEAT domains organized in 3 main
clusters (Takano and Gusella 2002; MacDonald 2003). HEAT domain consist of a series of
three amino acids which are repeated ~10 times along a 37-47 amino acid stretch and are
involved in protein-protein interactions (Neuwald and Hirano 2000). C-terminus of huntingtin
contains nuclear export signal (NES) sequence and a less active nuclear localization signal
(NLS) which might indicate that huntingtin (or a part of it) is involved in transporting
molecules from the nucleus to the cytoplasm (Xia et al. 2003).

Huntingtin contains multiple cleavage sites for caspases, calpain, and aspartyl proteases
generating a wide range of fragments (Goldberg et al. 1996; Wellington et al. 1998;
Wellington et al. 2000; Gafni and Ellerby 2002; Wellington et al. 2002; Gafni et al. 2004) but
the exact contribution of huntingtin proteolysis to cell functioning is unclear. Huntingtin is
modified by numerous posttranslational modifications including ubiquitination of N-terminal
lysines K6, K9 and K15 which target huntingtin to the proteasome and which is affected when
polyQ is expanded (Kalchman et al. 1996; DiFiglia et al. 1997). Huntingtin is phospohorylated
on multiple serine residues and phospohorylation on S536 inhibited calpain-mediated cleavage
and reduced toxicity of mutant huntingtin (Schilling et al. 2006). Furthermore, IkappaB kinase
(IKK) complex phospohorylates huntingtin on S13 and may activate S16 phospohorylation
which promotes modification of the adjacent lysine residues and target wild-type huntingtin
clearance by the proteosome and the lysome (Thompson et al. 2009). When S13 and S16 were
mutated to aspartate in full length BACHD mice, disease pathogenesis was abolished (Gu et
al. 2009). Sumolyation of the first 17 amino acids modulates its subcellular localization,
activity, and stability (Steffan et al. 2004) and palmitoyalation at cysteine 214 is consistent
with huntingtin role in regulation of vesicular trafficking and is decreased by expanded polyQ
in mutant huntingtin which contributes to formation of neuronal inclusions and toxicity
(Huang et al. 2004; Yanai et al. 2006). Lysine residue 444 is acetylated and is required to
target huntingtin to macroautophagy pathway (Jeong et al. 2009). Huntingtin interacts with
many proteins and most of the interactions are associated with its N-terminal domain and
some interactions were proven to be affected by polyQ expansion in mutant huntingtin.

1.2.2. Huntingtin functions

Wilt-type huntingtin has numerous functions which are important for normal embryonic
development and neurogenesis (Cattaneo et al. 2005; Lo Sardo et al. 2012). It was shown that
huntingtin has anti-apoptotic functions and that this function is contained within the 548 N-
terminal amino acids (Rigamonti et al. 2000; Leavitt et al. 2006).

Brain derived neurotrophic factor (BDNF) which in adult brain, is mainly produced by the
cerebral cortex and thus is particularly important for the survival of striatal neurons and the
activity of cortico-striatal synapses (Cattaneo et al. 2005). It has been demonstrated that wild-
type but not mutant huntingtin stimulates the expression of BDNF by regulation of BDNF
promoter (Zuccato et al. 2001; Zuccato et al. 2003) and in addition, wild-type huntingtin
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specifically enhances the vesicular transport of BDNF along microtubules (Gauthier et al.
2004) suggesting that the striatal support of BDNF is mostly dependent on wilt-type
huntingtin function. Further research revealed that bdnf transcription is regulated by Repressor
element 1 (REL; also known as the neuronrestrictive silencer element, NRSE) which is
recognized by the REZl-silencing transcription factor (REST; also known as neuronal
restrictive silencing factor, NRSF) transcriptional regulator and which acts as a transcriptional
silencer of large number of neuronal gene containing RE1/NRSE sequences (Zuccato et al.
2003). Wild-type huntingtin sequesters the available REST/NRSF in the cytoplasm preventing
it from forming the nuclear co-repressor complex at the RE1/NRSE nuclear site and allowing
gene transcription of bdnf and other genes (Zuccato et al. 2003). It was therefore hypothesized
that huntingtin might act in the nervous system as a general facilitator of neuronal gene
transcription (Zuccato et al. 2003; Cattaneo et al. 2005).

Reduction of wilt-type huntingtin also cause mitochondria immobilization and disrupts
axonal transport (Trushina et al. 2004). Wild-type huntingtin directly binds on of the key
molecules in synaptic transmission, e.g. on the postsynaptic density protein 95 (PSD95) that
binds the NMDA and kainate receptors at the postsynaptic density (Smith et al. 2005). A
decreased interaction of mutant huntingtin with PSD95 has been described in HD, suggesting
that more PSD95 is released in HD, thus affecting the activity of NMDA receptors, and
possibly leading to their overactivation/sensitization and to excitotoxicity (Sun et al. 2001).

1.2.3. Loss of function and gain of function

Despite the fact that huntingtin is essential for life and development, it is clear that just a
simple loss of its function(s) cannot lead to HD. Nevertheless, the CAG expansion in the HD
gene is responsible for changes in huntingtin posttranslational modifications and most likely
for changes in its structure leading to its altered protein-protein interactions which ultimately
cause impairment of biological mechanisms where wild-type huntingtin plays crucial role
(because WT huntingtin lost its function). But based on genetic experiments using mouse
models of HD (Duyao et al. 1995; Zeitlin et al. 1995; Mangiarini et al. 1996; Reddy et al.
1998; Hodgson et al. 1999; Hurlbert et al. 1999; Shelbourne et al. 1999; Graham et al. 2006)
and non-specific huntingtin silencing experiments (Harper et al. 2005; Wang et al. 2005b;
Machida et al. 2006; DiFiglia et al. 2007), it is evident that mutant huntingtin retains some of
its “wild-type” functions and that mutant huntingtin is required to evoke HD pathology and
symptoms.

Moreover, it has been previously demonstrated that the most toxic fragment of mutant
huntingtin is the exon 1 containing an expanded polyQ tract (ELmHTT) (Miller et al. 2011).
Recent discovery of the critical role of CAG repeat length—dependent aberrant splicing of
mutant huntingtin gene which results in ELmHTT expression suggests that the pathology in all
knock-in HD mouse models as well as in human HD could be driven by that very same exon 1
fragment of mutant huntingtin (Sathasivam et al. 2013). This breakthrough finding could
represent the primary cause of huntingtin pathology in HD.
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Fig. 4 Schematic diagram of the huntingtin amino acid sequence. (Q)n indicates the polyglutamine
tract, which is followed by the polyproline sequence (P)n; the red emptied rectangles indicate the three
main groups of HEAT repeats (HEAT group 1, 2, 3). The small green rectangles indicate the caspase
cleavage sites and their amino acid position (513, 552, 586), while the small pink triangles indicate the
calpain cleavage sites and their amino acid positions (469, 536). Boxes in yellow: B, regions cleaved
preferentially in the cerebral cortex; C, regions of the protein cleaved mainly in the striatum; A,
regions cleaved in both. Posttranslational modifications: ubiquitination (UBI) and/or sumoylation
(SUMO) sites (green); palmitoylation site (orange); phosphorylation at serines 13, 16, 421, and 434
(blue); acetylation at lysine 444 (yellow). NES is the nuclear export signal while NLS is the nuclear
localization signal. The nuclear pore protein translocated promoter region (TPR, azure) is necessary
for nuclear export. Htt, huntingtin. ER, endoplasmic reticulum. (Taken from Zuccato C et al. 2010).

1.3. Molecular mechanisms of mutant huntingtin neuropathology

As we already described earlier, wilt-type huntingtin has a lot of crucial functions which,
when huntingtin is mutated, are lost and which lead to severe impairment of the systems
involved but which are not the source of HD pathology. We therefore further describe just the
mutant huntingtin associated pathology (see Fig. 5 for schematic illustration).

1.3.1. Excitoxicity

Excitoxicity was the first identified pathogenic mechanism in HD and results in
dysfunction in corticostriatal synapses (Zuccato et al. 2010). Early data showed that in HD,
glutamate receptors are lost and that there is a significant decrease of NMDA receptor
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(NMDAR) binding at pre- and early symptomatic stages in the human HD (London et al.
1981; Young et al. 1988; DiFiglia 1990; Dure et al. 1991). Glial cells may play a role in HD as
GLT1 (EAAT2), the Na* dependent glial transporter of glutamate is downregulated in some
mouse HD models and in human postmortem HD brains evidenced by impaired clearance of
glutamate (Lievens et al. 2001; Behrens et al. 2002; Estrada-Sanchez et al. 2009). Enhanced
NMDAR sensitivity to NMDA and increased NMDA evoked currents leading to impaired
synaptic plasticity were detected in striatal neurons from HD mouse (Fan and Raymond 2007).
It has also been shown that NR2B subunit of NMDAR was reduced in the HD striatum (Zeron
et al. 2002). As mentioned before, mutation of huntingtin causes loss of its interaction with
PSD95 which then oversensitize NMDA receptors (Sun et al. 2001).

1.3.2. Mitochondrial dysfunctions

It has been shown that huntingtin binds directly to mitochondria (Choo et al. 2004) altering
their metabolic activity and motility within the cells (Trushina et al. 2004; Orr et al. 2008).
Increased mtDNA mutations and deletions have also been detected in neurons of the cerebral
cortex of HD patients (Horton et al. 1995; Cantuti-Castelvetri et al. 2005). Using the 1H-
magnetic resonance spectroscopy (1H-MRS), decrease of N-acetylaspartate in basal ganglia
and thalamus (Jenkins et al. 1993; Moffett et al. 2007) and increase of production of lactate in
the cerebral cortex and basal ganglia (Jenkins et al. 1993; Koroshetz et al. 1997) of HD
patients has been demonstrated. Biochemical studies of brain and peripheral tissues from HD
patients and HD animal models revealed decreased activity of several enzymes involved in
oxidative phosphorylation such as complex I, I, IlI, and IV (Gu et al. 1996; Arenas et al.
1998; Sawa et al. 1999; Tabrizi et al. 1999; Saft et al. 2005; Benchoua et al. 2006; Benchoua
et al. 2008; Jeong et al. 2009). Impaired calcium handling has been found in the mitochondria
isolated from HD patients (Panov et al. 2002) and when NMDA receptors were transiently
activated in primary striatal neurons from YAC128 transgenic mice, these cells failed to
reestablish calcium homeostasis in higher proportion compared with neurons from wild-type
littermates (Oliveira et al. 2006). Mutant huntingtin was found to bind p53 and increase p53
levels and transcriptional activity, leading to the upregulation of two proapoptotic downstream
players, Bcl2-associated X protein (BAX) and p53-upregulated modulator of apoptosis
(PUMA) (Bae et al. 2005). Mutant huntingtin also represses transcription of PGC-1a, a gene
encoding for a transcriptional coactivator that regulates expression of genes involved in
mitochondrial biogenesis and respiration (Cui et al. 2006). The expression of these genes is
severely impaired in the disease (Cui et al. 2006).

1.3.3. Transcriptional dysregulation

DNA microarrays showed a large number of gene expression changes in cellular and
mouse models of HD (Chan et al. 2002; Fossale et al. 2002; Luthi-Carter et al. 2002a; Luthi-
Carter et al. 2002b; Sipione et al. 2002; Cha 2007). They indicate also that gene dysregulation
occurs before the onset of symptoms, suggesting that transcriptional dysregulation is an
important causative factor in the disease (Cha 2007). A large set of data also indicates that
there is no single transcriptional regulator in HD and rather demonstrates the involvement of

14



multiple transcription factors and DNA target sequences and some critical pathways in HD,
such as the GC-box/Spl-mediated, the CRE/CREB regulation systems, and the REST/NRSF
(Cha 2007; Johnson and Buckley 2009) (Fig. 4).

Mutant huntingtin reduces the transcription of many genes involved in the cholesterol
biosynthesis pathway (Sipione et al. 2002). Subsequent in vivo studies validated these results
with the observation of reduced expression of some key cholesterogenic genes in brain tissues
from HD mice and human samples (Sipione et al. 2002). Expanded polyQ has been found to
directly bind the acetyltransferase domain of CBP and p300/CBP associated factor (P/CAF),
blocking their acetyltransferase activity (Steffan et al. 2001). This causes a condensed
chromatin state and reduced gene transcription (Steffan et al. 2001). Furthermore,
hypoacetylation of histone H3 in HD associates with downregulated genes (Sadri-Vakili et al.
2007).

1.34. Proteolysis

As mentioned above, huntingtin contains multiple cleavage sites for caspases, calpain, and
aspartyl proteases generating a wide range of fragments fragments (Goldberg et al. 1996;
Wellington et al. 1998; Wellington et al. 2000; Gafni and Ellerby 2002; Wellington et al.
2002; Gafni et al. 2004), but the exact contribution of huntingtin proteolysis to cell
functioning and pathology is still not completely understood. Caspase fragments of huntingtin
were observed in HD mice and in post mortem brain tissue from HD patients (Kim et al. 2001;
Wellington et al. 2002). Moreover, it has been proposed that a crucial proteolytic cleavage
event in HD is mediated by caspase-6 (Graham et al. 2006). More recent findings, however,
suggest that mutant huntingtin cleavage by caspase-6 is not necessary for the production of N-
terminal toxic fragments (Gafni et al. 2012; Landles et al. 2012).

1.3.5. UPS dysfunction in HD

Early studies of the UPS impairment in HD suggested that polyQ aggregates could directly
inhibit the function of 26S proteasome (Bence et al. 2001), that the degradation of polyQ
proteins is inefficient (Holmberg et al. 2004) and that the eukaryotic proteasome is not able to
digest polyQ sequences of polyQ-containing proteins (Venkatraman et al. 2004). In more
recent studies, conflicting results showed that the proteasome is fully capable to degrade the
expanded polyQ proteins (Michalik and VVan Broeckhoven 2004), that the UPS impairment is
not caused by direct choking of purified proteasomes but revealed that the UPS impairment is
most likely global (Bennett et al. 2005).

Bennett et al (Bennett et al. 2007) supported the idea of global UPS impairment in in vivo
studies by observation of elevated levels of polyUb chains in R6/2 and Hdh®*¥?*% mouse
models and human post-mortem HD brains (Bennett et al. 2007). In early studies of UPS
activity in HD, artificial reporters of UPS activity based on destabilized GFP were
successfully applied in in vitro cellular HD models (Bence et al. 2001; Bennett et al. 2005) but
when translated into in vivo studies using R6/2 mouse model, these reporters failed to
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accumulate and thus failed to confirm global UPS impairment in vivo (Bett et al. 2009;
Maynard et al. 2009).

However, when the UPS GFPu reporters were fused to either postsynaptic PSD95 or
presynaptic SNAP25 proteins, increased levels of GFPu reporters were observed in the
synapses of R6/2 and Hdh®**® HD mouse models (Wang et al. 2008). These observations
suggest that the malfunction of UPS in HD could be region-specific rather than global.

Proteasome, chaperone,
o and autophagy inhibition

Accumulation of %_
abnormal Gé == ‘) -
proteins el

% Abnormal
? interactions

& /\ ®*  withcellular

Toxic fragments ——} proteins

Ol|gomer|sat|on

C \ LATP
¥ 1ROS
Cleavage @

Compact B PGCla 1 PaCla /'
conformation J__ BDNF tanEEdA Mitochondrial
e abnormalities
N % . ‘ I L BDNF
Expanded
polyglutamine; Inclusion #
abnormal & Nucleus Neuron
conformation N
C 1
Vesicle
/ c
Caspase 6 \
LA cleavage e Mutant HTT
|
i

Dynactin p1509=
Microtubule |

i

Expanded polyglutamine, normal confirmation

Fig. 5 Postulated intracellular pathogenesis of Huntington’s disease. Mutant HTT (shown as a blue
helical structure) with an expanded polyglutamine repeat (shown in red) undergoes a conformational
change and interferes with cellular trafficking, especially of BDNF. Mutant HTT is cleaved at several
points to generate toxic fragments with abnormal compact B conformation. Pathogenic species can be
monomeric or, more likely (and as shown), form small oligomers. Toxic effects in the cytoplasm include
inhibition of chaperones, proteasomes, and autophagy, which can cause accumulation of abnormally
folded proteins and other cellular constituents. There may be direct interactions between mutant HTT
and mitochondria. Other interactions between mutant HTT and cellular proteins in the cytoplasm are still
poorly understood. Pathognomonic inclusion bodies are found in the nucleus (and small inclusions are
also found in cytoplasmic regions). However, inclusions are not the primary pathogenic species. A major
action of mutant HTT is interference with gene transcription, in part via PGCla, leading to decreased
transcription of BDNF and nuclear-encoded mitochondrial proteins. ROS=reactive oxygen species.
Taken from Ross and Tabrizi 2011).

16




1.3.6. Autophagy in HD

Increase of autophagosome-like structures has been shown in the brains of HD patients
(Sapp et al. 1997; Kegel et al. 2000; Petersen et al. 2001). Recent studies revealed that mTOR,
the negative regulator of the autophagic pathway, is sequestered into polyQ huntingtin
aggregates in HD cell models, transgenic mice, and HD patient brain (Ravikumar et al. 2004).
This ultimately leads to the induction of autophagy and clearance of mutant huntingtin
fragments, which protects cells from death (Ravikumar et al. 2004). In addition,
administration of chemical activators of autophagy or overexpression of genes implicated in
autophagy enhance the clearance of mutant huntingtin, reduce aggregate formation, and
improve the behavioral phenotype in HD mice (Ho et al. 2001; Ravikumar et al. 2002;
Ravikumar et al. 2004; Yamamoto et al. 2006; Sarkar and Rubinsztein 2008). Recent findings
suggest that huntingtin clearance by the Ilysosome depends on LAMP-2A, the
integralmembrane receptor protein that can directly import proteins across the lysosomal
membrane (Thompson et al. 2009). It has also been shown that acetylation of lysine residue
444 is required to target huntingtin to macroautophagy pathway (Jeong et al. 2009). Recently,
Li et al (2010) suggested that the clearance of soluble N-terminal mutant huntingtin is more
dependent on the function of the UPS and that autophagy could function as a backup system to
clear mutant huntingtin or is more efficient to remove aggregated forms of huntingtin (Li et al.
2010).

1.3.7. Misfolding and aggregation

HD onset and severity is polyQ-length-depended and is characterized histopathologicaly
by the presence of mutant huntigntin protein aggregates and inclusion bodies (IBs) found in
affected neurons as it was first detected in HD mouse (Mangiarini et al. 1996) and human HD
patiens (DiFiglia et al. 1997) (see Fig. 6 for mHTT aggregates). Intensive research revealed
that many factors influence the incidence of aggregated mutant huntingtin including levels of
mutant protein expression, polyglutamine length, the length of the mutant huntingtin fragment,
and age of the animal (Hackam et al. 1998; Li and Li 1998; Chen et al. 2002). Indeed, the
frequency of aggregates formation is higher in the presence of short N-terminal mutant
huntingtin fragments (Hackam et al. 1998). Biochemical analyses of nuclear and cytoplasmic
inclusions showed that nuclear aggregates are composed mostly by the N-terminal fragments
(Cooper et al. 1998; Hackam et al. 1998; Martindale et al. 1998).

Long polyglutamine repeats can adopt a polar zipper conformation that is stabilized by
hydrogen bonds between the amides (Perutz et al. 1994). The newly formed polar zipper
conformation results in a cylindrical, parallel B-sheet structure with one helical turn requiring
20 glutamines while a helix containing 40 or more glutamines displays two successive turns
which enable hydrogen bond formation between the two turns leading to greatly enhanced
overall stability (Perutz et al. 2002). This polyQ-depended aggregation displays kinetics of
nucleated-growth polymerization with a prolonged lag phase required for forming an
aggregation nucleus, followed by a fast extension phase during which additional
polyglutamine monomers rapidly join the growing aggregate (Wanker 2000; Bates 2003).
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Fig. 6 Mutant huntingtin aggregates in mouse and human brain.

First demonstration of mHTT aggregates in human cortex (A, C) and striatum (B) and in striatum of
the first HD transgenic mouse model R6/2 as evidenced by staining with the AB1 antibody (D). E)
Represents coronal section at the level of anterior commissure (one hemisphere) of R6/2 brain
mouse stained with mHTT aggregate-specific mEM48 antibody showing mHTT aggregate formation
in virtually every single neuron. A, B and C taken from DiFiglia et al. 1997, D from Davies et al.
1997 and E is author’s original work.

Another mutant huntingtin aggregation pathway depends on the first 17 N-terminal amino
acids. First observed are the oligomers having the first 17 amino acids of the protein in its core
and polyQ sequences exposed on the surface. As the polyQ increases, the structure
decompacts and oligomers and/or protofibrils rearrange into amyloid-like structures capable of
rapidly propagating via monomer addition (Thakur et al. 2009) (see Fig. 7 for schematic
drawings of mHTT aggregation pathways).

It has also been demonstrated that the initial aggregation of mutant huntingtin is
independent of its ubiquitination and that ubiquitination of mutant huntingtin aggregates
represents their secondary growth phase (Gong et al. 2012; Skibinski and Boyd 2012).

It has been shown that that full length mutant huntingtin has to be cleaved in order to
undergo the aggregation steps (Scherzinger et al. 1997; Cooper et al. 1998; Lunkes et al. 2002;
Graham et al. 2006) as it is hypothesized that uncleaved mutant huntingtin is prevented from
fibrillar polymerization because of steric interference resulting from the size of the full length
protein. Therefore, cleavage of mutant huntingtin appears to be the rate limiting step in
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aggregate formation (Woodman et al. 2007). However, recent discovery of a critical role of
CAG Repeat Length—Dependent aberrant splicing of mutant huntingtin gene which results in
exon 1 mHTT protein expression suggests that the pathology in all knock-in HD mouse
models and human HD could be driven by the expression of the same exon 1 mHTT which is
expressed in R6/2 mouse (Sathasivam et al. 2013).
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Fig. 7 The process of aggregate formation. Two major aggregation pathways are in competition
with each other and explain how the polyQ expansion can facilitate aggregation. A) in the first
pathway, mutant huntingtin undergoes covalent modifications (posttranslational modification or
cleavage), determining the conversion of the protein to an abnormal conformation. The mutant protein
forms oligomer intermediates that then give rise to globular intermediates from which protofibrils are
generated. Protofibril intermediates associate to produce amyloid like structures, resulting in
aggregates or inclusions. B) in the second pathway, oligomers having the first 17 amino acids of the
protein in its core and polyQ sequences exposed on the surface are formed. As the polyQ increases,
the structure decompacts and oligomers or protofibrils rearrange into amyloid-like structures capable
of rapidly propagating via monomer addition and producing aggregates. Taken from Zuccato et al.

While the aggregation of mutant huntingtin is often described as a pathological hallmark
of HD, recent data show that even though the pathological aggregation of mutant huntingtin is
associated with certain pathological mechanisms in HD (reviewed in (Zuccato et al. 2010), the
formation of aggregates could represent a cell disease-coping response to the most toxic
fragments of mutant huntingtin (Arrasate et al. 2004; Miller et al. 2011). These new data
demonstrate that: i) that the presence of soluble monomeric E1mhtt strongly predicts neuronal
death (Miller et al. 2011), ii) that neurons which develop IBs show improved survival and
decreased levels of diffuse forms of mMHTT (Arrasate et al. 2004), iii) the already mentioned
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critical role of CAG Repeat Length—Dependent aberrant splicing of mutant HTT gene which
results in ELmHTT protein expression (Sathasivam et al. 2013) and that iv) downregulation of
the EIMHTT expression by antisense oligonucleotide infusion in the R6/2 mouse led to
prevention of brain atrophy, improved neuronal survival and suppression of new mhtt
synthesis, however it did not significantly alter mhtt aggregation, suggesting that disease
progression is probably independent of mhtt aggregate formation (Kordasiewicz et al. 2012).
Clearly, the aggregation of mutant huntingtin has implications in normal protein turnover by
UPS and autophagy (Sarkar and Rubinsztein 2008; Wang et al. 2008; Li et al. 2010)
(discussed above).

1.4. Current treatments

Regrettably, there is no cure for HD (Novak and Tabrizi 2010). Currently, there are several
potential therapeutic agents (memantine, tetrabenazine, minocycline, treaholose, C2-8,
creatine, coenzyme Q10, ethyl- EPA, cysteamine, HDAC inhibitors, mitramicycin) mostly
acting on the downstream targets that have shown improvement of motor and/or cognitive
dysfunction mostly in the R6/2 and N171-82Q mouse lines. Seven compounds have been
systematically tested in HD patients at different stages of the disease (Zuccato et al. 2010).
Unfortunately, only a few drugs have been tested in HD patients with some benefits. Only one
is now available in several countries (tetrabenazine) (Frank and Jankovic 2010). Tetrabenazine
has the best evidence of efficacy in Huntington’s disease and has been shown to reduce chorea
(Novak and Tabrizi 2010).

One possible explanation why the drugs successfully tested in mice models of HD failed in
humans can be found in the discrepancies existing between mouse HD models and human
disease (Zuccato et al. 2010; Morton and Howland 2013). These discrepancies highlight the
difficulty in predicting the efficacy of new drugs in humans based on animal models of HD
(Zuccato et al. 2010) and demonstrate the need of large animal model of HD which will better
simulate the human HD (Morton and Howland 2013). Given the multiple pathogenic
mechanisms involved in HD, it is expected that a compound targeting one pathological
mechanism may not be effective alone. Combinations of therapeutic agents that target
different pathogenic mechanisms should have greater efficacy. Thus, recent discovery work
for therapeutics have been expanded to include potential therapies which influence the
misfolding, clearance or lowering of mutant huntingtin expression modifying the upstream
events leading to HD (Yamamoto et al. 2006; Perrin et al. 2007; Kordasiewicz et al. 2012).
Huntingtin lowering approaches are the most promising ones employing antisense
oligonucleotides and siRNA strategies targeting either both alleles or just the mutant one
(Johnson and Davidson 2010; Sah and Aronin 2011; Kordasiewicz et al. 2012; Southwell et al.
2012). Moreover, recent research revealed broad spectra of potential biomarkers which could
be used in future clinical trials to better assess potential of the therapeutics (Hersch and Rosas
2011; Weir et al. 2011).

Cell replacement therapies in HD patients led to somehow mixed results, but with little
evidence to date that it produces long-term benefits in the majority of patients. This, coupled
to the emerging post-mortem data in some of these patients, suggests that this approach may
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not be the optimal therapeutic strategy for treating HD. However, until clear evidence emerges
of disease modifying therapies for HD, it remains one possible strategy and could even be
used in conjunction with such treatments as a way of repairing and retarding the disease
(reviewed in (Wijeyekoon and Barker 2011)). The potential of the cell replacement therapies
in HD, however, was demonstrated in several animal models where neural stem/progenitor
cells could survive and differentiated into replacement striatal neurons following
transplantation into the brain resulting in an improvement of motor and cognitive functions
(reviewed in (Maucksch et al. 2013).

Currently, the aim of treatment is to manage symptoms and improve quality of life. No
current treatments can slow disease progression (Handley et al. 2006; Imarisio et al. 2008;
Novak and Tabrizi 2010). There are many effective options for symptomatic management,
both drug and non-drug based (Phillips et al. 2008; Mestre et al. 2009).

15. Transgenic animal models of HD

A wide array of transgenic animals have been produced following the identification of the
HD gene mutation in 1993 (1993) (see Table 1 for the list of most commonly used mouse HD
models). Commonly used is the R6/2 mouse expressing exon 1, with 144 CAG repeats, of the
human htt gene under the control of the human huntingtin promoter (Mangiarini et al. 1996).
Neuropathologic analyses show progressive reduction in neostriatal volume, brain weight, and
striatal neuron number with the presence of mHTT aggregates that increase in size and number
over the lifespan of the animal (Stack et al. 2005). R6/1 strain mice were produced soon after
with the intent of producing a milder HD phenotype employing the same exon 1 mHTT
fragment with 116 CAG repeats. Relative expression levels of the human mHTT transgene to
the 2 endogenous mouse HTT genes was decreased in comparison to the R6/2 line at 31% and
75% of endogenous, respectively. Hallmark intracellular inclusions are formed in a similar
pattern as seen in R6/2 mice. Dopamine and cyclic adenosine monophosphate-regulated
phosphoprotein (DARPP32) immunostaining, a marker for striatal GABAergic neuronal
pools, is decreased (van Dellen et al. 2000), though striatal neuron number has not been shown
to decrease over the lifespan of the animal (Naver et al. 2003). Yeast artificial chromosome
(YAC) and prion promoter driven human HTT N171-82Q transgenic animals are also
commonly employed models. YAC mice carry the full length human HTT gene under the
control of the human HTT promoter including either 72 or 128 CAG repeats (Hodgson et al.
1999). Striatal neurons have been shown to be reduced in number by as much as 18% in this
model (Slow et al. 2003). N171-82Q transgenic animals develop HTT intranuclear inclusions
and neuritic aggregates (Schilling et al. 1999) in striatal, cortical and hippocampal brain areas
and exhibit neuronal loss by as much as 25% (McBride et al. 2006).

Two HD transgenic rat models have been produced in recent years by the Olaf Riess’
group at the University of Tubingen. Von Horsten et al. used a human derived 51 CAG
sequence inserted into a 1962 bp rat HTT fragment under the control of the endogenous rat
promoter (von Horsten et al. 2003) and more recently, Yu et al. generated BACHD transgenic
rats which express full-length mutant human huntingtin with 97CAA/CAG repeats under
control of the human huntingtin promoter and all regulatory elements (Yu et al. 2011). tgHD
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rat model exhibit adult-onset neurological phenotypes with reduced anxiety, cognitive
impairments, and slowly progressive motor dysfunction as well as typical histopathological
alterations in the form of neuronal nuclear inclusions in the brain (von Horsten et al. 2003).
On the other hand, BACHD rat model exhibited an obvious delay in reversal learning during
Skinner box tests as early as at 3 months of age and immunohistological staining with anti-
DARPP32 revealed neurodegeneration and neuronal atrophy in the lateral striatum at 12
months of age (Yu et al. 2011).

Despite the fact that transgenic animals generated invaluable data and revealed many
molecular mechanisms underlying Huntington’s disease pathology, this technology suffers by
specific limitations which are attributed to the nature of how the transgene is incorporated into
the genome. In classical transgenesis, the exogenous huntingtin gene is inserted randomly and
therefore could affect the activity of other HD-non-related genes. In many cases, the
expression of the transgenic huntingtin is driven by artificial promoters leading to non-
physiological protein expression (Zuccato et al. 2010). To overcome these limitations, a
variety of knock-in mouse HD models was generated providing the HD research community
with genetically precise replicas of HD. Knock-in mouse HD models were generated in two
different ways: i) first being the introduction of the pathogenic CAG repeats into the
endogenous mouse huntingtin gene (Shelbourne et al. 1999; Lin et al. 2001), ii) replacing
mouse exon 1 with human exon 1 carrying expanded CAG repeats (CAG range from 48 to
200) while keeping the mouse Hdh promoter (Wheeler et al. 1999; Ishiguro et al. 2001,
Menalled et al. 2003; Heng et al. 2010). Knock-in models with shorter polyCAG repeats
exhibited just modest neurodegenerative changes (Zuccato et al. 2010; Bowles et al. 2011)
while models carrying ~100 and more CAG repeats (namely HdhQ92, HdhQ94, HdhQ 111,
HdhQ140, HdhQ150 and HdhQ200) showed mHTT inclusion formation, neuronal
dysfunctions, striatal gliosis and progressive motor deficits in a CAG length-dependent
fashion (Wheeler et al. 2000; Lin et al. 2001; Menalled et al. 2002; Menalled et al. 2003; Heng
et al. 2008; Hickey et al. 2008; Heng et al. 2010; Zuccato et al. 2010; Bowles et al. 2011). The
homozygous KI models exhibited an even more pronounced HD phenotype (Heng et al. 2007;
Woodman et al. 2007; Heng et al. 2008; Moffitt et al. 2009; Heng et al. 2010). The HdhQ140
knock-in model showed striatal atrophy and neuronal loss at 2 years of age (Hickey et al.
2008). At about the same age (100 weeks), HdhQ150 KI mice demonstrated approximately
50% loss of neurons in heterozygous and homozygous mice, though only the homozygous
HdhQ150 mice exhibited loss of striatal volume (Heng et al. 2007; Heng et al. 2008).

A transgenic non-human primate model (Yang et al. 2008) was generated using a lentiviral
construct expressing exon 1 of the human HTT gene with 84 CAG repeats. Five HD
transgenic macaques were generated exhibiting HD neuropathology with rapid onset of an HD
like phenotype, though only 2/5 animals survived past 6 months. Two other large animal
models were generated in the past years — HD transgenic sheep carrying full-length human
HTT with 73 polyglutamine repeats under the control of the human HTT promoter (Jacobsen
et al. 2010) and HD transgenic minipig expressing the 548aa N-terminal fragment of human
htt with a 124 polyQ repeats generated by our group (Baxa et al. 2013). This transgenic
minipig is described in greater details in the results and discussion sections. Another cloned
transgenic HD minipigs bearing N-terminal mutant HTT (208 amino acids and 105 Q) have
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been generated via somatic cell nuclear transfer technology (Yang et al. 2010), but the extreme
high expression levels of the transgene led to premature (3 days old) death of three of the 5
born piglets, fourth lived for only 25 days and the fifth founder was still viable at the
beginning of 2013 (Morton and Howland 2013).

. . Motor
Strain Transgenic L. Repeat ) Background
. Gene Characteristics  Promoter Symptom Lifespan . References
Name or Knockin Length Strain(s)
Onset
R6/2 Transgenic Exon 1 of human 1 kb of ~150 6 weeks 10-13 C57BL/6XCBA (Mangiarini
fragment HTT gene Human wks et al. 1996)
R6/1 Transgenic Exon 1 of human 1 kb of 116 18 weeks 32-40 C57BL/6xCBA or (Mangiarini
fragment HTT gene Human wks C57BL/6 et al. 1996)
N171- Transgenic First 171 AA of Prnp 82 3 months 16-22 C57BL/6xC3H/He (Schilling et
82Q fragment human HTT (exons wks al. 1999)
Tg100 Transgenic First ~3 kb of human Rat NSE 100 3 months Normal C57BL/6XSIL (Laforet et
fragment HTT cDNA (nonspecific) al. 2001)
HD94 Transgenic Chimeric TetO + 94 4-8 weeks Normal C57BL/6XCBA (Yamamoto
fragment human/mouse HTT tTA (clasping) et al. 2000)
YACT2 Transgenic Full length human Human 7 16 months Normal FVB/N (Hodgson et
full-length HTT gene HTT al. 1999)
YAC128 Transgenic Full length human Human 120 6 months Normal FVB/N (Slow et al.
full-length HTT gene HTT 2003)
BACHD Transgenic Full length human Human 97 2 months Normal FVB/N (Gray et al.
full-length HTT gene (floxed HTT (mixed) 2008)
HdhQ72, Knockin Endogenous murine Mouse 72,80 12 months Normal Mixed 129Sv, (Shelbourne
Q80 Htt gene, expanded Htt C57BL/6 et al. 1999)
HdhQ111  Knockin Endogenous murine Mouse 109 24 months Normal Mixed 129Sv, (Wheeler et
Htt gene, chimeric Htt (gait) CcD1 al. 1999)
HdhQ94 Knockin Endogenous murine Mouse 94 2 months Normal Mixed 129Sv, (Levine et
Htt gene, chimeric Htt (rearing) C57BL/6 al. 1999)
HdhQ140  Knockin Endogenous murine Mouse 140 4 months Normal Mixed 129Sv, (Menalled
Htt gene, chimeric Htt C57BL/6 etal. 2003)
HdhQ150 Knockin Endogenous murine Mouse 150 100 weeks Normal Mixed 1290la, (Lin et al.
Htt gene, expanded Htt C57BL/6 2001)

Table 1. Commonly Used Mouse Models of HD. Taken and modified from Crook and Housman 2011.
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CHAPTER 2

(Neural) Stem cell therapy in spinal cord disorders and injury

ALS
(Neural) Stem cell therapy in spinal cord injury

Immunosuppression in stem cell transplantation
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2.1. (NEURAL) STEM CELL THERAPY IN SPINAL CORD

Most tissues are composed of a variety of differentiated cells of different lineages and it is
still poorly understood how their numbers are maintained in adult tissues during homeostasis
and in response to injury. The adult central nervous system has always been considered to be a
relatively static tissue with little cell turnover (Barnabe-Heider et al. 2010). However,
discoveries throughout the past two decades demonstrated that there is more plasticity than
previously believed and that new neurons are produced continuously from stem cells in the
subventricular zone of the lateral ventricles and the dentate gyrus of the hippocampus (Zhao et
al. 2008). In most parts of the central nervous system, however, neurons are not added in
adulthood and there is limited cell turnover (Barnabe-Heider et al. 2010).

The spinal cord does not possess a clear neurogenic niche (Kim et al. 2007; Sahni and
Kessler 2010) and/or is not favorable for neural differentiation of ependymal-derived
endogenous progenitors (Sabelstrom et al. 2013) as the spinal cord ependymal cell and
astrocyte proliferation is restricted to self-duplication to maintain their populations in the
uninjured spinal cord, whereas oligodendrocyte progenitors self-renew and give rise to an
increasing number of mature oligodendrocytes (Barnabe-Heider et al. 2010). Nonetheless, it
has been recently showed that the cell turnover after spinal cord injury significantly
accelerates the delivery of new glial cells derived from ependymal cells (39%), followed by
astrocytes (by duplication) (34%) and oligodendrocytes (by self-renewal of oligodendrocyte
progenitors) (27%) (Barnabe-Heider et al. 2010) (see Fig. 8 D-F for schematic drawings).

It has been therefore postulated that the presence of resident cells in the adult spinal cord
capable to promote functional recovery after injury could be used to develop pharmacological
strategies to modulate endogenous spinal cord stem cells in situ (Barnabe-Heider et al. 2010;
Sabelstrom et al. 2013). While these ideas remain to be challenged by numerous experiments,
the already available data from multiple laboratories suggests that the transplantation of
neuronal stem cells into the injured cord represent potential therapeutic intervention leading to
improvement of both sensory and motor functions (Cummings et al. 2005; Faulkner and
Keirstead 2005; lwanami et al. 2005; Keirstead et al. 2005; Cloutier et al. 2006; Cizkova et al.
2007; Erceg et al. 2010; Salazar et al. 2010; Sharp et al. 2010; Usvald et al. 2010; Davies et al.
2011; All et al. 2012; Lu et al. 2012) (van Gorp et al. 2013).

Uninjured spinal cord disturbed by wide spread disease pathology which is affecting vast
majority of its cell types, like in ALS, represent another challenge which can be addressed by
stem cell therapy either by replacing diseased cell populations directly or by introducing a cell
population (like astrocytes) that can be supportive to the motor neurons affected by the disease
process (Clement et al. 2003; Vargas and Johnson 2010; Lunn et al. 2011). It is now well
established that the astrocyte actively and/or passively promote a-motoneuronal degeneration
in ALS (Nagai et al. 2007; Vargas and Johnson 2010; Ince et al. 2011) and because in cell
replacement therapies, the intrinsic complications of replacing highly specialized cells, such as
motor neurons, make astrocytes an ideal target (Vargas and Johnson 2010). Human spinal
cord-derived stem cells (HSSCs) are neural progenitor cells isolated from the cervico-thoracic
spinal cord of an 8-week gestation fetus (Guo et al. 2010). In our experiments, these cells have
shown therapeutic benefit when grafted into the ventral horn of spinal cord of the rat
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SOD1%%** model of ALS (Hefferan et al. 2012), in a rat model of ischemic spinal cord injury
(Cizkova et al. 2007), or in the rat with lumbar contusion injury (van Gorp et al. 2013).
Histological analyses showed that vast majority of the transplanted cells differentiated into
neurons and that the astrocyte and oligodendrocyte differentiation was limited (Cizkova et al.
2007; Hefferan et al. 2012), (van Gorp et al. 2013 in press).

Since a large number of previous experiments from different laboratories demonstrated the
promising potential of human neural stem therapy in spinal cord disorders and injuries and
also showed the proliferative potential of spinal cord stem cells, the future research will most
likely include transplantation of more specific neural progenitors together with modulation of
the plasticity of the cells residing in the adult spinal cord which will come together with
specific trophic support of both the endogenous and transplanted cells and which could be
further combined and thus supported by specific gene (silencing) therapy.

2.2. AMYOTROPHIC LATERAL SCLEROSIS

Amyotrophic lateral sclerosis (ALS; also known as Lou Gehrig’s disease (USA) and motor
neuron disease (UK)) is a late onset, progressive and fatal neurodegenerative disease
characterized by loss of upper motor neurons in the motor cortex and lower motor neurons in
the brain stem and spinal cord. Loss of the motor neurons leads to muscle atrophy, weakness,
fasciculation and spasticity later followed by paralysis and ultimately results in death due to
respiratory failure.

First described in 1869 by Jean-Martin Charcot (therefore initially known as a Charcot’s
disease), ALS was named based on his observations of distinct loss of axons in the lateral
aspect of the spinal cord (Boillee et al. 2006a). Typical onset of the disease is usually in
midlife (45-60 years) with a relentlessly progressive disease course of 3 to 5 years but the
variability is very high (Robberecht and Philips 2013). Worldwide incidence and prevalence
of ALS are 1-2 and 4-6 per 100,000 each year, respectively, with a lifetime ALS risk of 1/350
to 1/1000 (Pasinelli and Brown 2006; Kiernan et al. 2011) and incidence peak (10—
15/100,000/year) between ages 60 and 79 (Logroscino et al. 2005).

Approximately 90% of all cases are classified as sporadic (SALS), defined as having no
family history of the disease. The remaining cases are inherited in a dominant fashion i.e.
familial (FALS) of which 20% are associated with mutations within copper/zinc superoxide
dismutase 1 (SOD1) (Haidet-Phillips et al. 2011). Mutations in at least 15 genes can cause
FALS, and the genetic basis of many FALS cases remains to be found (Ferraiuolo et al. 2011).
ALS causing SOD1 mutations were discovered in 1993 (Rosen et al. 1993) and for a long
time, most of the research of ALS pathogenesis has been focused on SOD1 (Lagier-Tourenne
and Cleveland 2009). Recent identification of 43 kDa TAR DNA-binding protein (TDP-43;
(Arai et al. 2006; Neumann et al. 2006) and FUS/TLS (Kwiatkowski et al. 2009; Vance et al.
2009) causative mutations which are both involved in pre-mRNA splicing, RNA transport and
RNA translation, led to the idea that aberrant RNA metabolism contributes to ALS
pathogenesis (Lagier-Tourenne et al. 2010; Polymenidou et al. 2012; Robberecht and Philips
2013). More recent finding of the chromosome 9 open reading frame 72 (CO9ORF72) mutation
(DeJesus-Hernandez et al. 2011; Renton et al. 2011) let to confirmation that ALS and
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Frontotemporal lobe degeneration (FTLD) are two ends of the spectrum of one disease
(Robberecht and Philips 2013) what was previously suggested by clinical (Lillo and Hodges
2009) and pathological observations (Burrell et al. 2011) (see Fig. 9 for detailed graphical
demonstration).

Despite the intensive research and growing scientific and clinical interest, no cure for ALS
exists. Current clinical therapy is limited to symptomatic treatment such as respiratory and
nutritional management (lkeda 2013) and to riluzole, the only FDA-approved drug that has
been shown to have a modest effect on prolonging survival in ALS patients for ALS
(Bensimon et al. 1994; Lacomblez et al. 1996b). Just very recently, 1* phase of ALS clinical
trial with neural stem cells was successfully completed (Glass et al. 2012) and at the time of
writing of this thesis, positive results of the first antisense oligonucleotide (ASO) ALS clinical
trial where the ASOs against SOD1 were delivered intrathecally in patients with SOD1 FALS
were published (Miller et al. 2013). These promising results are, however, just preliminary and
therefore it is very important to further accelerate the research of ALS.

2.2.1. Clinical presentation of ALS

The clinical features of ALS are a direct consequence of the progressive loss of upper
(UMN) and lower motor neurons (LMN), with secondary denervation and subsequent
reinnervation of muscles. This causes that even with the disease already ongoing, the clinical
symptoms are not detectable (Nefussy and Drory 2010). As the disease progresses, this
compensatory mechanism fails and only at this stage of axonal degeneration and dysfunction
the neuronal body becomes abnormal and die (Robberecht and Philips 2013) and as their
number begins to decrease, one of the earliest symptoms of ALS may be increased fatigue. As
the number of motor units innervating a muscle decreases further, permanent weakness
develops and the affected muscles gradually undergo atrophy (Nefussy and Drory 2010).

ALS has multiple presentations and these are indicative of the loss of neurons across the
whole motor system (Mitchell and Borasio 2007). Identification of the specific phenotypes is
very important for prognosis and survival of the patient (Kiernan et al. 2011) as large
differences in survival and age at disease onset exist even between individuals from one
family, even if ALS is caused by exactly the same mutation (Robberecht and Philips 2013).

The main presentations of ALS include: 1) limb-onset ALS (about 70%). This include: i)
Cervical-onset with upper-limb symptoms, either bilateral or unilateral. Upper limb signs
might be upper motor neuron (involving the limbs leads to spasticity, weakness, and brisk
deep tendon reflexes), lower motor neuron (fasciculations, wasting, and weakness), or both. ii)
Lumbar onset which indicates degeneration of the ventral horn a-motoneurons (¢MN) of the
lumbar enlargement and is associated with lower motor neuron symptoms (fasciculations,
wasting, and weakness) and signs in the legs; 2) bulbar onset ALS (25%) with speech
(dysarthria) and swallowing difficulties (dysphagia), and with limb features developing later
in the course of the disease; 3) primary lateral sclerosis with pure UMN involvement which is
less common; and 4) progressive muscular atrophy with pure LMN involvement (Mitchell and
Borasio 2007; Kiernan et al. 2011).
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The overall population-based lifetime risk of ALS is 1:400 for women and 1:350 for men.
Peak age at onset is 58—63 years for sporadic disease and 47-52 years for familial disease
(Kiernan et al. 2011). Because of the variety of ALS forms/presentations reflexing differential
involvement of motor centers, the prognosis is highly related to the symptoms observed.
Reduced survival is associated with older age at onset, early respiratory problems and bulbar-
onset of the disease. Younger age at onset and limb-onset of the disease predict longer
survival. Nonetheless, ALS is uncompromisingly progressive and 50% of patients die within
30 months of symptom onset and about 20% patient survive between 5-10 years after the onset
(Talbot 2009).
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Fig. 9. ALS-FTLD genes plotted to show phenotype, year of discovery and importance gauged
by research outputs.

The X axis is a score representing the involvement of each gene in ALS or FTLD (-4 being FTLD, 0
being ALS-FTLD, and +4 ALS/MND based on evidence from the ALSoD database
(http://alsod.iop.kcl.ac.uk), PubMed, peer-reviewed publications and case studies. The Y axis
represents year of mutation identification. The circle size represents the level of research on each gene
scaled by the logarithm of the number of articles from PubMed retrieved by the search command
((\GENE[[Title/Abstract]) AND amyotrophic lateral sclerosis[ Title/Abstract]) AND frontotemporal
dementia[Title/ Abstract]) AND geneticsfMeSH Subheading]. Taken and modified from Al-Chalabi et
al. 2012 and further modified according to Robberecht and Philips 2013.
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15% ALS patients have also frontotemporal dementia (FTD; behavioral variant of
frontotemporal lobe degeneration (FTLD)) (Ringholz et al. 2005; Lillo and Hodges 2009) with
TDP-43 positive inclusions in cortical neurons (Neumann et al. 2006; Davidson et al. 2007;
Mackenzie et al. 2007) (whereas at least 50% ALS patients have evidence for more subtle
cognitive and/or behavioral dysfunction (Ringholz et al. 2005)) and 15% of the patients with
FTLD have also ALS and many more FTLD patient have evidence of lower motor neuron
involvement (Lomen-Hoerth et al. 2002; Burrell et al. 2011). This suggests that ALS and
FTLD are two ends of the spectrum of one disease (Kiernan et al. 2011; Robberecht and
Philips 2013). FUS-positive inclusions have been recently identified in FTLD patients with
ubiquitin-positive, TDP43-negative FTLD and in patients with FALS caused by mutations in
FUS (Neumann et al. 2009a) further emphasizing the pathological overlap between ALS and
FTD. Finally, the identification of a common cause for ALS and FTLD — the chromosome 9
open reading frame 72 (COORF72) mutation (DeJesus-Hernandez et al. 2011; Renton et al.
2011) — confirmed this clinical and pathological concept. Patients for which there is clinical
evidence for both disorders are said to have ALS-FTLD. Many patients with ALS show some
cognitive or behavioural changes but do not meet the criteria for FTLD: they are said to have
ALS-Ci/Bi (ALS with cognitive or behavioral impairment). Patients with FTLD can similarly
show evidence of mild motor neuron involvement (clinically or on electromyographs) without
developing ALS: they are said to have FTLD-MND. Some patients have pure ALS or FTLD
(Robberecht and Philips 2013) (Fig. 9).

2.2.2. Neuropathology in ALS

The pathophysiological mechanisms underlying the development of ALS seem to be
multifactorial with evidence of a complex interaction between genetic and molecular pathways
(Kiernan et al. 2011) but the causes of most cases of ALS remain undefined (Pasinelli and
Brown 2006). The pathological hallmark of ALS is the degeneration of upper and lower motor
neurons. As it was first depicted by Jean-Martin Charcot involvement of the upper motor
neurons results in axonal degeneration and secondary loss of myelin in the lateral spinal cord
(=Amyotrophic lateral sclerosis). However, not all motor neurons are affected. Oculomotor
neurons and neurons in Onuf’s nucleus (sacral motor neurons innervating sphincter muscles of
the anus and urethra in humans) are unaffected in ALS (Kanning et al. 2010). It has also been
noted that large motor neurons are more vulnerable than smaller ones (Frey et al. 2000). These
large motor neurons with fast type axons/synapses/motor units (FF; fast-fatiguable) have large
fields of innervation and limited sprouting capacity. On the other hand, small slow-fatiguable
(SF or S) tonic motor neurons innervating small neuromuscular fields with notable sprouting
capacity are most resistant in ALS and survive until end-stage in the mutant SOD1°%** mouse
(Pun et al. 2006).

Degenerating neurons in ALS were found to contain various inclusion bodies and/or
protein aggregates: i) ubiquitinated Lewy body-like or Skein-like inclusions (Leigh et al.
1991) are generally considered as a hallmark of pathology in ALS (Al-Chalabi et al. 2012); ii)
Bunina bodies (cystatin C-containing inclusion) (Okamoto et al. 2008), and iii) accumulation
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of phosphorylated neurofilaments (Pasinelli and Brown 2006). New discovered mutations in
the genes coding TDP-43 and FUS/TLS lead to more or less ubiquitin positive cytoplasmic
inclusions which are SOD1 negative (Arai et al. 2006; Neumann et al. 2006; Igaz et al. 2008;
Kwiatkowski et al. 2009; Munoz et al. 2009; Neumann et al. 2009a; Vance et al. 2009;
Tateishi et al. 2010). Interestingly, FUS/TLS are not TDP43 positive (Vance et al. 2009;
Tateishi et al. 2010) (see Fig. 10 for aggregation in ALS). Another apparent pathological
feature of ALS is fragmentation of Golgi apparatus (Okamoto et al. 2010).

In addition, it is now well established that reactive astrogliosios (Vargas and Johnson
2010) and microgliois (Boillee et al. 2006b) and impaired functions of glial cells in general
(Neusch et al. 2007), as well as active secretion of yet unknown toxic agents from astrocytes
contributes to ALS pathology (Nagai et al. 2007; Haidet-Phillips et al. 2011). Schwann cells
were also shown to be involved (Lobsiger et al. 2009) and recent data about oligodendrocyte
dysfunction in ALS (Kang et al. 2013; Philips et al. 2013) just underlined that the ALS is
complex and systemic disease affecting every single cell type in the CNS and beyond.
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Fig. 10 Aggregation in ALS. (A, B) Ubiquitin staining of spinal motor neurons from a case of SOD1
FALS due to the G85R mutation. The lesions resemble skein-type neuronal cytoplasmic inclusions
rather than neurofilament conglomerates and were negative for neurofilament staining (bar 50 um). (C,
D) ALS patient with C9orf72 repeat expansion showing D) the CA4 region of the hippocampus with
numerous p62 positive (TDP-43 negative) star-like neuronal cytoplasmic inclusions and an
intranuclear inclusion (inset); C) Numerous p62 positive (TDP-43 negative) neuronal cytoplasmic
inclusions are seen in the granular layer of the cerebellum (anti-p62) (scale bar (D) 40um). (E, F) FUS
immunostaining of spinal ventral horn showing normal nuclear staining (E) and a cell containing
cytoplasmic accumulation of FUS (F) (bar 50 um). (G, H) SOD1 pathology. Anterior horn neuron in
the spinal cord of a woman with SOD-1 mutation showing cytoplasmic immunopositivity for p62 (G)
and immunonegativity for TDP-43 (H) in the same neuron (anti-p62 and TDP-43) (scale bar 40 um). I)
““Lewy-like hyaline inclusion’” body in a spinal motor neuron. Despite the superficial resemblance to
a Lewy body such lesions are immunoreactive to TDP-43 and not to a-synuclein. (bar 50 pum). J)
Spinal ventral horn in ALS/MND p62 staining of a skein type inclusion (bar 50 um). Taken and
modified from Ince et al. 2011; and from Al-Chalabi et al. 2012.
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2.2.3. SALS vs FALS

Based on the genetic background of the disease, ALS can be classified into two categories:
familial ALS (FALS) and sporadic ALS (SALS) which are clinically very similar (Rothstein
2009). Most of the ALS cases (classic adult-onset) occur as SALS and only about 10% of
patients are diagnosed as having FALS (Rothstein 2009; Nefussy and Drory 2010; Haidet-
Phillips et al. 2011) which is probably overestimation as it was revealed by a recent meta-
analysis which showed that FALS represent approx. 5% of the case (Byrne et al. 2011). SALS
is defined as having no family history of the disease (Robberecht and Philips 2013). ALS is
considered to be familiar if one or more relatives are diagnosed by ALS (Sabatelli et al. 2013),
but no consensus exists on standard definition criteria for FALS (Byrne et al. 2012).

FALS is mostly hereditary (Table 2) and almost always autosomal dominant with rare
occurrence of X-linked or recessive disease (Ince et al. 2011). The most common mutations
causing FALS are found in the genes coding i) copper/zinc superoxide dismutase 1 (SOD1)
which represents approx. 20% of FALS cases, ii) TAR DNA-binding protein 43 (TDP-43)
responsible for ~1-5%, iii) FUS (fused in sarcoma) or TLS (translocation in liposarcoma)
(FUS/TLS) for ~1-5% and the mutation in iv) Chromosome 9 open reading frame 72
(C90RF72) is the cause of FALS in about 40-50% cases (Robberecht and Philips 2013). All
these four mutations are, to some extent, also known to be responsible for SALS (McGoldrick
et al. 2013). Incomplete family history, de novo mutations and incomplete penetrance are
some of the common reasons for misclassification between SALS and FALS but as all genes
mutated in FALS have also been found mutated in patients without a family history, it is worth
considering if the classification of sporadic versus familial disease is biologically justified
(Nefussy 2013).

2.2.4. Animal models of ALS

Taking into account the historical sequence of the discovery of major FALS causing
mutations, SOD1 animal models are the most commonly used models in ALS research and
drug discovery (Turner and Talbot 2008; McGoldrick et al. 2013). The subsequent
identification of mutations in TDP-43 and FUS/TLS genes led to recent generation of a great
battery of novel ALS rodent models (McGoldrick et al. 2013), however, the validity of these
models for ALS research remains to be demonstrated (Robberecht and Philips 2013). Because
our work was primarily focused on stem cell-based therapy in SOD1°%** rat, just short
description of mouse models is provided with the greatest emphasis on SOD1%%*# animal
models. Detailed description of ALS animal models can be found elsewhere (Turner and
Talbot 2008; Kanning et al. 2010; McGoldrick et al. 2013).

2.2.4.1. SOD1 models of ALS

Soon after the discovery of SOD1 mutations (chromosome 21g22.11) in FALS (Rosen et
al. 1993) first transgenic animal (mouse) model of ALS (SOD1%%*) was generated (Gurney et
al. 1994). This mouse expresses human SOD1 promoter driven SOD1%** (approx. 20-24
copies) (Gurney et al. 1994). About 21 SOD1 rodent models were developed to date
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(McGoldrick et al. 2013). Despite vast differences in transgene copy number, steady-state
transcript and protein levels, dismutase activity and neuropathology, the introduced mutations
induce fatal-ALS like symptoms with different disease latencies and progression rates (Turner
and Talbot 2008). Transgenic SOD1%%** mice (see Fig. 11 for detailed course of the disease)
are the most frequently used mouse ALS models followed by SOD1%*™? SOD1®*R and
SOD1®R mice (see Table 2 for list of the SOD1 ALS mouse models). Similarly, SOD1%%4
rats are the most employed rat ALS models (Turner and Talbot 2008). SOD1"" mouse models
and SOD1 KO&null models were also generated and these models showed that i)
overexpression of wild-type SOD1 leads to axonal loss and motor neuron degeneration in
spinal cord of aged animals (Jaarsma et al. 2000; Jonsson et al. 2006) and that ii) KO of wild-
type SOD1 in SOD1 null mice causes striking age-depended denervation of hind limb muscles
(Fischer and Glass 2007) and skeletal muscle atrophy (Muller et al. 2006).

SOD1 transgenic rat models were generated relatively recently and provide obvious
advantage of the body and mainly CNS size. Two different human SOD1 mutations
(SOD1%%** and SOD1"*®R) induced ALS-like phenotypes (Nagai et al. 2001; Howland et al.
2002). Transgenic rat were generated by two different groups of Yasuto Itoyama at Tohoku
University in Japan (Nagai et al. 2001) and Don W. Cleveland at UCSD (Howland et al.
2002). Rats from these two groups express different levels of mutant SOD1 protein and
therefore display different phenotypes.

ALS-like phenotype of the Cleveland’s SOD1%%*# (L26H) ALS transgenic rat can be
shortly described as follows: i) in presymptomatic stage, no overt motor neuron loss is
evident; ii) the appearance of vacuoles in lumbar motor neurons as well as gliosis precede both
motor neuron loss and clinical signs of disease in rats (Howland et al. 2002); iii) our group
recently discovered that the appearance of first muscle fibrillations (indicator of muscle
denervation) in electromyography measurements (EMG) of gastrocnemius muscle precedes
the 10% body weight loss time point (commonly used as a disease onset point in studies using
this ALS rat model) by approx. 14 days and provide a highly sensitive and early index of
disease onset and is defined by the presence of both spinally mediated hyper-reflexia and
muscle denervation and corresponds with a significant loss of spinal interneurons and a-
motoneurons (10% loss) (Hruska-Plochan et al. manuscript in prep); iv) ongoing rapid
decrease of a-motoneuron numbers which at 10% body weight loss reach 70% and which is
accompanied by axon degeneration, myelin ovoids, macrophage infiltration, ubiquitin and
mSOD1 aggregates, aberrant accumulation of neurofilaments and loss of EAAT2 in ventral
horn gray matter astrocytes (Howland et al. 2002); v) rapid decline and muscle atrophy
leading to hindlimb (later also forelimb) paralysis, respiration difficulties and death (Howland
et al. 2002). This rapid progression and severity of the disease phenotype is in contrast to the
slower progression of disease and higher levels of mutant SOD1 protein observed in
SOD1%%** transgenic mice (G1H and G1L) where disease duration approached 60-70 days
(Gurney et al. 1994; Dal Canto and Gurney 1995; Dal Canto and Gurney 1997). Thus, the
rapid progression of disease in the SOD1%%** transgenic rats seems not to be just a simple
function of expression levels but rather may be characteristic of a species difference in the
presentation of clinical phenotype (Howland et al. 2002).
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SOD1 mutant SOD1 activity  Disease onset Disease Reference
(fold) (months) duration
sop1*" nd 8 3 (Deng et al. 2006)
SOD1%*™* 14.5 4-6 nd (Wong et al. 1995)
SOD1M¢R nd 5 1 (Chang-Hong et al.
SOD1"4eR/HaEQ 0 4-6 nd (Wang et al. 2002)
SQDHAER/HaBA/HEIG/HI20G 8-12 nd (Wang et al. 2003)
sop1“® nd 5-6 1 (Tobisawa et al. 2003)
SOD1°%%* 0 8-14 0.5 (Bruijn et al. 1997b)
SOD1%8¢%® 0 3-4 1 (Ripps et al. 1995)
SOD1%% 6-8 12 2 (Jonsson et al. 2006)
SOD1%** 11 3-4 1-2 (Gurney et al. 1994)
sop1"s’ nd 12 2 (Kikugawa 2000)
soDp1'%* nd 7-9 nd (Wang et al. 2005a)
nd 11 0.75 (Deng et al. 2006)

SoDp1126deT 0 15 1 (Watanabe et al. 2005)
SoD1%1%7 0 8 0.25 (Jonsson et al. 2004)

Table 2. Transgenic mutant SOD mouse models. Taken and modified from Turner and Talbot 2008
nd: not described; a Double transgenic for SOD1"". b Murine transgene.

However, even after 20 years of intensive research using the great spectrum of SOD1
rodent models, understanding of how SOD1 mutations lead to selective premature death of
motor neurons remains vague (Lagier-Tourenne and Cleveland 2009; McGoldrick et al. 2013).

Because of the large number of mutations responsible for FALS and in some instances
SALS, we had primarily focused on the description of pathology which is associated with
mutant SOD1 as i) the SOD1 mutations were the first identified cause of FALS and thus the
majority of ALS research was done in SOD1 animal models and ii) ALS research in our lab is
mainly performed on SOD1%%* transgenic rats. We also describe some other mutations with
major contributions to FALS and SALS.

2.2.5. SOD1 mutations

11 missense mutations in the Cu*?/Zn*? superoxide dismutase 1 (SOD1) gene were first
described in 1993 (Rosen et al. 1993). Mutations in this antioxidant gene are associated with
about 20% of FALS (Boillee et al. 2006a). SODL1 is an enzyme composed of 153 amino acids,
encoded by 5 exons and is involved in free radical scavenging, in which more than 150
different mutations (almost all dominant) have been reported to be pathogenic (Robberecht
and Philips 2013). The mutations encompass all coding regions of the gene affecting over 70
positions with preponderance for exons 4 and 5. One zinc and two copper binding residues are
targeted by the mutations, in addition to all four cysteines. Interestingly, glycine-93 appears
particularly vulnerable, since it is point mutated to all six possible residues in FALS (Turner
and Talbot 2008). Most are missense mutations, but a few truncation mutations at the very C-
terminal part of the protein have been reported, suggesting that most of the molecule must be
present for it to have its pathogenic effect (Robberecht and Philips 2013).

34



SOD1-linked FALS is clinically heterogeneous both within and between affected families,
hampering efforts to correlate disease onset and severity with mutation. However, the most
severe and prevalent mutation in America, A4V, reliably predicts short survival (Cudkowicz
et al. 1997), while D90A, the most common SOD1 mutation worldwide and in the sporadic
population, correlates with non-penetrant, recessive or slowly progressive disease (Andersen
et al. 1995; Hand et al. 2001). Some SOD1 mutations do not cause ALS and carriers can
remain asymptomatic throughout life, suggesting that not all SOD1 mutations cause ALS and
some are rather polymorphisms (Turner and Talbot 2008).

2.25.1. SODL1 pathology

SOD1 is an ubiquitous homodimer which becomes misfolded when mutated and is
primarily found in motor neurons and glial cells of the spinal cord (Pasinelli and Brown 2006;
Nagai et al. 2007; Al-Chalabi et al. 2012). Its main physiological function is to protect cells
from oxidative damage by metabolizing superoxide radicals (Gurney et al. 1994) but it also
has additional enzymatic functions including peroxidation, nitration, copper buffering,
phosphatase activation, zinc homeostasis, thioloxidation and immunomodulation (reviewed in
(Turner and Talbot 2008).

Wild-type SOD1 that is oxidized also misfolds, it is aggregation-prone (Rakhit et al. 2002)
and toxic to motor neurons (Ezzi et al. 2007) which suggest a role for wild-type SODL1 in
SALS, possibly after secondary (oxidative) modification (Robberecht and Philips 2013).

Mutant SOD1 misfolds and is targeted for degradation through ubiquitination and seems to
have toxic effects on the cell proteostasis machinery, impairing its two major components: the
UPS and autophagy (Bendotti et al. 2012; Chen et al. 2012). Increase in autophagosomes has
been detected in motor neurons in the spinal cord of patients with ALS and of rodent models
(Morimoto et al. 2007; Sasaki 2011). Mutant SOD1 accumulates as oligomers and later as
aggregates which are ubiquitinated, which lead to a stress response (Robberecht and Philips
2013) in both SALS and FALS (Rothstein 2009). Intracellular aggregates may mediate motor
neuron degeneration through several mechanisms, including sequestration of essential cellular
components (Bruijn et al. 1998), reduced chaperone activity (Bruening et al. 1999) and
impaired capacity of the UPS (Niwa et al. 2002) (see Fig. 12 for SOD1 ALS pathogenesis).
Furthermore, recent findings suggest that mutant misfolded SOD1 may trigger prion-like
aggregation of normal wilt-type SOD1 (Polymenidou and Cleveland 2011).

2.2.6. TDP-43 mutations

In 2006, 43 kDa TAR DNA-binding protein (TDP-43) was identified as a major
component of ubiquitinated protein aggregates found in the in the cytoplasm and nucleus of
both neurons and glial cells in many patients with sporadic ALS and/or FTLD (Arai et al.
2006; Neumann et al. 2006). Identification of dominant mutations in the TDP-43 coding gene
TARDBP as a primary cause of ALS provided evidence that aberrant TDP-43 can directly
cause neurodegeneration (Kabashi et al. 2008; Rutherford et al. 2008; Sreedharan et al. 2008;
Van Deerlin et al. 2008; Yokoseki et al. 2008). All the mutations are dominant missense
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Fig. 11 Time course of neurodegeneration in the SOD1%%** mouse model of amyotrophic lateral
sclerosis (ALS). The diagram provides an overview of the complex ballet of cellular and molecular
mechanisms that lead over six months to the death of this severe model of ALS. Many changes occur
before muscle strength is reduced by half, including initial alterations in electrophysiology and
behavior followed by ubiquitination and ER stress in susceptible FF motor neurons leading to axonal
dieback and microgliosis and astrogliosis in the spinal cord. These are accompanied by subcellular
changes such as Golgi fragmentation and mitochondrial swelling. During the following months, these
changes become exacerbated and generalized to other motor units, leading to extensive motor neuron
loss and muscle paralysis. Indicated stages (scale in days) represent those in the G93A high-expressor
line. Some parameters have not been studied at earlier stages, so the indicated dates represent the
latest possible onset. The overall layout progresses from systemic and behavioral changes on the left
toward molecular and cellular changes in motor units on the right. Taken from Kanning et al. 2010.

changes with the exception of a truncating mutation at the extreme C-terminal of the protein
(Y374X) (Daoud et al. 2009). Abnormal accumulation of hyperphosphorylated, ubiquitinated
and N-terminally truncated TDP-43 missing their nuclear targeting domain is the pathological
hallmark in most familial and sporadic forms of ALS and FTLD-U (Neumann et al. 2009a).
As under normal conditions, TDP-32 is mainly localized within the nucleus, partial
clearance of TDP-43 from the nuclei of neurons containing cytoplasmic aggregates suggest
that the pathogenesis could be a result of loss of function of TDP43 (Lagier-Tourenne et al.
2010). TDP-43 inclusions are not restricted to motor neurons but can be widespread in brain in
ALS patients with or without dementia (Geser et al. 2008; Van Deerlin et al. 2008; Y okoseki
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et al. 2008) and interestingly, the composition of TDP-43 inclusions seems to differ between
cortical brain and spinal cord in ALS patients (Igaz et al. 2008; Neumann et al. 2009a).

2.2.7. FUS/TLS mutations

Mutations in another RNA/DNA binding protein, FUS/TLS (fused in sarcoma/translocated
in liposarcoma), were discovered 3 years later and were identified as a primary cause of
familial ALS (Kwiatkowski et al. 2009; Vance et al. 2009). Most are missense mutations with
a few exceptions (Belzil et al. 2009; Kwiatkowski et al. 2009; DeJesus-Hernandez et al. 2010).
The inheritance pattern is dominant except for one recessive mutation (H517Q) (Kwiatkowski
et al. 2009). The site and age of disease onset are variable within families and incomplete
penetrance of several FUS/TLS mutations (Kwiatkowski et al. 2009; Blair et al. 2010; Groen
et al. 2010; Hewitt et al. 2010) may help to explain the absence of family history in sporadic
patients (Belzil et al. 2009; Corrado et al. 2010; Lai et al. 2011; Sproviero et al. 2012) as well
as de novo mutations (Zou et al. 2013).

Similar to TDP43, FUS/TLS is mainly nuclear, with lower levels of cytoplasmic
accumulation detected in most cell types (Andersson et al. 2008). Brains and spinal cord from
patients with FUS/TLS mutations revealed abnormal FUS/TLS cytoplasmic inclusions in
neurons and glial cells (Kwiatkowski et al. 2009; Vance et al. 2009; Tateishi et al. 2010)
which are immunoreactive for FUS/TLS and ubiquitin but strikingly not for TDP-43 (Vance et
al. 2009; Tateishi et al. 2010). FUS/TLS and ubiquitin positive and TDP-43 negative
inclusions were later identified in different in FTLD and ALS patients (Munoz et al. 2009;
Neumann et al. 2009b; Woulfe et al. 2010). FUS/TLS nuclear staining was occasionally
reduced in neurons bearing cytoplasmic inclusions, but this pattern was less obvious than in
TDP-43 proteinopathies (Vance et al. 2009; Tateishi et al. 2010).

TDP-43 and FUS/TLS mislocalizations and/or aggregations have now been observed in a
large number of disorders, leading to a new nomenclature for such diseases: TDP-43 and
FUS/TLS proteinopathies (Lagier-Tourenne et al. 2010). They are both structurally close to
the family of heterogeneous ribonucleoproteins (hnnRNPs) and have been involved in multiple
levels of RNA processing including transcription, splicing, transport and translation (Lagier-
Tourenne et al. 2010; Robberecht and Philips 2013).

2.2.8. C90RF72 mutations

ALS-causing nucleotide repeat expansion mutations of the chromosome 9 open reading
frame 72 (COORF72) were recently identified (DeJesus-Hernandez et al. 2011; Renton et al.
2011). C90ORF72 contains a GGGGCC hexanucleotide (G4C2) sequence that is located
between two transcription initiation sites. In most normal individuals, the G4C2 sequence is
repeated mostly two-to-five times. An abnormal expansion of this sequence is found in about
40% of families with ALS and in about 7% of patients with supposed SALS (Majounie et al.
2012; Mok et al. 2012). The length of the expanded repeat is still uncertain but may consist of
several hundreds or even thousands of repeats. This expansion is also found in patients with
FTLD without ALS (DelJesus-Hernandez et al. 2011; Renton et al. 2011; Majounie et al.
2012). The penetrance of the mutation is probably 50% around the age of 60 years and nearly

37



100% above the age of 80 years (Majounie et al. 2012). The normal function of the
presumably cytoplasmic protein C9ORF72 is unknown (Robberecht and Philips 2013).

2.2.9. Pathological mechanisms in ALS

The pathogenic mechanisms in ALS are multifactorial and still not fully determined. As
vast majority of the research conducted over the past 20 years was predominantly performed
on the models expressing mutant SOD1, this short overview is accordingly focused on disease
caused by mutant SOD1 (Fig. 12). Detailed time course of neurodegeneration in the SOD1%4
mouse model is shown in Fig. 11.

2.29.1. Oxidative stress

Oxidative stress causes structural damage and changes in redox-sensitive signaling. It’s
caused by an imbalance between the generation and removal of reactive oxygen species
(ROS), and/or by a reduction in the ability of the biological system to remove or repair ROS-
induced damage. It was proposed that the mutant SOD1 toxicity is mediated by oxidative
damage as mutation-induced structural changes in the mutant SOD1 protein could expose the
active copper site to aberrant substrates (Beckman et al. 1993). The peroxidase hypothesis
suggested that mutations in SOD1 catalyzed copper-mediated conversion of hydrogen
peroxide to reactive hydroxyl radicals, promoting further oxidative damage (Wiedau-Pazos et
al. 1996). Peroxynitrite was also supposed to be a substrate candidate for mutant SOD1 as
increased levels of 3-nitrotyrosine, a marker for peroxynitrite-mediated oxidative damage,
have been reported in SOD1 mice and in ALS patients (Beal et al. 1997; Bruijn et al. 19974;
Ferrante et al. 1997). Moreover, elevated levels of oxidative damage to proteins, lipids and
DNA (Shaw et al. 1995; Fitzmaurice et al. 1996; Shibata et al. 2001) have been found in
postmortem tissue from SALS and SOD1 FALS cases. Mutant SOD1 in microglia increases
NADPH oxidase (NOX)-mediated superoxide resulting in prolongation of ROS production
(Harraz et al. 2008). NOX2 expression is increased in mutant SOD1 mice and in the CNS of
patients with ALS, and survival of SOD1%%** mice is extended by knockout of Nox1 or Nox2
(Wu et al. 2006; Marden et al. 2007; Carter et al. 2009).

2.2.9.2.  Mitochondrial dysfunction

Mitochondria have a central role in intracellular energy production, calcium homeostasis
and control of apoptosis. Defective respiratory chain function associated with oxidative
damage to mitochondrial proteins and lipids has been found in tissue from patients with ALS
and in mutant SOD1 models (Mattiazzi et al. 2002; Wiedemann et al. 2002). In SOD1 mice,
the mutant protein aggregates in vacuoles in the mitochondrial intermembrane space (Wong et
al. 1995) and it has been shown that calcium buffering is impaired in mitochondria purified
from the CNS (Damiano et al. 2006). Furthermore, mutant SOD1 mitochondrial morphology
has been observed in skeletal muscle and spinal motor neurons from patients with ALS
(Sasaki and Iwata 2007). Axonal transport of mitochondria is impaired in experimental models
of ALS which most likely leads to dying back axonopathy in ALS (De Vos et al. 2008). As
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creatine in SOD1%%** mice delayed the onset of motor deficits and increased survival of motor

neurons (Klivenyi et al. 1999), dysregulated energy metabolism is likely to contribute to motor
neuron dysfunction in ALS. Involvement of mitochondria in apoptotic pathway is described
below.

2.2.9.3.  Apoptosis

It has been shown that the programmed cell death in mutant SOD1 ALS mouse models is
executed via the intrinsic (mitochondrial) apoptotic pathway (Mu et al. 1996; Ekegren et al.
1999; Martin 1999; Vukosavic et al. 1999; Guegan et al. 2001). The extrinsic pathway is also
involved as it crosstalk with the intrinsic pathway through the proteolysis of the BID (BH-3
only protein BCL-2 family protein) and this proteolysis is initially mediated by caspase-1 and
not by caspase-8 (Guegan et al. 2002). The FADD/caspase-8 pathway is indeed involved in
Fas-triggered motoneuron death, since cell death can be prevented by the caspase-8 inhibitor
peptide IETD and considerably reduced by overexpression of a dominant-negative form of
FADD (Raoul et al. 2002). Moreover, another novel Fas/Daxx/Ask/p38/nNOS pathway,
which probably plays important role in the SOD1 ALS apoptotic induced death of a-
motoneurons, was discovered (Raoul et al. 2002; Wengenack et al. 2004). mSOD1 astrocytes
from the mouse ALS models and astrocytes from familial and sporadic ALS patients are toxic
to motoneurons (Nagai et al. 2007; Haidet-Phillips et al. 2011) and this effect is in part
mediated by soluble toxic factor(s) through a BAX-dependent mechanism (Nagai et al. 2007).

Genetic experiments demonstrated that i) overexpression of the Bcl-2 (BCL-2 family
protein) showed therapeutic effect in mouse mSOD1 ALS models by delaying the onset of the
disease and prolonging the lifespan (Kostic et al. 1997; Vukosavic et al. 2000); ii) deletion of
PUMA (BH-3 only BCL-2 family protein) delayed motoneuron degeneration and disease
progression in a mouse SOD1 ALS model (Kieran et al. 2007); iii) deletion of the BAX alone
in the mouse SOD1 ALS model prolongs animal survival, blocks a-motoneuron degeneration
and reactive gliosis and delays neuromuscular denervation (Gould et al. 2006) and that iv)
combined BAX and BAK deletion halts neuronal loss, prevents axonal degeneration, symptom
onset, weight loss, and paralysis and extends survival by approximately 21% in the mouse
SOD1 ALS model (Reyes et al. 2010). Therefore, proteins upstream to caspases represent
potential therapeutic targets.

2.2.9.4.  Glutamate excitotoxicity

Glutamate is the main excitatory neurotransmitter in the CNS. Excitotoxicity, the neuronal
injury resulting from excessive activation of glutamate receptors, may be caused by increased
synaptic levels of glutamate, or by increased sensitivity of the postsynaptic neuron to
glutamate, resulting from alterations in neuronal energy homeostasis or glutamate receptor
expression (Van Damme et al. 2005). Disruption of intracellular calcium homeostasis, with
secondary activation of proteolytic and ROS-generating enzyme systems, perturbation of
mitochondrial function and ATP production are the key components of excitotoxicity
(Arundine and Tymianski 2003). Several other findings in the mSOD1 model also point
towards a role for excitotoxicity in ALS pathology, including altered electrophysiological
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properties and increased sensitivity of motor neurons to excitotoxicity (Meehan et al. 2010),
altered AMPA receptor subunit expression, reduced expression and activity of EAAT2
(Howland et al. 2002; Boston-Howes et al. 2006) and increased glutamate efflux from spinal
cord nerve terminals (Milanese et al. 2011). Ameliorating excitotoxicity by the drug riluzole,
which has several effects including inhibition of presynaptic glutamate release, is the only
strategy that has so far slowed disease progression in ALS (Bensimon et al. 1994; Lacomblez
et al. 1996a; Lacomblez et al. 1996b; Cheah et al. 2010).

2.2.9.5.  Protein aggregation

As we have described before, mutations in several genes in ASL (mainly in SOD1, TDP-
43 and FUS coding genes) lead to expression of misfolded proteins which aggregate and are
most of the times polyubiquitinated and thus form distinctive inclusions in the ALS brain and
spinal cord. Proteins found in aggregates in ALS provide several important clues about the
disease pathogenesis. Loss of nuclear TDP-43 and/or aggregation of the protein in cytoplasmic
inclusions may be key pathogenic processes in both SALS and FALS (Robberecht and Philips
2013). The neurofilamentous pathology suggests that neurofilament dysfunction is important
in some forms of ALS. The increase in phosphorylated neurofilament epitopes in motor
neuron perikarya may contribute to the observed slowing of axonal neurofilament transport
(Ackerley et al. 2003).

2.2.9.6. Neuroinflammation

Activated microglia and infiltrating lymphocytes indicate an inflammatory component in
the CNS pathology of ALS (Henkel et al. 2004). Proinflammatory mediators including mono-
cyte chemoattractant protein 1 and IL-8126 are present in the CSF of patients with ALS, and
biochemical indicators of immune-response activation are present in the blood (Mantovani et
al. 2009). In ALS there is a complex interplay between microglia and T cells that modify the
rate of disease progression in a way that is not seen in other neurodegenerative disorders
(Lewis et al. 2012; Gentleman 2013). Reduced counts of CD4+CD25+ regulatory T (TREG)
cells and monocytes (CD14+ cells) are detected early in ALS, suggesting recruitment of these
cells to the CNS early in the neurodegenerative process. TREG cells interact with microglia,
attenuating neuroinflammation by stimulating secretion of anti-inflammatory cytokines
(Kipnis et al. 2004). Correspondingly, microglia isolated from the mutant SOD1 mouse had a
neuroprotective phenotype at disease onset whereas those isolated from end-stage disease
animals had a classical neuroinflammatory phenotype (Liao et al. 2012). Astrocyte activation
plays a central part in inflammation, and mutant SOD1 astrocytes secrete inflammatory
mediators, including prostaglandin E2, leukotriene B4, and nitric oxide under both basal and
activated conditions (Hensley et al. 2006).

2.2.9.7.  Endoplasmic reticulum stress

It is believed that some misfolded proteins, such as mutant SOD1, are sent to the
endoplasmic reticulum (ER), even though they lack the proper signal peptide for the
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translocation. The excess of misfolded proteins in the ER may cause an ER-associated protein
degradation response, which leads to ER-stress. This stress, in turn, may activate ER stress-
related cell death signaling pathways, including apoptosis (Kikuchi et al., 2006). Consistent
with these findings, an up-regulation of ER stress-related genes in vulnerable motor neurons
of presymptomatic transgenic mutant SOD1 mice has been found (Saxena et al., 2009).

2.2.9.8. Impaired axonal transport

Neurofilaments are the most abundant cytoskeletal proteins in motor neurons and play a
key role in stimulating axonal growth and in determining axonal diameter (Rothstein 2009).
Aberrant accumulation of neurofilaments in the cell body and proximal axons of motor
neurons is described as a hallmark of ALS (Xu et al. 1993). Importantly, neurofilament
accumulation was increased in motor neuron cell bodies and decreased in axons. Thus,
perikaryal accumulation of neurofilaments may counterbalance mutant SOD1 toxicity by
buffering against damaging intracellular events, such as excessive calcium levels (Couillard-
Despres et al. 1998) or hyperphosphorylation of neuronal substrates by cyclin-dependent
kinase 5 (Nguyen et al. 2001).

2.2.9.9.  Glial Cell Pathology

Growing number of studies support the hypothesis that selective degeneration of motor
neurons in ALS is not a cell-autonomous process (Di Giorgio et al. 2007; Nagai et al. 2007; Di
Giorgio et al. 2008; Marchetto et al. 2008; Ferraiuolo et al. 2011; Robberecht and Philips
2013). First, defects in astroglia-specific glutamate transporters were identified in a large
percentage of sporadic ALS patients (Rothstein et al. 1995) and later in all SOD1 rodent
models (Howland et al. 2002). Astrocytic inclusions are early indicators of SOD1 mutant
toxicity, preceding symptom onset and increasing with disease progression (Bruijn et al.
1997b). Mutant SOD1 astrocytes from the mouse ALS models and astrocytes from familial
and sporadic ALS patients are toxic to motoneurons (Nagai et al. 2007; Haidet-Phillips et al.
2011) and removal of mutant SOD1 protein from astrocytes markedly delayed disease
progression (Yamanaka et al. 2008a), indicating that non-neuronal cells are major contributors
to disease progression (Rothstein 2009).

Damage within more than one cell type appears to be required, because restricted
expression of mutant SOD1 in astrocytes (Gong et al. 2000) or motor neurons (Pramatarova et
al. 2001) alone failed to induce motor deficits in SOD1 mice. Interestingly, when the
expression of mutant SOD1 was active in all neurons, the ALS symptoms developed in the
neuron specific SOD1 mouse (Jaarsma et al. 2008). The involvement of multiple cell types in
ALS pathogenesis is supported by analysis of chimeric mice made of mixtures of wild-type
and SOD1 mutant expressing cells (Boillee et al. 2006b; Julien 2007; Yamanaka et al. 2008a;
Yamanaka et al. 2008b). In addition, Schwann cells were also shown to be involved (Lobsiger
et al. 2009) and recent data about oligodendrocyte dysfunction in ALS (Kang et al. 2013;
Philips et al. 2013) just underlined that the ALS is complex and systemic disease affecting
every single cell type in the CNS and beyond.
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2.2.9.10. Dysregulated transcription and RNA processing

TDP-43 and FUS/TLS are genes that encode RNA processing proteins (Lagier-Tourenne
and Cleveland 2009; Vance et al. 2009; Lagier-Tourenne et al. 2010). Patients with the
FUS/TLS mutations have cytoplasmic inclusions containing FUS/TLS but not TDP-43
(Robberecht and Philips 2013). Although TDP-43 inclusions are not observed in FUS mutant
cases, FUS is an RNA-binding protein that is found in complexes together with TDP-43, and
ALS-associated TARDBP mutations promote the interaction between TDP43 and FUS (Ling
et al. 2010). TDP-43 and FUS/TLS have striking structural and functional similarities,
implicating alterations in processing of RNA and microRNA a as a key event in ALS
pathogenesis, although the underlying functional mechanisms remain unknown (Lagier-
Tourenne et al. 2010; Nefussy 2013). It has been recently shown that abundance of only 45
RNAs is reduced after depletion of either TDP-43 or FUS/TLS from mouse brain, but that
among these are MRNAs that were transcribed from genes with exceptionally long introns and
that encode proteins that are essential for neuronal integrity. Expression levels of a subset of
these were lowered after TDP-43 or FUS/TLS depletion in stem cell-derived human neurons
and in TDP-43 aggregate-containing motor neurons in sporadic ALS, supporting a common
loss-of-function pathway as one component underlying motor neuron death from
misregulation of TDP-43 or FUS/TLS (Lagier-Tourenne et al. 2012). Furthermore, another
ALS causing mutation, the hexanucleotide repeat expansion of the gene COORF72, leads to
the loss of one alternatively spliced COORF72 transcript and to the formation of nuclear RNA
foci (DeJesus-Hernandez et al. 2011).

2.2.10.  Therapies in ALS

The current management of ALS is based on the recognition of the importance of
multidisciplinary care (Nefussy 2013). Regrettably, even after more than a century of ALS
research and a great number of experimental therapies tested on rodent models (Turner and
Talbot 2008; McGoldrick et al. 2013), there is no cure for the disease (Nefussy 2013;
Robberecht and Philips 2013). However, many of the symptoms that develop during the
course of the disease are treatable and the improvement in symptomatic care of the patients
during the last decade led to an improved rate of survival (Qureshi et al. 2009). Symptomatical
treatment is mainly focused on respiratory management by either invasive or noninvasive
ventilator support (Bourke et al. 2006; Heffernan et al. 2006) or by diaphragm pacing in ALS
patients who still have some preservation of diaphragm muscle fibers (Onders et al. 2009).
Nutritional management is also very important in management of ALS and early initiation of
enternal tube feeding stabilizes body weight and can improve survival (Miller et al. 2009).
Recognition of the role of glutamate excitotoxicity in sporadic disease and in animal models
led to the development of riluzole, the only treatment to date that has been shown to
ameliorate the course of sporadic ALS (Bensimon et al. 1994; Lacomblez et al. 1996a;
Lacomblez et al. 1996b).
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2.2.10.1. Neural Stem cell therapy in ALS

As mentioned earlier, there is good evidence that the ALS motoneuron pathology could be
triggered by a non-cell autonomous process. Problems with glutamate excitotoxicity and
astrocyte mediated toxicity together with obviously challenging replacement of host neurons,
neural stem cells, particularly astrocytes precursors, appear to be the ideal source for cell-
replacement therapies in ALS.

Accordingly, recent in vivo spinal cell grafting data provided evidence that local segmental
enrichment with wild-type neural or astrocyte precursors leads to a certain degree of
neuroprotection. Focal enrichment of normal astrocytes, by transplantation of fetal rat spinal
cord-derived lineage-restricted astrocyte precursors, produced significant benefit in a rat
SOD1%%* ALS model (Lepore et al. 2008). It was hypothesized that neuroprotection was
mediated in part by the primary astrocyte glutamate transporter EAAT2 (GLT1 in rodents)
which was over-expressed in grafted cells (Lepore et al. 2008). Using lumbar spinal grafting
of human spinal neural stem cells (HSSCs), Xu et al. (2006) previously reported significantly
higher number of persisting lumbar a-motoneurons found in treated animals (Xu et al. 2006).
More recently, Xu et al. (2011) reported a lifespan extension of SOD1%%* rats by 17 days
after dual cervical (C4-C5) and lumbar (L4-L5) transplantation of HSSCs (Xu et al. 2009)
and finally, our own HSSCs cell replacement studies in the same ALS rat model confirmed the
therapeutic potential of this approach (Hefferan et al. 2012). Just very recently, 1% phase of
ALS clinical trial with the same neural stem cells used in previous pre-clinical studies (Xu et
al. 2009; Hefferan et al. 2012), was successfully completed (Glass et al. 2012).
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Fig. 12 The main current concepts in the pathogenesis of amyotrophic lateral sclerosis (SOD1
related). The main pathogenic mechanisms occur in the motor neurons, at the neuromuscular junction,
and in surrounding cells. Themes include glutamate-mediated excitotoxicity through upstream
neuronal stimulation, possibly modulated by neighbouring astrocytes. In addition, there is evidence of
protein misaggregation and mitochondrial dysfunction within the motor neuron cell body. Downstream
axonal transport might be primarily impaired, ultimately leading to a loss of neuromuscular
connectivity and muscle atrophy. External neuroinfl amatory (microglial) processes can be secondary,
in response to motor neuron injury, or can have a primary pathogenic role. EAAT=excitatory amino
acid transporter. SOD1=superoxide dismutase. VGCC=voltage-gated calcium channel. Taken from
(Turner et al. 2009).
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2.3. (NEURAL) STEM CELL THERAPY IN SPINAL CORD INJURY

2.3.1. Spinal cord injury

Spinal cord injury (SCI) and the consequent disabilities represent a great burden to the
affected patients, their family, medical system and to society as whole. Neurological deficits
after the injury are often life-long and are associated with severe disabilities.

Reported worldwide traumatic SCI annual incidence rates are between 8 to 59 cases per
million, with motor vehicle collisions (MVC), falls, violence and sports activities as a leading
causes (Lin and Bono 2010; Sahni and Kessler 2010; van den Berg et al. 2010; Devivo 2012).
The most recent report estimate that in 2007, the world-wide incidence was about 23 traumatic
SCI cases per million (Lee et al. 2013). These data, however, substantially underestimate the
prevalence and societal impact of SCI as a 2004 study sponsored by the Christopher and Dana
reeve Foundation revealed that 1,275,000 people in the US have some form of SCI with costs
to the health system estimated to be US$40.5 billion annually (Sahni and Kessler 2010). The
notably higher incidence in the USA (25-59 cases depending on the sate) compared to Europe
can be explained by very high rate of injuries caused by the act of violence in the USA (total
24.1% of SCI in the USA) while in other counties injuries caused by violence are rare (Lin
and Bono 2010). The age distribution in traumatic SCI is bimodal with a first peak for young
adults attributable to MVC, and a second peak in elderly people aged 65 and older that can be
mainly credited to falls (Lin and Bono 2010; van den Berg et al. 2010; Devivo 2012).
According to the 2002 report of WHO, number of SCI caused by MV C is progressively rising
and the cost of head and spinal cord injury is by far the largest (medical cost including post
injury care), exceeding the combined cost per unit of all other injuries, including fatalities
(WHO 2002).

Clinical and experimental data on SCI show that the damage to the spinal cord which
results in clinically defined loss of neurological function can be in general divided into two
categories. Pathology and corresponding functional loss directly caused by the mechanical
injury of axons and neurons at the site of injury fall into the first category, whereas the other
category represents secondary changes induced by the injury (local edema, hematoma,
ischemia, excitotoxicity, inflammation, demyelation and secondary axonal degeneration and
dieback) which can develop over hours to weeks after the initial damage of the cord (for
detailed review see (Hagg and Oudega 2006).

Direct traumatic impact to the spinal cord causes immediate death of cells in the vicinity of
the injury site and includes neurons, astrocytes, oligodendrocytes and endothelial cells.
Stretching of axons can cause membrane damage and may later contribute to progressive axon
degeneration followed by dieback of the neurons (Shi and Pryor 2002). Soon after the injury,
damage to local blood vessels results in hemorrhage and within few hours, injury site is
massively infiltrated by neutrophils which together with hemorrhage lead to edema (Maier and
Schwab 2006; Yoon and Tuszynski 2012). Cells at the injury site continue to die and increase
level of glutamate which contributes to excitoxicity (Park et al. 2004) as well as the increase
of free radicals (Hagg and Oudega 2006). Local and distal microglia becomes activated
(Emery et al. 1998; Nakamura et al. 2003; Hagg and Oudega 2006; Yoon and Tuszynski 2012)
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and oligodentrocytes further die in apoptosis (Crowe et al. 1997; Casha et al. 2001). During
the first week, monocytes, macrophages, and T-lymphocytes start to invade the damaged area
and their accumulation worsens necrotic events (Popovich et al. 1997; Popovich 2000;
Bareyre and Schwab 2003).

Scar consisting of type A pericytes-derived stromal cells (fibroblasts) (Goritz et al. 2011),
surviving proliferating astrocytes as wells as new ependymal-derived astrocytes (Meletis et al.
2008; Barnabe-Heider et al. 2010) is formed at the injury/impact site (Goritz et al. 2011) and
the progressive loss of the tissue leads to formation of fluid-filled cysts (syringomyelia) (Fitch
et al. 1999; Hagg and Oudega 2006; Yoon and Tuszynski 2012) (see Fig. 8). Wide spread
secondary damage to the spinal cord further continue for months or even years (Hagg and
Oudega 2006) and include apoptotic death of the cells close and distant to injury (Emery et al.
1998), including oligodentrocytes (Crowe et al. 1997; Casha et al. 2001), which leads to
demyelination resulting in axonal degeneration and dieback of the neurons (Kim et al. 2007,
Meletis et al. 2008; Barnabe-Heider et al. 2010) which then ultimately leads to progressive
atrophy of the spinal cord and formation of new and expansion of fluid-filled cysts (Hagg and
Oudega 2006). Scar at the impact site remains present and its residing reactive astrocytes
express extracellular axonal growth-inhibitory proteoglycans which limits potential plasticity
(Morgenstern et al. 2002; Rhodes and Fawcett 2004; Maier and Schwab 2006; Meletis et al.
2008). However, astrocytes shield the intact tissue from further damage and limit the
infiltration of inflammatory cells and further demyelination (Faulkner et al. 2004). Thus, the
large number of astrocytes at the injury site appears important to limit and restrain the
inflammatory response, but this may be at the expense of axonal regrowth (Barnabe-Heider et
al. 2010) (see Fig. 8). Neurological function later spontaneously recovers as a result of
plasticity (Rosenzweig et al. 2010) and proliferation of ependymal-derived oligodendrocytes
leading to remyelination (Meletis et al. 2008; Sabelstrom et al. 2013) to a level that depends
on the severity of the injury.

2.3.2. SCI therapy

Based on the current knowledge of the neuropathological mechanisms behind the
neurological dysfunction in SCI patients, the current experimental and clinical treatment
strategies are focused on: i) improvement of local metabolism and blood flow (e.g., through
decompression therapy and hypothermia (both regional and systemic) (Batchelor et al. 2010;
Cappuccino et al. 2010; Dietrich et al. 2011a; Dietrich et al. 2011b; Dietrich 2012; Jones et al.
2012; Oudega 2012), and ii) modulation of local inflammatory response (e.g., with
methylprednisolone) (Fleming et al. 2006; Ankeny and Popovich 2009; Cappuccino et al.
2010; David and Kroner 2011; Bracken 2012). These two strategies are commonly used in the
clinics and showed more or less positive results (Hawryluk et al. 2008; Dietrich et al. 2011b).

The other two therapeutic strategies are still mostly experimental with several clinical
trials already performed and are aimed at improving the local neurotropic activity at and
around the injury epicenter with the primary goal of increasing the survival of partially injured
axons and/or neurons (Kim et al. 2007; Sahni and Kessler 2010; Yoon and Tuszynski 2012).
These treatment strategies include iii) therapy based on the use of locally delivered trophic
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factors (such as BDNF-, GDNF-, and FGF-peptides or growth factors-gene-encoding vectors)
which can be combined or comes together with iv) fetal or embryonic stem cell-derived
neuronal and/or glial precursors (Llado et al. 2004; Cao et al. 2005; Lu and Tuszynski 2008;
Sahni and Kessler 2010; Yoon and Tuszynski 2012).

2.3.2.1.  (Neural) Stem cell therapy in SCI

Therapeutic strategies involving transplantation of stem cells after SCI focus on the
replacement of lost or damaged cells (mainly neurons and oligodendrocytes), provision of
trophic support for neurons, or manipulation of the environment within the damaged spinal
cord (trophic factors, prevention of scar and cyst formation) to facilitate axon regeneration. It
is clear that this task is extremely challenging but, especially in the case of spinal cord, is of
extreme importance as unlike other regions in the adult mammalian nervous system, the spinal
cord does not possess a neurogenic niche (Kim et al. 2007; Sahni and Kessler 2010) and/or is
not favorable for neural differentiation of ependymal-derived endogenous progenitors
(Sabelstrom et al. 2013).

In addition, the use of neuronal precursors for spinal grafting which leads to development
of functional synapses between grafted neurons and the neurons of the host can serve to create
a functional “relay” system throughout the injured spinal cord region as it has been
demonstrated that acute grafting of fetal rat spinal cord-derived neuronal and glial-restricted
precursors into a site of cervical dorsal column lesion leads to formation of functional
ascending spinal relays in vivo (White et al. 2010; Bonner et al. 2011). Consistent with
histologically and electrophysiologically validated maturation and functional incorporation of
grafted neural cells in previously trauma-injured or chemically-lesioned spinal cord, a
beneficial behavioral effect was also noted in several experimental studies. Acute spinal
grafting of mouse neural precursors into the epicenter of L2 spinal cord compression injury
improved hind-limb motor and sensory function in mice (Boido et al. 2011).

Similarly, acutely grafted human embryonic stem cell-derived oligodendrocyte (hES-
OPCs) progenitors and/or motoneuron progenitors into a complete thoracic transection model
resulted in partial restoration of hind-limb locomotor function and motor evoked potentials in
rats (Erceg et al. 2010). hES-OPCs were successfully used in numerous studies of contusion
injured rats (Faulkner and Keirstead 2005; Keirstead et al. 2005; Cloutier et al. 2006; Sharp et
al. 2010; All et al. 2012). Acutely (2 hours) (All et al. 2012) or early after SCI (7days)
(Faulkner and Keirstead 2005; Keirstead et al. 2005; Cloutier et al. 2006; Sharp et al. 2010)
transplanted hES-OPCs survived, extensively migrated and led to robust remyelination
(Cloutier et al. 2006) of surviving axons which resulted in significant improvement in
locomotor function (Faulkner and Keirstead 2005; Keirstead et al. 2005; Sharp et al. 2010; All
et al. 2012) whereas if transplanted 10 months after the injury, hES-OPCs survived and
integrated into the host tissue but the cells failed to remyelinate spared axons and accordingly
did not show any locomotor improvement (Faulkner and Keirstead 2005) suggesting that early
cell grafting after the SCI is crucial. Another study demonstrated the potential of human
astrocytes in a rat model of unilateral transections of the right-side dorso-lateral funiculus
where transplanted human astrocytes (generated from human fetal glial precursor cells)
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provided extensive benefit, including robust protection of spinal cord neurons, increased
support of axon growth and locomotor recovery and also demonstrated the importance of
astrocyte subpopulations (Davies et al. 2011).

Human neural stem cells isolated from fetal brains grown as a neurospheres (hRCNS-SCns)
(Cummings et al. 2005; Salazar et al. 2010) were transplanted into the injury site of contusion
injured mice 7 days (Cummings et al. 2005) or 30 days post SCI (Salazar et al. 2010) and
exhibited long-term engraftment, migration, limited proliferation, and differentiation
predominantly to oligodendrocytes and neurons and provided remyelation and locomotor
recovery in both cases (Cummings et al. 2005; Salazar et al. 2010). Non-humane primates
with contusive SCI grafted with human fetal spinal cord-derived neural stem/progenitor cells
(NSPCs) cultured as neurospheres survived in the host and differentiated into neurons,
astrocytes, and oligodendrocytes, and partially filled cavities. Moreover, the bar grip power
and the spontaneous motor activity of the transplanted animals were significantly higher than
those of sham-operated control animals (Ilwanami et al. 2005).

In our transplantational studies in SCI, we have extensively characterized the in vivo
therapeutic effect after spinal grafting of cGMP-grade human fetal spinal cord-derived stem
cells grown in monolayer (NSI-566RSCs line) using a rat spinal ischemia model and rat L3
compression injury model. We have shown that: i) grafting of NSI-566RSCs into lumbar
spinal cord of adult Sprague-Dawley (SD) rats with previous spinal ischemic injury is
associated with a progressive improvement of ambulatory function which correlates with long-
term grafted cell survival and extensive neuronal differentiation (Cizkova et al. 2007) and ii)
grafting of the same human GMP-grade fetal spinal stem cells (NSI-566RSCs) in
immunosuppressed SD rats with L3 compression injury provided functionally-defined
treatment effect. This treatment effect was expressed as a significant improvement in motor
and sensory function (gait/paw placement, stretch-induced spinal hyperreflexia, and,
mechanical and thermal sensitivity). In addition, an effective filling of trauma-induced spinal
cavity with grafted cells was seen in HSSC-treated animals at 2 months after grafting (van
Gorp et al. 2013 in press) (Fig. 8 B, C and Fig. 17). Using the same cell line, we have also
demonstrated the optimal dosing protocol and safety after grafting into the lumbar spinal cord
of immunosuppressed minipigs (Usvald et al. 2010). The dosing design defined in this pre-
clinical minipig study was then subsequently used in a recently completed Phase 1 human
clinical trial in ALS patients receiving lumbar and cervical grafts of NSI-566RSCs (Glass et
al. 2012). In a recent study using an immunodeficient rat model of complete spinal cord Th3
transection, it was shown that NSI-566RSCs or rat embryonic neural precursor cells,
embedded in a fibrin matrix with trophic factors and grafted one week after injury, were able
to form functional relays. The formation of functional relays was validated behaviorally (BBB
locomotor score), electrophysiologically (spinal cord evoked potentials), and histologically
(host on graft and graft on host synapses) (Lu et al. 2012). Together, these data demonstrate
that the use of this clinical grade NSI-566RSC cell line with already established favorable
clinical safety profile represent a potential cell candidate for cell replacement therapy in
patients with previous SCI. Furthermore, based on these results (Cizkova et al. 2007; Usvald
et al. 2010; Lu et al. 2012) (van Gorp et al. 2013 in press), FDA recently approved clinical
trial where NSI-566RSC cell line will be tested in chronic SCI (NIH 2013).
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Fig. 8 Spinal cord injury, endogenous stem cell proliferation, scar and cyst formation. A)
Syringomyelia in human patient as seen by MRI (arrow) (Fellner et al. 2010). B) 3D MRI
reconstruction of the HSSCs grafted rat spinal cord with previous L3 contusion injury and (C) control
SCI rat injected with media only clearly demonstrate the potential of the grafted neural stem cells in
filling up the cavity and preventing the scar formation. (D-F) Distribution of the injury-induced
generation of progeny from ependymal cells (green), astrocytes (red), oligodendrocyte progenitors
(blue), type A pericytes (orange), and their progeny 4 months after a dorsal funiculus insicion (A). B)
Origin of new astrocytes (A), oligodendrocytes (O) and stromal cells (SC) 4 months after injury.
Colors of the bars indicate cell fate according to the color scheme in (C). C) Schematic depiction
showing the fate of ependymal cells, astrocytes, oligodendrocyte progenitors, and type A pericytes in
the injured spinal cord. A) Taken from Fellner et al. 2010, B and C is Fig. 4 A-B from author’s
publication Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar
spinal cord injury by human neural stem cell transplantation. (D-F) Taken from Sabelstrom et al.
2013.
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2.4. IMMUNOSUPPRESSION IN SPINAL CORD STEM CELL
TRANSPLANTATION EXPERIMENTS

As we have stated before, transplantation of neural stem cells into the injured and/or
diseased spinal cord may lead to the replacement of lost or damaged cells (mainly neurons and
oligodendrocytes), provision of trophic support for neurons, or manipulation of the
environment within the damaged spinal cord to facilitate axon regeneration, which, in the case
of spinal cord, is extremely important as the spinal cord does not possess a neurogenic niche
(Kim et al. 2007; Sahni and Kessler 2010) and/or is not favorable for neural differentiation of
ependymal-derived endogenous progenitors (Sabelstrom et al. 2013). However, in order to
achieve sufficient differentiation and demonstrate promising therapeutic potential, extended
graft survival (4-6+ weeks) is necessary (Kakinohana et al. 2012b). Numerous previous
experimental animal and clinical data showed that xenogeneic neural grafts are rapidly
rejected (via lymphocyte infiltration of the graft) in non-immunosuppressed animals and/or
human patients (Deacon et al. 1997; Barker et al. 2000; Brevig et al. 2000) which clearly
demonstrated that the immunosuppression in xenogeneic neural grafts is essential.

Extended graft survival involves the use of immunosuppressants to effectively block the
host’s acquired immune response to allogeneic or xenogeneic cell grafts. Existing clinical and
experimental immunosuppression protocols normally use single or combination of
immunosuppressants delivered orally (especially in humans), intraperitoneally, intravenously
or subcutaneously in a single or multiple daily doses (reviewed in (MacGregor and Bradley
1995; Halloran 1996; Wente et al. 2006; Barraclough et al. 2011).

Clinical grade immunosuppressants used in transplantation experiments include
cycylosporines, mycophenolate mofetil (MFF), rapamycin or prednisolone, TAC (tacrolimus,
FK-506, fujimycin, Prograf) (Lama et al. 2003; Su et al. 2011). TAC is often used in
experimental settings as a solo therapy or in combination with other immunosuppressive drugs
(i.e., MFF) with doses ranging from 0.05-3 mg/kg/24 hrs (Reis et al. 1998; Xu et al. 2010;
Hefferan et al. 2011b), because is particularly effective due to its mechanism of action: TAC
couples with immunophilins (FK-506 binding proteins; FKBPSs) (Siekierka et al. 1989; Liu et
al. 1991; Thomson et al. 1995). The resulting formation of a pentameric complex of TAC,
FKBPs, calcineurins A and B and calmodulin results in the inhibition of the phosphatase
activity of calcineurin (McKeon 1991; Halloran 1996) thus inhibiting activity of transcription
factors requiring dephosphorylation for transport to the nucleus which leads to suppression of
T-cell proliferation and function (i.e. IL-2 transcription) (Liu et al. 1991; Thomson et al. 1995;
Minguillon et al. 2005). MFF is used to inhibit inosine monophosphate dehydrogenase, an
enzyme needed for the proliferation of B and T lymphocytes (Fulton and Markham 1996). The
importance of T-lymphocytes in rejection of neural grafts is demonstrated by the long-term
survival of transplanted human spinal cord-derived neural stem cells in athymic rats (Yan et
al. 2007) (van Gorp et al. 2013 in press).

However, despite the use of such aggressive immunosuppressive protocols, experimental
xenograft studies are frequently hampered by inconsistent graft survival particularly seen in
long-term survival studies or when used in disease animal models (Klein et al. 2005; Suzuki et
al. 2007). It is believed that the oscillation in plasma drug concentrations and/or insufficient
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target plasma levels may in part account for inconsistent graft survival (Hefferan et al. 2011b).
Even though we successfully used combinatory immunosuppression protocol which included
Prograf (FK506; Astellas Pharma) in combination with Cellcept (mycophenolate mofetil
(MFF); Roche Pharmaceuticals) in all our previous xenografting studies (Cizkova et al. 2007;
Usvald et al. 2010; Hefferan et al. 2011b; Hefferan et al. 2012; Kakinohana et al. 2012b) (van
Gorp et al. 2013 in press), the requirements of BID injections in order to achieve satisfactory
TAC levels and to minimize toxicity make this approach i) labor intensive, ii) frequently
associated with side effects resulting from repetitive animal injections (such as local
inflammatory changes and infection), and iii) associated with systemic side effects such as
nephrotoxicity and hepatotoxicity (reviewed in (Finn 1999; Gijsen et al. 2012).

Therefore we have sought for an optimized immunosuppression protocol which will

provide long-term effective and stable delivery of immunosuppressant without the need of
daily injection.
To extend the half-life of administered drugs in general, long-releasing formulations were
previously developed. i) TAC-loaded liposomes that have been shown to provide moderate
prolongation of the TAC half-life in the whole blood of naive rats in comparison with
conventional i.v. injections of TAC diluted in saline (Ko et al. 1994; Dutta et al. 1998;
McAlister 1998). ii) Biodegradable microspheres were shown to provide a relatively stable
level of TAC in whole blood for up to 10-21 days after single s.c. administration (Miyamoto et
al. 2004; Wang et al. 2004). As the use of implantable biodegradable pellets has been
successfully used to deliver a variety of synthetic drugs or hormones in human patients and in
animal experimental models and showed up to 3-6 months of stable drug release after a single
pellet implantation (Studd and Magos 1987; Packard 1992; Jockenhovel et al. 1996;
Srinivasan et al. 2002), we decided to prepare TAC-loaded pellets for the use in experimental
allo- and xenografting in rodents or minipig. To our knowledge, no immunosuppressive pellet
formulation has been reported to be successfully used in rodent or other animal models of
xenogeneic neural precursor transplantation (Sevc et al, 2013 in revision). TAC pellets are
now commercially available and provide steady drug release for up to 3 months, making
delivery labor efficient, minimally invasive, and producing stabilized blood concentration
levels (Sevc et al, 2013 in revision).
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3. AIMS OF THE THESIS

The main goal of our studies was to generate and characterize new large animal model of

Huntington’s disease which will contribute to the development of new disease modifying

therapies and to resolve the question of mutant huntingtin aggregation and disturbed

protein homeostasis in Huntington’s disease. We aimed at:

e Generation and characterization of transgenic minipig of Huntington’s disease.

e Study of the potential role of UCHLL in ubiquitin proteasome system impairment in
Huntington’s disease.

The next specific aim of our studies was to test the therapeutic potential of neural stem cell

transplantation in spinal cord disorders and injury. We mainly focused our effort on:

e Test of the potential therapeutic effect of the spinal grafted human neural stem cells on the
disease progression in the SOD1%%** ALS rat model.

e Amelioration of motor and/or sensory dysfunction and spasticity in a rat model of acute
lumbar spinal cord injury by human neural stem cell transplantation.

e Development of more reliable and less labor intensive immunosuppression protocol for
xenogeneic neural stem cell transplantation experiments in rat.
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4. MATERIALS AND METHODS

In order to proceed with our complex in vivo studies, involvement of large scale of
methods beginning with molecular biology through in vitro experiments and biochemical
methods to animal surgery and the use of sophisticated clinical instruments was prerequisite.
Majority of the work was conducted at the Institute of Animal Physiology and Genetics, AS
CR, Libechov, Czech Republic and/or at the Neuroregeneration laboratory at UCSD, CA,
USA. Multiple other laboratories from Czech Republic, Slovakia, Italy, Switzerland and USA
also participated in the studies. The complete materials and methods used in our experiments
can be found in the author’s publications which are included in the results section of this Ph.D.
thesis. We list and describe here just those methods which ultimately led to development of
the new animal models and those which were used in their characterization and in evaluation
of therapeutic intervention.

4.1. Animals and surgery

To pursue our studies, we have used three different species of laboratory animals. In order
to generate Huntington’s disease transgenic minipigs, wild-type Libechov minipigs (Vodicka
et al. 2005) were used. In our UCHLL1 studies, we have used the R6/2 HD mouse (Mangiarini
et al. 1996) (B6CBA-Tg(HDexonl)62Gpb/1J ovary transplanted females which are essentially
wild-type mice with the ovaries of the R6/2 mice) obtained from The Jackson Laboratory and
the gad mutant mouse (Saigoh et al. 1999) was obtained and used with permission from Dr.
Keiji Wada, National Institute of Neuroscience, Tokyo, Japan. For our transplantation and
immunosuppression studies, we have used (L26H) SOD1°%** transgenic ALS rats from Dr.
Don W Cleveland colony at UCSD, San Diego, USA (Howland et al. 2002) and Sprague-
Dawley albino rats (Velaz Praha, Czech Republic and Harlan Industries, Indianapolis, USA).
All components of our studies were carried out in accordance with the Institutional Animal
Care and Use Committee of Institute of Animal Physiology and Genetics, v.v.i. and conducted
according to current Czech regulations and guidelines for animal welfare and with approval by
the State Veterinary Administration of the Czech Republic and/or were approved by the
University of California, San Diego Institutional Animal Care and Use Committee.

Minipigs. In our study, as is standard practice, the gilts (sexually mature, regularly estrous
cycling minipig females) and weaned sows were housed in groups of 3 — 4 minipigs, and boars
were kept individually. The regular estrous cycle (20 days) facilitated reproductive
experiments. The ample body size of the minipigs made feasible all surgical and laparoscopic
approaches and their execution in a timely way. General anesthesia of minipigs was induced
by TKX mixture (Tiletaminum 250 mg, Zolazepamum 250 mg, Ketamine 10 % 3 ml,
Xylazine 2 % 3 ml) in a dose of 1 ml per 10 kg of body weight for experimental procedures
including embryo transfer and oocyte collection. All surgery was conducted under sterile
conditions in a standard surgical room. Postoperative care included treatment with analgesics
and antibiotics. Animals were housed separately during recovery from anesthesia and then
returned to the animal colony. Profound barbiturate anesthesia (Thiopental Valeant, 1 g, i.v.)
was used for transcardial perfusions.
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Mouse. In order to generate genetic cross-breed for our UCHL1 studies, heterozygous gad
males were crossed with R6/2 OT females to generate progeny of three genotypes used in this
study: wild type (WT), R6/2 and R6/2xgad. All mice were weighted at the day of perfusion (at
6 or 10 weeks). The mice were anesthetized by mixture of ketamine (Narketan 10) and
xylazine (Rometar 2%) and transcardially perfused with either just ice-cold PBS or the PBS
perfusion was followed by perfusion with 4% PFA.

Rats. Compression model: Twelve-week-old Female Sprague-Dawley rats were
anesthetized with isoflurane (5% induction, 1.5-2% maintenance; in room air) and placed into
a Lab Standard Stereotaxic frame (Stoelting, Cat# 51600, Wood Dale, IL, USA). Wide Th13
laminectomy was performed using an air-powered dental drill and binocular microscope
(exposing the dorsal surface of spinal segment L3). An acrylic rod (& 2.9 mm, length 15 cm;
35 g) was then slowly lowered on the exposed L3 segment until it slightly touched the spinal
cord but without inducing any compression. The rod was kept in place for 15 min, while both
temperatures (systemic and the temperature of the exposed cord) were maintained at 37 *
0.3°C. After spinal compression, the rod and mineral oil was removed and the wound sutured
in anatomical layers.

ALS model: (L26H) SOD1%%* transgenic rats (Howland et al. 2002) were randomly
divided into 3 experimental groups — no treatment (untreated SOD1%%*#), media-treated
SOD1°%** and cell-grafted SOD1%%**; non-transgenic littermates were used as control
animals and received no treatment. Both rat models were also used in our TAC-pellet study.

4.2. Construction and production of the HIV1-HD-548aaHTT-145Q vector and
verification of vectors in vitro

The lentiviral vector for the generation of tgHD minipig was constructed at UCSD and
subsequently tested and used in transgenesis at IAPG. N-terminal truncated form of human
huntingtin was created from the plasmid pFLmixQ145 comprising human full-length HTT
cDNA with 145 CAG/CAA repeats (obtained from Coriell Cell Repositories, Camden, NJ).
The first 548aa of huntingtin (ending with residues AVPSDPAM) and including 145 Q was
ligated with the HD promoter and inserted into the backbone plasmid pHIV7, which contained
cPPT and WPRE cis-enhancing elements. Lentiviral vectors were produced by transient co-
transfection of HEK293T cells. HIV1-CMV-EGFP vector (1x10° IlU/ml) was used as the
standard. Transgene expression was tested on porcine differentiated neural stem cells.
Subsequently, transduction potential of lentiviral vectors was evaluated using porcine zygotes.
Matured porcine oocytes were laparoscopically aspirated from pre-ovulatory follicles. After
IVF, embryos at pronuclear stage were microinjected with 10 — 20 pl of HIV1-CMV-EGFP
construct into the perivitelline space and cultured into the blastocyst.

4.3. Transgenesis

In order to collect necessary oocytes for transgenesis, adult female minipigs were
synchronized by Regumate (Jenssen Pharmaceuticals) (5 donors and 3 recipients per
experiment). Donor females were superovulated by administration of pregnant mare’s serum
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gonadotropin (PMSG) (Intervet International B.V.) and ovulation was inducted by gnRH
(Intervet International B.V.). After mating with the boars, pronuclear stage embryos were
flushed from oviducts and microinjected into the perivitelline space with HIV1-HD-
548aaHTT-145Q lentiviral vector (50 — 100 viral particles per zygote). The injected embryos
were laparoscopically transferred into the fallopian tubes of recipients.

In order to confirm the presence of the transgene in the minipig genome, we have used the
following techniques. Genotyping: Biopsies of porcine skin were used to obtain DNA which
was purified using DNeasy Blood & Tissue kit (Qiagen). The presence of the transgene was
determined by PCR amplification of the region containing the WPRE coding sequence within
the transgene (254 bp amplicon). SELK gene (360 bp amplicon) was used as an endogenous
control. Fluorescent in situ hybridization and karyotyping: The localization of transgenes
within the porcine genome was detected by Fluorescence in situ hybridization (FISH) analysis
(Trask 1991). Mutant HTT sequence from the recombinant plasmid (HIV1-HD-548aaHTT-
145Q) was labeled with biotin-16-dUTP (Roche Diagnostics GmbH) using a nick transcription
kit (Abbott). The resulting probe did not detect the endogenous porcine HTT gene.
Immunodetection and amplification were performed using avidin-FITC and anti-avidin-biotin.
Chromosomes were counterstained with propidium iodide and DAPI. Karyotyping was
determined using image analysis of reverse DAPI banding.

4.4. Cell derivation and preparation

The cells, named “NSI-566RSC”, were produced by Neuralstem Inc. (Rockville, MD,
USA), as described before (Johe et al. 1996; Hefferan et al. 2011b). Briefly, human spinal
cord neural precursors (HSSCs) were prepared from the cervical-upper thoracic region
obtained from a single eight week fetus. Meninges and dorsal root ganglia were removed and
dissociated into a single cell suspension by mechanical trituration in serum-free, modified N2
media (human plasma apo-transferrin, recombinant human insulin, glucose, progesterone,
putrescine, and sodium selenite in DMEM/F12). For growth of the HSSCs, 10 ng/ml basic
fibroblast growth factor (bFGF) was added to the modified N2 media and expanded serially as
a monolayer culture on poly-D-lysine and fibronectin (Johe et al. 1996). Approximately 6.1 x
1076 total cells were obtained upon the initial dissociation of the spinal cord tissue. The
growth medium was changed every other day. The first passage was conducted 16 days after
plating. At this point, the culture was composed mostly of post-mitotic neurons and mitotic
HSSCs. Mainly the mitotic cells were harvested through brief treatment with trypsin and
subsequent use of soybean trypsin inhibitor. The cells were harvested at approximately 75%
confluence, which occurred every 5-6 days (20 passages). At various passages, the cells were
frozen in the growth medium plus 10% dimethyl sulfoxide at 5-10 x 1076-10 cells/ml. The
frozen cells were stored in liquid nitrogen. Upon thawing, the overall viability and recovery
was typically 80-95%. A cell bank of passage 16 cells was prepared and used for this study.
One day prior to each grafting day, one cryopreserved vial of the previously prepared cells
was thawed, washed, concentrated in hibernation buffer, and shipped from the cell preparation
site (Neuralstem, Inc., Rockville, MD, USA) to the surgery site (University of California, San
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Diego, CA, USA) at 2-8°C by overnight delivery. Upon receipt the following day, the cells
were used directly for implantation without further manipulation. Before and after
implantation, the viability of cells was measured with trypan blue (0.4%; Sigma). Typically, a
>85% viability rate was recorded.

4.5. Cell grafting

In our cell transplantation studies, cells were grafted via intraparenchymal injections. The
animals were placed in the stereotactic frame and the L3 spinal cord (i.e., the dura mater) was
then re-exposed at the previous laminectomy site in case of SCI rat and a partial T12-L1
laminectomy was performed using a dental drill (exposing the dorsal surface of L2-L6
segments) in 60-65 d old SOD1 rats. Injections were performed using a 33 gauge beveled
needle and 100 pL Nanofil syringe (World Precision Instruments, Cat# NF33BV & Nanofil-
100, Sarasota, FL, USA) connected to a microinjection unit (Kopf Instruments, Cat# 5000 &
5001, Tujunga, CA, USA) in SCI rats and using glass capillary (tip diameter 80-100 mm) in
SODL1 rats. The duration of each injection was 45-60 sec followed by a >30 sec pause before
slow needle/glass capillary withdrawal. The center of the injection was targeted intermediate
of the ventral and dorsal horn and close to the lateral funiculus (distance from the dorsal
surface of the spinal cord at L3 level: 0.80 mm). Twelve injections (20,000 cells/uL) were
done; four injections (0.5 uL each, 0.8-1.0 mm apart, rostrocaudally) at each lateral boundary
of the injury (8 in total), plus two (bilateral) injections (0.5 uL each) 1.5 mm caudal from the
previous, most caudal injections, and two injections at the core of the epicenter (1 pL at each
side of the dorsal vein, bilaterally). In SOD1 rats, injections of 0.5ul (10000 cells per
injection) were made every 700-900 mm, rostro-caudally, on each side of the lumbar spinal
cord targeting L2-L5 segments. The total number of injections ranged between 9-13
injections per side. After the injections, the incision was cleaned with penicillin-streptomycin
solution and sutured in two layers.

4.6. Immunosuppression

In order to achieve sufficient differentiation and demonstrate promising therapeutic
potential immunosuppression started typically one day before grafting, methylprednisolone
acetate (Depo-Medrol, 10 mg/kg, i.m.) was given, which was repeated thereafter 3 times with
1 mg/kg/week i.m. Starting directly after grafting, all animals received 3 mg/kg/BID s.c. of
Tacrolimus (Prograf/FK506, Astellas, Deerfield, IL, USA) until the end of the study. For post-
transplant days 0-10, the animals also received 30 mg/kg/day s.c. of Mycophenolate mofetil
(CellCept, Genentech, CA, USA). Immunosuppression was also given to the non-grafted
Sprague-Dawley or SOD1 rats (i.e., the naive, sham operated, and all control animals).

4.7. Electrophysiology

Electrophysiology measurements were used in order to investigate the potential functional
beneficial effect of the transplanted cells on the host neuronal circuits in the diseased/injured
spinal cord. Measurement of muscle spasticity in SCI rats: At 1.5 weeks and 2 months post-
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injury, the presence of muscle spasticity in the lower extremities was measured using a
previously described system (Marsala et al. 2005). Briefly, animals were placed in a restrainer
and a hindpaw was taped to a rotational metal plate driven by a computer-controlled stepping
motor. The metal plate is interconnected loosely to the “bridging” digital force transducer
(LCL454G, 0-454 g range; Omega, Stamford, CT, USA). The resistance of the ankle to
dorsiflexion was measured during stepping motor-driven ankle dorsiflexion (40°; MDrive 34
with onboard electronics; microstep resolution to 256 microsteps/full step; Intelligent Motion
Systems, Marlborough, CT, USA) at 3 different ankle-rotational velocities (40, 60 or 80°/sec).
The EMG signal was recorded from the ipsilateral gastrocnemius muscle during the same time
frame. To record EMG activity, a pair of tungsten electrodes was inserted percutaneously into
the gastrocnemius muscle 1 cm apart. EMG signals were bandpass filtered (100 Hz to 10 kHz)
and recorded before, during, and after ankle dorsiflexion. EMG responses were recorded with
an alternating current-coupled differential amplifier (model DB4; World Precision
Instruments, Sarasota, FL, USA). EMG was recorded concurrently with ankle resistance
measurements, both with a sample rate of 1 kHz. Both muscle resistance and EMG data were
collected directly to the computer using custom software (Spasticity version 2.01; Ellipse,
Kosice, Slovak Republic). Hoffmann reflex recordings (H-reflex) in SOD1 rats: Animals
were anesthetized with ketamine (100 mg/kg, i.m.). For stimulation of the H-reflex, a pair of
needle electrodes was transcutaneously inserted into the vicinity of the tibial nerve. For
recording, a pair of silver needle electrodes was placed into the right foot muscles. The tibial
nerve was stimulated with increasing stimulus intensity (0.1-10 mA in 0.5 mA increments, 0.1
Hz, 0.2ms; WPI; Isostim A320). The threshold for both the M and H waves was determined
and Hmax/Mmax ratio calculated. Recordings were made before and at 15-min intervals after
drug treatment (i.e. baclofen or nipecotic acid).

4.8. Biochemical assays

In our HD experiments, we have used a combination of biochemical methods to identify
the soluble mutant human and aggregated huntingtin as well as the wild-type mouse and
porcine huntingtin and other proteins. Prior brain removal from the scull, animals were always
transcardially perfused with ice-cold sterile PBS in order to remove blood from vessels and to
slow-down post-mortem enzymatic changes during the brain removal. Reproducibility of
western blotting of high molecular weight wild-type huntingtin and posttranslationally
modified soluble mutant huntingtin with expanded polyQ tract as well as polyubiquitin species
was improved by using iBlot gel transfer device (LifeTech # 1B301001) with appropriate set
of membranes and buffers. Autoradiographic film (GE Healthcare #28906839) was chosen for
signal detection.

Primary antibodies used were selected based our previous experience and available
published data. In addition to western blots, three high sensitive biochemical assays were used
for detection of aggregated mutant huntingtin. As mutant huntingtin aggregates are insoluble
and resistant to chemical extractions they can be poorly determined by polyacrylamide gel
electrophoresis because they are retained in the loading wells (Hazeki et al. 2000). Therefore,
SDS-agarose gel electrophoresis for resolving aggregates (AGERA) with subsequent western
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blot analysis was employed as it represent a simple and sensitive biochemical detection
method for quantitative and qualitative investigations of aggregate formation. Even though
detailed investigation of aggregate growth or of aggregate composition depending on size is
impossible by the filter-trap assay for aggregates (Scherzinger et al.1997) due to
indiscriminate retention of all protein inclusions larger than the filter pores of the cellulose
acetate membrane, we have used this assay as an mutant huntingtin aggregate screening
method. Using highly specific antibodies which bind the human huntingtin (and wild-type
huntingtins of other species) discriminating its wild-type or mutant origin (based on the fact
that mutant huntingtin contain polyQ stretch) with special europium cryptate and D2
fluorophores (these fluorophores enables the use of FRET in high-throughput screenings)
(Weiss et al. 2009; Baldo et al. 2012), we performed TR-FRET quantitative analysis of soluble
mutant human, wild-type porcine and mouse and aggregated human huntingtin. In order to
keep the reproducibility and consistency, the protein lysates from all brain tissues were
prepared in a way which was suitable for all biochemical analyses used and indeed, the same
lysates (after the lysis was performed, the lysates were aliquoted and aliquots were sent to
different labs) were used in all biochemical analyses in different laboratories which resulted in
high correlation of achieved results.

4.9. Immunofluorescence and immunohistochemistry stainings

Immunohistochemical (or fluorescent) methods were used in all our studies. The use of
great spectrum of specific primary antibodies allowed us to visualize (and thus to quantify in
some instances) the presence of the mutant huntingtin and its possible interacting partners in
mouse and brain tissues, to assess the pathology of the striatum, to discriminate specific
endogenous cell types in brain and spinal cord, to evaluate the degree of survival of the
transplanted HSSCs in the rat spinal cord, to inspect the HSSCs differentiation and formation
of functional synapses with host neurons in vivo, to assess the degree of injured tissue
regeneration (cell replacement) in the injured spinal cord and to evaluate the therapeutic effect
of transplanted HSSCs in SOD1 rats as expressed by quantification of surviving a-
motoneurons in ventral horns of spinal cord. Antibodies specific for lymphocytes surface
markers were used in the immunosuppressive study where we used these antibodies to
demonstrate the presence or absence of the immune cells in the vicinity of the grafted cells in
the spinal cord. The use of these methods was essential especially in cell grafting experiments
where the visualization of the tissue containing the grafted cells is the only method which can
directly show the survival, differentiation and integration of the transplanted cells in the host
tissue.

4.10. Statistical analyses

Two-way comparisons were performed by student t-test. Multiple comparisons were
performed using one-way analysis of variance (ANOVA) followed by Student-Newman-
Keuls or two-way group x time repeated measures, using a fixed-effect model, and a
Bonferroni post hoc test was used in the case of multiple comparisons. All results are shown
as mean + standard error of mean (SEM) unless indicated. P<0.05 was considered to be
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statistically significant. All statistical analyses were done using GraphPad Prism (La Jolla,
CA, USA), SPSS statistics 17 (for K-Means clustering; IBM, Armonk, NY, USA), or STATA
12 (StataCorp LP, College Station, TX, USA) and performed one or two-tailed.
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5. RESULTS

5.1. Generation and characterization of Huntington’s disease transgenic minipig
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Abstract.

Background: Some promising treatments for Huntington’s disease (HD) may require pre-clinical testing in large animals.
Minipig is a snitable species because of its large gyrencephalic brain and long lifespan.

Objective: To generate HD transgenic (TgHD) minipigs encoding huntingtin (HTT)1-548 under the control of human HTT
promoter.

Methods: Transgenesis was achieved by lentiviral infection of porcine embryos. PCR assessment of gene transfer, observations
of behavior, and postmortem biochemical and immunohistochemical studies were conducted.

Results: One copy of the human HTT transgene encoding 124 glutamines integrated into chromosome 1 q24-g25 and successful
germ line transmission occutred through successive generations (FO, F1, F2 and F3 generations). No developmental or gross
motor deficits were noted up to 40 months of age. Mutant HTT mRNA and protein fragment were detected in brain and peripheral
tissnes. No aggregate formation in brain up to 16 months was seen by AGERA and filter retardation or by immunostaining.
DARPP32 labeling in WT and TgHD minipig neostriatum was patchy. Analysis of 16 month old siblings showed reduced
intensity of DARPP32 immunoreactivity in neostriatal TgHD neurons compared to those of WT. Compared to WT, TgHD boars
by one year had reduced fertility and fewer spermatozoa per ejaculate. fn vitro analysis revealed a significant decline in the
nomber of WT minipig oocytes penetrated by TgHD spermatozoa.

Conclusions: The findings demonstrate successful establishment of a transgenic model of HD in minipig that should be valuable
for testing long term safety of HD therapeutics. The emergence of HD-like phenotypes in the TgHD minipigs will require more
study.

Keywords: Huntington’s disease, mutant huntingtin, minipigs, large animal model, lentiviral transgenesis, FISH analysis, mENA

and protein expression, immunohistochemistry, DARPP32, AGERA assay, TR-FRET assay, spermatozoa

ABBREVIATIONS

AGERA Agarose gel electrophoresis for
resolving aggregates

HD Huntington’s disease

HTT Huntingtin

TegHD Transgenic HD

TR-FRET Time-Resolved Forster Resonance
Energy Transfer

INTRODUCTION

Huntington's disease (HD) is an inherited auto-
somal dominant neurodegenerative disorder with a
worldwide prevalence of 3-10 affected individuals per
100,000 persons in Western Europe and North Amer-
ica[1, 2]. Progressive impairment of motor, emotional
and cognitive functions [3, 4] is a consequence of the
expansion of the CAG repeat stretch in exon 1 of the
gene encoding huntingtin (HTT) protein [5]. The onset
and the severity of HD correlates inversely with CAG
repeat number [6]. The current pharmacotherapy of
HD provides improvement of symptoms but no treat-
ment is available to stop disease progression [7, 8].

Animal models are important tools to evaluate ther-
apies for neurodegenerative disorders. Models of HD
in rodent, Drosophila, C. elegans, and non-human pri-
mate have been generated. In general, each of these
models shows some biochemical and neuronal features
similar to HD in humans [2, 3]. Rodent and fly mod-

els of HD> have been very useful for understanding the
molecular basis for behavioral and neuronal abnormal-
ities [2]. Although rodent models of HD that express
either truncated [9-11] or full-length [12, 13] human
mutant HT'T display differences in onset and severity
of phenotypes, these models collectively have pro-
vided valuable information related to target validation
and drug therapy. However, the rodent’s small brain
size and differences in neuroarchitecture to humans
limits their use for detailed neuroanatomic character-
ization associated with HD [14-17] and for adapting
methods such as non-invasive imaging that are used in
human clinics [18-20]. Large HD genetic models such
as sheep [21] and the non-human primate [22] have
been generated to help address these problems.

Pigs, and mainly minipigs, represent an optimal
model for preclinical drug trials and long-term safety
studies [20, 23-26]. This species has a physiology
resembling in several aspects that of humans [27-29].
The large size of the pig brain permits detailed iden-
tification of brain structures by imaging technigques
such as PET [30-32] and MRI [33-39]. There has
been recent progress in defining the porcine genome
[40-43], porcine single nucleotide polymorphisms
[44], microRNAome [45-47], and improved tech-
niques for genetic modification of pigs [48-51]. The
porcine homologue of the huntingtin gene has a large
ORF of 9417 nucleotides encoding 3139 amino acids
with a predicted size of 345kDa (GenBank, Accession
No. AB016793). There is a 96% similarity between
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the porcine and human huntingtin genes (GenBank,
Accession No. AB016794). The number of CAG
repeats in the porcine HTT gene is polymorphic, rang-
ing from 8 to 14 units, and falls within the range of
the normal human huntingtin gene [52]. Similar to
humans, miniature pig possesses two HT'T transcripts
of approximately 11 and 13kb [52, 53]. The similari-
ties between porcine and human huntingtin genes and
proteins have provided further impetus to use the pig
as a model of HD [20, 54].

Recently, a cloning strategy was used to generate
a transgenic HD minipig. Unfortunately, this porcine
model suffered frequent perinatal mortality for reasons
that are unclear [55]. Here we used a strategy based
on lentiviral infection of porcine embryos and report
the successful germ line transmission through succes-
sive generations (FO, F1, F2 and F3 generations) of a
HD transgene encoding the first 548 aa of HTT with
124 glutamines under the control of human HTT pro-
moter. Mutant protein expression is detected in both
CNS and non-CNS tissues and in brain is comparable
to the endogenous huntingtin. DARPP32 immunore-
activity in a 16 month old TgHD minipig was reduced
compared to a W sibling. At about one year of age,
sperm number and oocyte penetration were severely
affected in TgHD minipigs. These findings suggest
that we have in hand a suitable large animal model
for evaluating potential HD therapeutics.

MATHERIALS AND METHODS

Supplementary data

Supplementary Data (S1—S88) are placed on the web-
site of The Institute of Animal Physiology and Genet-
ics, v.v.i.. www.iapg.cas.cz/CentrumPIGMOD/AJHD

Minipigs

The Institute of Animal Physiology and Genetics
in Libechov imported the first miniature pigs in 1967
from the Hormel Institute, University of Minnesota
(two boars and three sows) and from the Institute
for Animal Breeding and Genetics, University of
Géttingen, Germany (two boars and four sows). Since
then breeding, animal health and body shape have
been thoroughly controlled and outbreeding conditions
maintained by import of several additional boars from
Géttingen [29]. Through continuous selection there has
been an increase in the average litter size (now about
68 piglets) and maintenance of a white color, which
has enabled the study of epidermal stem cells [56].

The animals were bred beginning at about 5 months
of age when they reach sexual maturity. At this stage
they weigh about 12-15kg. In our minipig colony
longevity is unknown because animals are housed for
a maximum of about § years. However, the survival of
parental minipig breeds (Hormel and Gottingen) has
been reported to be 12 to 20 years. In this study, as
is standard practice, the gilts (sexually mature, reg-
ularly estrous cycling minipig females) and weaned
sows were housed in groups of 3-4 minipigs, and boars
were kept individually. The regular estrous cycle (20
days) facilitated reproductive experiments.

All components of this study were carried out in
accordance with the Institutional Animal Care and
Use Committee of Institute of Animal Physiology and
Genetics, v.vi. and conducted according to current
Czech regulations and guidelines for animal welfare
and with approval by the State Veterinary Adminis-
tration of the Czech Republic. The ample body size
of the minipigs made feasible all surgical and laparo-
scopic approaches and their execution in a timely way.
General anesthesia of minipigs was induced by TKX
mixture (Tiletaminum 250 mg, Zolazepamum 250 mg,
Ketamine 10% 3 ml, Xylazine 2% 3 ml) in a dose of
1 ml per 10kg of body weight for experimental proce-
dures including embryo transfer and oocyte collection.
All surgery was conducted under sterile conditions in
a standard surgical room. Postoperative care included
treatment with analgesics and antibiotics. Animals
were housed separately during recovery from anesthe-
sia and then returned to the animal colony. Profound
barbiturate anesthesia (Thiopental Valeant, lg, i.v.)
was used for transcardial perfusions.

Construction and production of the
HIVI-OD-548aaHTT-1450 vector and
verification of veclors in viiro

N-terminal truncated form of human huntingtin
was created from the plasmid pFLmixQ145 com-
prising human full-length HTT c¢DNA with 145
CAG/CAA repeats (obtained from Coriell Cell Repos-
itories, Camden, NJ). The first 348 aa of huntingtin
(ending with residues AVPSDPAM) and including
145 Q was ligated with the HD promoter and
inserted into the backbone plasmid pHIVY, which
contained ¢cPPT and WPRE cis-enhancing elements.
Lentiviral vectors were produced by transient co-
transfection of HEK293T cells. HIV1-CMV-EGFP
vector (1 x 10? IU/ml) was used as the standard (See
Supplementary Data S1 for details). Transgene expres-
sion was tested on porcine differentiated neural stem
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cells. Subsequently, transduction potential of lentivi-
ral vectors was evaluated using porcine zygotes.
Matured porcine oocyles were laparoscopically aspi-
rated from pre-ovulatory follicles. After IVE, embryos
at pronuclear stage were microinjected with 10-20pl
of HIV1-CMV-EGFP construct into the perivitelline
space and cultured into the blastocyst stage in vitro
(See Supplementary Data S2 for details).

Transgenesis

Gilts were synchronized by Regumate (Jenssen
Pharmaceuticals) (5 donors and 3 recipients per
experiment). Donor females were superovulated by
administration of pregnant mare’s serum gonadotropin
(PMSG) (Intervet International B.V.) and ovulation
was induced by GnRH (Intervet International B.V.).
After mating with the boars, pronuclear stage embryos
were flushed from oviducts and microinjected into the
perivitelline space with HIV1-HD-548aaHTT-145Q
lentiviral veetor (50-100 viral particles per zygote).
The injected embryos were laparoscopically trans-
ferred into the fallopian tubes of recipients (See
Supplementary Data S3 and S4 for details).

Genotyping

Biopsies of porcine skin were used to obtain DNA
which was purified using DNeasy Blood & Tissue kit
(Qiagen). The presence of the transgene was deter-
mined by PCR amplification of the region containing
the WPRE coding sequence within the transgene
(254 bp amplicon). Bach PCR reaction contained
0.75ng/l of purified gDNA in 20 p.l of reaction mix-
ture and underwent 32 cycles of amplification (94°C
for 30s, 56°C for 40s, 72°C for 40s) following an
initial 3 min denaturation period. SELK gene (360bp
amplicon) was used as an endogenous control. Primer
sequences:

WPRE Fwd: § GAGGAGTTGTGGCCCGTTG
TCAGGCAACG 3

WPRE Rev: 5 AGGCGAGCAGCCAAGGAAA
GGACGATG 3

SELK Fwd: ¥ ACAGGCCCAAACTAATAAGAG
3/

SELK Rev: 5 CAAATTTGGAGCCTTTTGT %

Fluorescent in situ hybridization
The localization of transgenes within the porcine

genome was detected by Fluorescence in sifu
hybridization (FISH) analysis [57]. Mutant HTT

sequence from the recombinant plasmid (HIV1-HD-
548aaHTT-145(Q) was labeled with biotin-16-dUTP
(Roche Diagnostics GmbH) using a nick transcrip-
tion kit (Abbott). The resulting probe did not detect
the endogenous porcine HI'T gene. Immunodetection
and amplification were performed using avidin-FITC
and anti-avidin-biotin. Chromosomes were counter-
stained with propidium iodide and DAPI. Karyotyping
was determined using image analysis of reverse DAPI
banding.

Microdissection of chromosomes and analysis of
copy number variaftion

The incorporation of transgenic HT'T into the gq
arm of chromosome 1 was confirmed by microdis-
section of g arms of both chromosomes 1 followed
with anon-specific degenerate oligonucleotide-primed
(DOP) PCR. 2 .l of DOP PCR amplification product
were used as a template to carry out PCR amplification
of the transgene.

Primer sequences:

MDS Fwd: 5 TTCATAGCGAACCTGAAGTC 3
MDS Rev: 5 TTGTGTCCTTGACCTGCTGC 3/

The number of copies of the transgenes inte-
grated into the porcine genome was determined using
relative comparison of quantitative DNA amplifica-
tion between the endogenous porcine HI'T and the
transgenic human HTT. HTT primers and probe 6-
carboxyfluorescein, (6-FAM, TagMan Probe, Applied
Biosystems) were designed to detect HTT of both
species. ACTB (VIC, TagMan Probe, Applied Biosys-
tems) was used as a reference gene. Each multiplex
gPCR reaction was performed in a reaction volume
of 20l using TagMan Gene Expression chemistry
(ROX passivereference, Applied Biosystems) using 75
cycles of amplification (30 s at 94°C, 30s at 51.1°C,
30s at 72°C) following an initial 3 min denaturation
period. The gPCR data were analyzed using LinReg-
PCR software [58].

The sequences of the oligonucleotides:

HTT TagMan MGB Probe: 6-FAM-TCTGCGTC
ATCACTGC-MGBNFQ

HTT Primer Fwd: 5 CITCTGGGCATCGCTATG
3

HTT Primer Rev: 3 CATTCGTCAGCCACCATC
3/

ACTB TagMan MGB Probe: VIC-AGTCCCTG
CCTTCCCAAA-MGBNFQ
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ACTB Primer Fwd: 5 GTCATTCCAAGTATCAT
GAGATG %

ACTB Primer Rev: 5 TGGAGTACATAATTTA
CACTAAAGC?

Determination of glutamine number in human
mutant huntingfin

The number of glutamines in human mutant HTT
was determined by PCR using primer pairs that flanked
the region of the CAG/CAA repeat. The length of
the PCR fluorescently labeled product was detected
using Hragment analysis on an Applied Biosystems
3130 Genetic Analyzer. Samples were separated in gel
polymer POP-7 gel at 60°C using LIZ 600 size stan-
dard. Data analysis was performed by GeneMapper®
software.

Primer sequences:

HD1: ¥ ATGAAGCCCTTCGAGTCCCTCAACT
CCTTC 3 (6-FAM)

HD3pig: 5 CGGCGCCGGTGGCGGTTGCTGT
TGCTGCTG 3/

PCR protocol: 95°C for 5 min, followed by 40 cycles
of denaturation at 94°C for 30s, annealing at 70°C
for 30s and elongation at 72°C for 30s with a final
extension of 3 min.

Detection of mRNA expression of mutant human
HIT

Purified RNA was obtained from cultured porcine
skin fibroblasts using RNeasy Plus minikit (Qiagen).
RT PCR amplification was performed in a reac-
tion mixture containing 2.0ng/pl of total RNA with
reaction volume of 20l The primer set for RNA
huntingtin insert (1446bp amplicon) was designed
using Beacon Designer. ACTB (~100bp amplicon,
PrimerDesign Ltd) was used as a reference gene. The
HTT amplification was performed in one step starting
with reverse transcription at 50°C for 30 min and denat-
uration at 95°C for 15 min, followed by 50 cycles of
denaturation at 94°C for45 s, annealing at56°C for45 s
and elongation at 72°C for 95 s with the final extension
of 2min. The amplification of ACTB reference gene
was performed in a one-step reaction (30°C for 30 min,
95°C for 15 min, followed by 35 cycles of amplification
at 94°C for 45, 61°C for 308 and 72°C for 308 with
the final extension of 3 min. Reaction mixtures miss-
ing reverse transcriptase were included for each animal
sample to exclude the possibility of contamination with
genomic DINA.

Primer sequences:

HTT RNA Fwd: 5 GAAACTTCTGGGCATCGC
TATG 3’

HTT RNA Rev: 5 GAAAGCCATACGGGAAG
CAATAG 3

Biochemical assays

Eight minipigs at the age of 4 (N=4), 10 (¥ =2) and
16 months (N=2) from F2 generation (4 TgHD +4
WT) were perfused under deep anesthesia with ice-
cold PBS. The left hemisphere of each perfused
brain was dissected and used in biochemical assays
(SDS-PAGE and Western blot and TR-FRET). Brain
and tissue biopsies were stored at —80°C.

15pg of total protein from crude homogenates
of TgHD minipig and WT littermates samples were
diluted by NuPage 4 LDS sample buffer (LifeTech
#NPOO07) and 0.1 M DTT. Samples were loaded onto
3-8% Tris-acetate (LifeTech #EA03755) gel and run at
125V in Tris-Acetate SDS Running Buffer (LifeTech
#LA0041) until the 30kDa band of Novex Sharp pro-
tein standard (LifeTech #L.C5800) had migrated to the
end of the gel. Gels were then immersed in trans-
fer buffer containing 1% SDS and 20% MetOH for
8 minutes and then transferred onto nitrocellulose
membrane (LifeTech #IB301001) using an iBlot gel
transfer device (LifeTech #IB1001) P3 for 8 min-
utes. Membranes were blocked with 5% milk for
30min at RT (BioRad #170-6404) and probed with
anti-HTT antibody (Abl, 1:1,000; [59]) overnight at
4°C. Membranes were then incubated for 1h at RT in
a 1:5,000 dilution of Peroxidase-conjugated Donkey
Anti-Rabbit secondary antibody (Jackson ImmunoRe-
search #711-035-152); followed by 5 min incubation
in Supersignal West Pico (Pierce #3408). Signal was
detected on autoradiographic film (GE Healthcare
#28906839). Membranes were siripped by Re-Blot
Plus Strong Solution (10x) (Millipore #92590) for
15 minutes at RT, blocked by 5% milk and re-probed
with anti-actin antibody in a 1:500 dilution (Sigma
#A4700). After 1 hincubation at RT in secondary Don-
key anti-Mouse antibody (Jackson ImmunoResearch
#715-0350150), detection was performed as described
above.

SDS-agarose gel elecirophoresis for resolving
aggregates (AGERA) and Western blot analysis

The analysis of mutant HT'T oligomers by SDS-
AGE and Western analysis was performed as described
previously [60-63]. 50 g of total protein from
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tions were finally mounted with DePeX (Sigma).
Amnalysis was performed using a confocal microscope
equipped with 4 lasers (405, Argon, 561 and 633 nm
lasers) (SP3, Leica Microsystems), virlual microscopy
scanners (VS1 10®-5, Olympus, NanoZoomer 2.0-HT,
Hamamatsu) and a light microscope (Primo Star,
Zciss).

Determination of the number and intensity of
DARPP32 + neurons

Images of regions of caudate and putamen were
oblained using the confocal microscope and a HCX
PL APO lambda blue 63.0 x 1.40 OIL UV objective
to detect DAPI staining. PMT setup, pinhole sizes (1
Airy) and contrast values were kept constant across
different sessions. The number of coronal sections
analyzed per caudate nuelens and putamen ranged
from 3-5 and 25 areas were scanned in each sec-
tion. Areas of analysis were seclioned in the z plane
in 1-micron optical sections (13-20 pm) using Fili
software (htip://ffiji.sc) and only cells confirmed 1o
include the entire DAPI stained nucleus were included
in the analysis. This sampling method is an optical
dissector technique and minimizes sampling errors
{due to partial cells) and stereological concerns, as
minor variations in ccll volumes do not influence
sampling frequencies [68, 69]. The DAPI staining in
DARPP32 labeled cells revealed nuclei of two dis-
tinct morphologies-large grainy nuclei mainly in the
caudale nucleus and smaller compact nuclei mainly in
putamen. Only cells with DARPP32 labeling and these
nuclear features were included in the analysis. A total
of 5,256 neurons in TgHD minipig and 3,644 neurons
in WT minipig were counted. All valnes were reported
as the number of neurons positive for immunoreactive
DARPP32 per mm? tissue. Tn the same scanned areas
used for the cell based analysis the overall intensily of
DARPP32 signal was also measured. The average sig-
nal inlensity was determined for all images in a stack
and expressed as the mean intensity.

Semen collection and penetration fest

Semen samples from 2 transgenic boars of F1 gen-
eration (G117 and G118) and 3 wild type boars (IF808,
[630, I7719) were collected starting at age 12 months
and periodically over 14 months. Five and 18 sam-
ples were taken for the W' and 16 and 18 for the
TeHD minipigs. Total number of spermatozoa per
cjaculate was estimated by Sperm Class Analyzer
(Microptic, Spain). Differences in the number of sper-

matozoa between individual boars were analyzed using
Kruskal-Wallis test followed by Mann-Whilney U
test for the post hoc comparison. Values of p<0.05
were considered significant. The spermatozoa were
prepared for in virro penetration test by double centritu-
gation (20 min/600 g, 10 min/600 g) and the following
swim-up procedure [70] provided about 1 % 10° cells
for in vitre fertilization. The cycling minipig gills
were synchronized by Regumate (Jenssen Pharmaceu-
ticals) and superovulated by administration of PMSG
(Intervel International B.V.). Ovulation was inducted
by GnRH (Intervet International B.V.). The oocyte-
cumulus complexes were isolated from large antral
follicles 72h after PMSG injection at the germinal
vesicle stage and they were cultured for 40—44h up
to metaphase II with the first polar body [70]. In 13
independent experiments, oocytes with intact zona pel-
lucida were used. In some experiments, the zona pellu-
cida was removed by incubation with 0.25% pronase.
After 24h of incubation with spermatozoa, oocyles
were mounted on slides, fixed in acetic-alcohol, stained
with acetic-orcein and examined with phase contrast
microscopy. The penetration rate into matured pig
oocytes was recorded. Differences among individuals
in penetration rate were analyzed using Kruskal-Wallis
test followed by Mann-Whiltney U test used for the post
hoc comparison between individual boars and values
of p<0.05 were considered significant.

RESULTS
Generafion and characterization of TgHD minipig

The HIV1 backbone plasmid pHIV7, which conlains
cPPT and WPRE cis-enhancing elements (Supplemen-
tary Data S1), was used for the construction of a
lentiviral vector carrying the sequence of the first 548
amino acids of human HTT protein containing 145
glutamines under the control of human HD promoter
(Fig. 1A). The transduction polential of the lentiviral
construct was verified on porcine zygotes using the
HIV1-CMV-EGFP construct. Efficient transduction of
porcine embryos was confirmed by the presence of
EGFP flnorescence in embryoblasts and trophoblasts
{Supplementary Data S2).

The TgHD minipigs were generaled by using
micromjection of HIV1-HD-548aallT'T-145Q con-
struct into the perivitelline space of the one-cell stage
porcine embryos (Supplementary Data 83). Twenly-
nine injected zygotes were transferred to recipient
sows via laparoscopy (Supplementary Data S4). After
standard duration of gravidity (115 days), the first
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Fig. 1. Molecular characterization of TgHD minipigs. (A) Schematic of the first 548aa of human HTT ¢DNA fragment with the stretch of 145
glutamines ligated to human HTT promaoterin the pHIVT backbone. WPRE primer set (gDDNA amplicon) was used for genotyping the animals.
548aaHTT primer set (mRNA amplicon) was used for confirmation of mRNA expression. (B) PCR of the human HTT and WPRE region
(TgHTT) shows presence of transgene in porcine DNA. Amplification of SELK gene (360 bp amplicon) was used as control for the quality of
DMNA. (C) Expression of mRNA by RT PCR amplification of 1446 bp long amplicon spanning the region encoding human HTT and WPRE
region. Amplification of actin mRNA (ACTE) was used as a control for RNA quality. Reaction mixtures without reverse transcriptase were
included for each animal sample to exclude the possibility of genomic contamination (data not shown). Plasmid DNA with 548aallTT- 1450
construct was used as a positive control. WT pig genomic DNA and mRNA and ddIT; O were used as negative controls. Generation (IF0, F1, IF2)

is indicated just for TgHD animals.

HIV1-HD-548aaHTT-145Q manipulated piglets were
born. One gilt (F807) in a litter of 6 live newborns was
transgenic. Two non-transgenic piglets died within 48
hours alter birth (Fig. 2). The number of transgenic
animals when expressed as a proportion of the num-
ber of live births or as a proportion of microinjected
zygotes was 16.7% or 3.5%, respectively.

The FO transgenic gilt was mated with its non-
transgenic littermate to produce F1 generation. In the
two litters of 17 newborns, five piglets were transgenic
(Fig. 2). Germ line transmission to the F1 generation
was 29.4%. F1 transgenic boars were sexually mature
atthe expected age of five months and they successfully
produced offspring.

Of 92 F2 piglets born from seventeen litters — 73
survived (20.7% perinatal mortality) and 37 ol these
were transgenic (TgHD, black symbols, Supplemen-

tary Data S5) resulting in a 40.2% F2 generation
transgenesis rate per born piglet. The number of piglets
in a litter and newborn mortality was comparable
between offspring of TgHD and W'I" animals (Supple-
mentary Data S6). The proportion of TgHD and WT
piglets in F2 generation were comparable, enabling
creation of optimal experimental groups (TgHD vs.
WT animals).

Five transgenic boars and one TgHD female of the
[?2 generation were bred and a total of 51 live WT and
30 live TgHD piglets were obtained from 23 litters.
The incidence of perinatal mortality in I3 generation
was 14.2% and the rate of transgenesis was 34.9%.

The FO transgenic sow was also mated with an F1
transgenic boar. Four transgenic piglets were born in
two litters (Supplementary Data 85). No homozygote
TegHD transgenic offspring were obtained.
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Fig. 2. Breeding and pedigrees of TgHID minipigs. Black boxes (males) and black circles (females) represent animals positively tested for the
transgene in DNA extracted from biopsy of ear tissue. */” denotes a dead minipig within the first 48 hours; “X” indicates an animal sacrificed
for biochemical and microscopic studies. The FO minipig gave birth to 5 TgHL piglets in two litters. Mendelian inheritance is indicated in the

I?2 generation.

DNA and RNA analysis

Genotyping was performed using PCR as described
in Methods. Figure 1B demonstrates TgHD minipigs
in FO, 'l and 2 generations. Expression of mRNA
was confirmed by RT PCR amplification of the region
encoding human HTT and WPRE region (Fig. 1C). To
confirm mRNA expression of the full insert, primers
were designed for amplification of the 1446 bp product
from the 548aa HTT transgene. mRNA of mutant hunt-
ingtin was transcribed in all TgHD minipigs. Mutant
HTT gene was detected by FISH analysis on chro-
mosome 1 (1g24-g25) in animals {rom the first three
generations (Iig. 3A). Microdissection of ¢ arms of
chromosomes 1 followed with non-specific DOP PCR
confirmed the presence of the transgene in chromo-
some 1. Chromosomes 6 and 13 were used as negative
controls (Fig. 3B).

Quantitative PCR was used to detect the presence
ol hoth endogenous wild type HTT gene and the
mutant HTT transgene in the porcine genome. Assum-
ing the presence of the two endogenous porcine HTT
alleles, all the transgenic animals integrated 1 copy
of the transgene in their genome (Fig. 3C). Further-
more, fragment analysis of the PCR amplicons of
the DNA fragment containing CAG/CAA sequence
showed that the integrated transgene was in frame and
consisted of 124 CAG/CAA instead of the original 145
{Fig. 313).

Development and behavior of TeHD minipigs

The development and behavior of the TgHD minip-
igs from FO, FF1, I2 and T3 generations appeared
comparable to WT. TghlD piglets looked normal al
birth, were able to stand within a few minutes and their
size was similar to each other and to WT. Social domi-
nance relationships among the WT and HD littermates
began forming two days after birth and as expected,
changed as a consequence of weaning and sexual matu-
rity. TgHD and WT animals of both sexes became
sexunally mature at the expected age of 5 months and
were able lo produce offspring. We noticed a decline in
the fertility of the I'1 generation'T'ghHD boars beginning
at about 12 months (see below). Motor deficits charac-
teristic of HD were not evident in the TgHD animals.
Lateral eye movements were smooth and vertical gaze
movement was similar to WT minipigs. Saccades were
not slow, facial praxis was normal, and vocalization
had a normal rhythm. No involuntary movements were
observed. A qualitative rating scale was developed to
evaluale stance, gail, and ability to cross a barrier in
TglD and WT animals starting at age 3 months and
at monthly intervals up to 30 and 40 months of age. A
rating of 0 was normal and 3 was the most impaired
{see Supplementary Data S7 for details). Using this
rating scale, there was no difference in score for stand-
ing, gait, or erossing a barrier between WT (score =0)
and FO'T'gHID minipigs (FBO7) up to 40 months and F1
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Fig. 3. Localization and copy number of mutant HTT and length of CAG/CAA repeat in TgHD minipig. (A) Incorporation of mutant HTT
into the porcine genome. FISH technique shows the localization of the transgene on chromosome 1 (1q24-25) (inset, arrowhead) of F1 TgHD
male. (B) Microdissection of q arms of chromosome 1 followed by non-specific degenerate oligonucleotide primed (DOP) PCR confirms the
presence of the transgene on chromosome 1 but not chromosomes 6§ and 13. Genomic DNA from TellD minipiz was used as a positive control.
(C) Bar graph shows quantity of HTT gDNA (both endogenous porcine HTT and human HTT transgene) in WT and TgHD animals relative to
endogenous actin gDNA. Lines indicate mean values for the WT (dashed line) and transgenic animals (full line). Copy number of the transgene
was determined by comparing its mean value to that of the WT. (D) The result of analysis of fragment length electrophoresis is shown. PCR
amplification with primers specific for transgene shows a peak of 410bp in TgHD animals but not in the WL 410bp fragment encodes both
primer sequence and CAG/CAA repeat sequence encoding 124 glutamines in all three generations. CAG/CAA repeat number was similar in

different porcine tissues (data not shown).

generation minipigs (G117, G118, and G122) up to 30
months of age (Scores =0).

Expression of mutant huntingtin protein

Brain lysates were obtained from two 4 month old
F2'TgHD minipigs and two W' minipigs. SDS-PAGE
and Western blot analysis was performed as described
in methods using antibody Abl to detect H'T'T. Mutant
HTT protein fragment was detected in all regions of the

CNS examined including motor cortex, putamen, cau-
date nucleus, hippocampus, hypothalamus, thalamus,
cerebellum, and spinal cord (Fig. 4A top for one WT
and one TgHD). Mutant HI'T fragment migrated at the
cxpected size of 120 kDa. Peripheral tissues including
small intestine, lung, liver, kidney, ovaries and skin
also expressed the TgHD protein whereas little or no
transgenic H'T'T was present in stomach, hearl, skeletal
muscle and spleen (Fig. 4A bottom). With some excep-
tions (for example, hypothalamus), the densitomelry

69



M. Baxa et al. / Transgenic Minipig Model of HD

“ardures

WN[RgaIad 61y JO sAIedr[dLn JO 2U0 10 puRq UNOE FUISSIU SAIOUDP SLIAISY “[0NU0D SUIPBO] SB UAOLS ST UNDY "1edidin ur umoys are ewiue yoea jo sajdwes ssidunu (qH3 L pue LAy P10 yruow
91 pue O] ‘f — T WOIJ WNJ[AGAIID PUE SN[ONU JRPNED JO SISATRUR 10[q WIS (D) “sSidiunu qHS ], pue A JOJ SUOIST UIRI( JUIIDJJIP UL S]IAJ] UNDE B3] 0] JANR[AI [ H ueinw pue unSununy
S1d 10y sanea Lusudul [eusis Jo jopdianeds (g) ssidiunu pjo yruow 4 jo sanssn [eroyduad pue SN 1R P Ul (LLH uewny () $7[ 31) juswsel) udjold dwagsuen [ H uewny pue [ 1H-"T4)
LA\ auoaod oy jo uorssardxa smoys [qy Apoqnue /-1 LLH-Due o s paqoidounuiwr 10[q wdsopy () ‘Sidiunu (31 pue A\ 74 ut urdoxd 1 1 H juenuw jo sisA[eue 10[q WSO+ 814

unoe-d
LLH uewny

ovzL B e

o €I

UNDE-{] e R - —

— e —

e

L1
Supuow 91 1M syuow 94 OHBL Syuow 0k 1M syIuow 0L GHBL

——— - —

wnjiagalan

81

[T

[

supuow ¢ 1m

swpuow ¢ aHBL

LLH uewny
ovzLB ; ".'_
4 4

6 £
Squow Swuow
9L LM 91 aubi

&
%%9%

LIHBA 20 LM 7
LIHBA 1814 LM A e
L1H fid 14 113 aHBL O
LIH uewny oyzl 61 1LY aHBL @
LIH Bid 13 913 OHBL &
L1H uewny DyzL 6191y aHBL & A
]
v
L]

——.
| ——

——— ———
F ZIA L) LN 9
”".n,_.“u- mpuen i, SYIoW p QHBL
‘N 8jepned
5
%.aaﬁv & o>
& &
& 00« & .ﬁw
¢ A , .
< M >
& B
i o s W g
a o o * -5z T
Vi g
\'4 -0E F
5 g
2 -g't
uRoy-g o} pazijewsou |eubis | |H :SND

LLH uewny
orel Bi— - ™ Lo Land

upoy-4 —— e e e

LiHuewny
orzL B+ T 1= B - et o

LIHBId 1de e ———

DD gD s
JOERGH Jss/ aa/vy oe%

@

e
-56

L]

g6

-0LL

e
56

= ol 3nssi|
.. -0LL

elaydue
ol |ejaydiiad

————— e ————

70



58 M. Baxa et al. / Transgenic Minipig Model of HD

analysis showed that the levels of mutant HTT frag-
ment in different brain regions were comparable to the
levels of the endogenous porcine huntingtin seen on the
same blots (see scatterplot, Fig. 4B). Further Western
blot analysis of caudate nucleus and cerebellum was
performed in frozen samples of brain from 8 minipigs
(4 TgHD and 4 WT) ages 4, 10 and 16 months. Results
showed that the mutant protein fragment was detected
in the TgHD minipigs at all ages. The signals for the
mutant protein migrated more broadly in SDS-PAGE
in the caudate and cerebellum of the 10 and 16 months
old minipigs than in the samples from the 4 month
old minipig (Fig. 4C). Whether this characteristic of
migration is related to an altered property of mutant
HTT is unclear.

We quantified the levels of soluble mutant HT'T in
CNS and peripheral tissues of two sibling pairs of
TgHD and WT minipigs using TR-FRET as described
in Methods. Results in all brain and spinal cord regions
and some peripheral tissues (lung, spleen, kidney,
ovaries) showed robust HT'T signal in TgHD animals
compared to WT minipigs suggesting the assay was
detecting mutant HT'T (Fig. 5). To determine the pres-
ence of aggregated mutant HTT in TgHD minipig
brain, AGERA and filter retardation assays were
applied. Homogenates from motor cortex, putamen,
caudate nucleus and cerebellum of WT and TgHD 16
month old minipigs were tested with mEM48 antibody.
Based onthese assays, aggregated mutant HT'T was not
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present in the brain of TgHD minipig but was detected
as expected in the brain of the R6/2 HD mouse (Fig. 6).

Immunohistochemistry of WT and TgHD brains

HTT immunoreactivity was examined by the
immunoperoxidase method in the 4 month old minipig
brain at the levels of the neostriatum using anti-HTT
antibody Abl which detects HI'T1-17. The cortex,
caudate nucleus and putamen showed HT'T immunore-
activity. Within these regions the gray matter was more
strongly labeled than the white matter (Fig. 7). Con-
sistent with findings in mice and human brain [71],
endogenous HTT in WT minipig strongly localized
to somatodendritic regions of cortical neurons and to
cell bodies of neostriatal neurons. Neuropil of cor-
tex and neostriatum was also strongly labeled. The
other anti-HTT antibody which detected endogenous
huntingtin in WT minipig was AB585, which was
made to HTT585-725 [59]. There was no difference
in the intensity of staining for HTT in TgHD minipig
compared to W minipig with anti-HI'T Abl. No
nuclear inclusions were detected in the TgHD brain
even though Abl antibody detects nuclear inclusions
in the human HD cortex [72]. Antibodies MWSE and
mEM48 are known to detect nuclear aggregates in
other HD animal models but did not produce any stain-
ing in the TgHD minipig. Similarly no labeling was
detected with MWSE in the 16 month old TgHD pigs.

Detection of mutant HTT by TR-FRET

mTgHD K18
mTgHD K11
OWT K18

OWT K12

Fig. 5. TR-FRET analysis of soluble HTT protein in F2 WT and TgHD minipig. Bar graph shows results of TR-FRET analysis of soluble
mutant HTT protein in TgHD and WT tissue samples (isolated from 4 month old minipigs) expressed as mutant HTT signal per 1 mg/ml total
protein. Results of TR-FRET quantitative analysis correlated with western blot analysis shown in Fig. 4B.

71



M. Baxa et al. / Transgenic Minipig Model of HD 59

AGERA
WT TgHD
cP(@:;‘ @e-\\\\’(&\ 0{{2; Q\a-\\\\(&‘ Filter-retardation assay
N < X 2
S ‘3’6\0 & SEEE o WT TgHD
PR E WIS ©
(\Q,*‘ é \)(Q {@’*‘ 2
& & @ & & & e N
& & & @"’p o & & & o
QO QO o’b O @O Q\) O'b OQJ &
L J
- 400 KD. mutant HTT/mEM48 Ab
- a
-dye front

mutant HTT/mEM48 Ab

Fig. 6. Biochemical assays for detection of aggregated mutant HTT. AGERA and Filter retardation assays were performed as described in
Methods using tissue from different brain regions of WT and TgHD minipig and R6/2 HD mouse. Membranes were probed with mEM48

antibody. Only R6/2 sample shows signal in both assays.

Fig. 7. HTT localization in the brain of WT and TgHD minipig. Shown are coronal sections of 4 month old WT minipig brain on the left
and TgHD minipig brain on the right labeled using the immunoperoxidase method to detect HTT with anti-HTT1-17 (Abl). Boxed regions
of the cingulate cortex and the putamen are shown in images to the right of each section. HTT immunoreactivity has a strong somatodendritic
localization in WT and TgHD cortex and in somata of medium sized neostriatal neurons. There is no obvious difference in labeling between

WT and TgHD neurons. Scale bars 100 pum.

DARPP32 is highly localized to neuronal cell bodies
and processes of the normal rodent and human neos-
triatum. A decline in DARPP32 immunoreactivity in
the neostriatum is characteristic of HD mice [73, 74].
Immunoperoxidase labeling for DARPP32 in the neos-
triatum of F2 generation 16 month old WT and TgHD
minipigs showed intense labeling in neuronal cell bod-
ies and neuropil (Fig. 8A-D). Some areas of less
intense DARPP32 neuropil staining were present and
may be striosomes, which have been described using
other neuronal markers in rodent and human striatum

[75,76] (Fig. 8B, D). Immunofluorescence analysis of
caudate and putamen of F2 WT and TgHD minipigs
at ages 4, 10 and 16 months also showed DARPP32
robustly expressed in neostriatal neurons and neuropil
(Fig. 9A-C, shown for 16 months). A quantitative
stereology analysis was performed in the sibling pair of
16 month old minipigs. Results showed that the median
number of DARPP32 + neurons per mm° in caudate
and putamen of the TgHD minipig was slightly lower
compared to the WT (TgHD: 24,781 caudate neurons
and 22,351 putamen neurons, and WT: 26,846 caudate
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neurons and 23,863 putamen neurons) (Fig. 9C). In
the TgHD brain there were reduced signal intensities
for DARPP32 labeling in the caudate nucleus (11.3%
reduction) and putamen (31.7% reduction) compared
to the WT sibling. Although these data are highly pre-
liminary and need confirmation in additional minipigs,
the results suggest that by 16 months of age the levels
of DARPP32 in TgHD minipig start to decline.

Analysis of reproductive capacity in T¢gHD boars

The number of spermatozoa per ejaculate was sys-
tematically evaluated in the transgenic boars from the
age of 13 months to 26 months. There was a signif-
icant decline in the median number of spermatozoa
in TgHD minipigs (2.45-3.65 x 10° of spermatozoa)
compared to WT (8.15-12.48 x 10° of spermatozoa)
(Fig. 10A, Kruskal-Wallis test p<0.001 followed by
post-hoc Mann-Whitney U, p<0.01).These data sug-
gest an impairment of spermatogenic production of the
testes of TgHD minipigs. A time course analysis of

the TgHD sperm samples showed that sperm number
was reduced at 13 months and remained low up to 26
months (Supplementary Data S8). IVF assay showed
thatin WT oocytes with zona pellucida intact, the num-
ber of TgHD spermatozoa that penetrated the oocyte
was lower than for the WT spermatozoa (Fig. 10B).
The median percentage of WT oocytes that were
penetrated by TgHD spermatozoa was significantly
lower than WT oocytes penetrated by WT spermatozoa
(Kruskal-Wallis test p<0.001 followed by post-hoc
Mann-Whitney U, p<0.05) (Fig. 10C). These results
indicated that the penetration activity of spermato-
zoa in TgHD boars was impaired compared to those
of WT spermatozoa. To investigate the basis for the
impaired penetration rate in TgHD, WT oocytes with
zona pellucida removed were used for further analysis.
Removing the zona pellucida markedly increased pen-
etrationrate in the WT and TgHD groups to 100% level
(Fig. 10D). These findings suggest that the presence of
the HTT gene interferes with the penetration of TgHD
spermatozoa through the zona pellucida but does not

Fig. 8. DARPP32 immunoreactivity with immunoperoxidase method in 16 month old F2 WT and TgHD minipig brain. (A and C) Coronal
sections through the neostriatum of WT (A) and TgHD (C) minipig show intense labeling for DARPP32 in the caudate nucleus and putamen
and in the basal forebrain. Boxed areas are shown at higher magnification in B and D. (B and D) Higher magnification images show the intense
labeling of neuropil and cell bodies. Areas of weaker neuropil labeling are demarcated by a dashed line and asterisk in the center and may
represent striosomes. Scale bars in A and C are 5mm and in B and D are 500 pm.
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interfere with fusion of the post-acrosomal sperma-
tozoa membrane and the cytoplasmic membrane of
oocytes.

DISCUSSION

Rodent models of HD including transgenic mice
expressing N-terminal fragments of mutant HTT
have been very important for understanding disease
mechanisms, validating targets, and testing candidate
therapies, but have some limitations for modeling the
human disease [2, 17]. The miniature pig (Sus scrofa)
has similarities to humans in anatomy, physiology, and
metabolism [20, 28, 29]. The size and structure of
pig brain makes it amenable to neurosurgical proce-
dures and non-invasive high resolution neuroimaging
methods similar to those performed in humans [30,
34, 77]. The lifespan of minipigs and their sophis-
ticated cognitive and motor abilities also make them
useful for long-term studies of learning, memory and
behavior [28, 78, 79]. In this study we show successful
establishment of a transgenic minipig stably express-
ing N-truncated human mutant huntingtin 1-548 with
124 glutamines through multiple generations.

Transgenic HD minipigs were generated using
lentiviral transduction of poreine zygotes in syngamy,
at the onset of embryonic DNA synthesis. The precise
timing of lentiviral transduction enhances incorpo-
ration of the transgene cDNA into embryos. The
lentiviral delivery did not cause mosaicism, since the
mutant HT'T was revealed in all tissues tested in F1
and F2 TgHD minipigs and maintained the same num-
ber of glutamines. We found an in-frame deletion
of the expanded CAG/CAA ftract such that the inte-
grated transgene encoded 124 glutamines instead of
the original 145 glutamines. Similar contraction of the
polyglutamine repeat has been observed in human HD
[80]. The rates of transgenesis and viability of offspring
in pig were higher with lentiviral delivery than with
a cloning strategy reported previously [55, 81, 82].
In our experiments, the lentiviral construct that was
used to transduce the minipig genome did not influ-
ence survival or normal development through multiple
generations. The total neonatal mortality of our TgHD
minipigs was 17.2%, which is in the range of the WT
strain (16.4%, Supplementary Data S6). In confrast,
the transgenic HD pigs, generated via a cloning strat-
egy and bearing N-terminal mutant HT'T (208 amino
acids and 105 ), showed a severe chorea phenotype
before death and the presence of apoptotic cells in brain
[55].

Both female and male transmissions of the HD trans-
gene were confirmed in our TgHD minipigs. Two litters
of F1 generation minipigs were born with a rate of
transgenesis of 29.4%. 'The litters of F2 and F3 gener-
ations had a Mendelian inheritance of the transgene of
40.2% and 34.9%, respectively. Importantly, one sin-
gle copy of exogenous HT'T was found in chromosome
1 (1g24-q25) where it was maintained in F1 and F2 off-
spring. The TgHD minipigs of FO—F2 generations had
two alleles coding endogenous pig HT'T and one allele
for the N-terminal human mutant HTT. No homozy-
gote TgHD minipigs were generated with heterozygote
TgHD matings. The site of insertion of the transgene
may have disrupted some essential genetic sequence
that caused lethality of progeny homozygous for the
HD transgene [83]. More detailed information on the
exactsite of insertion of the transgene in chromosome 1
may reveal more insights about potential homozygote
lethality.

Mutant HTT protein expression was detected in dif-
ferent brain regions including cortex, caudate nucleus
and putamen and in a variety of peripheral tissues
and confirmed by both Western Blot analysis and TR-
FRET. With one exception (hypothalamus in one of the
TeHD minipigs), the data from WB and TR-FRET bio-
chemical agsays showed a good correspondence for the
relative distribution of human mutant HTT in different
brain regions and peripheral tissues. The expression
of the transgenic protein was not confirmed in heart,
stomach, spleen and skeletal muscle. Trofier et al. [84]
determined the presence of HI'T protein also in heart.
Discrepancies in observed distribution of huntingtin
in tissues can be influenced by the preparation of pro-
tein lysates [85]. In “bloody” tissues (liver, spleen), red
color of analyte is known to artificially increase back-
ground in TR-FRET readout thus higher mutant HTT
background signals in these WT tissues were likely due
to this effect. The variations in the expression level of
protein were expected in skin tissue due to insufficient
homogenization.

Midbrain dopaminergic neurons play a critical role
in basal ganglia circuitry and function including coor-
dination of movement. Protein phosphatase 1 regula-
tory subunit 1B, also known as dopamine- and cAMP-
regulated neuronal phosphoprotein (DARPP32), is
highly expressed in caudate-putamen medium-sized
spiny neurons [73, 86]. Dopamine D1 receptor stimu-
lation enhances cyclic AMP formation, resulting in the
phosphorylation of DARPP32 [86] at Thr34 by PKA
[87]. A loss of DARPP32 levels in medium-sized spiny
striatal neurons was observed in several rodent models
of HD [74, 88], and in the globus pallidus and putamen
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of 7 month old HD sheep [21]. A 16 month old TgHD
minipig brain had a reduction compared to WT' in the
intensity of neuronal labeling for DARPP32 in the
caudate nucleus and putamen. Clearly these findings,
which are based on a detailed quantitative analysis of
only one sibling pair of WT and TgHD minipigs, need
to be confirmed in more animals. Nevertheless, the data
suggest that changes in DARPP32 may begin in the
TgHD minipig brain at around 16 months of age.

The formation of aggregates is a hallmark of HD
pathology. Nuclear and cytoplasmic inclusions of
mutant HTT are seen in human postmortem HD
brain and in mouse models of HD [9, 72]. There
was no evidence of aggregates of mutant HTT pro-
tein in the TgHD minipig up to 16 months of age
based on biochemical (AGERA, filter retardation)
and immunohistochemical assays with antibody to
anti-HTT1-17. This antibody detects mutant HTT
inclusions in the human HD brain. Other antibod-
ies commonly used to detect nuclear inclusions of
human HTT fragments in HD mice including MW8
and EM48 produced no staining in the TgHD minip-
igs. The absence of nuclear inclusions in the TgHD
minipigs was consistent with the negative results for
aggregation observed using the AGERA and filter
retardations assays. Clearly study of brains from older
TgHD minipigs will be needed to determine onset of
aggregate formation. Many factors influence the inci-
dence of aggregated mutant HT'T including levels of
mutant protein expression, polyglutamine length, the
length of the mutant HT'T' fragment, and age of the
animal [89-91]. It is noteworthy that a well stud-
ied HD mouse model BACHD which expresses full
length mutant HTT with 97 glutamines encoded by
CAG/CAA repeats [92] develops brain pathology and
progressive motor deficits but lacks obvious intranu-
clear mutant HT'T aggregates [93]. Some neuropil
aggregates appeared in late stages (12-18 months
BACHD) and were more prominent when aggressive
antigen retrieval and anti-HTT antibody 3B5H10 were
used in the brain sections [94], suggesting that epi-
topes for detecting mutant HT'T aggregates may be
masked. As with BACHD, the polyglutamine tract in
our TgHD minipig has a mix of CAG/CAA repeats. [t
is possible that CAG/CAA sequence generates protein

conformations that are unfavorable for immunodetec-
tion of aggregates.

A surprising finding was evidence for a decline in
fertility in F1 boars caused by reduced sperm num-
ber and penetration rate. This phenotype can be easily
monitored in the TgHD minipigs and therefore repre-
sents a biomarker that can be suitable for therapeutics.
From 13-26 months the decline in sperm function
was constant. Analysis of earlier ages might reveal
a period of progressive decline that could also be a
useful index for analysis of therapeutics. As only 2
F1 transgenic boars were available for detailed anal-
ysis, these findings must be considered preliminary
and we are currently investigating reproductive com-
petence in a larger cohort of F2 animals. Pathology
in the germinal epithelium has been documented in
human HD and YAC 128 HD mouse on histologi-
cal sections where a decreased number of germ cells
and reduced seminiferous tubule cross-sectional area
have been observed [95]. The testicular pathology in
humans was related to the presence of mutant HTT
since severity was greater in patients with longer CAG
repeats and testicular pathology was not present in a
patient with amyotrophic lateral sclerosis. The YAC
128 HD mouse develops testicular pathology between
9 and 12 months prior to significant reduction in testos-
terone or GnRH levels but coinciding with changes in
the brain and the appearance of motor deficits. Unlike
the TgHD minipigs, problems with sperm quality and
fertility have not been reported in HD patients.

No evident changes in motor function were observed
ina FO TgHD minipig up to the age of 40 months. How-
ever, only 4 animals (3 TG vs. 1 WT) were subjected
to the study. A systematic quantitative study focusing
on changes in motor and cognitive functions in TgHD
minipigs is underway (Dr. R. Reilmann, unpublished
data). In contrast to our TgHD minipigs, the short-
lived transgenic piglets produced by a cloning strategy
showed dyskinesia and chorea-like movements before
death [55].

In summary we have developed a heterozygote
TgHD minipig that expresses a human mutant HTT
fragment throughout the CNS and peripheral tissues
in a stable fashion through multiple generations. The
TgHD minipig is healthy at birth and through early

Fig. 9. Immunofluorescence labeling of DARPP32 in WT and TgHD minipig neostriatum. (A and B) Shown are images of microscopic fields
from the putamen of 16 month old WT (A) and TgHD sibling minipig (B). DARPP32 labeling in the cytoplasm is red and DAPI staining
in the nucleus is in blue. (C) Upper boxplot shows median numbers of DARPP32 + neurons (mm?) in caudate nucleus and putamen of WT
and TgHD minipigs. Lower box plots shows median intensity of DARPP32 staining determined as described in Methods. (D) and (E) are
pseudo-color images of DAPI stained nuclei and DARPP32 stained neurons respectively in WT putamen obtained using fire view in Fili
software as part of thresholding for the neuronal counting procedure. Scale bar 50 pm. (Colours are visible in the online version of the article;

http://dx.doi.org/10.3233/THD-130001)
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Fig. 10. Failure of reproductive capacity in TgHD boars. (A) Boxplots show number of spermatozoa per ejaculate in two WT boars and in 2
TgHD minipig boars of similar age (see methods for details). The median number of spermatozoa is reduced in TgHD minipigs compared to
WT minipigs, p-values for all pairwise comparisons (Mann-Whitney U test) are shown in the table. (B) Left: Image of WT oocyte fertilized
with WT spermatozoa in vitro: Note the large number of penetrated, partly de-condensed spermatozoa that are visible in intact oocyte in vitro
fertilized with WT spermatozoa. Right: Image of WT oocyte fertilized with TgHD spermatozoa in vitro. Note the small number of spermatozoa.
The syngamy of male and female pronuclei is visible and only one supernumerary penetrated sperm is evident. (C) Boxplots show the median
ratio of intact WT oocytes (including zona pellucida) penetrated by WT or TgHD spermatozoa as determined by IVF. P-values for all pairwise
comparisons (Mann-Whitney U test) are shown in the table below. (D) Boxplots show the median ratio of WT oocytes with zona pellucida

removed penetrated by WT or TgHD spermatozoa as determined by IVF.

development and does not exhibit obvious signs of
abnormal movement up to 40 months of age. How-
ever, a decline is evident at 16 months in DARPP32
immunoreactivity in the neostriatum, the region most

affected in HD, as well as a decline in sperm num-
ber and penetration rate beginning at about 13 months.
Formal testing of the TgHD minipigs in a battery of
motor tasks is now underway.
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Abstract

Huntington’s disease is caused by an expansion of the polyglutamine-coding CAG ftriplet
sequence in exon 1 of the huntingtin gene. This expansion leads to progressive and
devastating neurodegenerative changes in the whole brain with the striatum and cerebral
cortex being the regions most affected. The histological hallmark of the disease is the
formation of neuronal inclusion bodies consisting of ubiquitinated aggregates of mutant
huntingtin. Accordingly, the potential impairment of the Ubiquitin Proteasome System has
long been speculated to play role in the development of mutant huntingtin-related
pathology.

In the present study, we crossed the R6/2 Huntington’s disease mouse model with the gad
mouse model which lacks expression of deubiquitinating enzyme UCHL1, one of the most
common proteins in the brain. The double mutant R6/2xgad mouse expresses exon 1 of
human mutant huntingtin and one gad allele of UCHL1. We found that the reduction of
UCHL1 in the R&6/2 mouse significantly accelerated mutant huntingtin aggregation and
increased the levels of polyubiquitin chains and polyubiquitinated proteins but it did not
potentiate brain neuronal degeneration.

These results suggest that the Ubiquitin Proteasome System in Huntington's disease could
be affected by inefficient recycling of monomeric ubiquitin by deubiquitinating enzymes,
particularly by UCHL1. Our results also support the theory that the formation of inclusion
bodies is a result of neuronal disease-coping response to a more toxic mutant huntingtin
species.

Key words

R6/2 Huntington’s disease mouse, Gracile axonal dystrophy (gad) mouse, ubiquitin
proteasome system, ubiquitin carboxykterminal hydrolase L1 (UCHL1), ubiquitin

homeostasis, mutant huntingtin, aggregation, TR-FRET, neurodegeneration
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Introduction

Huntington’s disease (HD) causative mutation (polyCAG repeat expansion in exon 1)
leads to the expression of mutant huntingtin protein (mhtt) with expanded polyglutamine
(polyQ) tract. Disease onset and severity is polyQ-length-depended and is characterized
morphologically by the presence of mhtt protein aggregates and inclusion bodies (IBs)
found in affected neurons [1, 2]. However, the relationship between the appearance of
mhtt aggregates and/or IBs and disease onset or progression is still not firmly established
[2]. The IBs are ubiquitinated [1] suggesting that the formation of IBs in HD may be linked
with aberrant Ubiquitin Proteasome System (UPS) activity [3]. However, involvement of
mhtt and mhtt aggregation in UPS impairment in HD remains controversial [3-9].

Protein degradation via the UPS is a two-steps process: 1) proteins are tagged by the
covalent attachment of several ubiquitin molecules (mostly linked via Lys48) creating a
polyubiquitin (polyUb) chain. 2) the 26S proteasome recognizes polyUb tagged proteins
and degrades them into short peptides. Deubiquitinating enzymes (DUBSs) release free and
reusable monoubiquitin [10].

The fact that the polyUb chains and high molecular polyUb protein complexes accumulate
in the intracellular compartments in both in vitro and in vivo (mouse) HD models [3] but the
GFP reporters of proteasome activity in R6 mouse models do not accumulate [6, 11],
suggests a possible malfunction in DUBs activity. UCHL1 is a DUB with almost exclusive
expression in nervous and reproductive systems [12] representing 1-2% of total soluble
proteins in the brain [13]. UCHL1 also functions as an ubiquitin ligase and monoubiquitin
stabilizer [13] and modulates synaptic function and structure [14]. Mutations of UCHL1
have been linked to several neurodegenerative diseases [13] and S18Y polymorphism in
the UCHL1 gene was detected as a genetic-modifier in HD contributing to the variance in

the age-at-onset of HD patients [15].
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In the present study, we have crossed the transgenic R6/2 HD mouse model [16] with the
mutant Gracile axonal dystrophy (gad) mouse which carries an inframe deletion of exons
7 and 8 of UCHL1 gene resulting in a lack of UCHL1 expression. Gad mice exhibit
autosomal recessively inherited neurodegenerative disorder which leads to “dying-back”
axohal neurodegeneration and formation of AR, ubiquitih and proteasome subunits
containing inclusions in axons of degenerating neurons [13, 17]. The goal of this study was
to investigate the potential role of UCHL1 in UPS impairment in a well-established model

of HD.

Methods

Animals

All experiments were carried out according to the guidelines for the care and use of
experimental animals and approved by the State Veterinary Administration of the Czech
Republic. BECBA-Tg(HDexon1)62Gpb/1J ovary transplanted females (R6/2 OT; which are
WT mice with the ovaries of the R6/2 mice) were obtained from The Jackson Laboratory.
Gad mutant mice were obtained from Dr. Keiji Wada. Heterozygous gad males were
crossed with R6/2 OT females to generate progeny of three genotypes: wild type (WT),
R6/2 and R6/2xgad. The mice were anesthetized by mixture of ketamine (Narketan 10)
and xylazine (Rometar 2%) and transcardially perfused with ice-cold PBS. Brain was

removed, and immersed in 4% PFA fixative or stored frozen.

Western blot
20 ug of total protein from crude homogenates of WT, R6/2 and R6/2xgad striatal and
cortical samples were used. Membranes were incubated with primary antibodies overnight

(ON) at 4°C.
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Immunofluorescence

Brains were post-fixed in 4% PFA and cryopreserved by 30 % sucrose. Brains were then
sectioned into 30um thick freefloating sections. Sections were selected according to their
A-P relation to the anterior commissure. Sections were incubated in primary antibodies at

4°C ON.

TR-FRET quantitative analysis

TR-FRET (Time-Resolved Férster Resonance Energy Transfer) detection of soluble
mutant, wild-type and aggregated mutant huntingtin was performed by using 4 different
antibody pairs (2B7+MW1; 2B7+MAB2166; 4C9+4C9 or MW8+MW8S [18]). For details see
Table, Supplemental Digital Content 3, which shows detailed WB, IHC and TR-FRET

methods and list of antibodies.

Quantification of DARPP32+ medium spiny neurons

Sections from 4 brains per genotype, 2 sections/animal were stained with DARPP32
antibody. Z-stack images of dorsomedial and central caudoputamen were acquired and
DARPP32+ medium spiny neurons (MSNs) quantified in a blinded fashion using ImageJ

software.

Immunofluorescence quantification of MW8+ mutant huntingtin aggregates

Sections from 4 brains per genotype, 3 sections/animal were stained with MWW8 antibody
specific for aggregated mhtt. Z-stack of images from primary motor cortex layer V (cortex)
and dorsolateral caudoputamen (striatum) were analyzed with Imaged software for the
presence of particles with a size of 2-INF ym? and a circularity of 0.5 to 1.0 with pixel

threshold set: Striatum 457-MAX; Cortex 514-MAX.

Statistical analyses
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DARPP32 MSN counts, brain and body weights were compared using ANOVA. To
analyze the differences of mhtt aggregates between two groups we used Student’s t-tests.
For all statistical analyses a P value of 0.05 was considered significant. Results are
expressed as means with the standard error of the mean (SEM). All statistical analyses

were done using GraphPad Prism (La Jolla, CA, USA).

Results

Genetic cross of R6/2 transgenic HD mouse with mutant gad mouse

To test whether the UPS malfunction in HD is caused by the dysregulation of ubiquitin
recycling we generated a genetic crossbreed of R6/2 [16] and gad mice [17]. Brains of 3
genotypes (wild type (WT), R6/2 and R6/2xgad) were harvested at 6 (R6/2 at early stage)
or 10 weeks (R6/2 at advanced stage; gad at early stage) and 2-4 brains per genotypes
were used in different assays.

Brain and body weight of R6/2xgad cross were similar to R6/2 (Fig. 1). Brain weight of
both R6/2 and R6/2xgad was significantly reduced when compared to WT brains, which is

consistent with previous reports [16, 19].

Numbers of DARPP32+ MSNs of R6/2xgad striatum are similar to those of R6/2

Dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP32) is a well-
established marker of striatal MSNs. The number of MSNs in the R6/2xgad striatum was
similar to that in R6/2. When compared to WT striatum, both R6/2 and R6/2xgad striata
exhibited a slight decreasing trend in MSNs numbers (Fig. 2). These data are consistent
with previous reports that show only a modest decrease in MSNs nhumbers in R6/2 mice

[16, 19].
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Reduced UCHL1 expression in R6/2 x gad accelerated mhtt aggregation

TR-FRET quantitative assays of soluble mutant, wild-type and aggregated mutant
huntingtin protein were petformed (h=2 per genotype per time point) by using 4 different
TR-FRET antibody pairs (Fig. 3a) to investigate the possible effect of UCHL1
downregulation on htt protein levels. Soluble mhtt species levels were lower and
aggregated mhtt levels were higher in R6/2xgad brain at both time points and in both
regions (with most apparent differences at 10 weeks) when compared to R6/2. These
results were then confirmed by confocal analysis of MW8+ mhtt aggregates in brain
sections from 10 week-old animals. \We found that mhtt aggregates and IBs were
significantly larger and more numerous in R6/2xgad striatum but not in cortex (Fig. 4). As
the number of large prominent IBs per neuron was unchanged (Fig. 5e), the elevated
numbers of MW8+ aggregates most likely represent neuropil mhtt aggregates in R6/2xgad
striatum. Western blot analysis by AB1 antibody revealed that mhtt from R6/2xgad brain
migrated faster in the gel suggesting that posttranslational change of mhtt had occurred

(Fig. 3b).

UPS impairment in R6/2 mouse could be caused by altered ubiquitin recyclation

Staining with polyUb antibody showed that the polyUb deposits in R6/2xgad mouse brain
were larger and denser and that the M8+ aggregates also contained polyUbK48 and 63
chains (see Figure, Supplemental Digital Content 1, which shows double stains). Western
blot analysis of the whole cortical and striatal lysates using anti-polyUb antibody showed
increased levels of polyUb chains and polyUb proteins in the R&/2xgad striatum, however
this increase was not as clear in the cortex (Fig. 3¢). MW8+ mhit |IBs contain UCHL1

protein and MW1+ soluble species of mhtt colocalize with UCHL1 (Fig. 6). Moreover,
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expression of UCHL1 was higher in ChAT+ interneurons (Fig. 5a-d) than in MSNs (Fig.

2b f,j).

Discussion

In the present study, we researched a potential role of mhtt in UPS impairment in HD by
crossing the gad mutant mouse (to partially reduce the levels of UCHL1) with a well
characterized R6/2 mouse model of HD.

It is becoming clear that the disease-causing and aggregation-prone agent in HD is the
exon 1 containing an expanded polyQ tract (E1mhtt). These conclusions are based on
findings that demonstrate: i) that the presence of soluble monomeric E1mhtt strongly
predicts neurcnal death [20], ii) that nheurons which develop IBs show improved survival
and decreased levels of diffuse forms of mhtt [21], iii) a critical role of CAG Repeat
Length—Dependent aberrant splicing of mutant HTT gene which results in exon 1 mhtt
protein expression. These findings suggest that the pathology in all knock-in HD mouse
models and human HD could be driven by the same E1mhtt which is expressed in R6/2
mouse [22]. Furthermore, downregulation of the E1mhit expression by antisense
oligonucleotide infusion in the R6/2 mouse led to prevention of brain atrophy, improved
heuronal survival and suppression of hew mhtt synthesis, however it did not significantly
alter mhtt aggregation, suggesting that disease progression is independent of mhtt
aggregate formation [23].

Our current results agree with these observations as the accelerated aggregation of mhtt
in R6/2xgad striatum correlated with an increased decline in soluble mhtt species (Fig. 3a)
and did not enhance the loss of DARPP32+ MSNs (Fig. 2), nor did it affect brain or body
weight (Fig. 1). In addition, we observed that UCHL1 expression is higher in ChAT+

cholinergic interneurons than in MSNs (Fig. S5a-d). This may help to explain selective
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spating and the lack of apparent IBs in these neurons (Fig. 5e) [19]. This is in agreement
with the study of Lombardino et al [24] which suggested that larger neurons have higher
UCHL1 expression and that the higher UCHL1 expressicn is associated with a reduced
risk of neuronal death [24].

Because the IBs in HD are ubiquitinated formation of IBs has always been linked with UPS
malfunction. Early studies of the UPS impairment in HD suggested that polyQ aggregates
could directly inhibit the function of 26S proteasome [4] and that the eukaryotic
proteasome is not able to process polyQ sequences of polyQ-containing proteins [8]. In
recent studies, conflicting results showed that i) the proteasome remains functionally intact
and can effectively degrade the expanded polyQ proteins [25], ii) the UPS impairment is
nhot caused by direct “choking” of purified proteasomes, and iii) the UPS impairment in HD
is global as it was shown in vitro [5] and in vivo in R6/2 and Hdh®™¥%"*° mice and human
postmortem tissue [3]. Artificial reporters of UPS activity based on destabilized GFP were
successfully applied in the UPS activity studies in HD cellular models [4, 5], but when
translated into in vivo studies using R6 mice, these reporters failed to accumulate and thus
failed to confirm global UPS impairment in HD [6, 11]. Nevertheless, fusing the UPS GFPu
reporters to either postsynaptic PSD95 or presynaptic SNAP25 proteins revealed
increased levels of GFPu reporters in the synapses of R6/2 and Hdh®'*® HD mouse
models [2], suggesting that the malfunction of UPS in HD could be region-specific rather
than global [3, 5].

It has been suggested that UCHL1 represents one of the major DUBs in the brain [14] as it
is ubiquitously expressed in neurons and because it functions as a deubiquitinating
enzyme, ubiquitin ligase and monoubiquitin stabilizer (for review see [13]). UCHL1
regulates synaptic function and structure and the main function of UCHL1 in synapses is

most likely free mono-ubiquitin stabilization [14]. Our data showed that the reduced
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UCHL1 expression in R6/2xgad striatum caused aggregates of mhtt to accumulate more in
the neuropil of R6/2xgad mouse if compared to the R6/2 mouse (Fig. 4d). This suggests
that the locally disturbed ubiquitin homeostasis in the synapses of HD medels [9] could be
caused by decreased monoUb-stabilizing and DUB activities of UCHL1 which, in turn may
lead to the accumulation of polyUb chains and increased polyubiquitation of high
molecular weight proteins as detected in previous works in vivo [3, 11] and in R&/2xgad
striatum in our experiments (Fig. 3¢). We found that mhtt from R6/2xgad brain lysates
migrate faster in the gel (Fig. 3b) and we hypothesize that this may be caused by reduced
mhtt ubiquitination. It is not clear, however, how mhtt alters UCHL1 function in HD.

In our experiments, we observed that UCHL1 co-localized with both soluble mhtt (Fig. 6f-i)
and with aggregated mhtt (Fig. 6a-e). We hypothesize that abnormal interaction(s) of
UCHL1 with mhtt could lead to impaired UCHL1 functioning or that the UCHL1 functions
were compromised due to an ongoing clearance of mhtt by the UPS. It was shown that
UCHL1 expression is regulated by the REST/NRSF (for review see [12]) and because mhtt
causes a reduction in the transcription of RE1/NRSE neuron-linked genes (for review see
[2]), mhtt could decrease the levels of UCHL1 indirectly. Another study showed that
stimulation of NMDA receptors increases expression of UCHL1 [14] and because the
NMDA receptors are over-activated in HD (for review see [2]), this could explain why we
did not see decreased levels of UCHL1 protein in R6/2 brain (Fig. 3b).

Moreover, recent data suggests that oxidative modification of UCHL1 caused by oxidative

stress in neurodegenerative diseases greatly affects UCHL1 activity (for review see [13]).

Conclusion
Our data showed that partial depletion of UCHL1 in R6/2xgad mice accelerated mhtt

aggregation and increased the levels of polyUb chains and proteins in striatum but did not
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result in increased degeneration of DARPP32+ MSNs. We also observed higher levels of
UCHL1 in ChAT+ cholinergic interneurons and found that UCHL1 co-localized with mhtt in
brain sections. Together, our data supports the theory of a “protective” role of mhtt IBs and
suggests that UCHL1 function(s) may be affected in HD causing local dysregulation of

ubiquitin homeostasis.
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Figure legends

Figure 1. Brain and body weight. (A) Graph plot shows brain weight comparison. No
difference was observed between R6/2 and R&/2xgad brains at both time points. (B) Body
weight comparison. Again, no statistical difference was observed between R6/2 and
R6/2xgad mice at both time points. (For both (A) and (B) all mice generated by R6/2 x gad
crossing in our lab were included in statistical analysis but not all brains were used in the
currents study; n= 5 for WT and R6/2 6 weeks; h=16 for WT and R6/2 10 weeks; n= 11 for

R6/2xgad 6 weeks and 10 weeks).

Figure 2. DARPP32+ medium spiny neuron quantification. Representative images of
DARPP32-stained striatum of 10 weeks old WT (A), R6/2 (E) and R6&/2xgad (I) mice.
Images B, F and J show ImageJ unionjack LUT view of UCHL1 staining of the boxed
regions in corresponding images A, E and | to better demonstrate the intensity values (with
LUT scale at the bottom of the image). Note that the higher intensity of the UCHL1 staining
is localized in DARPP32 negative (C, G, K) large neurons (B, F, J respectively). D, H and
L show merged images of UCHL1 and DARPP32 staining. (M) Graph plot shows
DARPP32+ MSN quantification. No significant difference between R6/2 and R6/2xgad

striata was observed (h=4, for details see Methods). Scale bare represents 50um.

Figure 3. TR-FRET and Western blot analysis of brain samples. (A) Table with LUT
color code (warm colors lower signal, cold colors higher signal) shows results of TR-FRET
anhalysis of soluble wild-type and mutant huntingtin and aggregated mutant huntingtin
protein in WT, R6/2 and R6/2xgad brain samples expressed as % of htt sighal over buffer
background normalized to total protein as detected by 4 TR-FRET antibody pairs

(2B7+MW1,; 2B7+MAB2166; 4C9+4C9 or MWEB+MWS [18]). Note that R6/2xgad striatum
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and cortex have higher levels of aggregated mhtt and lower levels of soluble mhtt at both
time points with more apparent differences in 10 weeks {(n=2 per time point per genotype).
(B) Western blots of the same tissue used for TR-FRET analysis confirmed reduced
UCHL1 expression in R6/2xgad mice brain (middle blot). WWestern blot immunoprobed with
the anti-HTT1-17 antibody AB1 [1] revealed that the mhtt from R6/2xgad brain migrates
faster in the gel (red arrow, upper blot). Lower blot is B-actin loading control blot. (C) Anti
poly-ubiquitin antibody BML-PWO0580 probed blots of the same tissues demonstrated
elevated levels of the polyubiquitin chains and polyubiquitinated high molecular weight
proteins in the R6/2xgad brain (upper blot). Lower blot is B-actin loading control blot. Two

mice of each group were examined and blots were repeated two times for all samples.

Figure 4. Immunofluocrescence quantification of mhtt aggregates. Graph plots show
morphometric analysis of the size of MW8+ mhtt aggregates and IBs in (A) cortex or (C)
striatum. Striatal but not cortical mhit aggregates were significantly larger in R6/2xgad
mice (Paired t-test, one tailed, P<0.05, n=4, for details see Methods). Quantitative analysis
of MW8+ mhtt aggregates and IBs in cortex (B) and striatum (D). There was significantly
more mhtt aggregates in R6/2xgad mice striatum but not in cortex (Paired t-test, one
tailed, P<0.05, n=4, for details see Methods). For more details, see Figure, Supplemental

Digital Content 2, which demonstrates representative images used for quantification).

Figure 5. Confocal microscopy analysis of UCHL1 expression. (A) Representative
image of 10 week-old WT striatum triple stained with UCHL1, DARPP32 and ChAT
antibodies. Scale bare 25um. (B) Image shows ImagedJ unionjack LUT view of UCHL1
staining of the boxed region in (A) to better demonstrate the intensity values (with LUT

scale at the bottom of the image). Note that the highest intensity of the UHCL1 staining is
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localized in DARPP32 negative (C) but ChAT positive cholinergic interneuron (D). (E)
Representative image of 10 week-old R6/2xgad striatum ftriple stained with MWVS,
DARPP32 and ChAT antibodies demonstrating that ChAT+ interneurons do not contain
MW8+ mhtt aggregates and that the DARPP32+ MSNs do contain one prominent MW8+

IB per cell. Scale bare 10um.

Figure 6. Confocal microscopy analysis of UCHL1 and mhtt. (A) Representative R6/2
cortical neuron stained with MW8 (B), UCHL1 (C) and NeuN (D) antibodies with
orthogonal views constructed in Imaged which demonstrates that MW8 mhtt aggregate-
specific antibody [20] positive inclusion body contain UCHL1 protein. (E) Shows all three
channels merged. Scale bar for A is S5um. (I) Represents co-localized pixels of UCHL1 (G)
and MW1 ((F); antibody specific for soluble mhtt species [20]) staining in R6/2 cortical
neuron projected onto UCHL1 staining (reconstructed by ImageJ Colocalization Finder

Plugin). (H) Is a merged image of F and G.

List of Supplemental Digital Content
Supplemental Digital Content 1. tiff
Supplemental Digital Content 2. tiff

Supplemental Digital Content 3. pdf
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Abstract

Background: Mutation in the ubiquitously expressed cytoplasmic superoxide dismutase (SOD1) causes an inherited form of
Amyotrophic Lateral Sclerosis (ALS). Mutant synthesis in motor neurons drives disease onset and early disease progression.
Previous experimental studies have shown that spinal grafting of human fetal spinal neural stem cells (hNSCs) into the
lumbar spinal cord of SOD1%%* rats leads to a moderate therapeutical effect as evidenced by local a-motoneuren sparing
and extension of lifespan. The aim of the present study was to analyze the degree of therapeutical effect of hNSCs once
grafted into the lumbar spinal ventral horn in presymptomatic immunosuppressed SOD1%%A rats and to assess the
presence and functional integrity of the descending motor system in symptomatic SOD1%%** animals.

Methods/Principal Findings: Presymptomatic SOD1%%* rats (60-65 days old) received spinal lumbar injections of hNSCs.

After cell grafting, disease onset, disease progression and lifespan were analyzed. In separate symptomatic SOD19%** rats,
the presence and functional conductivity of descending motor tracts {corticospinal and rubrospinal) was analyzed by spinal
surface recording electrodes after electrical stimulation of the motor cortex. Silver impregnation of lumbar spinal cord
sections and descending motor axon counting in plastic spinal cord sections were used to validate morphologically the
integrity of descending motor tracts. Grafting of hNSCs into the lumbar spinal cord of SOD1%A rats protected o
motoneurons in the vicinity of grafted cells, provided transient functional improvement, but offered no protection to &
motoneuron pools distant from grafted lumbar segments. Analysis of motor-evoked potentials recorded from the thoracic
spinal cord of symptomatic SOD1°%** rats showed a near complete loss of descending motor tract conduction,
carresponding to a significant (50-65%) loss of large caliber descending motor axons.

Conclusions/Significance: These data demonstrate that in order to achieve a more clinically-adequate treatment, cell-
replacement/gene therapy strategies will likely require both spinal and supraspinal targets.
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Introduction disease typically presents as motor weakness with progressive loss
of ambulatory and/or respiratory function. In addition te motor
deficits, several other qualitatively distinct neurclogical symptoms
including muscle spasticity and segmental hyper-reflexia are also
frequently seen during disease progression [1].

While the pathological mechanisms leading to progressive
neurcnal degeneration are likely multi-factorial, there is converg-
ing evidence for the role of both motor neurons and astrocytes as
key disease mediators. Barly studies identified functional abnor-
malities in astroglial-specific glutamate transporters (EAATZ2) in

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s
disease, is characterized by the progressive development of motor
dysfunction, «-motoneuron degeneration and death, in turn
producing progressive fatal paralysis. Beth inherited and sporadic
instances of disease combine lower g-motoneuron degeneration
and upper motor neuron lesion(s) [1,2]. Depending on the time
course of g-motoneuron degeneration within spinal cord segments
{cervical, lumbar or both), the early clinical manifestation of
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both sporadic and familial ALS human tissues [3], as well as
mutant SO transgenic redent models [4,5]Howlan}. The role
of non-motor neurens in the evelution of ¢-motoneuron degen-
eration in ALS was initially validated by analysis of chimeric
mouse models that were mixtures of normal and mutant SOD
expressing cells. Those studies revealed that normal motor neurons
within an ALS-causing mutant cell environment develop disease-
related damage [6]. In additien, analysis of other chimeric mice in
which 100% of motor neurons expressed high levels of a disease-
causing ALS mutation in SOD] demonstrated that the presence of
nermal non-neurcnal cells could delay or eliminate disease [7].
Diminished mutant SOD! synthesis from astrocytes strongly
slowed the rate of disease progression [7]. Finally, in vitro studies
have provided evidence that ALS glia isolated from mutant SOD]
transgenic mice release factors (not yet identified) that are
sufficlent to trigger human and rodent motor neuron degeneration
in vitro [8 11]. Thus, the loss of astrocyte mediated glutamate
buffering capacity and the secretion of toxic factors from local
astrocytes may both contribute to neurcnal degeneration in ALS.

Consistent with these mechanism-exploratory studies, which
identified the role of mutated astrocytes in disease progression,
recent @ viwo spinal cell grafting data provided evidence that local
segmental enrichment with wild-type neural or astrocyte precur-
sors leads to a certain degree of neuroprotection. Focal enrichment
of normal astrocytes, by transplantation of fetal rat spinal cord-
derived, lineage-restricted astrocyte precursors (AP), preduced
significant benefit in a rat model that develops fatal motor neurcn
disease from expression of mutant SOD1%%*4 AP transplantation
adjacent to cervical spinal cord respiratory motor neuron pools,
the principal cells whose dysfunction leads to death in ALS,
survived in diseased tissue, differentiated efficiently into astrocytes
and reduced microgliosis in the cervical spinal cords of SO 19934
rats. Functionally, AP-grafted animals showed: i} extended survival
and disease duration, i) attenuated motor neuron loss, iii) slowed
declines in forelimb motor perfermance, and iv) improved
respiratory functions. It was hypothesized that neuroprotection
was mediated in part by the primary astrocyte glutamate
transporter EAAT?2 expressed in grafted cells (called GLTI in
rodents) [12].

Mutant damage within motor neurons has also been demon-
strated to play a central role in development of disease. In rodent
models, diminishing mutant SOD1  synthesis within motor
neurons (by selective transgene inactivation [7,13] or viral-
mediated siRNA delivered by retrograde transport after intra-
muscular injection [14,15] can sharply delay disease onset. Spinal
lumbar grafting of human fetal spinal neural stem cells (i.e., the
same cells as used in our current study) in immunosuppressed
SOD1%** rats has been reported to yield long-term graft survival
{average 86 days) and formation of synapses with the host neurons.
Grafted animals were reported to have disease onset delayed by 7
days and the age at which limb paralysis was reached was
extended by 11 days [16,17].

The compelling evidence of non-cell autonomous contributions
to disease in models of SOD] mediated ALS makes cell
replacement therapy an attractive option. We now report the
long term survival and differentiation into neurcons and astrocytes
of human fetal spinal neural stem cells (hNSCs) after grafting into
the vicinity of lumbar spinal -motoneurcns and a local transient

functional benefit after grafting into immunosuppressed presymp-
tomatic SOD %% rats.
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Results

Grafted human fetal spinal neural stem cells (hNSCs)
show long term survival, develop neuronal
morophologies and form synapses with host o-
motoneurons

Twenty-four, SOD1%¥** rats (12 male, 12 female; 60 65 days
old) received 10 hilateral injections of hNSCs targeted into ventral
horn of L2 L5 spinal segments (Fig. 1A, B). Sixteen additional
animals received media only. All animals survived until endstage
disease, with the exception of one media- and two cell-treated
animals which died perioperatively. Immunchistological examina-
tion of spinal cord tissue from animals at endstage using an antibody
recognizing the human, but not rat, nuclear matrix protein
(hNUMA) revealed identifiable human grafts in 18/22 animals.
Four animals were graft-negative as indicated by injection tracks
which were clearly visible, but with no human antigen detected (data
not shown). (INUMA-immunoreactive cell grafis were found in the
central and deep gray matter (laminae VII IX) and sometimes
extended into white matter (Fig. 1C). The overall appearance of
spinal cords from cell-grafted animals was generally unremarkable,
with only some examples of cell grafts extended into the white matter
and slight enlargement of the spinal cord was then sometimes noted
typically in the area closest to the graft. The pattern of engraftment
identified by antibodies selective for human neuron-specific enclase
(hNSE) (Fig. 1D) or doublecortin (DCX; Fig. 1E), an early
postmitotic neuronal marker, closely matched that seen with
hINUMA. Essentially all structures within the graft core labeled for
both hNSE and doublecortin (Fig. 1F). Numerous individual
doublecortin/hNUMA-immunopositive  cells were readily found
outside the graft core and had long neural-like processes with axonal
varicosities (often more than 500 pm in length; Fig. 1G).

Quantitative analyses showed that 78+6% of hNUMA-positive
nuclei were surrcunded by a doublecortin-pesitive cyteskeleten,
suggesting that those cells were young, migrating, post-mitotic
neurcns. Likewise, no cells with doublecortin were found lacking
an hNUMA-positive nucleus. Similar to the hNSE staining
pattern, fibers with doublecortin  were found extending
>500 um radially from the graft core, sometimes crossing
through/near lamina X to the opposite side. On average
12.5+1.2% of hNUMA-positive cells expressed the mature
neurcn marker NeuN (Fig. 1H). Graft cores identified with
hNUMA were also intensely stained for the neuron-specific
cytoskeletal protein BII twbulin (TUJ1; [18]; Fig. S1A-C) and
GAP43 (Fig. 81D-G). Only 1.7%1.1% of hNUMA-positive cells
appeared to be astrocytes with detectable GFAFP filaments
{Fig. 1I}. Only 3.220.9% of hNUMA-positive cells reacted with
the mature oligodendrocyte marker APC (not shown).

Examination of grafted spinal cord tissue revealed a dense fiber-
like pattern of human-specific synaptophysin within the core and
extending cutward into the adjacent tissue (Fig. 1], Fig. 82A-D).
Persisting host moteneurons (¢ and v) were frequently found to
have human-specific synaptophysin-positive bouton-like structures
adjacent to their cell body and associated processes. By examining
specific neurotransmitter phenotype markers in 0.5 um-thick
optical sections, 0.8=0.3% of human synaptophysin-positive
structures were co-labeled with glutamate decarboxylase 65
(GAD65; Fig. 1K; Fig. 82E-H), a marker for y-amincbutyric
acid-preducing neurons. Immunostaining for each of the three
vesicular glutamate transporters known to exist in the spinal cord
{(VGIuT 1, 2, and 3} revealed that 1.3=0.5% of boutons with
human synaptophysin were glutamatergic (Fig. 1L; Fig. 82I-L).
Glycinergic boutons, identified by immunostaining for a glycine
transporter (GlyT2) represented 0.92£0.6% of these boutons (Fig.
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Figure 1. Human spinal neural stem cells grafted into lumbar spinal cord of SOD1°%2 rats show long term survival and preferential
neuronal differentiation. Using a glass capillary 50D1%%* rats (60-65 days old) received 10 bilateral injections of hNSCs targeted into the
intermediate zone (lamina VII) and ventral horn {lamina VIII, 1X) of L2-L5 spinal segments (A, B). Lumbar spinal cord sections from cell-grafted
50D15%** animals immunostained for human nuclear matrix antigen (hANUMA) to identify all cells of human origin and developed by
diaminabenzidine (C) shows a dense population of nucleus-like structures throughout the mid- and deep laminae (dashed line delineates the ventral
horn) as well as more disperse nuclei outside the graft core and often into the white matter {inset). Neighboring sections revealed cell grafts that
were strongly immunoreactive {IR) for human neuron-specific enolase {(hNSE) and doublecortin (DCX; D-G). Other hNUMA-IR cells were found to react
with the neuronal nuclear protein NeuN {H) and glial fibrillary acidic protein {GFAP; I). Human synaptophysin (hSYN) was detected throughout the cell
grafts and was often found in the vicinity of persisting motoneurons {ChAT; choline acetyltranseferase) in lamina IX and extending into the adjacent
white matter {J). Single optical layer confocal images of surviving & -motoneurons show hSYN-IR bouton-like structures adjacent to the outer
membrane of the soma {K, L. Only occasional hSYN-IR boutons co-stained with the GABA-ergic cell marker glutamate decarboxylase {GADGS; K);
glutamatergic boutons were located by identifying specific glutamate vesicular transporters 1/2/3 {VGIUT) and similarly showed only rare boutons
also reactive for hSYN (L). Arrows show some examples of double-immunoreactive structures. Scale bar: 360 um (C, F), 700 pm (D, E), 35 um {G),
10 um (H, 1), 250 um ¢J), 20 um (K, L).

doi:10.1371/journal.pone.0042614.g001
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S2M-P), consistent with a human stem cell-derived glycinergic
neuron. No synaptophysin-positive structures were found to co-
label with the motor neuron marker ChAT (Fig. 1K, L; Fig.
S2H, L, P). Indeed, in the vast majority (=97%} of cases human
synaptophysin-positive cells did not contain any differentiated cell
marker, indicating a persistent immature phenotype.

Human spinal neural stem cells protect a-motoneurons

in grafted segments

In order to assess a possible protective effect of grafted hINSCs
on lumbar g-motorneuron survival we performed quantitative
histological analyses of persisting lamina IX o-moteneurons in
normal, SOD1%%% 30D 1%°%/hNSCs-grafied, and SOD199%/
media-treated animals in the lumbar (L4 L5) spinal cord
segments. Representative half spinal cord images from each
animal group are shown in Fig. 2A-D. In untreated SOD 19934
animals, there was an average 85+ 7% reduction in the number of
g-motoneurons per histological section compared to untreated,
non-transgenic rats (Fig. 211 While media-treated SOD1%%% rat
showed an 80=9% reduction in the e-motoneuron population, in
hINSCs-grafted animals the lateral ¥-motorneuron pool showed
only a 53=5% decrease relative to normal animals), which was a
significantly smaller reduction than the untreated or media-treated
SO 1% animal groups (P</0.001; one-way ANOVA).

Analysis of a-motoneurcn survival in the phrenic nucleus (G5
6) was used to test whether the lumbar cell grafis provided
protection in cervical motoneuron pools distant from grafted
lumbar segments. Half spinal cord images from untreated normal
animals showed an intensely-stained (choline acetyl transferase -
ChAT) motoneuron pool in cervical spinal cord (Fig. 2E).
Untreated SOD1%** animals at endstage disease developed a
dramatic loss in the ¢-motoneuron population (Fig. 2F, J, a
69=4% reduction compared to age-matched non-transgenic
littermates). Media-treated (Fig. 2G) and hNSCs-grafted
(Fig. 2H) SODI1%®* animals had similarly-reduced cervical
motor pools (60X4% and 65%4% of normal littermates,
respectively).

Grafted human spinal neural stem cells ameliorate

lumbar astrogliosis and microglial activation

To test how engraftment of hNSCs affects the astroglial and
microglial activation that prominently develop in SOD19%4 rats,
region-specific (lamina IX) astrogliosis and microglial activation
was assessed by densitometric analysis of glial fibrillary acidic
protein (GFAP) and ionized calcium-binding adaptor molecule 1
{(Ibal) immunoreactivity, respectively. Untreated normal rats
showed minimal GFAP reactivity as expected for wild-type
animals, with very thin processes in astrocytes and usually nc
discernable cell body (Fig. 83A). Ibal immunoreactivity was also
comparable to that of wild-type naive animals, with microglia with
leng thin processes (Fig. 83B). However, by endstage disease,
intense reactive astrogliosis (i.e., hypertrophic astrocytes with
short, thick processes and enlarged soma) was found in the
untreated SOD1%%** rats (Fig. $3D, M). Microglial activation in
SO 1% mutant animals paralleled the reactive astrogliosis with
a significant increase in the presence of Ibal+ cells threughout the
ventral horn (and concentrated in lamina VIII and IX - Fig. S3E,
M). While media treatment did not alter develepment of GFAP or
Ibal reactivity in laminae IX {compared to untreated, mutant
SOD 199 gssue; Fig. 831, M), hNSCs-transplantation reduced
the overall immunoreactivity for GFAP and Ibal (Fig. S3L, M).
While media-treated tissue had GFAP and Ibal reactivities 8+0.9
and 6+0.8 fold greater than that in nermal animals, both were
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reduced [to 420.8 fold (p =0.04; one-way ANOVA) and 3.60.4
fold (p=0.02; one-way ANOVA]J| in hNSCs grafted animals,
respectively.

Grafted human spinal neural stem cells migrate
extensively and form synapses

To assess the degree of cell migration and synapse formation at
extended periods after grafting, we compared non-quantitatively
the distribution of grafted (hNUMA+) cells 9 months after
transplantation into lumbar spinal cords of immuncedeficient rats
with the pattern seen in cell-grafred SOD1%%** rags (e, around
78 days after cell transplantation). Extensive migration of grafted
cells was seen inte both white and gray mater (Fig. 3A, B; Fig.
S4A,B). Double staining of hNUMA+ sections showed that the
hINSCs-derived cells localized in white matter acquired only glial
phenotypes (Fig. 3C, D) [as shown by co-staining with antibodies
to neurcnal (NeulN, human neural specific enclase - NSE, CHAT)
or non-neuronal (GFAP and the mature oligedendrocyte cell
marker APC) proteins]. hNSCs-derived cells in the gray matter, on
the other hand, had both neuronal and non-neuronal markers
(Fig. 3E). Electron microscepy confirmed that human synapto-
physin (hSYN) immunoreactive axonal terminals had formed
synapses with adjacent host neuron-derived dendrites (Fig. 3F-I).

Near complete loss of spinally-recorded motor-evoked
potentials in non-treated SOD19%* animals

In order to assess the upper motor neuren connectivity at the
spinal level, motor-evoked potentials were recorded in a separate
group of endstage SOD1%%%* rats with no previous manipulations
(i.e. no spinal media or cell injections) and age-matched non-
transgenic centrol animals. Motor-evoked potentials (MEPs) were
recorded from the dorsal surface of exposed thoracic T12 segment
after electrical stimulation of the motor cortex (Fig. 44). MEPs
consist of multiple waves, with the two earliest peaks, N1 and N2,
corresponding to the activation of extrapyramidal system [19 21].
In non-transgenic animals, the N1 wave (average amplitude
140.7+39.0 mV; Tahble 1) was recorded at 1.6=0.2 ms and the
N2 wave (average amplitude 88.4=51.3 mV) 2.820.3 ms after the
stimulus, vielding calculated conduction velecities of 52 62 and
28 32 m/s, respectively. In SOD1%%** endstage animals, the N1
amplitude was reduced to 1/6% the normal level (25.5=6.4 mV,
p<<0.05 compared to normal animals; t-test) and latency was
increased by 55% (to 2.570.2 ms; p<0.05; t-test) (Fig. 4 B,
Table 1). Similarly, N2 amplitude was reduced to about 30% of
normal (to 25.1%£9.1 mV) and latency was increased 25% (to
3.570.5 ms, p<<0.05; t-test) (Fig. 4B, Table 1).

Loss of large, descending myelinated axons in spinal
white matter of mutant SOD1°%*

Histolegical analysis of the integrity of descending motor tract
degeneration in cervical and lumbar spinal cord was determined in
terminal SOD19%* rats which were previcusly used for MEPs
recording. Siver Impregnation techniques were employed to
detect the presence and distribution of axo-dendritic disintegra-
tion, which is marked by silver deposition [22 25]. While lumbar
sections from the normal animals had minimal silver deposition
{Fig. 5A), similar sections from SO} 13 animals had numerous
degenerating o-motoneurons and interneurons that stained
intensely (Fig. 5B, Q) and an abundant number of fragmented
fibers coursing throughout laminae 1V X (Fig. 5D). Numerous
argyrophilic punctate structures were alse prominent in most white
matter regions, particularly in the lateral and ventral columns.
Using a less sensitive silver method {de Olmos aminecupric silver
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Figure 2. SOD1°°** rats receiving lumbar grafts of human spinal neural stem cells show higher e-motoneuron survival at the
lumbar but not cervical spinal segments. Lumbar transverse spinal cord sections from untreated, non-transgenic {Non-Tg; A} and untreated
SOD1%%A transgenic {SOD1%%3; B) animals, as well as SOD1°%* animals treated with media (SOD1%9** media; C) or human spinal neural stem cell
grafts (SOD1°%* cells, D) were double immunostained to identify all mature neurons {NeuN) and cholinergic cells {z-motoneurons, ChAT). While a
dramatic reduction in ChAT-IR cells was noted in all SOD1%°** animals, regardless of treatment, quantitative analysis () of persisting a-motoneurons
showed a significant increase in the a-motoneuron pool in the cell-grafted animals (D, I). Using adjacent histological sections, inset (D) shows an
example of a group of transplanted cells (positive for human nuclear matrix antigen; hNUMA) near a pool of surviving a-motoneurons. Sections taken
from the same animals but from the cervical level {C5/6) also show a dramatic reduction in the motoneuron pool but with no apparent protective
effect afforded by the lumbar cell grafts {E-H, J). Scale bar: 300 pm. ¥ P<<0.001 compared to non-transgenic, P = 0.03 compared to the media-treated

group; one-way ANOVA.
doi:10.137 1/journal.pone.0042614.9002

impregnation), massive axo-dendritic degeneration (compare the
tissue from normal animals [Fig. S5E—-G] with that from
SOD1%%** animals [Fig. 5H-K)) was identified in several areas
in the cervical, thoracic and lumbar spinal cord segments
including: i) the lateral and ventral white matter, i} laminae IV
IX within the gray matter, and iif) to a lesser degree in the dorsal
columns (Fig. 5SH-K).

The total number of remaining axons and their calibers (0.5 2,
2 5,5 14 wm in diameter) were determined in the lateral and
ventral funiculi [using semi-autemated image analysis of osmium-
treated 1 um plastic sections taken from lumbar spinal cord of
normal Mm=2; Fig. 5 L-N) and SOD1°%* n=9) endstage
animals with no previous manipulations (i.e. no spinal media or
cell injections; Fig. 5 O—Q)]. In normal tissue, axons of varied
caliber were clearly-cutlined with myelin (Fig. 5M, N}. On the
other hand, an easily recognizable reduction in the number of
large caliber myelinated axens was found in endstage tissue from
SOD19*** animals (compare Fig. 5 M, N to P, Q). Axonal loss

PLOS ONE | www.plosone.org

in the lateral funiculus averaged 19% for 0.5 2 um caliber axons,
40% for 2 5 um caliber axons, and 57% of axons 5 14 Wm in
diameter (Table 2). Numerous medium sized (10 15 um) and
large (15 25 um) vacuoles, likely evolving at sites of previcus
axonal degeneration and phagocytic activity (Fig. 5 O, P, arrows),
were prominent in lumbar white matter of the SOD 1 %*** animals.
In addition, frequent osmium-dense deposits that were likely

macrophages and activated microglia were consistently identified
(Fig. 50, P, arrowheads).

Transient retention in neurologic and reflex activity from
grafting of human spinal neural stem cells, but no effect
on survival of SOD1%%* animals

Development and progression of ALS-like disease in SOD199%
was followed after lumbar grafting of hNSCs of presmyptomatic
(60 65 days old) SOD1%** rats (Fig. 1A). Disease onset, defined
as the peak animal body weight (Fig. 6A), in grafted animals was
not different from untreated animals (109%2d, 111+2, and
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Figure 3. Effective re-population of lumbar gray and white
matter by human spinal neural stem cells nine months after
lumbar transplantation in immunodeficient rats. When human
spinal neural stem cells (same cell line as were used in the grafting
experiments in Fig. 1, 2 and Fig. 52, §3) were transplanted into the
lumbar spinal cord of immunodeficient rats, histological sections taken
after nine months of survival revealed a near homogenous distribution
of human cells (hNUMA; A, B) in both gray and white matter. In white
matter hNUMA-IR cells were primarily oligodendrocytes (adenomatous
polyposis coli; APC; C) or astrocytes {GFAP; D) while in gray matter a
neuronal phenotype (NeuN; E} was identified. Electron microscopy
revealed axon terminals, enriched with human synaptophysin immu-
noreaction product {F, G), forming synapses with host neurons or
dendrites {F, H, ). Scale bar: 300 pm (A), 1060 um (B), 3¢ um (C-E),
400 nm {F), 500 nm {G), 250 nm {H, I).

doi:10.137 1/journal.pone.0042614.9003

108+3 for grafted animals, media-injected and untreated
SO 194 animals; p=0.41; t-testl. Grafting also produced no
statistically significant effect on progression te an early disease
point (identified by the age at which the animal had lest 10% of'its
body weight from denervation-induced muscle atrophy; Fig. 6B)
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Figure 4. Motor-evoked potentials recorded from the dorsal
surface of T12 spinal cord are near completely lost in endstage
SOD1°%** rats. To identify the conductivity of descending motor
axons MEPs were elicited by electrical stimulation of motor cortex and
extra-pyramidal system and responses recorded from exposed T12
spinal segments {A). Recordings in 6 non-transgenic animals showed
consistent compound action potentials consisting of N1 and N2 waves
with an average latencies of 1.6-2.8 ms respectively (B). In contrast,
recording in 6 transgenic SOD19%** endstage animals showed near
complete loss of N1 and N2 waves.
doi:10.1371/journal.pone.0042614.9g004

between hNSCs-grafted animals and those that received media
only (1235X2d versus 127%2d, respectively, P =0.122; t-test).
Overall survival was also not significantly affected between the
hNSCs-grafted or media-injected animals (136=3d and 142+3d,
p =0.18; t-test) (Fig. 6C). Analyzing males and females separately
failed to reveal any significant difference in any disease index (data
not shown).

On the other hand, neurclogical function (using a well-
established BBB scoring scale measured from each animal every
3 4 days) was significantly preserved at age 135 142d in the cell-
grafted animals compared with the media-treated group (Fig. 6D,
p<<0.05; t-test). Similarly, at the same age (Fig. 6E) recording of
Hoffmann reflex revealed a higher average H-wave amplitude for

Table 1. Analysis of motor-evoked potentials recorded from
the dorsal surface of the T12 spinal cord segment in non-
transgenic and endstage transgenic SDO1%% rats,

Amplitude {(mV = 5D) Latency (ms £ SD)

N1 N2 N1 N2
Non-Tg 1407+390  884+513 16+02 28-+03
SOD1%%3”  255-+64% 25.1+9.1% 25+0.2% 3.5+05%

The amplitudes and latencies of the N1 and N2 waves were calculated and
averaged from 6 non-tg and 6 SOD1%** endstage animals. (* P<0.05).
doi:16.137 1/journal pone.0042614.1001
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Figure 5. Significant degeneration of descending medium-, and large-size myelinated axons in lumbar segments in endstage
SOD%3A rats. Using the Gallyas silver impregnation technigue, degenerating neurons were detected mostly within the ventral horn, although
reactive cells were often noted in upper lamina {A- non-transgenic, B- SOD1G°3Aendstage). Closer examination shows fragmented cells and fibers not
only within the grey matter, but also in the adjacent white matter {C, D). The de Olmos modified cupric-silver stain was used to help detect
degenerating axons and dendrites; non-transgenic tissue showed no appreciable staining {E - cervical, F-thoracic, G - lumbar), while SOD19%A tissue
reacted intensely, not only in the ventral horns but throughout the gray matter, sparing only lamina I-1ll (H-J). Closer examination of the white matter
showed argyrophilic punctate structures corresponding to silver deposits in disintegrated axons (K). Semithin (1 um) plastic-embedded tissue
sections were used to quantify changes in the axonal population in the lateral and ventral columns. While clearly-delineated axons of varied caliber
were readily-outlined by the osmium-stained myelin in non-transgenic animals {L-N), tissue from endstage SOD1%** animals had an easily
recognizable reduction of large caliber myelinated axons (O-Q). Lumbar white matter in S0D1°%** endstage animals also contained numerous
vacuoles {Q, P, arrows) and frequent osmium-dense deposits (O, P, arrowheads). Scale bar: 500 pm (A, B), 160 um (C, D), 660 um {E-J), 25 um {K),
100 umiL, 0), 25 um (M, N, P, Q).

doi:10.137 1/journal.pone.0042614.9G05

the hNSCs-grafted group compared to the media-treated animals Discussion
(3.520.6 vs. 1.10.3 mV; p<0.05; t-test), indicating functional

preservation between sensory la afferent, g-motoneuron and QOur results show that human fetal spinal neural stem cells

{(hINSCss) grafted into the lumbar ventral horn in SOD1%%* ras
provides a region-specific neuroprotective effect in the vicinity of
the grafted cells, including a higher number of surviving o-

motor plate.

Table 2. Quantification of lateral and ventral funiculi axons in lumbar spinal cord segments of nen-transgenic and endstage
transgenic SOD® rats,
Lateral Funiculus

Total axons 0.5-2.0 um 2.0-5.0 ym 5.0-14 pm
Non-Tg 45681 31982 11529 2079
Non-Tg 62656 43444 16782 2299
SOD15%3A 40422 30943 8411 994
SOD1%934 39729 30315 8467 881
Ventral Funiculus

Total axons 0.5-2.0 pm 2.0-5.0 pm 5.0-14 pm
Non-Tg 14330 8764 4433 1087
Non-Tg 16500 9830 5382 1247
SOD15%3A 11532 8037 2984 489
SOD15%3A8 14002 10285 3153 536
Quantification of the axoral population in the lateral and ventral columns showed an easily recognizable reduction of large caliber myelinated axons.
doi:18.1371/journal. pone.0042614.1002
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Figure 6. SOD1%%? rats receiving lumbar grafts of human spinal neural stem cells showed transient protection of hindlimb motor
function and Hoffmann reflex. Population analyses of media-treated and cell-grafted animals showed no difference in: disease onset - defined as
peak body weight {A), early disease progression - defined as the age at which animals had lost 10% body weight (B), or survival (C). Hindlimb motor
function assessed by BBB neurological score (D) showed a significantly better score in hNSCs-grafted animals between ages 135-142 d. Similarly,
Hoffman reflex recorded in cell-grafted animals during that time period had significantly higher average amplitudes than those from the media-

treated group (E), (* P<C0.05).
doi:10.1371/journal.pone.0042614.9006

motoneurens, transient improvement in ambulatory function,
corresponding transient preservation of H-reflex activity, and
decreased inflammatory responses. Our findings add to earlier
evidence that reported 1) preservation of @-moteneurons in lumbar
spimal cord in SOD19%% rats after unilateral grafting of human
neural stem cells genetically modified to produce glial cell line-
derived neurotrophic factor (GDNF) [26] and i) functional
improvement (as assessed by extended survival and disease
duration, improved forelimb motor and respiratory functions)
and corresponding decrease in ¢-motoneurcn degeneration in
SOD19%%4 rats receiving cervical grafts of rat astrocyte precursors
[12].

Despite initial reperts 18 and 9 years ago, respectively, of
SO %4 mutant mouse and rat transgenic models [5,27), there
is only cne characterization of the degree of upper metor neurcn
degeneration in cne mouse model [28] and none in the rat. Te
this, our current MEPs data show that in symptomatic animals
there is a near complete loss of descending motor tract
conductivity measured directly from the dural surface of the
exposed Thl2 spinal segment (Fig. 4). This functional loss
corresponds with massive axonal degeneration in the white matter
particularly affecting large caliber myelinated axons in the anterior
and lateral funiculus (Fig. 5). This is consistent with a classical
picture of spinal histopathelogical changes in ALS patients which,
in addition to spinal &-motoneuronal loss, is characterized by
upper moter neuren lesion and degeneration involving the entire
corticospinal tract [29 32]. Interestingly, in contrast to humans,
preferential degeneration of axons in lateral and ventral funiculus
was seen in symptomatic SOD19%** rats while relatively spared
axonal populations were seen in the dorsal funiculus (ie., the
region of corticospinal tract in rats). Whether or not it is the result
of species specificity is not known, however, one important
functional distinction between the organization of the different
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motor systems involved in voluntary motor function exists between
human and rodents. It has been demonstrated that after complete
transection of the pyramidal tract in rats a considerable amount of
motor function persists [33]. It is believed that the activity of the
extrapyramidal system (such as rubrospinal tract which descend in
lateral funiculi in the rat) plays a more dominant role in the
initiation and maintenance of voluntary movement in rats. We
speculate that a more proncunced axenal loss seen in the lateral
funiculi in symptomatic SOD1%?** rats can thus be attributed to a
specitic metor circuitry-contrelling function of descending motor
axons residing in this region.

Based on these histopathological and functional data demoen-
strating an extensive loss of descending motor system in
SO rats it is readily apparent that unless the functional
integrity of all components of the meter neuraxis is maintained (or
restered) by a given treatment, only local and/or time-limited
functional protection can be achieved, just what we have produced
with hINSCs grafts.

We found no survival benefit versus our control media-injected
group, despite transient local improvement. This was not
unexpected, since for humane reasons survival in this animal
model is defined by a loss of righting reflex (i.e., the ability of the
animal to right itself). An intact righting reflex requires coordi-
nated hindlimb and forelimb motor function and centinuing
functional coupling of the upper and lower motor neuron system.
In deficits which include upper and lower moter neurcn
degeneration {such as seen in SOD1%"** rats), region-restricted
treatments (as achieved after spinal segmental cell grafting) is not
expected to significantly modify upper motor neuron degeneration
and loss and the associated pregressive decline in righting reflex.
Nevertheless, using lumbar spinal grafting of human spinal neural
stem cells similar to those of our current study, Xu et al. (2006)
[16] previously reperted an apparent lifespan extension of
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SO 1% rats of 11 days (average 149 days) compared to control
animals receiving injection of dead cells (average 138 days).
Similar to our study a significantly higher number of persisting
lumbar ¢-motoneurons was found In treated animals. More
recently, Xu et al. (2011) reported a lifespan extension of
SOD19%* rags by 17 days after dual cervical (C4 C5) and
lumbar (L4 L3) transplantation of the same human spinal neural
stem cell line as used in our current study [34]. Given the rcbust
graft survival, cell differentiation and migration seen in our study,
we speculate that the differences between ours and these prior
studies may reflect the cccurrence of natural drift in the onset of
disease between different cohorts of animals (a feature that has
been argued to necessitate =25 animals per group in order to
draw statistically valid conclusions) [35] and/or difference in the
design of the control groups (i.e., injections of dead cells vs. media
only) and potentiation of local neuronal degeneration in dead cell-
injected animals.

Several differential characteristics between rodent models and
human ALS patients need te be considered when predicting the
potential value of spinal cell replacement therapies in human
patients. First is a significantly different time course of disease
progression in rodents and human patients. In SOD1%*** rodent
models the average duration of disease from the initiation of
denervation-induced weight loss to terminal stage is 60 70 days in
mice [5,27,36,37] and is arcund 27 days in rat [38]. In human
ALS patients it can range between months to several years [1,32].
Such differences have a fundamental impact on the degree of
engraftment, maturation and migration of grafted cells, and can
ultimately define the degree of expected neuroprotection. In cur
current experimental design, SOD1%% rags were implanted at
age ~65 days (i.e., on average ~44 days prior to disease onset) and
had an average survival time of 75 days after cell grafting (an
average of ~140 days to endstage). While robust neuronal
differentiation was noted in grafted animals, only limited cell
migration was seen in the short term to areas distant from cell-
injected regions. Cell migration at 9 months post-grafting in naive,
immunodeficient rats, a time peried comparable to that expected
in human patients receiving spinal grafts, was determined. In
contrast to short times post-grafting, much more robust cell
migration wag seen, with a homogenous distribution of grafted
cells identified in white and gray matter (Fig. 3). Cells found in
white matter showed near-exclusive differentiation towards
astrocytes and  oligodendrocytes. These findings support the
likelihood that comparable spinal cell repopulation can be
expected in human patients postgrafting and that this can be
agsociated with a more relevant functional-protective effect.
Combined cell grafting strategies targeted in parallel to spinal
and supraspinal metor centers can be anticipated, therefore, to
provide a substantial degree of neuroprotection measured both
behaviorally as well as by using combined motor and somatosen-
sory-evoked recording.

A second important compenent in achieving optimal therapeu-
tic benefit in cell replacement therapies is the selection of cell lines
{e.g., neural, neurcnal or glial-restricted) to be used for spinal/
supraspinal grafting. The primary selection criteria should reflect
the disease stage and targeted cell population to be replaced, that
1, cells whose damage drives early or late disease phases. Since one
of the well documented mechanisms contributing to disease
progression is the release of toxic factors from SOD! mutant
astrocytes and resultant neuronal degeneration [8,9,11,39], the use
of wild type astrocyte precursors for grafting may appear to be an
attractive choice. Data from the Maragakis’ group [12] demon-
strated a region specific therapeutic effect when cells were grafted
into the cervical gray matter in presymptomatic SOD1%93% rats.
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However, the absolute number of spinal (and also brain)
astrocytes may not be static and there is a continued preliferation
of glial precursors in the intact adult CNS [40]. In addition, there
is increased astrocyte proliferation after injury such as spinal
trauma or focal brain ischemia [41,42). More recent studies using
i wivo BrdU incorperation assay have shown that, while the
primary cellular contribution to spinal cord gliosis seen in
symptomatic and endstage SOD lmutant (G93A) mice is derived
from oligodendrocyte-committed NG2+ precursors (up to 49
55%), between 4 5% of BrdU-abeled cells are GFAP-immunc-
reactive astrocytes [43,44]. These data show modest but continu-
ing proliferation ¢f mutated SOD! astrocytes throughout the
disease progression. Thus, there may be a competitive interaction
between replication of the host mutated astrocytes and grafted
wild-type astrocyte precursors.

Moreover, from a clinical perspective, one of the limitations in
using a lineage restricted precursor population is the potential that
it may be targeted for damage and potentially replaced by
endogenous mutant astrocyte population. In experimental rodent
studies, cells are typically grafted at pre-symptomatic stages while
the clinical patient population will primarily be cempesed of
symptomatic patients, with existing upper and/or lewer moto-
neuron/interneuron degeneration. Because there is no evidence of
neurogenesis in adult nalve or trauma injured spinal cord [40,45],
the primary goal in cell replacement therapies that employ ghal-
restricted precursors will therefore be to stabilize or slow neural
degeneration. Second, given the large number of astrocytes
compared to neurons in the adult CNS, there is a limited
likelihood of achieving significant astrocyte repopulation using
cells lines with little or no mitotic/migratory activity, so an
important characteristic of astrocyte-restricted lines for grafting is
their continuing proliferative/ migratory capacity after transplan-
tation. Our current data using 9 month surviving cell-grafted
immunodeficient rats demonstrate widespread grafted cell migra-
tion with no detectable tumor formation. More recently, we have
observed comparable cell migration and safety of human
embryonic stem cell (H9)-derived neural stem cells at 5 6 months
after spinal grafting in immunedeficient rats (unpublished cbser-
vations). Nonetheless, a detailed long-term safety/tumorigenicity
profile will need to be established for each individual cell line
before clinical use.

Finally, our evidence highlights that the use of human fetal
spinal cord-derived neural stem cells which can generate astrocytes
but mostly neurens iz pivo have a limited, local therapeutic effect.
Therefore, an optimal cell line will likely produce a mixture of glial
and neurcnal stem cells having both proliferative (at least for the
astrocyte-restricted subpopulation) and migratory properties. As
demonstrated In our current study, human fetal spinal cord-
derived neural stem cells have such properties to a certain extent,
albeit a higher ratio of astrocyte precursors in the grafted cell
population might be preferable. It now remains to be determined
whether human embryonic stem cells-derived neural stem cells will
show a distinct differentiation ratic and more rapid migration in
an ALS environment after i vwe grafting in humans.

In any event, cell replacement therapies should target both
spinal and supraspinal components of motor neuraxis. Because the
multi-site delivery of therapeutic cells is clearly technically more
challenging, additional safety data as well as the development of
less invasive cell delivery techniques will be required before this
potentially more effective multi-site cell delivery treatment
approach can successfully be introduced into clinical practice.
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Methods

Ethics Statement and Institutional Animal Care and Use
Committee approvals

This study was approved by the University of California, San
Diego (UCSD) Internal Review Board (IRB), approval
ID+£101323.

All animal studies were carried out under protocols approved by
the Institutional Animal Care and Use Committee at University of
California (approval Ids # S01193 and 807016) San Diego and
were in compliance with The Association for Assessment of Laboratory
Ammal Care guidelines for animal use. All studies were performed in
such a manner as to minimize group size and animal suffering.

Derivation of the human fetal spinal neural stem cells
(hNSCs)

Human fetal spinal neural stem cells (hNSCs) were prepared
from the cervical upper thoracic region of spinal cord tissue
obtained from a single 8-week human fetus after an elective
abortion. The fetal tissue was donated by the mother in a manner
fully compliant with the guidelines of NIH and FDA and approved
by an cutside independent review board. The spinal cord tissue
was removed of meninges and dorsal root ganglia and digsociated
into a single cell suspension by mechanical trituration in serum-
free, modified N2 media. The modified N2 media was composed
oft 100 mg/l human plasma apo-transferrin, 25 mg/1 recombi-
nant human insulin, 1.56 g/l glucese, 20 nM progestercne,
100 uM putrescine, and 30 oM sodium selenite in DMEM/F12.
For growth of the hNSCs, 10 ng/ml bFGF as the sole mitogen was
added to the modified N2 media (growth media). The initial
culture was serially expanded as a monolayer culture in precoated
flasks (T-175) or plates [46]. Briefly, the precoated vessels were
prepared by incubating them for 1 h at room temperature with
100 wg/ml poly-D-lysine in 10 mM Hepes buffer at 0.165 ml/
cm®. The vessels were washed three times with water and allowed
to completely dry aseptically in the hood. They were then further
incubated with 100 pg/ml fibronectin/PBS for 5 min or alterna-
tively 25 g/ ml fibronectin/PBS for 1 h. The fibronectin solution
was aspirated and the vessels were used immediately without
drying. Approximately 6.1 x10° total cells were obtained upon the
initial dissociation of the spinal cord tissue. All of the cells were
plated onto cone 150 mm plate in 20 ml of the growth media.

The growth medium was changed every other day and in the
alternate days, 10 ng/ml of bFGF was directly added to the
culture. The first passage was conducted 16 days after plating. At
this point, the culture was composed mostly of post-mitotic
neurons and mitotic hNSCs. The mitotic cells were harvested by
brief treatment with trypsin (0.05% in 0.53 mM EDTA). Trypsin
was stopped by addition of soybean trypsin inhibiter to 0.05%
final concentration. The cell suspension was triturated with a
pipette te obtain a single cell suspension and centrifuged at
1400 rpm for 5 min. The cell pellet was resuspended in growth
media and the cells were replated in new pre-coated plates at
1.2x10° cells in 20 ml of growth media per 150 mm plate. The
cells were harvested at approximately 75% confluence, which
occurred in 5 6 days. This process was repeated for 20 passages.
At varicus passages, the cells were frozen in the growth medium
plus 10% DMSO at 5x10° 10x10° cells/ml using a program-
mable freezer. The frozen cells were stored in liquid nitrogen.
Upon thawing, the overall viability and recovery was typically 80
95%. The resulting cell line, which was produced by epigenetic
means only, using bFGF as the sole mitegen, was named
“366RSC.” A cell bank of passage 16 cells was prepared and
used for this study.
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Preparation of hNSCs for implantation

One day prior to each surgery day, one cryopreserved vial of the
previously prepared passage 16 cell bank was thawed, washed,
concentrated in a hibernation buffer, and shipped from the cell
preparation site (Neuralstem, Inc., Rockville, MDD}, USA) to the
surgery site (UCSD, San Diego, CA, USA) at 2 8°C by overnight
delivery. Upon receipt the following day, the cells were used
directly for implantation without further manipulation. Before and
after implantation the viability of cells was measured with Trypan
blue (0.4%; Sigma). On average a 75 85% viability rate was
recorded.

Experimental groups

Before cell grafting, SOD 1593 transgenic rats were randomly
divided into 3 experimental groups no treatment (untreated
SO media-treated  SOD1%*** and  cell-grafted
SOD 1% non-transgenic littermates were used as control
amimals and received no treatment. A total of 24 animals (12
males, 12 females) were assigned to the cell-grafted SOD1%%34
group, while 16 animals (8 males, 8 females) were assigned to
receive media only. Immunosuppressive treatment with Prograf
(FK506; 3 mg/kg/day subcutanecus; Astellas Pharma, Deerfield,
IL) and Cellcept {mycophenolate mofetil; 30 mg/kg/day intra-
peritoneal, Roche Pharmaceuticals, Nutley NJ) were initiated 2 d
before transplantation. Cellcept continued te 7 d post-surgery,
while Prograf was changed to 1| mg/kg/day at 14 d pest-op and
continued until the study end. A separate group of athymic rats
(Grl:NIH-Foxnl™"; n= 12; Charles River) was used for a subset of
experiments but underwent no immunosuppression.

Motor-evoked potentials were recorded from the dorsal surface
of the lumbar spinal cord (see Motor-evoked potentials recording)
in a separate group of endstage SOD1%%** animals (n=6) and
non-transgenic controls (n=6) which did net undergo any
treatment or spinal injections. The same animals were then used
for qualitative and quantitative analysis of axonal degeneration/
loss of spinal descending motor tracts using silver impregnation
techniques and plastic-embedded semithin sections (see Plastic
embedding and Silver degeneration staining).

Spinal cord implantation of hNSCs
Animals (60 65 d old) were anesthetized with isoflurane (1.5

2% maintenance; in roem air), placed into a spinal clamp
apparatus (Stoelting, Wood Dale, IL, USA) and a partial T12 Ll
laminectomy was performed using a dental drill (exposing the
dorsal surface of L2 L6 segments). Using a glass capillary (tip
diameter 80 100 pm) connected to a microinjector (Kopf
Instruments, Tujunga, CA), rats were injected with 0.5 ul
{10,000 cells per injection) of the hNSCs in hibernation buffer,
or only the hibernation bufter as control (media). The duration of
each injection was 60 s followed by 30 s pause before capillary
withdrawal. The center of the injection was targeted into the
intermediate zone and ventral horn (distance from the dorsal
surface of the spinal cord at L3 level: 1.1 1.2 mmy, [47]. Injections
were made every 700 900 pum, rostro-caudally, on each side of the
lumbar spinal cord targeting L2 L5 segments. The total number
of injections ranged between 9 13 injections per side. After
injections, the incision was cleaned with penicillin-streptomycin
selution and sutured in two layers. Athymic rats were transplanted
in an identical fashion.
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Assessment of neurological function and disease
progression

Motor function was evaluated using the 21-peint open field BBB
locomotor scale [48). Animals were observed for 4 5 min and
scored by an experimenter blinded to the treatment groups. Disease
onset was defined as the age of maximum body weight; Farly disease
was defined as the point at which the animal lost 10% of peak
body weight, Endstage was defined as when an animal could not
right itself after 30 s of being placed on its side [38].

Hoffman reflex (H-reflex) recording

H-reflex was recorded as previously described [49,50]. Under
ketamine anesthesia (100 mg/kg/hr, i.m.) the right hind limb of
the animal was secured and a pair of stimulating needle electrodes
wag transcutaneously inserted into the surroundings of the tibial
nerve. For recording a pair of silver needle electrodes was placed
into the interossecus muscles between the fourth and the fifth or
the first and the second metatarsal right foot muscles. The tibial
nerve was stimulated using square pulses with increasing stimulus
intensity (0.1 10 mA in 0.5 mA increments, 0.1 Hz, 0.2 ms; WPI;
Isostim A320) and responses were recorded with an A/C-coupled
differential amplifier (Model DB4; DPI, Sarasota, FL).

Motor-evoked potential recording

Under isoflurane anesthesia (1.5 2% maintenance; in room air),
terminal SOD1%** rats (n=6 or age-matched controls, n=6)
without any previous treatment (l.e., no spinal injections) were
mounted into a stereotaxic frame and the scalp over motor cortex
wag cut open to expose the skull. Stimulation was done using a pair
of stimulating electrodes consisting of a stainless steel screw placed
into the skull over the motor cortex and stainless steel needle
inserted into the hard palate behind the upper incisors. Previous
data show that such placement of stimulating electrodes provides
congistent activation of pyramidal and extrapyramidal system (19
21).

A dental drill was used to perform a laminectomy of T11
vertebra exposing the T12 spinal segment. Evoked responses were
recerded by a pair of flexible silver ball electrodes placed on the
dura surface of the exposed T'12 spinal segment. A reference silver-
chloride disc electrode was placed subcutanecusly con the
contralateral side of the recording. After electrode placement,
animals were injected with ketamine (100 mg/kg/h, IM.) and
isoflurane anesthesia was discontinued. Stimulation pulses were
0.2 ms long with amplitudes ranging from 0.5 to 8 mA (Isostim
A320R, World Precision Instruments, Florida, USA). Signals from
recording electrodes were filtered by 10 kHz low pass filter,
amplified by differential amplifier (ITDT DB4 amplifier with HS4
preamplifier, Tucker-Diavis Technologies, Florida, USA), digitized
in 30 kHz sampling frequency and stored for further analysis.

Immunohistochemistry

At endstage disease, rats were deeply anesthetized with
pentobarbital and phenytoin and transcardially perfused with
200 ml of heparinized saline followed by 250 ml of 4%
paraformaldehyde in PBS. The spinal cords were dissected and
postfixed in 4% formaldehyde in PBS overnight at 4°C and then
cryeprotected in 30% sucrose PBS until transverse sections (30 um
thick) were cut on a cryostat and stored in PBS. Sections for
brightfield immunohistochemical staining were pretreated with
3% HyOy in PBS for 15 min, washed 3x in PBS and were then
placed in primary antibody similar as sections for fluorescent
staining: overnight at 4°C with primary human specific (h) or non-
specific antibodies made in PBS with 0.2% Triten-X100: mouse
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anti-human nuclear matrix protein/h-nuc (hNUMA; 1:100;
Millipore, Temecula, CA, USA); goat anti-doublecortin (DCX;
1:1000; Millipore, Temecula, CA), mouse anti-human neurcn
specific enclase (hNSE; 1:200, Vector Laboratories Inc., Burlin-
game, CA) rabbit anti-glial fabrillary acidic protein (GFAP,
1:1000, Sigma-Aldrich Corp. St. Louis, MO}; goat anti-choline
acetyltransferase (ChAT; 1:100; Millipore, Temecula, CA);
bictinylated mouse anti-NeuN (Millipere, Temecula, CA); mouse
anti-adenomatus polyposis coli (APC; 1:500; EMD Chemicals
Inc., Gibbstown, NJ); chicken anti-beta III tubulin (TUJ1; 1:1000;
Aves Labs Inc, Tigard, OR); rabbit anti-ionized calcium binding
adaptor molecule 1 (Ibal; 1:1000; Wako Chemicals USA, Inc,
Richmond, VA); mouse anti-human synaptophysin (hSYN;
1:1000; Millipore, Temecula, CA); guinea pig anti-vesicular
glutamate transporter (VGIuT1- 1:2500; VGluT2 1:2500;
VGIuT3  1:5000; Millipore, Temecula, CA); guinea pig anti-
glycine transporter 2 (GlyT2; 1:2000; Millipore, Temecula, CA});
rabbit anti-growth associated protein 43 (GAP43; 1:300; Millipore,
Temecula, CA); rabbit anti-glutamate decarboxylase 65 (GADGS;
1:2000; Millipore, Temecula, CA).

After incubation with primary antibodies, sections were washed
3x in PBS and incubated with fluorescent-conjugated secondary
antibodies raised in donkey (Alexa 488, 546; 647; 1:250;
Invitrogen Corp., Carlsbad, CA, USA) and DAPI for general
nuclear staining. In cases where 2 mouse antibodies were required
for multi-labeling, one was bictinylated using a Zencn mouse IgG
labeling kit according to the manufacturer’s instructions (Invitre-
gen Corp., Carlsbad, CA, USA). Once staining was complete,
sections were mounted on slides, dried at room temperature and
covered with Prolong anti-fade kit (Invitrogen Corp., Carlsbad,
CA, USA). Sections for brightfield were washed after primary
antibody, placed in biotinylated secondary antibody (goat anti-
mouse; 1:500; Vector Laboratories, Burlingame, CA) for 2 h at
reom temperature. Those sections were again washed, placed in
avidin-biotin complex (ABC kit, Vector Laboratories, Burlingame,
CA) for 2h at room temperature. Finally, the sections were
washed, developed with 3,3'-diamincbenzidine (DAB; Vector
Laboratories, Burlingame, CA), mounted on silane-coated slides,
air-dried, dehydrated and coverslipped. Images were captured
using a Leica DMLB microscope with a Zeiss Axiocam MRm
monochrome camera. Scme images were captured using a Leica
SP2 confocal microscope. Any image post-processing was done
with Adobe CS3 (Adobe Systems, Inc., San Jose, CA) with equal
changes to any images being compared.

Plastic embedding

For plastic embedding, spinal cord blocks (2 3 mm thick) were
postfixed in 0.3% glutaraldehyde for 1 day at 4°C. Tissue was
rinsed 3x5 min in (.1 M phosphate buffer (pH 7.4), and stored in
phosphate buffer overnight at 4°C. Secondary postfixation was
performed using 0.1% osmium tetroxide in 0.1 M phosphate
buffer for 12 hours, followed by rinsing in phosphate buffer. This
was followed by progressive alcohol dehydration according to
standard procedures up to 100% ethanol, with the addidon of
further dehydration in a 1:1 solution of ethanol/propylene oxide,
and lastly 100% propylene oxide. Dehydrated blocks were then
prepared for resin infiltration by incubation in a 1:1 solution of
resin/propylene oxide overnight. The resin included: Eponate 12,
Araldite 502, Dodecenyl Succinic Anhydride (DDSA), and 2,4,6-
Tri[Dimethylaminomethyl]phenol (DMP-30) (Ted Pella Inc),
mixed in ratios of 10:10:25:1 respectively. Blocks were then
transferred to 100% resin for subsequent overnight infiltration on
a rotator. Finally, tssue blocks were embedded using fresh resin in
multi-chamber silicone rubber molds (Ted Pella). The meld was
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placed in an oven (60°C) for 2 days to facilitate resin
polymerization. Semithin (1 pm) transverse sections were then
cut using a Leica (DM-40) microtome with glass knives. Sections
were mounted to slides from distilled water and allowed to dry on
slide warmer. Prior to staining, slides were incubated at 60°C in an
oven for 10 15 minutes, and then contrast-stained with 4% para-
phenylenediamine (PPI.

Silver degeneration staining

De Olmos aminocupric silver impregnation. Neurode-
generation was assessed using the de Olmos aminocupric silver
histochemical technique as previously described [23,25]. Following
the vendor’s instructions (Neuroscience Associates, TN, USA),
SOD1%** endstage rats and non-transgenic age-matched litter-
mates were transcardially perfused with cacodylate-modified PBS
followed by cacodylate-meodified paraformaldehyde and brain and
spinal cord tissue shipped to Neuroscience Associates for processing.

Gallyas silver impregnation [22]. Paraformaldehyde-fixed
spinal cord tissue was embedded in paraffin wax and 12 pm thick
sections were cut and mounted directly on slide. After dewaxing in
xylene and progressive rehydration to water, the slides were placed
in fresh 0.3% magnesium permanganate and subsequently rinsed
in tap water for 10 minutes. Further magnesium permanganate
clearing was done in 2% oxalic acid for 3 min. Background
suppression was facilitated by incubation in fresh 0.004%
lanthanum nitrate/0.02% scdium acetate solution for 60 minutes.
Following wash, slides were placed into a silver iodide solution for
2 minutes, and then neutralized by three washes in 0.5% acetic
acid. The intensity of silver impregnated structures was amplified
with by immersion in a 1:] ratio of two physical developer
solutions: A: ammonium nitrate, silver nitrate, tungstosilic acid,
and formaldehyde; and B: 5% anhydreus sodium carbenate
solution. Slides were then quickly washed in 0.5% acetic acid, and
placed inte a2 0.5% gold chloride sclution for 5 10 minutes. Slides
were rinsed in distilled water, placed in 2% sodium sulfate
{2 minutes) and rewashed in distilled water before they were
progressively dehydrated to xylene and cover slipped in DFX.

Immuno-electron microscopy

Transverse spinal cord sections (50 um thick) were prepared
from lumbar spinal cords of immuncdeficient rats at 9 months
after hNSCs grafting. Sections were cut on a vibratome and
cryoprotected  with glycerel dimethylsulfoxide mixture. After
cryoprotection, the sections were frozen and thawed four times
and treated with 1% sodium berohydrate. To reduce nonspecific
binding, the sections were treated with 0.3% H;O, 10%
methanol in TBS (100 mM Tris-HCl and 150 mM NaCl,
pH 7.6) and 3% NGS 1% bovine serum albumin in TBS.
Sections were reacted overnight with mouse anti-human-specific
synaptophysin (1:1000; Chemicon). Beund antibody was detected
using biotinylated donkey anti-meuse IgG (1:500; GE Healthcare,
Little Chalfont, UK), the ABC Elite kit (Vector Laboratories,
Burlingame, CA), and diaminobenzidine (IDAB) as the chromogen.
After DAB detection, some sections were processed by an
additional antibody labeling cycle using the same method and
antibody as above. This staining strategy enhanced the signal-to-
background ratic while the background labeling was kept to
minimal. Immunoreacted sections were postiixed in buffered 2%
Os0y, rinsed and stained in 1% wuranyl acetate, and then
dehydrated and embedded in Epon. Ultrathin sections were
contrasted with uranyl acetate and analyzed under a Zeiss EM-10
electren microscope operated at 60 80 kV. Electron microscopic
negatives were scanned and processed by Adobe Photoshop CS2
{Adcbe Systems).
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Quantitative immunchistochemistry

GFAP/Ibal densitometry. Immunchistochemical staining
was performed using the same antibody sclution for all free-
floating secticns and processed as described above. Randomly
selected four sections (from L4 and L5 spinal cord segments) were
analyzed from each animal. Using identical camera settings,
images were obtained from lamina IX on both sides of each
section. Using the pixel histogram generated for each original
image by Image-Pro Plus (v.6.2.0.424; Media Cybernetics Inc.,
Bethesda, MD), the product of the pixel number and pixel
intensity value (0 255) was computed and summed for the entire
image. This provides a composite measure of changes in both
immunocreactive area and intensity.

Neuronal bouton analyses. Bouton analyses were per-
formed as previously described, [51 54]. The investigator was
blinded during analyses. Using immunefluorescence-stained sec-
tions and identical microscope settings, 3 images (75 WmXx75 (m)
were captured from lamina IX (adjacent to a CHAT+ o-
motoneuren surrounded by hSYN staining) of each section using
a Leica SP2 confocal microscope; at least 3 sections (300 pwm
separation) were used from each of 5 animals. Image-Pro Plus
(v.6.2.0.424; Media Cybernetics Inc., Bethesda, MD) was used to
count the total number of human synaptophysin-immunoreactive
objects using the same limits for pixel intensity and structure size.
The image was then overlaid onto another image from the
identical field but stained for other neuronal phenotype markers
(VGIuT1/2/3, GADS5, GlyT2). The total number of double-
positive structures was then identified by Image-Pro Plus. The
number of hSYN+ punctata identified ¢n each o-motoneuron
ranged between 30 80 per g-motoneuron.

g-motoneuron quantification. Alpha-motoneurcn quantifi-
cation was performed as previcusly described [55] except using
fluorescent-stained (ChAT) tissue sections. The investigator was
blinded during all analyses. Five sections taken from G5 C6 or
L4 L5 segments, each separated by minimum of 300 um, were
selected from each animal (n= 18 for the cell-grafted group and
n=16 for the media-injected group, ie., a total of 90 and 80
sections, respectively) and were identically immunostained for
ChAT. Sections from grafted animals had graft presence
confirmed by additional hNUMA staining. A single 20X image
was then captured (focused in the center of the section thickness)
from each lamina IX and analyzed with Image-Pro Plus
(v.6.2.0.424; Media Cybernetics Inc., Bethesda, MD) to determine
CHAT+ o-motoneurcons with surface area >700 um and a
staining intensity that was at least 2-fold ever background (same
threshold used for all e-motoneuron analyses) [56]. Cells identified
by Image-Pro Plus were then examined and those with distinct
nucleoli, as defined by clearly detectable lack of CHAT
immunoreactivity in the nuclecli, were counted (see Fig. § 4C
for details).

Graft phenotype characterization (NeuN, GFAP, APC,
DCX). To determine the phenotype of the grafted human cells,
tissue sections from the [4 L5 engrafted region were double-
stained with hNUMA and either NeulN, GFAP, APC, or DCX) as
described above. Using identical microscope settings, a z-stack of
optical images (0.5-um-thick;, 20 x ohjective) were captured from
identified hNUMA+ grafts using a Leica SP2 confocal microscope;
at least 3 sections (300 {Lm separation) were used from each of the
5 animals. Image-Pro Plus (v.6.2.0.424; Media Cybernetics Inc,,
Bethesda, MD) was then used to identify positive cells in one
overlaid optical image (0.5-um-thick) using identical threshelds for
all images. All images were examined by a blinded observer.
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Axonal Quantification

The total number of remaining axons was determined in the
lateral and ventral funiculi using semi-automated image analysis of
osmium-treated 1-um plastic sections taken from the lumbar spinal
cord of normal (n=2) and SOD1%* (n=19) endstage animals
with no previous manipulations (ie., ne spinal media or cell
injections).

High resolution mosaic images were obtained using Zeiss
Observer software with Multidimensional Acquisition MosiaX (71
microscope system with 20 x objective fitted with a Zeiss MRm
camera, AxioVision v4.7). Using the same pixel threshold tc
identify axons in all images, Image-Pro Plus (v.6.2.0.424; Media
Cybernetics Inc., Bethesda, MD) was used to objectively count
axons. Further measurement parameters such as area/box and
size (length) were applied to discriminate and exclude non-axonal
objects. Employment of the size (length} parameter allowed for
further axonal analysis in which axons were divided into
empirically derived caliber sizes of small, medium, and large
axons (0.5 2.0 yum, 201 5.0 pm, and 5.01 14.0 wm respectively).

Statistical analysis

Two-way compariscns were performed by student t-test.
Multiple comparisons were performed using one-way analysis of
variance (ANOVA) followed by Student-Newman-Keuls test. All
results are shown as mean * standard error of mean (SEM) unless
indicated. P<20.05 was considered to be statistically significant.

Supporting Information

Figure 81 Grafted human spinal neural stem cells show
expression of several neuromal markers. Histological
sections taken from regions containing human spinal neural stem
cell transplants were Immunostained with neuronal cells markers
TUJl, DCX and GAP43. Human cells were identified by the
presence of human-specific nuclear matrix antigen (hNUMAJ, (A,
D). Cell grafts were typically concentrated in the deeper lamina
(VII IX) and frequently extended inte the adjacent white matter.
Regions stained for hNUMA were also strongly stained for beta-
tubulin III (TUJ1; B), doublecertin (DCX; E), and growth-
associated protein 43 (GAP43; F). Scale bar (G) is 300 pum for all
panels.

(TIF)

Figure 52 Grafied, terminally differentiated human
neural spinal stem cells-derived neurons develop puta-
tive synaptic contact with persisting ¢-motoneurons in
SOD1%*%* rars. Human synaptophysin (hSYN) was detected
throughout the cell grafts, often found in axonal-like structures
with typical varicosities (B insert) and in the vicinity of persisting «-
motoneurcens (ChAT; choline acetyltranseferase) in lamina IX and
extending into the adjacent white matter (A D). Single optical
layer confocal images of surviving & -motoneurons show hSYN-IR
bouton-like structures adjacent to the outer membrane of the soma
(E, F), occasionally expressing the GABAergic cell marker
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Abstract

Introduction: Intraspinal grafting of human neural stem cells represents a promising
approach to promote recovery of function after spinal trauma. Such a treatment may serve to: 1)
provide trophic support to improve survival of host neurons, ii) improve structural integrity of
spinal parenchyma by reducing syringomyelia and scarring in trauma-injured regions, and iii)
provide neuronal populations to potentially form relays with host axons, segmental interneurons,
and/or a-motoneurons. Here we characterized the effect of intraspinal grafting of clinical grade
human fetal spinal cord-derived neural stem cells (HSSC) on recovery of neurological function

in a rat model of acute lumbar (LL3) compression injury.

Methods: Three-month-old female Sprague-Dawley rats received L3 spinal compression
injury. Three days post-injury, animals were randomized and received intraspinal injections of
either HSSC, media-only, or no injections. All animals were immunosuppressed with tacrolimus,
mycophenolate mofetil, and methylprednisolone acetate from the day of cell grafting and
survived for 8 weeks. Motor and sensory dysfunction was periodically assessed using open field
locomotion scoring, thermal/tactile pain/escape thresholds and myogenic motor evoked
potentials. The presence of spasticity was measured by gastrocnemius muscle EMG response
during computer-controlled ankle rotation. At end-point, gait (CatWalk), ladder climbing, and
single frame analyses were also assessed. Syrinx size, spinal cord dimensions, and extent of
scarring were measured by MRI. Differentiation and integration of grafted cells in the host tissue
were validated with immunofluorescence staining using human-specific antibodies.

Results: Intraspinal grafting of HSSC led to a progressive and significant improvement in
lower extremity paw placement, amelioration of spasticity, and normalization in thermal and

tactile pain/escape thresholds at 8 weeks post-grafting. No significant differences were detected
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in other CatWalk parameters, motor evoked potentials, open field locomotor (BBB) score or
ladder climbing test. MRI volume reconstruction and immunofluorescence analysis of grafted
cell survival showed near complete injury-cavity-filling by grafted cells and development of
putative GABA-ergic synapses between grafted and host neurons.

Conclusions: Peri-acute intraspinal grafting of HSSC can represent an effective therapy

which ameliorates motor and sensory deficits after traumatic spinal cord injury.

Keywords: spinal cord injury, human neural stem cells, spinal grafting, functional recovery,

rat
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Introduction

Extensive experimental and clinical data show that the mechanisms leading to a
clinically-defined loss of neurclogical function after spinal trauma can in general be considered
in two categories. First is the pathology and corresponding functional loss resulting from a direct
mechanical injury of axons at the injury epicenter, and second is a progressive appearance of
secondary changes (local edema, hematoma, excitotoxicity and ischemia) which can evolve over
hours to weeks after the initial impact (for review see Hagg & Oudega [1]). Consistent with our
current knowledge of the mechanism which leads to the development of secondary post-injury
cascade, the current experimental and clinical treatment strategies primarily focus on: i)
improvement of local metabolism and blood flow (e.g., through decompression therapy and
hypothermia) [2, 3], and ii) modulation of local inflammatory response (e.g., with
methylprednisolone) [4-7]. A separate group of experimental treatment modalities are aimed at
improving the local neurotrophic activity at and around the injury epicenter with the primary
goal of increasing the survival of partially injured axons and/or neurons. In this category of
experimentation, besides the use of locally delivered trophic factors (such as BDNF-, GDNF-,
and FGF-peptides or growth factors-gene-encoding vectors) [8], regionally grafted fetal or
embryonic stem cell-derived neuronal precursors are frequently used [9-18].

Recently, well-defined protocols were developed which permit the isolation and long-
term stable expansion of (non-immortalized) human fetal brain or spinal cord tissue-derived
neural stem cells [19-24]. Using these protocols, continuing neurogenic potential, as evidenced
by neuronal differentiation and the ability of differentiated neurons to generate action potentials
in vitro, was documented at even high (>20) passage numbers [24, 25]. Some of these lines were
successfully used for: i) generation of GMP-grade clonally-derived cell lines, ii) extensive pre-

clinical evaluation using a variety of neurodegenerative small and large animal models, and iii)
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subsequently used successfully in Phase I human clinical trials [26-28].

In our previous studies, we have extensively characterized the in vivo treatment effect after
spinal grafting of cGMP-grade human fetal spinal cord-derived stem cells (NSI-366RSCs line)

using a spinal ischemia model in rats and transgenic rat model of ALS (SODIGQSA

). In those
studies, we have shown that: i) grafting of NSI-566RSCs into lumbar spinal cord of adult
Sprague-Dawley (SD) rats with previous spinal ischemic injury is associated with a progressive
improvement of ambulatory function which correlates with long-term grafted cell survival and
extensive neuronal differentiation [29], and ii) bilateral lumbar grafting of NSI-566RSCs in pre-

GBA rats provides a transient functional benefit and suppression of «o-

svmptomatic SOD1
motoneuron degeneration, i.e., a protective effect which was absent in media-injected animals
[30]. Using the same cell line, we have also demonstrated the optimal dosing regimen and safety
after grafting into the lumbar spinal cord of immunosuppressed minipigs [29]. The dosing design
defined in this pre-clinical minipig study was then subsequently used in a recently completed
Phase I human clinical trial in ALS patients receiving lumbar and cervical grafts of NSI-
566RSCs |27, 31]. In a more recent study using an immunodeficient rat model of complete
spinal cord Th3 transection, it was shown that NSI-366RSCs or rat embryonic neural precursor
cells, embedded in a fibrin matrix with trophic factors and grafted one week after injury, were
able to form functional relays. The formation of functional relays was validated behaviorally
(BBB locomotor score), clectrophysiologically (spinal cord evoked potentials), and
histologically (host on graft and graft on host synapses) [32].

The goal of our present study was to characterize the effect of NSI-566RSCs grafted
spinally in a clinically relevant 1.3 spinal compression model in continuously immunosuppressed

adult SD rats. The presence of treatment effect was assessed by analysis of 1) motor and sensory

function, ii) myogenic motor evoked potentials (MEPs), ii1) spasticity response during computer-
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controlled ankle rotation, and 1v) qualitative analysis of grafted cell survival and maturation.
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Material and Methods

Animals and surgeries

All animal studies were approved by the University of California, San Diego Institutional
Animal Care and Use Committee. The study design is outlined in Fig. 1. Twelve-week-old
Female Sprague-Dawley rats were used. The rationale for choosing female rats was based on our
previous experience which demonstrates better tolerability of female rats to spinal trauma-related
side effects such as urinary retention. Animals were anesthetized with isoflurane (5% induction,
1.5-2% maintenance; in room air) and placed into a Lab Standard Stercotaxic frame (Stoelting,
Cat# 51600, Wood Dale, IL, USA). The animal was ¢levated 2 cm by placing it on a
homeothermic heating blanket (set at 37°C with feedback from the rectal thermometer, Harvard
Apparatus, Cat# 507214, Holliston, MA, USA) which sits on a plastic rectangular block. The
animal was then placed in Spine Adaptors (Stoelting, Cat# 51695, Wood Dale, 11, USA) and a
wide Th13 laminectomy was performed using an air-powered dental drill and binocular
microscope (exposing the dorsal surface of spinal segment 1.3). An acrylic rod (¢ 2.9 mm, length
15 em; 35 g) was then slowly lowered on the exposed 1.3 segment until it slightly touched the
spinal cord but without inducing any compression. The laminectomy site was then filled with
mineral oil in which the tip of a small thermocouple (Physitemp, Cat# IT-14, Clifton, NJ, USA)
was submerged and touched the dura. The light from the two fiber optic light pipes of the
surgical light (Fiber-Lite, Cat# MI-150 & BGG1823M, Dolan-Jenner, Boxborough, MA, USA)
were focused on the surgical site (and directly illuminating the temperature probe). Next, the
light intensity was manually regulated so that the spinal cord/mineral oil was warmed to 37°C
and remained at 37 + 0.3°C. If necessary, a 100W infrared lamp was used to gradually adjust and

maintain the animal’s core temperature at 37°C (rectal). When both temperatures (i.e., paraspinal
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and rectal) were at 37 + (0.3°C for at least 5 min, the rod was slowly lowered until its weight fully
rested, perpendicularly, onto the spinal cord. The rod was kept in place for 15 min, while both
temperatures were maintained at 37 + 0.3°C. After spinal compression, the rod and mineral oil

was removed and the wound sutured in anatomical layers.

Post-surgical care

Buprenorphine (0.05 mg/kg, s.c., Reckitt Benckiser, Richmond, VA, USA), 3 mL of lactated
ringer’s, 10 mg/kg of Cefazolin (Novaplus/Sandoz, Holzkirchen, Germany), and standard triple
antibiotic ointment to cover the incision site (Bacitracin, Neomycin, Polymyxin B) was given
after every surgery. Bladders were manually emptied twice daily (if full). Sulfamethoxazole and
Trimethoprim USP oral suspension (200 mg & 40 mg per 250 mL drinking water, Hi-Tech
Pharmacal, Amityville, NY, USA) was given for at least 10-14 days after SCI or until autonomic
bladder voiding occurred and for 1-2 days after any other surgery (sham or grafting). Food was
provided by placing it at the bottom of cage and water bottles with an elongated drinking tube
were used, until regular overhead supplies could be reached by the animal. Animals diagnosed
with bacterial infections throughout the study were treated with Sulfamethoxazole (as above), 10

mg/kg/day of Cefazolin, and lactated ringer’s 5 mL./0.5 day.

Cell derivation and preparation

The cells, named “NSI-366RSC”, were produced by Neuralstem Inc. (Rockville, MD, USA),
as described before [33]. Briefly, human spinal cord neural precursors (HSSC) were prepared
from the cervical-upper thoracic region obtained from a single eight week fetus. Meninges and
dorsal root ganglia were removed and dissociated into a single cell suspension by mechanical
trituration in serum-free, modified N2 media (human plasma apo-transferrin, recombinant human

imsulin, glucose, progesterone, putrescine, and sodium selenite in DMEM/F12). For growth of
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the HSSC, 10 ng/ml basic fibroblast growth factor (bFGF) was added to the modified N2 media
and expanded serially as a monolayer culture on poly-D-lysine and fibronectin [34].
Approximately 6.1 x 1076 total cells were obtained upon the initial dissociation of the spinal
cord tissue. The growth medium was changed every other day. The first passage was conducted
16 days after plating. At this point, the culture was composed mostly of post-mitotic neurons and
mitotic HSSC. Mainly the mitotic cells were harvested through brief treatment with trypsin and
subsequent use of soybean trypsin inhibitor. The cells were harvested at approximately 75%
confluence, which occurred every 5-6 days (20 passages). At various passages, the cells were
frozen in the growth medium plus 10% dimethyl sulfoxide at 5-10 x 10°6-10 cells/ml. The
frozen cells were stored in liquid nitrogen. Upon thawing, the overall viability and recovery was
typically 80-95%. A cell bank of passage 16 cells was prepared and used for this study.

For the production of GFP-labeled NSI-366RSC, a ILentiviral vector was constructed
containing the human Ubiquitin C promoter driving expression of enhanced green fluorescent
protein. Viral particles produced by infected 293FT cells were collected after overnight
incubation, then concentrated by centrifugation and stored frozen. Neural stem cell cultures were
infected by overnight incubation in growth medium supplemented with viral supernatant.
Infected stem cells were washed with PBS and cultured as described above. After multiple
passages, >90% of cells were EGFP positive (assessed after immunohistochemical staining). A
cell bank of passage 17 cells was prepared and used for this study.

One day prior to each grafting day, one cryopreserved vial of the previously prepared cells
was thawed, washed, concentrated in hibernation buffer, and shipped from the cell preparation
site (Neuralstem, Inc., Rockville, MD, USA) to the surgery site (University of California, San
Diego, CA, USA) at 2-8°C by overnight delivery. Upon receipt the following day, the cells were

used directly for implantation without further manipulation. Before and after implantation, the
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viability of cells was measured with trypan blue (0.4%; Sigma). Typically, a >85% viability rate

was recorded.

Inclusion and exclusion criteria, randomization and blinding

Three days following SCI and prior to grafting, animals were randomly divided into three
groups: the vehicle-injected group, non-injected group, or the HSSC-injected group. SCI animals
with an open-field locomotion score of < 1 and appearing healthy enough were included.
Animals found moribund or automutilating at any point during the study were excluded and
euthanized. A total of 42 animals were employed and divided into 6 experimental groups, as
follows:

Group A (n=14): SCI animals-NSI-366RS C-grafted,

Group B (n=10): SCI animals-vehicle-injected,

Group C (n=8): SCI animalg-non-injected,

Group D (n=6): sham operated (laminectomy only),

Group E (n=6): naive animals (no surgical manipulation)

Group F (n=2): SCI athymic animals-ubiquitin.eGFP" NSI-566R SCs-grafted.

One animal was excluded in Group A because of automutilation of the hind paw; two
animals were excluded in Group C, one because of automutilation of the hind paw and 1 because
of bacterial infection. Six animals had been replaced before dosing/randomization, 5 due to

inadequate injuries and 1 because of bacterial infection.
Grafting procedure

For the intraparenchymal injections, the animals were placed in the stereotactic frame as
described above. The L3 spinal cord (i.e., the dura mater) wag then re-exposed at the previous

laminectomy site. Injections were performed using a 33 gauge beveled needle and 100 ul.

10
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Nanofil syringe (World Precision Instruments, Cat# NF33BV & Nanofil-100, Sarasota, FL,
USA) connected to a microinjection unit (Kopf Instruments, Cat# 5000 & 5001, Tujunga, CA,
USA). The duration of each injection was >45 sec followed by a >30 sec pause before slow
needle withdrawal. The center of the injection was targeted intermediate of the ventral and dorsal
horn and close to the lateral funiculus (distance from the dorsal surface of the spinal cord at L3
level: 0.80 mm). Twelve injections (20,000 cells/ul.) were done; four injections (0.5 ul. each,
(0.8-1.0 mm apart, rostrocaudally) at each lateral boundary of the injury (8 in total), plus two
(bilateral) injections (0.5 pl. each) 1.5 mm caudal from the previous, most caudal injections, and
two injections at the core of the epicenter (1 ul at each gide of the dorsal vein, bilaterally; see
diagram in Fig. 1). After the injections, the incision was cleaned with penicillin-streptomycin

golution and sutured in two layers.

Immunosuppression

Two days after injury (i.e., 1 day before grafting), a methylprednisolone acetate (Depo-
Medrol, 10 mg/kg, i.m.) was given, which was repeated thereafter 3 times with 1 mg/kg/week
im. Starting directly after grafting, all animals received 1.5 mgkg/BID s.c. of Tacrolimus
(Prograt/FK506, Astellas, Deerfield, 1., USA) until the end of the study. For post-transplant
days 0-10, the animals also received 30 mg/kg/day s.c. of Mycophenolate mofetil (CellCept,
Genentech, CA, USA). Immunosuppression was also given to the non-grafted Sprague-Dawley

animals (i.e., the naive, sham operated, and all SCI-control animals).

Open field locomotion testing

Locomotion recovery after spinal cord contusion injury was monitored using a modified
Basso, Beattie, Bresnahan (BBB) open ficld locomotion rating scale [35]. The BBB score was

modified to reflect the distinct locomotor recovery stages observed after L3 SCIL. The modified

11
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score entailed 8 well-defined degrees of locomotor recovery: 0-1: are identical to the BBB-score,
2: is cumulative score of 2 and 3 of the BBB score, 3: is cumulative score of 4, 5 and 6 of the
BBB score, 4: is cumulative score of 7 and 8 of the BBB score, 3: reflects weight support with
poor paw clearance, 6: is broadened and/or shortened stepping, and 7: is normal walking. In the
present study, the locomotor score was obtained before grafting and weekly after injury until the
end of the study (i.e., 8.5 weeks post-injury). In addition to a modified BBB score, a regular full

21 scale BBB score was periodically assessed.

Gait analysis

The CatWalk apparatus (CatWalk 7.1, Noldus Technology, The Netherlands) was used to
quantify gait parameters during walkway crossings (e.g., paw positioning, base of support, stride
length, front limb vs. hind limb coordination) by footprint analysis [36]. Animals had to walk
down a horizontal glags walkway (109 x 15 x 0.6 cm, LW xH), of which the glass is illuminated
along the long edge. At the end of the walkway, animals had access to their home cage and were
given a treat upon arrival (Certified Supreme Mini-Treats™, Cat# F05472-1, Frenchtown, NI,
USA). The light only enters the (side of the) glass and reflects merely internally (when the glass
is bordered by air). As an animal walks on the glass walkway, light reflects off of the animal’s
paws, producing a series of bright footprints when viewed through the glass, from below the
walkway. The illuminated footprints were then recorded by a video camera with a wide-angle
objective that was located underneath the clevated glass walkway. In order to get an optimal
contrast between the paws and the surroundings, the test was performed in a room that was
totally darkened. The animals were trained for smooth walkway crossing on the 5 days prior to
the video acquisitions. To obtain accurate and meaningful data, the following eriteria concering
walkway crossings needed to be met: (1) the animal needed to walk uninterrupted across the

walkway, at a constant pace, and (2) a minimum of three such crossings per animal were

12
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required. Animals without bilateral paw clearance could not be analyzed (n=4 control-SCI
animals, and 3 HSSC-treated animals). Digital data analysis consisted of assigning labels (left-
fore, left-hind, right-fore, or right-hind) to the animal’s paw prints in a recorded walkway
crossing, using dedicated CatWalk software. Next, the software calculated gait parameters. Data

from the three proper crossings was averaged for statistical analysis.

Inclined ladder test

The inclined ladder test was performed as described before [37, 38]. Using an inclined ladder
(55°) with twenty 120 mm wide rungs (diameter: 1/4"), spaced at equal intervals (60 mm), and
having 150 mm-high side walls was used. The rats were trained for this test so that smooth runs
were recorded. At the end of the ladder, the animals had access to their home cage and received a
treat (as above). The rats were placed at the bottom, and in front, of the ladder. The bottom of the
ladder was placed on a 20 cm elevated platform. Climbing was video recorded from a position
below the ladder, so that the ventral aspect of the animal is recorded. All animals were able to
climb up the ladder. The correct placing of a hind paw and sustained position until its next

forward move was counted over 18 rungs (placement on first and last rung not counted).

Single frame hind limb motion analysis

Two parameters were measured in bilateral video captures of animals crossing a runway: the
foot-stepping angle (FSA) and the rump-height index (RHI), as described before [37, 38]. The
FSA is the angle at which the hind paw is placed on the ground just after the swing phase. The
angle is defined by a line parallel to the dorsal surface of the paw and a horizontal line behind the
paw. Four to six measurements were made for each hind limb (a total of 8 to 12 step cycles). The
RHI was defined as the highest point of the base of the tail during the (recorded part of the) run.

The values for the left and right paw of each animal were averaged. The elevated runway bar was

13
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made of a wooden plate/beam (1500 x 150 x 20 mm, LxWxH). The animals were trained to
smoothly walk the beam. Once more, at the end of the beam the animals had access to their home
cage and received a treat (as above). The videos (i.e., the selected frames) were selected and
analyzed wusing the video tool VirtnalDub 1.9.11 (Written by Avery Lee,
http://’www.virtualdub.org) and the on-screen measurement tool Screen Ruler V1.0.1a

(http://www.caveworks.net).

Myogenic motor evoked potentials

Animals were anesthetized with ketamine (80 mg/kg i.p., Ketaset, Fort Dodge Animal
Health, Overland Park, KS, USA). Myogenic Motor Evoked Potentials (MEPs) were elicited by
transcranial electrical stimulation (with a pulge duration of 1 ms at 7 mA using a DS3 constant
current isolated stimulator (Digitimer LTD., Welwyn Garden City, UK)) of the motor cortex
using two percutaneously placed 30G stainless steel stimulation electrodes. Responses were
recorded from the gastrocnemius muscle using 30G platinum transcutaneous needle electrodes
(distance between recording electrodes ~1 cm; Grass Technologies, Astro-Med, Inc., West
Warwick, RI, USA). Recording electrodes were connected to an active headstage (3110W
Headstage, Wamer Instruments LLS) and signal amplified using DP-311 differential amplifier
(Wamer Instruments LLS). Amplified signal was acquired by the PowerLab 8/30 data
acquisition system (AD Instruments, Inc., Colorado Springs, CO) at sampling frequency of 20
kHz, digitized and stored in PC for analysis. MEPs were measured until three to five highest
(stable) recorded potentials were similar. Those traces were averaged per animal and multiplied
by one thousand (uV; all values >1). Next, for data normalization, a logarithmical transformation
was applied for further analysis (amplitudes of MEP traces tended to vary much more in animals

with higher MEPs amplitudes).
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Measurement of muscle spasticity

At 1.5 weeks and 2 months post-injury, the presence of muscle spasticity in the lower
extremities was measured using a previously described system [39]. Briefly, fully awake animals
were placed in a restrainer and a hindpaw was taped to a rotational metal plate driven by a
computer-controlled stepping motor. The metal plate is interconnected loosely to the “bridging”
digital force transducer (I.CL454G, 0-454 g range; Omega, Stamford, CT, USA). The resistance
of the ankle to dorsiflexion was measured during stepping motor-driven ankle dorsiflexion (40°;
MDrive 34 with onboard electronics; microstep resolution to 256 microsteps/full step; Intelligent
Motion Systems, Marlborough, CT, USA) at 3 different ankle-rotational velocities (40, 60 or
80°sec). The EMG signal was recorded from the ipsilateral gastrocnemius muscle during the
same time frame. To record EMG activity, a pair of tungsten electrodes was inserted
percutancously into the gastrocnemius muscle 1 cm apart. EMG signals were bandpass filtered
(100 Hz to 10 kHz) and recorded before, during, and after ankle dorsiflexion. EMG responses
were recorded with an alternating current-coupled differential amplifier (model DB4; World
Precision Instruments, Sarasota, FL, USA). EMG was recorded concurrently with ankle
resistance measurements, both with a sample rate of 1 kHz. Both muscle resistance and EMG
data were collected directly to the computer using custom software (Spasticity version 2.01;
Ellipse, Kosice, Slovak Republic). Each recorded value was the average of three repetitions. The
presence of spasticity response was identified as an increased ankle resistance and concurrent
increase in recorded EMG activity during computer-controlled ankle dorsiflexion. To measure
the contribution of “mechanical” component in measured resistance (i.e., caused by ankle
ankylosis in chronically paraplegic animals), animals were anesthetized with isoflurane at the
end of each recording session and the relative contribution of neurogenic (i.e., isoflurane-

sensitive) and mechanical (i.e., isoflurane non-sensitive) component identified. The magnitude of
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anti-spasticity effect was then expressed as the maximum possible anti-spasticity effect measured

under isoflurane anesthesia minus the value of the mechanical component.
Sensory testing

Recovery of sensory function was assessed through quantification of supraspinal “above-
level™ escape response (AL-ER; i.e., an escape or escape-attempt with incorporation of the
forelimbg) thresholds to 1) a gradually increasing force to the hind paws (using the Analgesy-
Meter, no disc weights added; Cat# 37215, Ugo-Basile, Collegeville, PA, USA), and 2) AL-ER
latencies to a constant heat stimulus (intensity 17, cut-off at 30 sec) to the hind paws (using an
constant infrared heat source; Cat# 37360, Ugo-Basile, Collegeville, PA, USA). The hind paw
tested wag gently restrained by the investigator to prevent withdrawal. For the heat perception
test the apparatus was switched on 15 min prior to testing, to allow it to warm up.

For the AL-ER tests, both hind paws were tested four times, alternately, for each test, with a
testing interval of >1 hour. No more than four measurements per day were performed, rendering
two testing days per test. Maximum cut-off values for the stimuli or latency were at
approximately two times that of response threshold of uninjured animals, to prevent tissue
damage. Prior to (one week) and during the experimental period, the animals are extensively
habituated to the experimenter so that the animals can be held upright (loosely) during all
sensory assessments. Habituation consists of picking the animal up and holding/handling it twice
daily for >3 minutes. Subsequently, in absence of a stimulus, animals did only rarely show
escape behavior when held for the time it would take to reach cut-off values. We measured the
AL-ER thresholds/latencies before injury (baseline) and every 2™ week after injury. The final
measurement was done at eight weeks post-injury. Two or less (out of the total of ecight, bilateral)
measurements could manually be assigned as outliers and be excluded per time point (done while

blinded for time point, animal, and treatment group). In addition, individual scores were log
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transformed before analysis and we calculated the Maximal Possible Effect, using these log
scores, as previously suggested [40]. Hence, we used the standard formula to calculate the
Maximal Possible Effect, and assuming a logarithmic relation between stimulus intensity and
perceived intensity:

100 = 192';3'f{nn.ij'1ﬂ§l.fﬂnni of SCCT contral ﬂnimﬂfs.]

ogl @pazeiine of SCCT a-n{mni.sj'l‘:‘ﬁ'-.fﬂmj of SCCT contro i u.n{mu.isj

Here, x,, is the average AL-ER threshold of an individual animal at time point ¥ (either for a

thermal or mechanical stimulus).

Magnetic resonance imaging

Eight weeks after cell grafting, rats were deeply anesthetized with 2 mg pentobarbital and
0.25 mg phenytoin (0.5 mL of Beuthanasia-D, Intervet/Schering-Plough Animal Health Corp.,
Union, NJ, USA) and transcardially perfused with 200 ml of heparinized saline followed by 250
ml of 4% paraformaldehyde (PFA) in PBS. A 3 cm piece of the vertebral column (Th8-1.1) was
placed in a tight small latex container filled with 4% PFA to prevent the formation of air
bubble/tissue interface artifacts. Samples were scanned using Magnetic Resonance Imaging
(MRI). Images were acquired using a 7T Bruker (Bruker Biospin Billerica, MA) horizontal bore
small animal magnet, and a 2.5 cm imaging volume transmit/receive coil. A 3D turboRARE
sequence was used with the following imaging parameters: Echo time/Repetition time 45/1500
ms, Flip angle 180 degrees, field of view 16 x 16 = 16 mm, matrix 256 x 256 x 70 with a
resulting voxel size of 62 x 62 x 229 microns. The imaging time was 84 min per sample.

Volume reconstructions and calculations were done using Amira software (Visage Imaging

GmbH, Berlin, Germany).

17

138



Axon counting in plastic semi-thin sections

After MRI imaging, spinal cords were dissected from the spine and transverse (1.5-mm-
thick) spinal cord block cut from the injury epicenter and prepared for plastic embedding as
previously described [41]. Briefly, dissected tissue blocks were treated with 0.1% osmium
tetroxide in 0.1 M non-saline phosphate buffer (pH 7.4) for 12 h, followed by adequate rinsing in
non-saline phosphate buffer. This was followed by progressive alcohol dehydration according to
standard procedures up to 100% ethanol, with the addition of further dehydration in a 1:1
solution of ethanol/propylene oxide, and lastly in 100% propylene oxide. Dehydrated blocks
were then prepared for resin infiltration by incubation in a 1:1 solution of resin/propylene oxide
on a rotator in a fume hood overnight. The resin solution used consisted of: Eponate 12, Araldite
502, dodecenyl succinic anhydride, and 2,4,6-tri [dimethylamino-methyl] phenol (DMP-30; Ted
Pella, Inc., Redding, CA), mixed in ratios of 10:10:25:1, respectively. The blocks were then
transferred to 100% resin for subsequent overnight infiltration on a rotator. Finally, the tissue
blocks were embedded using fresh resin in multi-chamber silicone rubber molds made from a
Silastic® E RVT Silicone Rubber Kit (Dow Coming Corp., Midland Township, MI). The molds
with embedded sections were placed in an oven at 60°C for 1 day to facilitate resin
polymerization. Semi-thin (1 wm) transverse sections were then cut using a microtome (Leica
Supercut RM 2063) with a 8-mm diamond knife (Histo Diamond Knife, Cat# LM 7045,
DIiATOME, Hatfield, PA, USA). The sections were mounted on slides with distilled water and
allowed to dry on a slide warmer. Prior to staining, the slides were incubated at 60°C in an oven
for 10-15 min, and then contrast-stained with 4% para-phenylene-diamine (PPD).

Mosaic images were taken of two sections per animal at 20X using a Zeiss Imager.M2 fitted
with a Zeiss MRm camera (Carl Zeiss Microscopy, Thommwood, NY, USA), a BioPrecision2

stage (Cat# 965100, Ludl Electronic Products, Hawthome, NY, USA), and Stereo Investigator
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software (MBF Biosciences, Williston, VT, USA). Complete mosaic images were loaded into
Imagel 1.45s. Axonal quantification involved manual definition of pixel threshold (0-255,
grayscale; using the Triangle method). Next, Imagel’s Analyze Particles option was used to find
particles with a size of 0.20-250 um® and a circularity of 0.5 to 1.0 (which corresponded to
axons). All acquisition and analysis values were held consistent throughout the study. Final
measurements acquired were the minimal diameter (Feret’s) of each particle (and particle
counts). Particles with a minimum diameter >10 um were excluded. Employment of this
parameter allowed for further axonal analysis, in which axons were divided into empirically-
derived caliber gizes of small, medium, and large axons (0.3-1.0 um, 1.0-2.5 um, and 2.5-10

um, respectively). Data was acquired per spinal region (i.e., dorsal, ventral, and lateral funiculi).
Immunofluorescence staining

After removing the 1.5 mm block from the spinal cord at the injury epicenter, the remaining
caudal and rostral parts of the spinal cord (£1 em each) were placed in 30% sucrose for
cryoprotection for a minimum of 3-7 days. Transverse spinal cord sections were then prepared
from the 1.6 segment. The segment(s) in between the 1.6 and the injury epicenter and the one
rostral to the injury epicenter were sectioned coronally and used for identification of grafted
human cells. All sections were cut on a cryostat and stored free-floating in PBS with thimerosal
(0.05 wt%). Sections were stained overnight at 4°C with primary human-specific (h) or non-
specific antibodies in PBS with 0.2% Triton X-100: mouse anti-Nuclear Mitotic Apparatus
(hNUMA, 1:100; Millipore, Billerica, MA, USA), mouse anti-Neuron Specific Enolase (hNSE,
1:500; Vector Labs, Burlingame, CA, USA), mouse anti-Synaptophysin (hSvn, 1:2,000;
Millipore), rabbit anti-Glial Fibrillary Acidic Protein (hGFAP, 1:300; Origene, Rockville, MD,
USA), mouse anti-Neuronal Nuclei (NeuN, 1:1,000; Millipore), chicken anti-Green Fluorescent

Protein (GFP, 1:1,000; Aves Labs, ), rabbit anti- Anti-Glutamate Decarboxylase 65 & 67
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(GAD63&67; 1:300; Millipore), mouse anti-GFAP (Cy3-labeled; 1:500; Sigma-Aldrich; St.
Louis, MO, USA), rabbit anti-Ki67 antibody (mitotic marker, 1:100; Abcam), and rat anti human
axonal neurofilament antibody (hHO14; 1:100; gift tfrom Dr. Virginia Lee; University of
Pennsylvania). Mouse anti-Growth Associated Protein 43 (GAP43, 1:16,000; Millipore), rabbit
anti-Calcitonin Gene-Related Peptide (CGRP, 1:1,000; Biotrend, Destin, FL, USA), and rabbit
anti-Ionized calcium Binding Adaptor molecule 1 (Ibal, 1:1,000; Wako, Richmond, VA, USA),
were used on the 1.6 transverse sections. Following washing in PBS 3-5 min, sections were
incubated with fluorescent-conjugated secondary donkey antibodies (Alexa® Fluor 488 & 647,
1:300; Jackson Immuno Research, West Grove, PA, USA; & Alexa® Fluor 555, 1:500;
Invitrogen). Sections were then mounted on slides, dried at room temperature, and covered with
Prolong anti-fade kit (Invitrogen Corp., Carlsbad, CA, USA).

Confocal images (1024 x 1024 pixels) were captured with a Fluoview FV 1000 microscope
(Olympus, Center Valley, PA, USA) with a 20X or 40X objective, optical section spacing of 0.5
um, and pulse speed of 20 usec/pixel. Other images were taken using the Zeiss Imager. M2 setup
as described above, using a 10, 20 or 63X magnification. CGRP, GAP43, and Ibal stainings on
L6 transverse sections were quantified using densitometry measurements of the main dorsal horn
region (Laminae I through IV; area as marked in Fig. 7B). Image] software was used for

quantification by using the Background Subtraction function.
Statistical analyses

Behavioral data were analyzed using ANOVA (one-way, or two-way group = time repeated
meagures, using a fixed-effect model, and a Bonferroni post hoc test for multiple comparisons).
A P value of 0.05 was considered significant. Unequal variances were explored prior to using
ANOVA analyses using the Bartlett’s test, but were not identified. Post hoc tests were only

calculated if overall group differences were found. Results are expressed as means with the
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standard error of the mean (SEM). To analyze differences between the two groups (e.g., vehicle
injected vs. non-injected SCI animals), we used Student’s t-tests (unequal variances were
explored with the F-test, but not found) or repeated measures ANOVA. Naive and sham operated
animals were grouped (and named “non-injured”) in all outcomes besides the sensory tests. All
statistical analyses were done using GraphPad Prism (La Jolla, CA, USA), SPSS statistics 17 (for
K-Means clustering; IBM, Armonk, NY, USA), or STATA 12 (for precise post-hoe test P-value

calculations; StataCorp LP, College Station, TX, USA) and performed two-tailed.

Results

General animal health and survival of animals during long-term immunosuppression

From the total of 35 SCI Sprague-Dawley rats emploved in this study, 32 survived until
planned sacrifice while continuously immunosuppressed; 14 NSI-566RSC-injected (1 excluded;
because of automutilation of hind paw on day two post-injury), 10 vehicle-injected, 8 non-
injected (2 excluded; 1 because of automutilation of hind paw on day 7 post-injury & 1 because
of excessive BW loss on post-injury day 18 (likely related to immunosuppression-related
toxicity)). In four surviving animals, lower extremity ulcers developed but were effectively
treated with local standard triple antibiotic ointment (Bacitracin, Neomycin, and Polymyxin B)
and cohesive bandages. In most animals, the Crede’s maneuver needed to be performed for 3-5
days after spinal trauma (exceptions: 3 animals in NSI-366RSC-injected group and 2 animals in
non-injected SCl-control group, of which one died due to health issues; see above). No
additional worsening (i.e., a lowering in open-field locomotor scores at one day post-grafting,

compared to pre-grafting values) was noted in intraspinal media- or cell-injected animals.

Spinal injection procedure did not alter neurological outcome in previously 1.3-contused

rats
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In order to define the effect of spinal injection itself in modulating the functional recovery
profile (i.e., potential worsening in neurological outcome) in L3-injured animals, we have first
compared the effect of spinal media injection only with spinal injury animals which received no
injections (10 vehicle-injected and 8 non-injected SCI animals). No significant differences were
found between these two groups in any of neurological or electrophysiological outcome
measures used in this study (repeated measures ANOVA for open field locomotor scores;
Student’s #-test for others). Based on these data, which showed no significant differences
between both control groups, these two groups were then pooled into one control group and used

for subsequent comparison with HSSC-grafted animals.

Assessment of motor function

Gait analysis showed significant improvement in hind paw placement in SCI-HSSC-grafted
animals

Gait analysis was conducted at 8 weeks after grafting (or corresponding time point in
controls) using the CatWalk apparatus [42]. The following parameters were analyzed: 1) runway
crossing time, ii) rostro-caudal hindpaw positioning, iii) hind paws base of support, iv) regularity

index/coordination, v) stride length, and vi) phase dispersions.

Rostro-caudal hindpaw positioning (RCHPP): In control non-injured animals, the RCHPP

was 0+£1.7 mm (i.e., the animals are able to achieve a near complete overlap in the hindpaw
positioning relative to the last ipsilateral frontpaw print; full rostro-caudal overlap is represented
by a value of “0). Rats receiving spinal HSSC grafts showed significantly better RCHPP, when
compared to control SCI animals (-9.0+1.9 vs. -18.243.1 mm, respectively, Fig. 2A; Bonferroni:
P=0.04). Examples of the paw positioning are shown in Fig. 2B for a non-injured control, SCI

control, and a HSSC-treated SCI animal (Fig. 2-B1, -B2, and -B3, respectively).

22

143



No significant differences were detected in other CatWalk parameters (runway crossing time,
hind paws base of support, regularity index/coordination, stride length, phase dispersions),
myogenic motor evoked potentials, or behavioral motor tests (open field locomotor score
(modified BBB score, and regular BBB scores), single-frame motion analysis or ladder climbing

test) (Suppl. Fig. 1 A-D).

Effective suppression of muscle spasticity in HSSC-grafted SCI animals

To identify the presence of spasticity (i.e., potentiation in muscle stretch-evoked EMG
activity) in animals after SCI, a computer-controlled ankle-rotational force was applied on the
right or left paw in fully awake restrained animals and resulting change in EMG activity in the
gastrocnemius muscle and correlative ankle resistance was measured [39].

Independent of SCI group (control or HSSC-injected), two quantitatively different EMG
patterns and corresponding resistance response (EMG/RES) patterns were recorded in spinally-
injured animals. First, if compared to control non-injured animals, little or no change in
EMG/RES response was seen at 1.5 weeks after SCI. Second, SCI induced an increased
spasticity response in a portion of the animals at 1.5 weeks after injury. A K-Means clustering
method was used to group all 44 (SCI and non-injured) animals into 2 groups based on
magnitude of resistance to ankle rotation at 1.5 weeks post-injury (or equivalent time point in
non-injured animals). Seven animals of each SCI group (i.e., control or HSSC-injected) were
found to be clustered in the high “spasticity” group (HIGH), which had a 31.7+3.9 g increase in
measured muscle resistance during ankle rotation, compared to the low “spasticity” group
(LOW) showing 8.9+1.5 g resistance (Student’s t-test: 2<0.0001). No difference in the incidence
of this high “spasticity” response was noted between SCI control vs. cell-treated groups
(incidence: X*: P=0.53; extend: Student’s t-test: P=0.24). No naive or sham operated animals

were found to be clustered into the HIGH group. Resistance to ankle rotation measured 8 weeks
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after treatment (and expressed as relative change from 1.5 weeks post-injury values) showed a
significant decrease in the HSSC-injected HIGH resistance group when compared to HIGH
resistance animals from the control SCI group (Fig. 2C; i.c., decline of 24.8+6.4 g in HSSC-
injected animals and 4.8+6.3 in control SCI animals; Bonferroni: 2=0.048).

Fig. 2D shows an example of raw data depicting a post injury EMG response (red channel)
and corresponding inerease in muscle resistance (black channel} during ankle rotation in a SCI-
control (Fig. 2-D1-3) and a HSSC-injected animal (D4-6) at 7 days after treatment and at the end
of the 8-week survival. Clear suppression of potentiated EMG response and muscle resistance
can be seen in HSSC-treated animals (compare D4 to D6). To identify and dissociate neurogenic
(i.e., isoflurane-gensitive) versus mechanical (i.e., isoflurane non-sensitive) components, muscle
resistance was re-measured after isoflurane anesthesia and the relative contribution of
mechanical component calculated. The induction of isoflurane anesthesia near completely
blocked the ankle rotation-evoked EMG response and resulting increase in muscle resistance

(D2, D3).

Assessment of sensory functions

Analysis of mechanical and thermal sensory function was performed by comparing hindpaw
thresholds improvements of evoked above-level/supra-spinal withdrawal responses (i.e., an
escape response in which the frontlimbs and/or vocalizations are used) between experimental
groups over several time points. Groups consisted of naive control, sham operated control, SCI-
control, or SCI-HSSC-injected animals. Response thresholds were measured before injury and
every second week thereafter. No differences were measured between naive and sham-operated
animals at any time point in response thresholds to both mechanical and thermal stimuli

(repeated measures ANOVA).
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HSSC treatment led to a significant improvement in the supraspinal perception to mechanical
stimuli evoked below the level of injury

Prior to injury, no differences in mechanical thresholds to trigger escape responses were
measured between all four experimental groups (on average 92+2 g). After SCI, the thresholds
increased significantly in both SCl-control and SCI-HSSC-injected animals compared to control
non-injured groups, at all time points (Bonferroni; 2<0.001). From 4 weeks post injury, SCI-
HSSC-injected animals displayed a trend towards progressive improvement in response
thresholds if compared to SCI controls (at eight weeks: 17710 g and 216£10 g, respectively;
Fig. 3A; repeated measures ANOVA: P=0.14). This resulted in a significant higher percentage of
the Maximal Possible Effect for improvement of mechanical stimulus perception in SCI-HSSC-

injected animals compared to SCI-control animals (Fig. 3C; Student’s #-test: P=0.03).

Treatment with HSSC was associated with significant recovery of supraspinal heat perception
evoked below the level of injury

Prior to SCI, measurement of thermal (infrared) stimulus-evoked paw withdrawal threshold
showed no significant differences between all experimental groups (17.3+0.3 sec; one-way
ANOVA). At two weeks post SCL, significant increase in paw withdrawal latencies in both the
control SCI group and in SCI animals receiving spinal HSSC grafts were measured, when
compared to control non-injured (sham operated and naive) groups (26.1+0.7 sec in SCI-control
animals and 26.5+0.7 sec in HSSC-grafted animals vs. 18.3+0.2 sec in control non-injured

animals; Fig. 3B; Bonferroni: P<0.001).

From four weeks after treatment a trend towards a progressive normalization in response
threshold was seen in HSSC-treated animals if compared to SCI controls (at eight weeks:
24.0+0.9 sec in SCl-control and 21.4+0.9 sec in HSSC-injected animals, respectively; repeated

meagures ANOVA: P=0.09). This resulted in a significantly higher percentage of the Maximal
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Possible Effect for the improvement of thermal stimuli in SCI-HSSC-injected animals compared

to SCl-control animals (Fig. 3C; Student’s r-test: P=0.02).

Postmortem spinal cord MRI showed cavity-filling effect by grafted cells in HSSC-injected

animals

For lesion volume analyses, a 2 cm long portion of the fixed spinal column was dissected out,
kept in 4% paraformaldehyde, and imaged using a 7 TESLA MRI magnet. The primary goal of
this analysis was to generate quantitative data on the cavity-filling effect by grafted cells and to
assess the extent of rostro-caudal cavitation in vehicle-injected vs. HSSC-injected animals using
quantitative volume analysis (Fig. 4). In vehicle-injected animals, the presence of fluid-filled
cavities was readily identified ag the presence of homogenous white areas and scarring as black
areas (Fig. 4B1; compare with non-injured: Fig. 4C). In contrast, in animals receiving cell
injection, the cavity was partially or completely filled with grafted cells ag evidenced by the
presence of low density tissue masses (Fig. 4A1). The identity/presence of grafted cells in the
“low density tissue masses” was further validated by analysis of semi-thin plastic sections taken
from the same region (compare Fig. 4A2 which depicts the presence of cell grafts vs. extensive
cavity in 4B2). Fig. 4A shows a 3D reconstruction image of a cell-injected animal (areas
identified as grafted cells are labeled green). Fig. 4B shows a SCl-control {(media-injected)
animal with cavity labeled in light-green-yellow.

Quantification of the cavity volume showed a significantly larger injury-induced cavity in
SCl-control animals than in HSSC-injected animals (3+0.4 mm® vs. 0.6+0.2 mm®, respectively;
Fig. 4D; Student’s t-test: £<0.0001). Similarly, the scar volume se¢en in SCI-control animals was

3

larger than in cell-injected animals (3.3+0.3 mm® vs. 1.940.3 mm’, respectively; Student’s r-test:

P<0.001).

To assess the potential excessive grafted cell proliferation and resulting spinal cord tissue
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expansion, we next compared the total volume (i.e., the volume of the remaining spinal cord,
scar, cavity, and/or grafted cells) of cell-grafted spinal cord segments with corresponding
segments of control animals. The measured volumes were: 71.8+3.2 mm? in non-injured control
animals, 54.6:2.8 mm® in SCl-control animals, and 59.0£2.2 mm’ in SCI-HSSC-injected

animals (Student’s f-test: P=0.27; SCI-control vs. SCI-HSSC-injected animals).

Survival, maturation and integration of grafted HSSC

To identify the presence of human cells in the rodent spinal cord tissue, two different
immunostaining/analytical methods were used. First, GFP-tagged grafted cells were identified by
the presence of GFP autofluorescence/immunoreactivity and then co-stained with neuronal and
non-neuronal markers. Second, a set of human-specific antibodies wag first used to validate the
presence of human cells and then combined with other human-non-gpecific neuronal or non-
neuronal antibodies.

Staining with anti-GFP, -NeuN (neuronal marker) and -human-specific synaptophysin
antibody showed a near complete repopulation of compression-induced lesion cavity by grafted
GFP+ cells (Fig. SA-yellow dotted area). A comparable spinal injury-cavity filling by grafted
cells was seen after grafting with GFP or non-labeled HSSC as evidenced by the presence of
dense hNUMA-immunoreactive grafts (Fig. SA inserts). Analysis of axo-dendritic sprouting
from grafted GFP+ cells showed extensive rostro-caudal neurite sprouting particularly well-
developed in the lateral white matter (Fig. SB). In addition, numerous GFP+ axons branching
from innervated lateral funiculi and projecting towards o-motoneurons and interneurons was
identified (Fig. SB;insert). Triple staining with NeuN, hSYN and GFP antibody showed a high
density of hSYN punctata in GFP+ innervated regions (Fig. SC-vellow arrows) as well in the
vicinity of endogenous NeuN+ neurons. Staining with hNUMA, hNSE and DCX antibody
revealed that the majority of hNUMA+ grafted cells were DCX or DCX/hNSE immunoreactive
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(Fig. SA-insert; Fig. SD)). Probing for glial phenotype in grafted cells by double staining with
hNUMA and hGFAP or hNUMA and Olig2 antibody revealed well-developed groups of
hGFAP+ astrocytes. These GFAP+ cell populations were primarily found in the white matter or
at the periphery of individual DCX/hNSE+ grafts (Fig. SE). Less than 2% of hNUMA+ cells
showed Olig2 immunoreactivity (Fig. SF; vellow arrows). To assess the presence of mitotically
active grafted cells, sections were double-stained with hNUMA and Ki67 antibody. An estimated
0.5-1% of hNUMA+ eells were Ki67 positive. These double hNUMA/Ki67+ cells were regularly
distributed throughout the grafted regions but no cluster(s)-like formations of hNUMA/Ki67+
cells were seen in any animal (Fig, 5G; yellow arrows).

Confocal analvsis of gpinal cord sections triple-stained with hSYN, GFP and NeuN
antibodies showed numerous hSYN punctata colocalizing with GFP+ processes. Several hSYN
punctata were found to reside in the vicinity of interneuronal and/or o-motoneuronal membranes
(Fig. 6A; inserts; white arrows). Probing for the presence of GAD65/67+ terminals derived
from grafted neurons by using triple stained GAD(65/67YGFP/NeuN sections and confocal
microscopy showed the presence of GFP/GAD65/67+ terminals in the vicinity of -

motoneuronal membranes (Fig. 6B; white arrows).

Normalization of CGRP expression in 1.6 dorsal horns in SCI-HSSC-treated animals

To analyze changes in the spinal expression of putative central pain
neuromodulators/indicators, including CGRP, GAP43 and Iba-1 [43, 44], we next stained
transverse L6 sections (i.e., below-injury-level region) with respective antibodies at 8 weeks
after treatment (Fig.7 A, B, (). Densitometry analysis showed that CGRP immunoreactivity was
significantly reduced in SCI-HSSC-treated animals (Fig. 7A2) when compared to SCl-controls

(Fig. 7A1; Student’s f-test: P=0.04). We did not find significant group differences in IHC
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staining intensities of either GAP43 or Ibal (Fig. 7B, C; Student’s t-test: P=0.58 and P=0.24,

respectively).

Quantitative assessment of axonal survival in the epicenter of injury using semi-thin plastic

sections

For quantitative analysis of axonal survival, a transverse spinal cord block taken from the
injury epicenter was used. Using osmium/p-phenylenediamine-stained semi-thin (1-pum-thick)
plastic sections, the total number of axons (divided in 3 subgroups based on the axonal caliber;
0.3-1.0, 1.0-2.5, and 2.5-10 um in diameter) was then counted using ImageJ software.

Systematic quantification of the total number of myelinated axons counted bilaterally in a
control naive animal showed 281,352 axons (Suppl. Fig. 2A). Thirty-three percent was
represented by small caliber axons, 57% by medium caliber axons and 10% by large caliber
axons. In SCl-control animals, the total number of axons was on average 55,137+5,168 and wag
55,34045,650 in HSSC-injected animals (Student’s r-test: P=0.98; Suppl. Fig. 2B-D). Intergroup
statistical analysis of the axons at specific diameter (i.e., 0.3-1.0, 1.0-2.5, and 2.5-10 um)
showed P-values of 0.88, 0.84, and 0.51 (Student’s r-tests) between SCl-control and SCI-HSSC-
grafted animals, respectively. Intergroup statistical analysis of the axons at specific funiculi (i.e.,
dorsal, lateral, and ventral funiculi) showed P-values of 0.73, 0.82, and 0.72 (Student’s t-tests)
between SCl-control and SCI-HSSC-grafted animals, respectively (Suppl. Fig. 2D). Additional
imtergroup analyses of axon survival categorized by both size and location/funiculus did not
show significant differences between SCl-control and SCI-HSSC-grafted animals (P>0.36;

Student’s r-tests) (Suppl. Fig. 2D).
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Discussion

In the present study, we investigated the treatment effect of spinally grafted GMP-grade
human fetal spinal cord-derived neural stem cells (HSSC) in a L3 spinal compression injury
(SCI) model in rats.

HSSC were grafted into and around the epicenter of the contusion-injured L3 spinal
segment at 3 days after spinal trauma in continuously immunosuppressed Sprague-Dawley rats.
In comparison to control SCI animals with no treatment or receiving intraspinal injections of
media only, the intraspinal grafting of HSSC led to a progressive and significant improvement
in: 1) gait/paw placement, ii) muscle stretch-induced spasticity, and iii) mechanical and thermal
sensitivity. These behavioral benefits were associated with robust graft survival and near
complete injury-cavity-filling effect with grafted cells and corresponding lack of syringomyelia
otherwise seen in control SCI cell-non-treated animals. In addition, the development of putative
GABA-ergic synapses between grafted neurons and interneurons and/or o-motoneurons of the
host were identified. These data demonstrate that intraspinal grafting of HSSC into an injured
spinal cord segment in the acute phase of injury represents a safe and effective treatment
modality. This cell-replacement therapy was effective in providing qualitatively- and
quantitatively-defined functional benefits and also led to significant and long-term improvement
in the structural integrity of previously trauma-injured spinal cord segments.

Rat L3 spinal compression injury model

In our current study, a lumbar spinal injury was induced by a static 35 g pressure exerted
on the dorsal surface of the L3 spinal segment by using a stainless steel-Teflon rod (2.9 mm in
diameter). In our preliminary “survey” study, we have found that in this model the 35g spinal
cord compression needs to be maintained for a minimum of 15 min to produce a reproducible

degree of functional and histopathologically-defined injury. These data indicate that the
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pathophysiological mechanism leading to neuronal/axonal degeneration in this model is
primarily related to the ischemia-induced changes. However, interestingly, the histopathological
changes in this model are characterized by the development of a well-delineated cavity found
just below the compression site. It is in contrast to the “pure” ischemia-reperfusion-induced
spinal injury seen in aortic balloon occlusion models in which a selective loss of inhibitory
interneurons is seen in previously ischemia-exposed spinal segments in the absence of cavity(s)
formation [45, 46]. In this respect, our current model appears to be similar to high veloeity
(weight drop model) impact injury models which show comparable cavity formation in chronic
L2 or L3/4 segment-injured rats [47, 48]. Similarly as demonstrated in the rat “weight drop”
contusion models [49], the development of spinal hyper-reflexia, as evidenced by the presence of
exacerbated muscle activity evoked by computer-controlled ankle rotation, was seen in a
subpopulation of injured animals in our current study. Importantly, spinal cavity formation and
muscle spasticity is frequently observed in human patients with a high-veloeity-impact-induced

traumatic SCIL. [50, 51]

Rationale for early spinal cell-replacement therapy after spinal trauma

Both experimental and clinical data show that the spinal pathological processes following
acute spinal injury are in part characterized by continuing axonal/neuronal degeneration, which
can then continue for months to vears after injury [1, 52-55]. It is believed that such an ongoing
axonal degeneration is in part the result of the lack of local trophic support associated with loss
of neurons/glial cells at and around the injury epicenter. Thus, the use of treatment strategies
which can replace or supplement the loss of the local neurotrophic activity and are initiated
during this acute period should thus lead to a measurable treatment effect. Previous studies have
demonstrated that neural stem cells of mouse, rat or human origin are a rich source of

extracellularly released trophic factors (such as NGF, BDNF, GDNF, EGF, IGF-1, and VEGF) in
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in vitro cultured cells and that these cell populations retain a high level of neurotrophin
expression after i vivo grafting in naive animals and in a variety of neurodegenerative models
including spinal injury and transgenic amyotrophic lateral sclerosis (ALS) models [56-61]. In
addition, using long-term post-grafting survival periods, it was shown that in vivo grafting of
neural precursors with neurogenic potential into either the spinal cord at 9 days post spinal cord
injury, the brain at 3 days post ischemic insult, or the CNS (brain or spinal cord) of adult or
developing rats, there is the development of functionally and morphologically-defined synaptic
contacts between grafted neurons and the neurons of the host [62-64].

Based on these characteristics of neural precursors (NPCs), the use of NPCs for acute spinal
cord grafting after trauma serves three purposes. First, it serves to provide local trophic support
in the areas of previous injury (provided that grafted cells are able to home and survive long-term
once grafted into the injured spinal cord milieu) and to minimize or halt the process of
progressive axonal/neuronal degeneration. Second, it serves to provide a cavity-filling effect by
replacing previously injured-degenerated necrotic tissue and thus prevent the long-term (or
progressive) formation of rostro-caudal cavitations (i.e., syringomyelia) [55]. Third, by the
development of synaptic contact with the host axons/neurons above and below the injury level it

can potentially lead to formation of a functional relay through the injury site.

FEffect of spinal grafting of HSSC on the recovery of motor function and muscle spasticity

In our current study, a combination of several motor performance tests were employed including
open field modified BBB scoring, CatWalk gait analysis, inclined ladder climbing, single frame
hind limb motion analysis, and myogenic motor evoked potentials to identify the degree of motor
function recovery after cell grafting. The changes in muscle spasticity in lower extremities (i.e.,
below the level of injury) were also measured using a computer-controlled ankle rotational

system [39]. The CatWalk gait analysis showed significantly improved paw placement in HSSC-
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injected SCI animals when compared to control SCI animals. In addition, a significant
suppression of otherwise exacerbated muscle spasticity response measured during ankle rotation
was seen in cell-treated animals. However, no improvements in other functional CatWalk
parameters (runway crossing time, hind paws base of support, regularity index/coordination,
stride length, phase dispersions), MEPs, BBB score, single-frame motion analysis or ladder
climbing test) were seen. Consistent with our current data, several other studies from different
laboratories have demonstrated a variable degree of motor function recovery after spinal grafting
of rodent or human fetal, adult or embryonic stem-cells derived neural precursors using a variety
of spinal injury models in mice and rat [14, 29, 32, 65-72|. Importantly, these data jointly
suggest that a some degree of therapeutic effect can also be achieved once cells are grafted

during the early post-injury period (i.e., 3-7 days after spinal trauma).

FAffect of spinal grafting of HSSC on the recovery of sensory function

In our study, we assessed the sensory function below the level of injury (hind paws) by
measuring the mechanical and thermal thresholds for supraspinally mediated escape behavior.
Using this method (in contrast to hindpaw withdrawal reflex methods) we did not observe SCI-
induced hyperalgesia at the hindpaws (below-level), which is in line with observations reported
from other laboratories. |73, 74] We did, however, find significant improvement of both SCI-
induced mechanical and thermal hypoesthesia. It is important to note that the sensory thresholds
did not yet plateau at the end of the 2-month survival period. We speculate that an additional
quantitative and qualitative improvement in the sensory function would likely be seen should a
longer post-grafting interval be studied. In addition to sensory tests, quantitative analysis of
spinal parenchymal markers indicative of developing (spinal) hypersensitivity (i.e.,
CGRP/GAP43, an indicator of aberrant sprouting of primary sensory neurons [43, 70], and Ibal

staining, a marker of microglia activation [44]) were studied and showed a significant decrease
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in CGRP staining intensities in HSSC-treated animals if compared to SCI controls. This suggests
that the recovery/decrease in sensory thresholds observed in our study is not a result of aberrant
sprouting or microglia activation. Consistent with the observations from our study, previous
studies from other laboratories have demonstrated similar functional and histopathologically-
defined (i.e. decrease in CGRP staining around the injury site) improvements after spinal
grafting of fetal-tissue derived human or rodent neural or glial-restricted precursors in several

mouse or rat spinal injury models [65, 66, 68-70, 72, 73].

Differentiation of grafted cells and mechanism of HSS{C'-mediated therapeutic action

In our current study, near pure population of nestin+ human fetal spinal stem cells were
grafted intraspinally at 3 days after contusion-induced spinal cord injury. Analysis of the graft
survival at 2 months after grafting showed a dense population of grafted hNUMA+ cells in
grafted previously trauma-injured regions. In addition, numerous hNUMA+ cells which migrated
out of the graft in distances ranging between 2-3 mm were also seen. Using human-specific
antibodies against NSE and synaptophysin (markers of mature neurons), we have also shown that
a majority of grafted cells developed into a neuronal phenotype. Many human specific
synaptophysint+ boutons were found to reside in the vicinity of host neurons.

Quantitative analysis of the host axon survival in the injury epicenter showed no significant
sparing effect in HSSC-grafted SCI animals vs. medium-injected or untreated SCI animals.
These data suggest that i) the majority if not all axons which succumb to pathological processes
resulting from secondary changes post injury such as edema, ischemia were already lost or
irreversibly damaged at 3 days after trauma (i.¢., the time point when the cells were grafted), or
ii) regional cell grafting is not therapeutically effective in providing acute neuroprotection.

Analysis of the neurotransmitter phenotype in grafted cells showed the development of

putative inhibitory GABA-ergic synapses with host neurons. These data show that the restoration
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of the local functional inhibitory circuitry by grafted cells can in part lead to the observed
functional improvements. While under specific pathological conditions (such as inflammatory or
neuropathic pain) the spinal GABA can have excitatory effects due to reduced expression of the
potassium-chloride exporter KCC2) [73, 76], systematic experimental but also clinical studies
have demonstrated a potent anti-spasticity effect after intrathecal treatment with GABAg
receptor agonist baclofen, suggesting continuing inhibitory GABAg receptor-mediated action
[77, 78]. In addition, we have recently demonstrated an effective anti-spastic effect after spinal
parenchymal GAD65 (glutamate decarboxylase) upregulation if combined with systemic
tiagabine (GABA uptake inhibitor) treatment in animals with spinal ischemia-induced muscle
spasticity [79]. Jointly, these data suggest the anti-spasticity effect observed in our current study
can be mediated by a synaptically coupled GABA-inhibitory effect. Accordingly, in our previous
study using the same cell line, we have demonstrated the development of putative GABA-ergic
synaptic contacts between grafted neurons and persisting o-motoneurons of the host in a rat
spinal ischemia model. In the same animals, a significant amelioration of spasticity was
measured [29]. In a recent study using EM analysis, we have confirmed the development of
svhaptic contacts with the host neurons at 9 months after intragpinal grafting of HSSC in normal
non-injured immunodeficient rats [30]. Similarly, in a more recent study, the development of
functional contacts and restoration of axon potential conductivity across the region of complete
Th3 spinal transection by grafted HSSC was seen [32].

In addition to restoration of the local motor circuitry, significant amelioration of otherwise
increased spinal CGRP expression seen in non-treated SCI animals was measured in SCI animals
receiving spinal injections of HSSC. Consistent with this observation, previous studies have
demonstrated that improvement of local spinal GABA-ergic tone, as achieved by subcutaneous

inoculation of a replication-incompetent herpes simplex virus (HSV) encoding GAD67 gene in a
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Th13 spinal cord hemisection model, led to a similar decrease in otherwise increased CGRP
expression [80]. Second, previous studies have shown that spinally grafted HSSC show the
expression of several trophic factors (GDNF, BDNF, and VEGF) at 2 months after grafting in
SOD+ rats [60]. We speculate that the release of these tropic factors can potentiate the sprouting
of persisting axons of the host below and above the injury and accelerate the development of new
synaptic contacts particularly at longer post-grafting intervals.

Finally, we have demonstrated a near complete injury-cavity filling effect by the grafted cells
at 2 months after grafting when the cells were grafted at 3 days after injury. This was in contrast
to media-injected animals which showed consistent and extensive rostro-caudal spinal cord
cavitation. These data suggest that early post injury cell grafting is degirable as it can effectively
block the formation of the spinal cavity and its expansion and related long-term secondary spinal
cord degeneration. A comparable cavity-filling effect and prevention in the progression of
syringomyelia has been shown after spinal grafting of human embryonic or fetal SSCs in human
patients with progressive post-traumatic syringomyelia [54, 55, 81].

It is important to note that the cavity-filling effect demonstrated in our current study was
achieved without the use of any supporting matrices or additional topical growth factor(s)
delivery. In our preliminary study, we have determined that while the density of grafted cells is
relatively low to fill the cavity-forming region, the grafted cells continue to proliferate after
grafting to the point when a cavity is near completely filled with grafted cells [unpublished data].
The cell proliferation is inhibited once the cavity is filled and after that the cells differentiate
normally. That the cells do not develop into pre-neoplastic or neoplastic cells has been assessed
in a 9-month tumorigenicity study with nude rats whose Th9 spinal cord segment was first
injured by contusion (manuscript in preparation). Similarly, using the same cell line as used in

our current study, we have previously reported a comparable low level of mitotic activity in

36

157



grafted cells at 6 weeks to 9 months after grafting in naive immunodeficient rats or

immunosuppressed minipigs [82].

Conclusions

In our current study, we demonstrate a functionally-defined treatment effect after spinal grafting
of human GMP-grade fetal spinal stem cells in immunosuppressed SD rats with previous L3
contusion injury. This treatment effect was expressed as a significant improvement in motor and
sensory function (gait/paw placement, stretch-induced muscle spasticity, and, mechanical and
thermal sensitivity). No significant differences were detected in other CatWalk parameters,
motor evoked potentials, open field locomotor (BBB) score or ladder climbing test. In addition,
an effective filling of trauma-induced spinal cavity with grafted cells was seen in HSSC-treated
animals at 2 months after grafting. Jointly, these data demonstrate that the use of this clinical
grade NSI-366RSC cell line with already established favorable clinical safety profile represent a

potential cell candidate for cell replacement therapy in patients with previous spinal traumatic
injury.
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Figure Legends

Figure 1A-E: Schematic diagram of experimental design.

A: To induce spinal cord injury, a 35 g circular rod was placed on the exposed 1.3 spinal segment
and spinal cord compressed in dorso-ventral direction for 15 min. B: Three days after injury,
animals were randomly assigned to experimental groups and received spinal graft of HSSC or
media only. A total of 12 injections were performed targeting the injury epicenter and adjacent
areas (see Spinal Injection Map). C: After spinal injections, animals survived for 2 months while
being continuously immunosuppressed and periodically tested for recovery of motor/sensory
functions, changes in motor evoked potentials (MEPs) and gastrocnemius muscle spasticity
response evoked by computer-controlled ankle rotation. D: At 2 months after treatment, animals
were perfusion fixed with 4% paraformaldehyde and spinal cord MRI-imaged in situ before
histological processing. E: After MRI imaging, spinal cords were dissected from the spinal
column and spinal blocks prepared for plastic embedding (injury epicenter region) or cryostat
sectioning and used for immunofluorescence staining (the regions just above and below the

injury epicenter).

Figure 2A-D: Improvement in hind paw positioning and amelioration of muscle spasticity

in SCT animals grafted with HSSC.

A: The CatWalk gait analysis of hind paw positioning was performed at 2 months after
treatment. In comparison to SCI control animals, a significant improvement was seen in HSSC-
grafted animals. B1-B3: An example of the sequence of paw step images taken from the

CatWalk software in naive (B1) SCl-control (B2) and SCI-HSSC-treated animals (B3). Note a
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near complete paw footprint overlap between the front and the hind paws in naive animals (B1)
but a substantial dissociation in the paw footprint overlap in SCI controls (B2). A clearly
recognizable improvement in paw footprint placement in SCI-HSSC-treated animals can be seen
(B3). C: Statistical analysis showed significant suppression of spasticity response (expressed as a
muscle resistance ratio: values at 2 months vs. 7 days post injury in “HIGH spasticity” HSSC-
treated animals if compared to “HIGH spasticity” controls. D: To identify the presence of muscle
spasticity in fully awake animals, the hind-paw ankle is rotated 40° at a velocity of 80°/sec using
computer-controlled ankle-rotational device. The spasticity response is identified by exacerbated
EMG activity measured in the gastrocnemius muscle and corresponding increase in muscle
resistance measured by digital transducer. In control SCI animals with developed spasticity (i.e.,
“high spasticity”/HIGH group), no change in spasticity response if compared to 7 days post-
vehicle injection was seen at 2 months (compare D1 to D3). In contrast to SCI control animals, a
clear decrease in spasticity response was seen in SCI-HSSC-treated animals at 2 months after
cell injections (compare D4 to D6). To identify the presence of mechanical resistance, animals
are anesthetized with isoflurane at the end of the recording session and the contribution of
mechanical resistance (i.e., isoflurane non-sensitive) is calculated. (D2, D5: data expressed as

mean+SEM; one-way ANOVAs).

Figure 3A-C: Amelioration of hypoesthesia in SCI-HSSC-grafted animals.

A & B: Baseline and biweckly assessments of perceptive thresholds for (A) mechanical and (B)
thermal stimuli, applied below the level of injury, showed a trend towards progressive recovery
in SCI-HSSC-grafted animals. C: When expressed as percentages of the Maximal Possible
Effect for mechanical and thermal perceptive thresholds improvements, SCI-HSSC-treated

animals showed significant improvements in sensory function for both mechanical and thermal
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components. (A-C: data expressed as meantSEM; A-B: repeated measures ANOVAs; (:

Student r-tests).

Figure 4A-D: Effective cavity-filling effect by transplanted cells in SCI HSSC-injected

animals.

At the end of the 2-month post-treatment survival, animals were perfusion fixed with 4%
paraformaldehvde, spinal column dissected and MRI-imaged in situ before spinal cord dissection
for further histological processing. A, B: 3-D MRI images of spinal cord segments in animals
with previous traumatic injury and treated with spinal HSSC' (A) or media (B) injections. Note
the near complete injected-cells cavity-filling effect in HSSC-treated animals. A1, A2, B1, B2:
To validate the presence of grafted cells or cavitation at the epicenter of injury, the same region
was histologically processed, semi-thin plastic sections prepared and compared to corresponding
MRI image (compare Al to A2 and Bl to B2). C: 2-D MRI image taken from naive-non-injured
animal. D: Quantification of the cavity and scar volume from serial MRI images showed a
significantly decreased cavity and scar volumes in SCI-HSSC-injected animals if compared to
media-injected SCI controls. (I): data expressed as meantSEM; Student #-tests), (Scale Bars: A,

B: Smm; Al, A2, B1, B2, C: 3 mm).

Figure 3A-G: Survival, differentiation and extensive axonal outgrowth from spinally
grafted HSSC. A: Grafted GFP+ or hNUMA-positive cells filling near completely the lesion
cavity at 8 weeks after grafting can be seen (vellow dotted area; inserts). B: Detail from “A”
depicting a dense GFP+ neurite network in the lateral funiculus (LF) and with numerous axons
projecting towards o-motoneurons and interneurons in the gray matter (insert). C: In arcas with a
dense GFP+ axodendritic network, clear hSYN immunoreactivity associated with GFP+

processes can be detected (vellow arrows). D: The majority of grafted hNUMA+ cells showed
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development of the neuronal hNSE/DCX+ phenotype. E, F: A subpopulation of grafted
hNUMA+ cells showed the astrocyte (hGFAP+) and oligodendrocyte (Olig 2) phenotype (F;
yellow arrows). G: Using mitotic marker Ki67, regularly distributed hNUMA/Ki67+ grafted
cells were identified (vellow arrows). (Scale Bars: A: 1.5 mm (inserts; 200 um); B: 600 pum
(insert: 75 um); C: 60 pm; D: 20 um; E-G; 10 um).

Figure 6A, B: Development of putative GABA-ergic synaptic contact between HSSC and

the host neurons.

A: Confocal analysis of hSYN/GFP/NeuN-stained sections shows numerous hSYN punctata
associated with GFP+ processes derived from grafted cells. Some of the hSYN/GFP+ terminals
were found to be in the vicinity of the host interneurons or o-motoneurons (A; inserts; white
arrows). B: Triple staining with GAD65+67/GFP/NeuN antibody showed numerous double-
stained GAD65+67/GFP+ terminals residing on or in the close vicinity of lumbar o-motoneurons

(white arrows). (Scale Bars: A: 150 pm (inserts: 30 um); B: 20 pm).

Figure 7A-C: Significant decrease in the dorsal horn CGRP immunoreactivity caudal to

the injury epicenter in SCI-HSSC-treated vs. SCI-control animals.

A-C: CGRP- (A), GAP-43- (B), and Ibal- (C) immunoreactivity in the dorsal horns (DH) caudal
of the injury epicenter at 2 months after L3 SCI. The region of interest (ROI) was defined as
outlined in B and C (left panels, red dotted line). A: The quantitative densitometry analygis of
CGRP-immunostained images in the dorsal horns of SCI-HSSC-treated animals (A2) showed
significantly decreased CGRP expression when compared to SCl-control animals (Al). B, C:
The dorsal horn GAP-43 or IB1 immunoreactivity was not significantly different between
experimental groups. (A-C: data expressed as mean=SEM; student #-tests). (Scale Bars: A - C:

500 pm).
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Supplemental Figures Legends

Supplemental Figure 1A-D: Effect of spinal HSSC grafting on locomotor function (BBB),
foot stepping angle, ladder climbing test and motor evoked potentials. A: Weekly
measurement of the BBB scores moditied for the L3 injuries (left y-axis) and regular BEB scores
(right y-axis) showed progressive recovery in both HSSC-grafted and control SCI animals.
While there was a trend toward better motor performance in HSSC-grafted-animals, this effect
was not significant for both scoring systems. B: Single Frame Analysis showed a tendency
towards regaining normal foot stepping angles between the paw and floor (measured at stance-
phase initiation; see ingert/drawing in B) in SCI-HSSC-treated animals. However, the angles
were not significantly improved if compared to SCI controls. C: Using the ladder ¢limbing test,
we found a significant decrease in number of correct steps in SCI animals if compared to naive
controls. No significant difference was seen between SCl-control and SCI-HSSC-treated animals
if analyzed at 2 months after treatments. D: Motor Evoked Potentials recorded at baseline (i.e.,
before injury) and at 8 weeks post injury showed a significant decrease only for the SCI-control

animals. No significant difference between HSSC-grafted and control SCI animals was detected.

Supplemental Figure 2A-D: Quantitative analysis of axonal survival in the epicenter of
injury showed no significant differences between SCI-control and SCI-HSSC-treated

animals.

A: Schematic diagram of the axon counting design used in our current study. Axons were

counted in plastic osmium-stained sections in the dorsal, lateral and ventral funiculi using ImagelJ
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software. An example of the detection threshold to identify individual axons in a selected field is
shown in A2 and A3. B: Transverse plastic section depicting a bilaterally distributed graft (red
dashed line) and completely filling the cavity created by previous spinal compression. Note that
the fusion of the graft with the host tissue is so advanced that the border between the previous
injury-evoked cavity and the graft is difficult to delineate (red asterisks). C: An example of
transverse spinal cord section taken from an animal receiving media injection. An extensive
cavity occupying near completely the region of previous gray matter can be seen. D:
Quantification of axons in SCI-control and SCI-HSSC-treated animals showed no significant
differences if analyzed in dorsal, lateral or ventral funiculi or if sub-divided into axons of
different caliber (S=small=0.3-1.0 um; M=medium=1.0-2.5 um; L=large=2.5-10 wm). (Scale

Bars: A-C: 500 pm).
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Abstract
Achievement of effective, safe and long-term immunosuppression represents one of the

challenges in experimental allogeneic and xenogeneic cell and organ transplantation. The goal of the
present study was to develop a reliable, long-term immunosuppression protocol in Sprague-Dawley (SD)
rats by: 1) comparing the pharmacokinetics of four different subcutanecously delivered/implanted
tacrolimus (TAC) formulations, including: i) caster oil/saline solution, ii) unilamellar or multilamellar
liposomes, iii) biodegradable microspheres, and iv) biodegradable 3-month lasting pellets; and 2) defining
the survival and immune response in animals receiving spinal injections of human neural precursors at 6
weeks to 3 months after cell grafting. In animals implanted with TAC pellets (3.4 mg/kg/day), a stable 3-
month lasting plasma concentration of TAC averaging 19.1+4.9 ng/ml was measured. Analysis of grafted
cell survival in SOD+ or spinal trauma-injured SD rats immunosuppressed with 3-month lasting TAC
pellets (3.4-5.1 mg/kg/day) showed the consistent presence of implanted human neurons with minimal or
no local T-cell infiltration. These data demonstrate that the use of TAC pellets can represent an effective,
long-lasting immunosuppressive drug delivery system that is safe, simple to implement and is associated
with a long-term human neural precursor survival after grafting into the spinal cord of SOD+ or spinal

trauma-injured SD rats.

Key words: immunosuppression, xenograft, human neural precursors, spinal grafting, Sprague-

Dawley rat, T-lvmphocyte, tacrolimus pellet
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Introduction

One of the essential requirements for successful translation of experimentally-defined cell-based
replacement therapies which utilize the allogeneic or xXenogeneic cell grafts into clinical practice is the
development of safe and effective immunosuppression protocols that will permit long-term survival and
maturation of grafted cells. Current clinical and experimental immunosuppression protocols typically use
single or combined immunosuppressive drug regimens with drugs delivered orally, intraperitoneally,
intravenously or subcutancously in a single daily dose or divided into multiple daily doses [see reviews
(Barraclough, et al., 2011, Halloran, 1996, MacGregor and Bradley, 1995, Wente, et al., 2006)]. While in
human clinical settings a targeted plasma concentration of a variety of immunosuppressant drugs can
effectively be achieved by a drug dose titration, to accomplish comparable consistency in targeted plasma
levels in animal studies remains a major challenge.

Besides cyclosporines, mycophenolate mofetil (MFF), rapamycin or prednisolone, TAC (FK-
506, Prograf) represents an immunosuppressant of choice and is frequently used as a solo therapy or in
combination with other immunosuppressive drugs (i.¢., MFF) (Hefferan, et al., 2011, Reis, ¢t al., 1998, Xu,
et al., 2010) [see reviews (Lama, et al., 2003, Su, et al., 2011)]. TAC couples with immunophiling, proteins
termed FK-506 binding proteins (FKBPs) (Sickierka, et al., 1989, Thomson, et al., 1993). The formation of
a pentameric complex comprised of TAC, FKBPs, calcineuring A and B and calmodulin results in the
inhibition of the phosphatase activity of calcineurin (Halloran, 1996, McKeon, 1991). The action of
transcription factors requiring dephosphorylation for transport to the cell nucleus is inhibited and leads to
suppression of T-cell proliferation and function (Thomson, et al., 1993).

In human ¢linical allogeneic organ transplantation, the recommended concentration of TAC in blood
is in the range of 10-20 ng/ml (Pirsch, et al., 1997, Przepiorka, et al., 1999, Staatz and Tett, 2004) and is
effective in maintaining long-term survival of transplanted solid organs (such as kidney, bone marrow or
liver) with tolerable side effects typically presented as nephrotoxicity, neurotoxicity, gastrointestinal toxicity
or drug-induced diabetes (Vicari-Christensen, et al., 2009). In experimental allograft or xenograft animal
studies that use rodents (mice, rats) or minipigs as recipients, TAC is typically administered using a
chronically implanted intravenous catheter, intraperitoneally or subcutancously, with doses ranging from
0.05-3 mg/ke/24 hrs (Gold, et al., 1995, Hefferan, et al., 2011, Saxena, et al., 2007, Tze, et al., 1992,
Usvald, et al.,, 2010). However, despite the use of such aggressive immunosuppressive protocols,
experimental xenograft studies are frequently hampered by inconsistent graft survival particularly seen in

long-term survival studies. It is believed that the oscillation in plasma drug concentrations and/or

3
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msufficient target plasma levels may in part account for inconsistent graft survival. In addition, the
requirements of BID injections in order to achieve satisfactory TAC levels and to minimize toxicity make
this approach 1) labor intensive, i1) frequently associated with side effects resulting from repetitive animal
injections (such as local inflammatory changes and infection), and iii) associated with systemic side effects
such as nephrotoxicity and hepatotoxicity [see reviews (Finn, 1999, Gijsen, et al., 2010, Teh, et al., 2011)].

To extend the half-life of administered drugs in general, several longer-releasing formulations were
developed. First, the use of TAC-loaded liposomes has been shown to provide moderate prolongation of the
TAC half-life in the whole blood of naive rats in comparison with conventional i.v. injections of TAC
diluted in saline (Ko, et al., 1994, McAlister, 1998). Second, the use of biodegradable microspheres was
shown to provide a relatively stable level of TAC in whole blood for up to 10-21 days after single s.c.
administration (Mivamoto, et al., 2004, Wang, et al., 2004). Third, the use of implantable biodegradable
pellets has been successfully used to deliver a variety of synthetic drugs or hormones in human patients and
in animal experimental models and showed up to 3-6 months of stable drug release after a single pellet
implantation (Jockenhovel, et al., 1996, Packard, 1992, Srinivasan, et al., 2002, Studd and Magos, 1987). To
our knowledge, no immunosuppressive pellet formulation has been reported to be successfully used in
rodent or other animal models of xenogeneic neural precursor transplantation.

Accordingly, the goal of the present study was two-fold. First we characterized the pharmacokinetics of
four different subcutaneously delivered/implanted TAC formulations, including: i) caster oil/saline solution,
i) unilamellar or multilamellar liposomes, iii) biodegradable microspheres, and 1v) biodegradable 3-month
lasting pellets. The optimal TAC formulation, as defined by simplicity of Tac delivery and
stable/predictable blood Tac concentration was then selected and used in the second component of our
study. The primary goal of the second part of the study was to validate the level of functionally effective

immunosuppression in a separate group of SOD1%#

transgenic or gpinal trauma-injured SD rats implanted
with 3-month lasting TAC pellets and grafted spinally with human fetal gpinal stem cells (hSSC) or human
ES-derived neural precursors (ES-NPC). The survival of grafted cells was determined at 1-3 months after
grafting using human-specific antibodies and confocal microscopy.

In addition, the potency of TAC pellet-induced immunosuppression was validated by quantitative
analysis of the circulating T-cell population (CD45, CD4, CD8) and by qualitative and quantitative analysis
of the infiltrating T-lymphocytes (CD45, CD4, CD8) in cell-grafted spinal cord regions.

Our results indicate that s.c. implanted 3-month lasting biodegradable TAC pellets represent an effective,

safe and simple method to achieve long lasting and effective immunosuppression as evidenced by 1)
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congistent xenograft survival and cell maturation, ii) near complete suppression of grafted site T-cell

infiltration, and iii) suppression of circulating blood T-cell concentration.

Material and Methods

All procedures were approved by the Institutional Animal Care and Use Committecs by the
University of California, San Diego and by the Czech Academy of Sciences. Adult Sprague-Dawley albino
rats (Velaz Praha, Czech Republic and Harlan Industries, Indianapolis) and SOD1%* ALS rats (SOD+)
(UCSD colony, Dr. D. W. Cleveland, San Diego, California; 49-37 days old) were used in experiments.
Animals were housed in standard cages with free access to food and water.

Animal experimental groups were divided into 2 principal studies: i) TAC pharmacokinetic study,

and i1) spinal grafting of human neural precursors in TAC pellet-immmunosuppressed animals.

TAC pharmacokinetic studyv:

Four different TAC (Prograf®, Astellas Pharma, Deerfield, Illinois, USA) vehicle-delivery systems were

used and delivered into the subcutaneous space (see Table 1 for summary).

1) TAC caster oil/saline solution (Groups No. 1 and No. 2):

Because the hydrophobic nature of TAC powder and its poor solubility in water solutions (e.g., saline)
(Kino, et al., 1987), TAC powder was dissolved in a mixture of 100% ethanol (8% of total volume), caster
oil (2% of total volume) and sterile saline for injections (90% of total volume; Fig.1 G). Two dosing designs
were studied. In the first dosing design, animals (n=4; Grp. No. 1) received 3 mg/kg of TAC in 24-hr
intervals for a total of 5 days. Blood samples for TAC measurement were collected at 2, 9, 24, 72 and 120
hrs. At 24 and 72 hrs the blood samples were collected just before subsequent TAC injection. In the second
dosing design, animals (n=4; Grp. No. 2) received 1.5 mg/kg of TAC in 12-hr intervals for a total of 5 days.
Blood samples for TAC measurements were collected at 2, 12, 14, 24 and 120 hrs. At 12 and 24 hrs the
blood samples were collected just before subsequent TAC injections.

2) TAC liposomes (Groups No. 3 and No. 4):

Two structurally different liposome designs (unilamellar or multilamellar; Fig.1 I, J) were used (Encapsula
NanoSciences LLC, TN). In the first group, TAC-loaded unilamellar liposomes (n=4; 3 mg’kg; Gip. No. 3)
were used. In the second group, TAC-loaded multilamellar liposomes (n=4; 3 mg/kg, Grp. No. 4) were
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used. In both groups, TAC liposomes were injected as a single bolus. Blood samples for TAC measurements
were collected at 2, 12, 24, 48 and 72 hrs.
3) TAC microspheres (Groups No. 5 and No. 6):

TAC-containing microspheres were prepared from tacrolimus powder and poly (D,L-lactide-coglycolide)
copolymer (Resomer LG 503H, Aldrich) adopting the procedure previously described (Wang, et al., 2004).
The tacrolimus content in the resulting dry TAC microspheres was 45 mg TAC/g of microspheres as
determined by HPLC. Rats were injected with a single bolus of TAC-containing microspheres at a dose of
10 mg/kg (n=3; Grp. No. 5) or 20 mg/kg (n=3; Grp. No. 6). Blood samples for TAC measurements were
collected at 2,9, 24 hrs and at 2, 4, 7, 10, 13, 16, 19, and 22 days.

4) TAC releasable pellets (Groups Ne. 7, No. 8 and Ne. 9):

TAC-containing 3-month releasable pellets (45, 65 or 90 mg/pellet; Innovative Research of America, FL,
USA or Tacropellet, MD, USA; Fig. 1H) were implanted subcutancously in the interscapular region of the
neck in isoflurane (2%)-anesthetized rats. Animals with three different body weight ranges (120-350 g)
were emploved resulting into 3 different dosing groups releasing 1.8 mg'kg/24 hrs (n=4; Gr. No. 7), 3.4
mg/kg/24 hrs (n=3; Grp. No. 8) and 5.1 mg/kg/24 hrs (n=6; Grp. No. 9) of TAC. Blood samples for TAC
measurements were collected periodically between 5-140 days after TAC pellet implant (see Table 1 for

details).

Blood collection and TAC analysis:

In all experimental groups, blood samples were collected from the saphenous vein in fully awake restrained
animals. The lateral aspect of the hind leg was shaved, cleaned with 70% EtOH and disinfected with
Chlorhexidine. The leg was immobilized in the extended position by applying gentle downward pressure
immediately above the knee joint. Petroleum jelly was applied on the site in order to visualize the saphenous
vein and to optimize the blood flow. A 20 gauge needle was used to puncture the vein. We first punctured
the vein proximal to the ankle and then moved up if additional punctures were necessary (no more than
three needle punctures were attempted in any of blood collection sessions). A maximum of 200 ul of blood
was collected per time point. Blood was collected into EDTA tubes and kept at -20°C until analysis using 2
equivalent validated assays: chemiluminescent microparticle immunoassay (CMIA) and liquid

chromatography/mass spectrometry (LC/MS/MS).

Chemiluminescent microparticle immunoassay (CAMIA). CMIA — ARCHITECT TAC (Abbot Architect,
Chicago, Illinois, USA) assay was used according to the manufacturer’s protocol. The detection limits of

quantification for this method were 2 ng/ml (min) and 30 ng/ml (max), respectively. If the concentration of
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TAC in the sample exceeded the 30 ng/ml limit, blood was diluted with saline (in a 1:1 ratio) and the

measurement repeated. The CMIA method was used for quantification in groups 1, 2, 3, 4 and 8.

High performance liguid chromatography — mass spectrometry (LC/MSMS).

A guard column CI18, 4 x 2.0 mm (Phenomenex, Torrance, California, USA) equipped with ABI 4000
QTrap linear ion trap mass spectrometer (AB Sciex, Concord, Canada) was used. Whole blood samples
were prepared as follows: 40 ul of sample (EDTA whole blood) was mixed with 140 ul protein precipitation
solution (conc. ascomycin and zinc sulfate dissolved in methanol). After centrifugation (17,000 x g for 5
min.), 40 ul of the supermatant was transferred to autosampler vials for injection into the LC/MS/MS
system. Guard column C18 was washed for 1 min. (isocratic flow rate, 600 ul/min.) with a mixture of
methanol containing 2.5 mM/l ammonium acetate and distilled water containing 2.5 mM/1 ammonium
acetate (ratio 75:25). Thereafter, the mobile phase was changed to 2.5 mM ammonium acetate dissolved in
methanol (100% of the volume, flow rate 600 ul/min., time 1.50 min) and TAC/ascomycin were eluted to
the detector. The column was reconditioned with methanol containing 2.5 mM/l ammonium acetate (75% of
the volume, flow rate 600 pul/min., time 1.50 min). MS/MS analysis was performed in multiple reactions
monitoring mode using transactions m/z 821.6>768.5 for TAC and m/z 809.5>756.5 for ascomycin. System
control and data acquisition were performed using Analyst 1.2 software (Applied Biosystems/MDS Sciex)
for automated data processing. The detection limits of quantification for this method were 2 ng/ml (min) and
50 ng/ml (max), respectively. LC/MS/MS method was also used for determination of concentration of the

TAC in whole blood in groups 5, 6, 7 and 9.

Assessment of Tacrolimus pellets — induced side effects:

Animals were evaluated daily for the presence of motor dysfunction (upper extremity motor function
assessment was used in paraplegic spinal trauma animals), agitation, jumpiness, and tactile allodynia. In
addition, animals were monitored for the presence of other potentially Tac-treatment-related signs of
toxicity including: scruffy coat, porphyrin (an indicator of stress, known as “red tears”™, often mistaken as
blood), weight loss, hypothermia, pale eyes (a reliable indicator of anemia), soft stool, diarrhea, lethargy,
vocalization, and swollenness of the pellet implanted subcutancous site (potential indicator of a local cyst

formation).
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Spinal cord grafting of human fetal tissue-derived stem cells or embrvonic cell line-derived neural
precursors:

To assess the effectiveness of immunosuppression in TAC pellet-immunosuppressed rats, human fetal
spinal cord derived stem cells (hSSC) or human embryonic cell line (HUES-7)-derived neural precursors
(HUES7-NPC) were emploved for intraspinal grafting in transgenic SOD+, (n=10) rats or in SD rats with

previous 1.3 compression injury ( n=4) (see Table 2 for experimental cell grafting groups).

Derivation of the human fetal spinal stem cells and HUES-7-derived neural precursors: Derivation of both
cell lines was described in detail in our previous studies (Johe, et al., 1996, Kakinohana, et al., 2012,
Usvald, et al., 2010, Yuan, et al., 2011). Briefly, human fetal spinal stem cells (Neuralstem, Inc., Rockville,
Maryland, USA) were derived from the cervical-upper thoracic region of spinal cord tissue obtained from a
single 8-week human fetus after an elective abortion. One day prior to each surgery day, one cryopreserved
vial of the previously prepared neural precursors was washed, concentrated in hibernation buffer, and
shipped from the cell preparation site (Neuralstem, Inc., Rockville, MD, USA) to the surgery site (UCSD,
San Diego, CA, USA) at 2-8°C by overnight delivery. Upon receipt the following day, the cells were used
directly for implantation without further manipulation. Before and after implantation, the viability of cells
was measured with trypan blue (0.4%; Sigma). On average, 88-93% viability was seen.

Second, the human embryonic stem cells (hESCs; HUES-7 line; Melton Iaboratory, Harvard
University, Massachusetts, USA), were cultured on a mitomycin C-treated mouse embryonic fibroblast
(MEF) feeder layer in HUES hESC medium. Columnar rosettes were manually isolated from induced
embryoid bodies and passaged every 3 days to remove contaminating cells. In this stage, NPC were
harvested and FAC-sorted and CD184+, CD44-, CD271-, CD24+ cell populations further expanded on
PLO/L- coated plates using modified N2 media. For cell growth, 10 ng/ml bFGF as the sole mitogen was
added. NPC were expanded for 10-20 passages and frozen aliquots prepared from passage 15-20. On
surgery day, one cryopreserved vial of the previously prepared passage was thawed, washed and
concentrated in hibernation buffer. Before and after implantation, the viability of cells was measured with

trypan blue (0.4%; Sigma). On average, 85-95% viability was seen.

Spinal cord cell-grafting procedure:

SOD+ rats: animals weighing 267+20.9 g (Group No. 7, age 57 days; n=4; Table 1 and Table 2) and
203.6+44 g (Group No. 9, age 49-52 days; n=6; Table 2) received spinal grafts of hSSC or HUES7- NPC at
13 days after TAC pellet implantation. To implant cells, the previously described technique was used

(Kakinohana, et al., 2004). Rats were anesthetized with isoflurane (2% maintenance in room air), placed
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into a spinal unit apparatus (Stoelting, Wood Dale, Illinois, USA) and a partial Th12-L1 laminectomy was
performed using a dental drill (exposing the dorsal surface of 1.2-1.5 segments). Using a 33-gauge needle
connected to a microinjector (Kopf Instruments, Tujunga, California, USA), the spinal cord was injected
with 1 pl {approx. 15,000 cells per injection) of the hSSC or HUES7- NPC cells in hibernation buffer. The
duration of each injection was 60 s followed by a 30 s pause before needle withdrawal. The center of the
injection was targeted into the base of the ventral horn. 10 injections (approx. 800 um rostrocaudally apart)
were made on the left side of the lumbar spinal cord. After injections, the incision was cleaned with
penicillin-streptomycin solution and sutured in two layers. Animals were injected with analgesics and
antibiotics and were allowed to recover. For the first 14 days after transplantation, additional
immunosuppression was performed as previously described (Hefteran, et al., 2011) with daily injection of
mycophenolate mofetil (MMF, Cellcept, Roche Pharmaceutical, Nutley, New Jersey, USA, dose 30 mg/kg).
Animals were allowed to survive until they reached the endstage of the disease (Group 7; 33-77 days after
cell grafting, for details see Table 2) or until they lost 10% of their bodyweight caused by the progression of
the disease (Group 9; 32-70 days after cell grafting, for details see Table 2).

Spinal cord (I.3) contused rats: four female SD rats (n=4; Group No.10; BW: 205 +11.9 g) were

anesthetized with isoflurane (2% maintenance in room air), placed into a spinal unit apparatus (Stoelting,
Wood Dale, Illinois, USA) and a partial Th13 laminectomy was performed using a dental drill (exposing the
dorsal surface of 1.3 spinal segment). Spinal cord compression injury was induced by placing a 3.2 mm
acrylic rod (weight=32 g) for 15 min on the dorsal surface of the exposed L3 segment. After compression,
the incision was cleaned with penicillin-streptomycin solution and sutured in two layers. Animals were
mmjected with Depomedrol (methylprednisolone, 10 mg/kg) and antibiotics (Cefazoline, 10 mg/kg) and were
allowed to recover. Three days after injury animals were re-anesthetized, previously injured L3 spinal
segment exposed and received spinal grafts (total of 5 injections; 1 ul per injection, approx. 400 um
rostrocaudally apart) of HUES7-NPC targeted into the epicenter and just above and below the injury. The
following immunosuppression protocol was used: for the initial 14 days after cell grafting, animals received
combined immunosuppression composed of daily single s.c. injection of MMF (30 mgkg) and BID
injections of TAC (1.5 mg/kg/12 hrs). At 14 days, animals were implanted with TAC pellets delivering the
TAC dose of 4.9+0.27 mg/kg/day. Because our initial PK study showed that on average 10-15 days is
required to achieve a targeted plasma TAC concentration (i.e., above 15 ng/ml), animals continued to
receive BID injections of TAC (1.5 mg/kg/12 hrs) for an additional 12 days. MFF treatment (30 mg/kg/day;
s.c.) was only used for the initial 14 days after cell grafting. In this experimental group, animals survived

105 days after cell grafting (for details see Table 2).
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Naive non-immunosuppressed SD rats: four female SD rats (n=4; Group No.11; BW: 367 +14 g) received
lumbar spinal grafts of hSSC (total of 5 injections; 1 ul per injection, approx. 400 um rostrocaudally apart;
approx. 15,000 cells per injection) as described. No immunosuppression was performed and animals

survived for 14 days.

Perfusion, fixation and immunofluorescence staining of spinal cord sections

Rats were deeply anesthetized with pentobarbital and phenytoin and transcardially perfused with 200
ml of heparinized saline followed by 250 ml of 4% paraformaldehyde in PBS. The spinal cords were
dissected and post-fixed in 4% formaldehyde in PBS overnight at 4°C and then cryoprotected in 30%
sucrose PBS until transverse or longitudinal sections (40-um-thick) were cut on a cryostat and stored
in PBS. Sections were immunostained overnight at 4°C with the following primary human-specific (h)
or non-gpecific antibodies made in PBS with 0.2% Triton X-100: mouse anti-nuclear matrix protein/h-
nuc (hNUMA; 1:100; Millipore, Temecula, California, USA), rabbit anti-human neuron-specific
enolase (hNSE, 1:500, Chemicon), mouse anti-human synaptophysin (hSYN, Chemicon; 1:2000),
rabbit anti-human glial fibrillary acidic protein (hGFAP, 1:500, Origene, Rockville, Maryland, USA),
goat anti-doublecortin (DCX; 1:1000; Millipore), goat anti-choline acetyltransferase (CHAT, 1:50,
Chemicon), mouse anti neuronal nuclei antigen (NeuN, 1:1000, Chemicon), mouse anti-CD4 and anti-
CD8 antibodies (1:300; AbD Serotec, Raleigh, North Carolina, USA), mouse anti-CD3 and anti-CD43
antibodies (1:1000, e-Bioscience, San Diego, California, USA), rabbit anti-Ibal (1:1000, Wako,
Richmond, Virginia, USA), mouse anti-RT1B (MHC class II) (1:500, BD Biosciences, San Diego,
California, USA), mouse anti CD11b (1:200, BD Biosciences, San Diego, California, USA) and
donkey anti-rat IgG (1:500, Invitrogen). After incubation with primary antibodies, sections were
washed three times in PBS and incubated with fluorescent-conjugated secondary donkey anti-mouse,
donkey anti-rabbit or donkey anti-goat antibodies (Alexa Fluor 488, 546 or 647, 1:250, Invitrogen) and
DAPI for general nuclear staining. Sections were then mounted on slides, dried at room temperature

and covered with a Prolong anti-fade kit (Invitrogen).

Iluorescent microscopy and leukocyvte quantification

Fluorescence-stained sections were analyzed using a Leica DMLB Microscope with a Zeiss
Axiocam MRm monochrome camera and Olympus FV1000 confocal deconvolution microscope. Images
were captured and analysed using Stereo Investigator software (MBF Bioscience, Williston, Vermont, USA)
and Olympus Fluoview FV10-ASW (Olympus Corporation, Tokyo, Japan). Z-stacks, three-dimensional,

and orthogonal views were generated in Volocity High Performance 3D Imaging Software. All image
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manipulations were limited to brightness/contrast, and were performed in a standardized manner for all
images. Images were assembled into figures using Adobe Illustrator (Adobe Systems, Inc., San Jose, CA).

Semi-quantitative evaluation of grafted spinal cord tissue infiltration with different types of
leukocytes in animals immunosuppressed using TAC biodegradable 3-month lasting pellets was performed
using 40-um-thick coronal sections. Quantification was performed in 5 sections per animal in TAC dose
groups of 1.8 mg/kg/day and 5.1 mg/kg/day (see Table 1, Groups No. 7 and No. 9; n=3 for each group).

The number of different classes of leukocytes positive for CD45, CD8/CD45, CD4/CD45,
RT1B/CD45 and CD11B were counted and analyzed separately with respect to the location of positive cells
in: 1) the core of the graft; ii) the pial surface of the graft, and iii) the spinal cord parenchyma outside of the
graft. The degree of leucocyte infiltration was graded as follows: 0- absence of immune cells, *- 1-10 cells,

2 11-50 cells, ¥** =31 cells per section.

Quantitative analvsis of grafted cell survival

Quantitative analysis of grafted cell survival was performed in animals immunosuppressed
with 1.8 mg/kg/day of Tac or 5.1 mg/kg/day of Tac (Tac pellet groups No. 7 and 9; see Table 1 and 2) and
grafted with HUES7-NSCs or hSCC (n=2 for each Tac dose and cell line).

For quantification, 5 transverse spinal cord sections were selected (minimum 500 um apart)
from the cell-grafied segments from each rat. An image of virtual tissue of the whole hNUMA-stained
section was captured at 10X using Olympus Imager M2 microscope equipped with MBF Stereo Investigator
System. The total number of NUMA+ nuclei was then counted using Imagel "Analyze Particles" plug-in
function after setting an identical detection threshold for all analyzed sections. The number of counted cells
was then averaged and expressed as number of cells counted per section for each Tac dose and grafted cell
line analyzed.

All images used for quantification (i.e., leucocyte-stained and hNUMA+ stained sections)

were examined by a blinded observer.

Flow cvtometry

Peripheral blood from rats (saphenous vein) was collected into microtainer EDTA tubes (BD
Biosciences, San Jose, CA, USA). Red bloods cells were lysed using RBC lysis buffer (Sigma-Aldrich, St.
Louis, MO, USA). The lysed blood was stained with antibodies directed to rat CD4 , CDg, CD45, and CD3
(Biosciences, San Diego, CA, USA). A minimum of 10,000 live events (defined by FSC and 7-AAD) was
acquired on a six-color BD FACSC. Analysis was done using FACSDiva software. CD4+ and CD8+ cell
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percentages was measured using a T cell lineage gate defined by 7TAAD- CD45+ CD3+ small lymphocytic

cells.
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Results
Pharmacokinetic profile after subcutaneous TAC delivery (Fig. 1)

Four different TAC vehicle-delivery systems were used for subcutaneous delivery (see Table 1 for details).
1) TAC-containing caster oil/saline golution: the whole blood TAC concentration in animals receiving a
single bolus of TAC (3 mg/kg) was on average 39.5 ng/ml at 9 hrs after injection and decreased to 9 ng/ml
at 24 hrs. With continuing daily injections at the same dose (i.e., 3 mg/kg), the plasma concentration of
TAC was 12.2 and 7.2 ng/ml at 72 and 120 hrs, respectively (i.e., at 24 hrs after the previous injection)
(Fig. 1A); the whole blood TAC concentration in animals receiving a single bolus of TAC (1.5 mg/kg/BID)
was 11.9 ng/ml at 12 hrs after injection. With continuing injections every 12 hrs at the same dose (i.e., 1.5
mg/kg), the blood concentration of TAC was on average 13.5 and 14.9 ng/ml at 24 and 120 hrs,
respectively (i.e., at 12 hrs after the previous injection delivered at 12 hrs and 108 hrs, respectively) (Fig.
1B). 2) TAC-containing unilamellar or multilamellar liposomes: the blood TAC concentration in animals
receiving a single bolus of unilamellar or multilamellar liposomes-containing TAC (3 mgkg) was on
average 52.9 (unilamellar liposomes) and 32 ng/ml (multilamellar liposomes) at 12 hrs and decreased to
6.1 (unilamellar) and 3.6 ng/ml (multilamellar) at 72 hrs, respectively (Fig. 1C). 3) TAC-containing
microspheres: the whole blood TAC concentration in animals receiving a single bolus of TAC-containing
microspheres (20 mg/kg or 10 mg/kg) showed a biphasic TAC release profile. The first peak was measured
at 4 days after delivery and was 19.6 (20 mg/kg dose) and 6.4 ng/ml (10 mg/kg dose), respectively. The
second peak was measured at 12 days after delivery and was 12.6 (20 mg/kg dose) and 8.3 ng/ml (10
mg/kg dose), respectively. The TAC concentration at 19 days after delivery was on average 1.5 and 1.7
ng/ml in 20 mg/kg and 10 mg/kg group, respectively (Fig. 1D). 4) TAC-containing pellets: groups of
animals were implanted with 3-month releasable TAC pellets releasing TAC at 1.9, 3.4 or 5.1 mg/kg/day.
In the 1.9 mg/kg group (n= 4) the peak value of 11.1 ng/ml was measured 13 days after pellet implantation
and then gradually decreased to 2.8 ng/ml at 90 days. In the 3.4 mg/kg group (n=3) the peak TAC
concentration was measured at 38 days after pellet implantation and was on average 29.4 ng/ml. At 3
months the TAC levels were 19.1 ng/ml. In the 5.1 mg/kg group (n=6) the peak of TAC concentration was
detected at 27 days and was 46 ng/ml. At 33 days the TAC concentration was 41.7 ng/ml (Fig. 1E, F).
Macroscopical and microscopical images of all Tac formulations used in this study including caster oil-

saline, 90 mg pellet, unilamellar or multilamellar liposomes and microspheres is shown in Fig.1 G-K.
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Tolerability of SD rats to long-term TAC pellet-induced immunosuppression

Animals implanted with 3-month releasable pellets (dose 1.9 mg/kg/day) showed good
tolerability for up to 3 months after pellet implantation and no detectable clinically-defined side effects
were noted.

In the animal group implanted with 3.4 mg/kg/day TAC pellets, good tolerability was seen
for up to 3 months without any prophylactic antibiotic treatment. Three animals were allowed to survive
for an additional 2 months while a progressively decreasing TAC blood concentration was monitored. At
the end of 5 months, 2 animals succumbed to infection, which was determined to be of gastrointestinal
origin.

In the animal group receiving the highest TAC dose (5.1 mg/kg/day), good tolerability was
seen for up to 6-7 weeks after pellet implantation. From the total number of 60 animals so far tested in
our laboratory with this dose, 3 animals showed nephrotoxicity at 7-8 weeks. Clinically, these animals
showed increased agitation and tactile allodynia. In all 3 animals plasma TAC levels were higher than 60
ng/ml. Once these symptoms were identified, the animals usually died within 2-3 days. Postmortem
necropsy showed clear kidney atrophy and the presence of blood in the urine (i.e., hematuria). An
additional 4 animals were found dead without any pre-clinical signs of toxicity between 3-8 weeks after
pellet implantation. In 6 of 44 implanted animals, a cyst partially filled with serous fluid and surrounding

the pellet implanted-subcutancous region was identified.

Survival and maturation of spinally grafted human fetal spinal cord stem cells (hSSC) or human
ES-derived neural precursors (HUES7-NPC) in SOD+ rats and TAC-dose dependent suppression
of T-cell infiltration (Figs. 2, 3)

To wvalidate the effectiveness of TAC pellet-induced immunosuppression in an experimental
xenograft design, transgenic SOD+ rats were implanted with TAC pellets and then received spinal grafts
of hSSC or HUES7-NPC 13 days after TAC pellet implantation. Based on the initial pharmacokinetic
study, 3 groups of transgenic SOD+ rats previously implanted with TAC pellets delivering either 1.9
mg/kg/day, 3.4 mg/kg/day or 5.1 mg/kg/day of TAC were used for cell grafting. In addition, a group of
SD rats with previous L3-4 compression injury were used. Spinal trauma animals were grafted with

HUES7-NPC. Animals in all experimental groups survived between 32-105 days after cell grafting (see
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Table 2 for experimental groups). In general, independent of the TAC dose group and grafted cell line,
comparable long-term engraftment and maturation of grafted cells was seen in SOD+ animals.

In the 1.9 mg/kg/day TAC group (SOD+ rats) grafted with HUES7-NPC, triple-staining with
human-specific nuclear marker (WNUMA), early postmitotic neuronal marker DCX and human-specific
GFAP antibody (hGFAP) of transverse spinal cord sections taken from grafted spinal segments showed
well engrafted hNUMA+ cell populations composed of DCX+ neurons and hGFAP astrocytes at 77 days
after grafting (Fig. 2A-D). Double-staining with NeuN (neuronal nuclei antigen) and hNUMA showed
that the majority of ANUME+ cells in the gray matter acquired NeuN immunoreactivity (Fig. 2E; insert).
Confocal analysis of DCX/hSYN (synaptophysin)/ NeuN-stained sections showed a dense population of
hSyn+ terminals residing in the vicinity of wventral a-motoneurons and were associated with DCX+
processes (Fig. 2F, G).

The degree of T-cell infiltration was probed by staining with CD45, CD4 and CD8 antibodies
(see Table 3 for quantitative analysis). High-density CD45+ cell populations were identified typically at
the core or at the periphery of cell-grafted regions (Fig. 2H-J). In the same areas CD4/8+ lymphocytes
surrounded by activated Ibal immunoreactive microglial cells were seen (Fig. 2ZK-M). Double-staining
with CD45 and CD8 antibody showed a clear population of CD45/CD8+ c¢ells in the vicinity of
hNUMA+ grafted cells (Fig. 2N; vellow arrows).

In the 5.1 mg/kg/day TAC group (SOD+ rats) grafted with hSSC, double-staining with
hNUMA and DCX antibody showed a robust cell engraftment with high population of hNUMA/DCX+
grafted neurons throughout the grafted region and extending from the dorsal horn to ventral gray matter
at 70 days after cell grafting (Fig. 3A). Numerous solitary hNUMA/DCX+ neurons which migrated from
the core of the graft were also identified (Fig. 3B; inserts). Staining with human specific synaptophysin
antibody showed a wide-spread hSYN punctate-like staining pattern throughout the grafted region (Fig.
3C). In the same areas a high density of hGFAP+ astrocytes were also seen (Fig. 3C-insert). Double
staining with DCX and human-specific NSE antibody (hNSE) showed that in areas with high density of
DCX+ processes solitary hNSE+ neurons were also present (Fig. 3D).

Quantitative analysis of hNUMA+ cells in 1.9 mg/kg/day TAC group showed on average
2712+320 cells in HUES7-NPC-grafted animals (n=2) and 1772+629 cells in hSSC-grafted group (n=2).
In the 5.1 mg/kg/day TAC group on average 2750+527 cells were counted in HUES7-NPC-grafted
animals (n=2) and 21644638 cells were counted in the hSSC-grafted group (n=2).

In both TAC dose groups (3.4 and 3.1 mg/kg/day), staining with CD45, CD4 and CD8

markers showed a similar pattern. The number of CD45+ stained cells was relatively low (if compared to
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1.9 mg/kg/day TAC group; seec Table 3 for quantitative analysis) with the majority of CD45+ cells
typically found at the periphery of individual grafts (Fig. 3E-G). Staining with CD4/8 antibody showed
only sporadic presence of CD4/8+ cells (Fig. 3H-J) and the majority of CD45+ cells found in grafted
DCX+ regions were CD8 negative (Fig. 3K; vellow arrows).

Survival and maturation of spinally grafted HUES7-NPC in adult SD rats with previous spinal Th9
contusion (Fig. 4)

To characterize the survival of spinally grafted human ES-derived neural precursors, adult
SD rats with previous 1.3 spinal contusion injury received spinal grafts of HUES7-NPC at 3 days after
injury and survived for 3 months. The dose of TAC delivered by implanted TAC pellet was 4.9
mg/kg/day. Immunofluorescence analysis of hNSE/hNUMA/DCX triple-stained sections showed an
advanced stage of neuronal maturation as evidenced by an intense hNSE immunoreactivity (Fig. 4A;
inserts). Numerous double stained hNSE/DCX solitary neurons which migrated outside of the grafts
were also identified (Fig. 4B-D). Similarly as in SOD+ rats immunosuppressed with a high TAC dose,
staining with CD43 antibody revealed only occasional presence of CD45+ cells at the periphery of
individual grafts (Fig. 4E-G). Co-staining with CD45 and CD8 antibody showed only occasional

presence of CD8+ cells (not shown).

Effect of TAC pellet-induced immunosuppression on circulating blood T-cell population and IgG
immunoreactivity in spinal human cell-grafted regions (Fig. 5)

To further probe the effect of TAC pellet-induced immunosuppression on T-cell activity,
we quantified the density of circulating T-cell population in blood in naive, SOD+ TAC non-treated
and SOD+ TAC-treated (5.1 mgkg/day) animals. In comparison to TAC non-treated animals,
immunosuppressed rats had a significantly decreased number of circulating CD45, CD4 and CD8 cells
(Fig. SA-C), (p<0.05; t-test).

To identity the presence of IgG-secreting cells or soluble IgG in cell-grafted spinal cord
regions, sections taken from all 3 TAC dosing groups were stained with anti-rat IgG (fluorescence-
tagged) and then further stained to detect MHC class II (R1TB) and CD45 to identify B cells. In 1.9
mg/kg/day TAC group numerous IgG+ cells were identified in grafted regions. Similarly as for the
CDS8 population, the IgG+ cells were typically localized at the periphery of individual grafts. Double
staining with anti-rat MHC class II antibody and anti-rat IgG showed the B-lymphocyte phenotype in
small subpopulation of IgG+ cells (Fig. SD; vellow arrows). In addition to IgG presence on B-
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lymphocytes, an overall increase in the density of IgG staining in cell-grafted regions was seen (Fig.
3D; blue dashed area). Since the area had minimal R1TB staining, it is possible that deposited IgG is
detected in this area. Similarly, double staining with RT1B and CD45 antibody showed only sporadic
presence of RT1B/CD45-double-stained cells in cell-grafted areas (Fig. SE).

Triple staining with macrophage and monocyte marker CD11b, anti-rat IgG and CD45
showed a clear colocalization of CD11b and anti-rat IgG immunoreactivity but with relatively weak
CD45 staining pattern in the same CD1 1b/anti-rat IgG+ cells (Fig. SF; yellow arrows).

In 3.4 and 5.1 mg/kg/day TAC groups, only sporadic IgG, RTIB or CD45-stained cells
were identified as well as the density of the IgG staining in cell-grafted regions was below detection

threshold (Fig. 3G, H) and was similar to that seen in control cell-non-grafted animals (not shown).

Rejection of spinally grafted human fetal spinal cord stem cells (hSSC) in the absence of
immunosuppression (Fig. 6)

To wvalidate the importance of immunosuppression in providing grafted human cell
survival, we next grafted hSSC into lumbar spinal cord in adult SD rats without immunosuppression.
Analysis of spinal cord sections at 14 days after cell grafting showed complete grafied cell rejection
and intense infiltration of CD4/8 cells at the injection site (Fig. 6 A, B, C, D).
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Discussion

Experimental and clinical evidence for need of continuing immunosuppression in xenogeneic CNS

grafting design

Extensive previous experimental animal but also clinical data show that xenogeneic neural grafts are
rapidly rejected in non-immunosuppressed animals and/or human patients. For example, it was
demonstrated that grafted porcine dopaminergic neuroblasts (derived from embryonic day 26-27) are
rejected within days to weeks after intracerebral grafting in rats in the absence of immunosuppression
(Brevig, et al., 2000). It was also demonstrated that the porcine xenografts undergoing rejections are
infiltrated with CD8 lymphocytes and are stained positive for IgM and complement component (C3)
(Barker, et al., 2000). Similarly, in clinical PD trial, grafting of porcine embryonic dopaminergic neurons
showed very poor grafted cell survival at 7 months (one postmortem patient analyzed) after grafting
despite continuing immunosuppression with cyclosporine (5 mg/kg) (Deacon, et al., 1997). In the same
study, lvmphocyte infiltration was also seen in the cell-grafted region. These data are consistent with our
previous reports which demonstrate no or poor graft survival after spinal grafting of human spinal stem
cells in SOD+ rats or SD rats with previous spinal ischemic injury if animals were immunosuppressed
with TAC as a monotherapy (1.5 mg/kg, q12h or 1 mgkg, qd, respectively) (Hefferan, et al., 2011,
Kakinohana, et al., 2012). Similarly, grafted cell rejection was associated with an intense CD4/8 T-
lymphocyte infiltration in previously cell-grafted regions. Jointly, these data show that in order to achieve
satisfactory and long-term grafted cell survival using xenogeneic grafting design, continuing and

aggressive immunosuppression which is effective in suppressing T-cell activity is needed.

Stable and controllable blood TAC concentration and tolerability of SD rats to long-term TAC
pellet-induced immunosuppression

In our initial phase of the study, we have compared the plasma kinetics of four different TAC
formulations after subcutaneous delivery. Three primary characteristics of the PK data and associated
animal manipulations (such as repetitive animal injections) were considered in defining the optimal
formulation to be used in the subsequent long-term spinal cell grafting studies and included: i) the
stability of plasma TAC concentration over a 24-hr period, ii) required frequency of injections to
achieve a targeted plasma TAC concentration, and iii) potential side effects associated with a high

plasma TAC concentration or repetitive animal injections.
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The rationale for the selection of specific time points for TAC measurements (i.¢., more frequent
measurements in caster oil/saline, liposomes and microspheres formulations-injected animals and less
frequent in TAC pellet-implanted animals; see Table 1 for summary) was based on expected
differences in TAC kinetics among all formulation and by the need to identify potential blood toxic
TAC levels.

First, in caster oil-saline as a vehicle or liposome (unilamellar or multilamellar) TAC-injected
animals, a comparable kinetics profile was seen during the initial 12 hrs after 3 mg/kg TAC injections
with the peak concentrations (40-60 ng/ml) measured during 2-12 hrs after injections. In contrast to the
caster-oil-saline TAC (3 mg/kg) group in which the TAC levels dropped to 10 ng/ml at 24 hrs after
single injection, in liposome-TAC injected animals (3 mg/kg) on average 27 ng/ml TAC was measured
at 24 hrs and was still around 11 ng/ml at 48 hrs after injection. In animals injected BID with the caster-
oil-saline formulation (1.5 mg/kg/12 hrs) for 5 days, the measured peak TAC concentration was seen at
2 hrs (around 23 ng/ml) and stable levels around 13 ng/ml were then measured between 1-5 days if
measured at the end of 12 hrs (i.e,, at 12 hrs after previous TAC injection). These TAC
pharmacokinetic data are similar as reported from other laboratories using mice or rats (Ko, et al., 1994,
McAlister, 1998, Yamauchi, et al., 2004).

From the perspective of conducting long-term immunosuppressive therapy, these data demonstrate
that, should a caster-oil vehicle system be used for TAC delivery, the BID delivery regimen has the
most favorable safety profile (as defined by the peak concentration) and is relatively stable through
TAC levels. While more labor intensive, a stable targeted through TAC levels can be achieved and
readily adjusted if needed. The use liposome-TAC formulation provides an extended half life, however,
a relatively high peak concentration (i.e., above 50 ng/ml) and the cost (approx. $1,600/6 animals) to
prepare these formulations appears to limit its routine use at present.

Second, TAC microspheres were used and animals received a single subcutaneous injection of
either 10 or 20 mg/kg TAC-containing microspheres. In both doses, a biphasic release profile was
measured with the first peak seen at 4 days and the second peak at 12 days after injection. In the 20
mg/kg group, the peak measured at 4 days was around 20 ng/ml and the levels were still around 10
ng/ml at 15 days after a single injection. This TAC kinetics profile is similar if not identical as reported
in other studies which employed the same TAC microsphere formulation. In contrast to the caster-oil
and liposome formulation, no initial TAC plasma concentration “overshoot™ was seen at 2 hrs after
injection and levels were around 12 ng/ml at 9 hrs after injection (in the 20 mg/kg group). The use of

TAC microspheres appears to provide a clear advantage over caster-oil and liposome formulation,
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permitting stable TAC plasma levels for up to 15 days after a single subcutaneous injection. Moreover,
additional injections can readily be added should a rapid and continuing stable increase in TAC
concentration be desired.

Third, TAC pellets containing different concentration of TAC and delivering 1.8 mg/kg, 3.4
mg/kg or 5.1 mg/kg of TAC/day for up to 3 months were used for subcutaneous implantation. In higher
concentration groups, a progressive increase in plasma TAC concentration was seen during the initial
30 days after pellet implantation and then remained relatively stable for an additional 1-2 months.
While the pellets are designed for 3-month continuing TAC release, we have observed continuing TAC
release exceeding 4 months (n=3) with the TAC levels around 13 ng/ml measured at 5 months after
pellet implantation.

With respect to toxicity, no detectable side effects were seen in animals receiving 1.9 and 3.4
mg/kg/day doses and surviving between 1-3 months. From a total of 60 animals receiving the 5.1
mg/kg/day TAC dose, 4 animals died from apparent kidney toxicity at 1.5-2 months. These animals
showed signs of agitation, tactile hypersensitivity as well as scratching behavior 3-4 days before death.
We speculate that these behavioral signs could be the result of progressive kidney failure and increased
creatine levels. Increased creatine levels have been reported in patients receiving higher dose of TAC

after solid organ transplants (Finn, 1999, Teh, et al., 2011).

Defining the optimal TAC immunosuppressive regimen to permit long-term survival and

maturation of spinally grafted human neural precursors in rats

As demonstrated in our current study independent of the daily TAC dose delivered (i.e.,
1.9, 3.4 or 5.4 mg/kg/day) in the form of a TAC pellet, consistent survival of grafted ES-derived NPC
or human fetal spinal cord stem cells was seen at intervals 30-90 days after grafting. This was
expressed as the presence of high density DCX or NSE immunoreactive-grafted neurons in targeted
spinal cord regions. In addition, high density neuronal processes derived from grafted human neurons
expressing human-specific synaptophysin and projecting toward host interneurons and a-motoneurons
were identified. Comparable grafted cell survival and maturation was seen in both SOD+ rats and in SD
rats with previous L3 contusion injury. In our previous experiment, we demonstrated consistent
xenograft survival three weeks after the transplantation of hSSC into the spinal cord in SOD+ rats
treated with daily ip. injection of TAC (3 mgkg/day) combined with daily ip. injection of
Myecophenolate mofetil (30 mg/kg) (Hefferan, et al., 2011).
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As shown in the present study, the SOD+ mutant rats show a significant increase in
circulating CD4/8 cells if compared to naive SD rats and this increase in CD4/8 T-lymphocytes was
completely blocked by high dose (5.4 mg/kg/day) TAC treatment (Fig. 3; a-¢). In addition, several
previous studies have demonstrated significant spinal inflammatory changes in symptomatic SOD+ rats
characterized by intense activation of microglia and astrocytes in areas of previous a-motoneuron loss
(Hall, et al., 1998, Hefferan, et al., 2012). The characteristics of this model and requirement of
continuous high dose Tac immunosuppression in order to provide long-term grafted cell survival
further emphasize the importance of aggressive immunosuppressive therapy to achieve consistent cell
survival in this neurodegenerative model.

Similarly, in our recent study, we demonstrated consistent cell survival for up to 2 months
after spinal grafting of HUES7-NPC after using 1 mg TAC/day dose delivered s.c. as a bolus in caster-
oil preparation in SD rats with previous spinal ischemic injury. However, no cell survival was seen if
animals were allowed to survive for total of 4 months (Kakinohana, et al., 2012). In another study, on
average 28-day survival of allogenecic islet grafts in mice after single injection of TAC loaded
microspheres (dose 20 mg/kg) or continuing graft survival (>100 days) after repeated injections of TAC
loaded microspheres (dose 10 mg/kg; 7-day intervals) was described (Wang, ¢t al., 2004). Jointly, these
data show that the TAC dose of around 3 mg/kg/day and divided into two 12-hr doses (if delivered as a
bolus s.¢ injection) or in a form of continuously TAC releasing pellet is required for long-term effective
immunosuppression to permit xenograft survival in rats.

Translated to plasma TAC concentration, TAC levels of <15 ng/ml were measured in 1.5
mg/kg/12 hr (caster-oil formulation) or in 3.42 or 5.1 mg/kg/day (pellet groups), i.e., the TAC dosing
regimen which was associated with consistent grafted cell survival for up to 3 months after cell
grafting. Comparable TAC plasma levels were shown to be required to permit long-term survival of
grafted pancreatic islet cells in mice (Wang, et al., 2004) or to lead to life-long survival of transplanted
solid organs in human patients (Pirsch, et al., 1997, Przepiorka, et al., 1999, Staatz and Tett, 2004,
Vicari-Christensen, ¢t al., 2009).

TAC dose-dependent suppression of T- and B-lymphocyte activation and proliferation

Quantitative analysis of T-cells (CDS8, CD4) in grafted spinal cord regions showed a near complete
absence of this cell population in 3.4 and 3.1 mg/kg/day TAC group if analyzed at 77-90 days after cell
grafting. Similarly, the analysis of CD8 and CD4 cells in circulating blood showed a significant
decrease in the 5.1 mgkg/day TAC group if compared to non-immunosuppressed SOD+ rats. In
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contrast to the 3.4 and 5.1 mg/kg/day TAC groups, a clear population of CD4/8 cells was seen in 1.9
mg/kg/day TAC-treated and cell grafted animals. Interestingly, a substantially higher density of CDS§
population was seen on the dorsal surface of individual grafts facing the pial membrane. We speculate
that the presence of grafted cells in heavily vascularized but BBB-lacking pial arterial system is more
susceptible to extravasation of the cireulating T-cell population and the resulting T-cell mediated
response. We also hypothesize that even if a satisfactory cell survival was seen in the 1.9 mg/kg/day
group at 77 days after cell grafting, a progressive grafted cell rejection will likely develop should the
same level of low level immunosuppression continue over an extended period of time. We also saw
small lymphocytic IgG+ MHC class 11+ CD45+ B cells in the graft surface. We speculate that these
cells are releasing graft-specific antibodies that are bound the the graft or to CD11b+CD45- microglia

cells.

Limitation of subcutaneous TAC pellet-induced immunosuppression

Several technical issues need to be considered once a pellet immunosuppression regimen is going to be
implemented into any rat xenograft-immunosuppression study. 1) Based on our PK study, it takes on
average 7-15 days after pellet implant before targeted (<15 ng/ml TAC) plasma levels are achieved in
200-350 g rats. Thus, the TAC pellet needs to be implanted before cells are transplanted and the plasma
level of TAC validated. However, because consistent and predictable plasma TAC concentrations were
measured in our initial PK study in all 3 TAC pellet dosing groups, we have currently implemented less
vigorous TAC plasma monitoring and the TAC concentration is only measured 1-2 times during the
course of the 2-3 month post-pellet implantation period. Consistent with our initial PK TAC data,
expected TAC concentrations were measured in more than 30 animals. 2) Should there be a desire to
remove already implanted TAC pellets to achieve an abrupt termination of immunosuppression, the
tissue surrounding the pellet implanted region needs to be excised in block. From our experience, the
pellet identification is substantially obscured as soon as 7-14 days after implantation because of its
structural disintegration. 3) Similarly, should there be a need to increase the dose of delivered TAC, an
additional pellet(s) can be implanted. Should this be the case, TAC plasma monitoring is recommended
to be performed in 5-7 day intervals for at least 2-3 weeks after additional pellet implant to identify
potential unwanted toxic TAC concentrations. However, as shown in our current study, the plasma
TAC concentrations up to 45-50 ng/ml were well tolerated for up to 3 months and only a fraction of

animals displayed systemic side effects. We are currently testing the tolerability of repetitive TAC
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pellet implant (3.5 mg/kg/day dose group) and have not seen any detectable side effects at 4.5 months

of continuous immunosuppression at this dose (unpublished observation).
Summary

We demonstrated that by using an implantable 3-month lasting TAC-releasing pellet it is possible to
achieve functionally effective immunosuppression in SD rats as defined by long-term survival and
maturation of spinally grafted human neural precursors derived from human fetal spinal cord or from
embryonic stem cell. Plasma TAC concentration of <15 ng/ml was found to be required to lead to a
near complete suppression of T-cell activity in the human cell-grafted spinal cord region and in
circulation blood and was readily achieved by 7-10 days after pellet implantation. Jointly, these data
demonstrate that the use of implantable TAC pellets can represent an effective long-lasting
immunosuppressive drug delivery system which is technically simple to implement, is safe for an
extended period of time (4.5 months) and is associated with consistent and long-term human neural

precursor survival after grafting into the spinal cord of SOD+ or spinal trauma-injured SD rats.
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Figure Legends

Figure 1. Blood TAC pharmacokinetics after subcutaneous injections of four different TAC
formulations. First, TAC powder was diluted in caster-oil/saline solution and injected every 24 hrs for 5
days (3 mg/kg) (a) or every 12 hrs for 5 days (1.5 mg/kg/12 hrs) (b). Blood was collected prior to
subsequent TAC injection (arrows). Second, TAC loaded unilamellar or multilamellar (¢) liposomes were
injected subcutaneously as a single bolus (arrow) (3 mg/kg) and TAC concentration measured periodically
for 72 hrs. Third, another two groups of animals were injected with single bolus of biodegradable TAC
microspheres in the dose 10 mg/kg or 20 mgkg (d). Note the lack of TAC plasma concentration
“overshoot™ during the first 9 hrs after delivery and a relatively stable plasma TAC concentration for up to
15 days after a single TAC microsphereg bolus injection. Fourth, the biodegradable 3-month releasable
TAC pellets delivering 1.88 mg/kg/day, 3.42 mg/kg/day or 5.1 mg/kg/day of TAC were implanted s.c. and
the TAC plasma measured for up to 4.5 months (e, ). Note a progressive increase in TAC concentration
during the initial 3-4 weeks after TAC pellet implantation and then followed by a relatively stable and
dose-dependent long-lasting TAC release. Arrows indicate the TAC pellet implantation. Each time point is
represented as the mean + SD of TAC concentrations. Macroscopical and microscopical images of different
Tac formulations including caster oil-saline (g), 90 mg pellet (h), unilamellar (i) or multilamellar (j)

liposomes or microspheres (k).

Figure 2. Immunofluorescence examination of the presence of grafted human ES-derived neural
precursors (HUES7-NPC) and immunological response in the spinal cord tissue of SOD+ rats
implanted with 3-month lasting TAC pellet (1.9 mg/kg/day). TAC releasable pellets were implanted
subcutaneously in SOD+ rats (n=4; 60-65 days of age) 13 days prior to grafting with HUES7-NPC. After
cell grafting, animals were allowed to survive until they reached the endstage of the ALS disease (approx.
77 days after cell implantation). Immunohistochemical staining with human specific antibodies (hNUMA-
human nuclear protein, green; hGFAP-human astrocytes, cyan) and doublecortin (DCX, red) revealed
congistent presence of well-engrafted cell populations in the spinal parenchyma (a-d). Colocalization of
hNUMA (red) with NeuN (green) can be seen in a dense population of hANUMA+ grafted cells (e). Triple
labeling with DCX, hSYN and NeuN antibody showed numerous DCX+ processes projecting towards

large a-motoneurons and co-expressing hSYN punctate-like immunoreactivity (f, g). The
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immunosuppressive effect of a given TAC dose (1.9 mg/kg/day) was further tested by identifving the
presence of infiltrating T-lymphocytes. A high density leukocyte population (CD45, red) in the vicinity of
grafted human cells (hWNUMA, green) was observed (h-j). Co-staining with markers of T-lymphocytes
(CD4 and CDB8, red) and microglia (IB1, green) revealed the presence of T-lymphocytes and activated
microglia in the areas of grafted cells (k-m). The presence of cytotoxic subpopulation of T-lymphocytes in
the regions containing hNUMA+ grafted cells (red) was confirmed by colocalization of marker CDS§
(green) with general leukocyte marker CD45 (white), (n). VH — ventral horn, VF — ventral funiculus. Scale
bar a-n: 30 um.

Figure 3. Immunohistochemical examination of the presence of grafted human fetal spinal stem cells
(hSSC) and immunological response in the spinal cord tissue of SOD+ rats immmunosuppressed
with 3-month lasting TAC pellet (5.1 mg/kg/day). TAC releasable pellets were implanted
subcutancously in the SOD+ rats (n=6; 60-65 days of age) 13 days prior to grafting with hSSC. Animals
were allowed to survive until 10% of bodyweight loss cauged by the progression of the ALS disease (i.c.,
32-70 days after cell implantation). Immunohistochemical staining with human specific antibody hNUMA
(human nuclear protein, green) and doublecortin (DCX, red) revealed consistent presence of high density
grafts in the targeted spinal parenchyma in all animals (a, b). Double staining with human-specific
synaptophysin (hSYN) and GFAP antibody (hGFAP) revealed a dense hSYN punctuate-like
immunoreactivity and numerous hGFAP+ grafted astrocytes (¢). In addition to a dense population of
DCX+ grafted neurons the presence of human-specific enolase+ neurons (hNSE; late neuronal marker) can
be seen (d). The immunosuppressive effect of the administered dose of TAC (5.1 mg/kg/day) was further
validated by identifving the presence of T-lymphocytes in human cell-grafted spinal cord sections. Only
occasional presence of CD45+ (red) leucocytes was seen; CD45+ elements can preferentially be seen at the
periphery of hANUMA+ grafts (e-g). Co-staining with CD45 and CDS antibody shows near complete lack of
CD8+ immunoreactivity in CD45+ cells in cell-grafted spinal cord regions and only occasional double
stained CD4/CD8/CD45+ cells can be identified (h-j),while the majority of CD45+ cells are CD& negative
(k; yellow arrows). VH — ventral horn, VF — ventral funiculus. Seale bar a,c: 100 pum, b,d,e.k: 30 um, h:10

Lwm

Figure 4. Immunofluorescence examination of the presence of grafted human ES-derived neural
precursors (HUES7-NPC) in TAC pellet (4.9 mg/kg/day)-immunosuppressed SD rats with previous
L.3 contusion injury. Animals (n=4) received spinal grafts of HUES7-NPC at 3 days after spinal injury

and were allowed to survive 105 days after the cell grafting. Immunohistochemical staining with antibodies
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against human neuronal specific enolase (hNSE, red), human cell nuclei (hNUMA, blue) and doublecortin
(DCX, red) on the longitudinally-cut spinal sections revealed continuous graft survival and extensive
neuronal differentiation in cell-grafted peri-injury regions (a-d). Staining against the genecal leukocyte
marker (CD45, green) and microglia (IB1, red) revealed the absence of leukocytes and the presence of
necrotic bodies (non-specific staining, green, yellow arrows) associated with the cytoplasm of microglial

cells (e-g). cc — central canal, la-lateral, ro-rostral, ca-caudal. Scale bar a: 100 pm; b-d: 10 pm; e, f: 30 pm.

Figure 5. Effect of TAC pellet-induced immunosuppression of circulating T-cells and the spinal
infiltration with IgG+ cells, B-cells and granulocyte/monocyte in cell-grafted animals. In TAC pellet-
immunosuppressed animals (5.1 mg/kg/day), a significant suppression in the number of circulating blood
CD4 and CDEg T-lymphocytes was measured using flow cytometry (a-¢), (*-p<0.05; T-test). Staining with
anti-rat IgG (fluorescence-tagged), anti MHC class II (RT1B) and with anti-CD45 antibody in the 1.9
mg/kg/day TAC group showed a high density of IgG+ cells at the periphery of grafied regions (d). In
addition, an overall increase in the density of IgG staining in the same areas was seen (d; blue dashed area).
Triple staining with CD11b, anti-rat IgG and CD435 antibody showed co-expression of CD11b in anti-rat
IgG+ cells (f; vellow arrows) but no clear colocalization with CD45 marker was detected (f: lower panel).
In 5.1 mg/kg/day TAC group a near complete lack of anti-rat IgG, RT1B and CD45+ cell was seen (g) and
only sporadic occurrence of RT1B/CD45+ cells was seen at the periphery of grafted regions (h; yellow

arrows).

Figure 6. Rejection of spinally grafted hSSC in SD rats in the absence of immunosuppression. Adult
SD rats received 10 bilateral injections of hSSC into lumbar spinal cord and survived for 14 days. No
immunosuppression treatment was used in any animal. Triple staining of transverse gpinal cord sections
with DAPI and hNUMA and CD4/8 antibody showed increased cellularity in cell grafted region (a; yellow
dashed circle) but with no grafted cell survival as evidence by the lack of hNUMA+ cells (¢). Instead an
intense accumulation of CD4/8 cells in previously cell-grafted regions can be seen (b, d; yellow arrows).

Scale bar a: 100 pm.
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Table

Tab.1 Summary of experimental groups used in tacrolimus PK study.

group route of tacrolimus  vehicle dose frequency time points for detection
of Tacrolimus level in
blood
No.1 s.c.injection powder dissolved in 3mg/kg every 24h 2,9,24,72,120 hours
caster oil/saline solution
No.2 s.c.injection powder dissolved in 1.5 mg/kg every 12h 2,12,14,24,120 hours
caster oilfsaline solution
No.3 s.c.injection unilamellar liposomes 3mg/kg once, at 2,12,24,48,72 hours
beginning
No.4 s.c.injection multilamellar liposomes 3mg/kg once, at 2,12,24,48,72 hours
beginning
No.5 s.c.injection microspheres 10mag/kg once, at 2,924
beginning hours,2,4,7,10,13,16,19,
22 days
No.6 s.c.injection microspheres 20mg/kg once, at 2,924
beginning hours,2,4,7,10,13,16,19,
22 days
No.7 s.c.implantation 3 months lasting pellet 1.8+0.15 once, at 5,13,20,29,50,56,71,90
mg/kg/day beginning days
No.8 s.c.implantation 3 months lasting pellet 3.43+0.21 once, at 5,7,10,17,26,38,59,74,90
mg/kg/day beginning 105, 120, 140 days
No.9 s.c.implantation 3 months lasting pellet 51%1 once, at 10,27,42,53 days
mg/kg/day beginning
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Table

Tab.2 Experimental cell grafting groups

rat strain group animal ID number grafted cell line survival time after cell
grafting
S0D1 (ALS) No.7 4746 HUES7 77
S0OD1 (ALS) No.7 4753 HUES7 33
SOD1 (ALS) No.7 47350 hSSC 77
S0OD1 (ALS) No.7 4752 hSsSC 77
SOD1 (ALS) No.9 5038 HUES7 40
SOD1 (ALS) No.9 5081 HUES7 32
SOD1 (ALS) No.9 5041 hSSC 38
S0OD1 (ALS) No.9 5076 HUES7 32
SOD1 (ALS) No.9 5095 hSSC 70
S0OD1 (ALS) No.9 5104 hSSC 37
SD (SCCI) No.10 149 HUES7 105
SD (SCCI) No.10 153 HUES7 105
SD (SCCl) No.10 155 HUES7? 105
SD (8CCI) No.10 160 HUES7 105
SD (Naive) No.11 1 hSSC 14
SD (Naive) No.11 2 hSSC 14
SD (Naive) No.11 3 hSSC 14
SD (Naive) No.11 4 hSSsC 14

SCCI — spinal cord contusion injury
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Table

Tab.3 Quantitative/qualitative analysis of leukocyte infiltration in transverse spinal cord sections

with identified human cell grafts at 77-90 days after cell grafting.

immunological dose of Tacrolimus

1.8mg/kg/day

5.1mg/kg/day

profile cell type G-core.  G-pia SC-par. | G-core.  G-pia SC-par.
CD45+ Ieukocy‘tes *kk *hk *hk * *% *
CD8+CD45+ cytotoxic T-cells ** b * 0 * 0
CD4+CD45+ helper T-cells S P i & o 0
RT1B+CD45+ B-lymphocytes ** = ** * * 0
CD11b+ granulocytes+tmonocytes i i i i ki 0

(-absence of immune cells, *-1-10 cells, **-11-350 cells, *** >51 cells per section; G-core- core of
the graft, G- pial surface of the graft, SC-par. parenchyma of the spinal cord outside of the graft.
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6. DISCUSSION

6.1. IN VIVO MODELING OF HUNTINGTON'S DISEASE

It is undisputable that the rodent genetic models of HD which have been available since
1996 (Mangiarini et al. 1996) provided us with extremely valuable information about
huntingtin function, helped us to reveal the complex mechanism of disease pathology, and
offered us the first in vivo disease environment for validating targets and testing potential
therapies (Cattaneo et al. 2005; Zuccato et al. 2010). It is clear, however, that the rodent
models of HD have also limitations in modeling of the human disease (Zuccato et al. 2010;
Yang and Chan 2011; Morton and Howland 2013). Nevertheless, genetic engineering
technology is well advanced in mouse which has allowed generation of great number of
mutant and/or knock-out, transgenic and knock-in mouse models which are currently available
for neuroscience research (Morton and Howland 2013). And indeed, HD research will always
benefit from this incredible choice of mouse models because of the potential of genetics cross-
breeding introducing (genetically) manipulated genes of interest into the HD environment to
allow us to investigate the mechanisms of the disease, to determine possible therapeutic
effects of overexpression of certain wild-type or modulated genes and to specifically “label”
certain cell types and/or processes (Zuccato et al. 2010) or allow relatively simple extraction
of mMRNA from specific cell types directly from the crude lysates (Sanz et al. 2009).

6.1.1. UCHL1 in HD

Benefiting from the great numbers of mouse models available we decided to use the well
characterized R6/2 mouse HD model to study the potential involvement of the Ubiquitin
Proteazome System (UPS) in HD pathology by crossing it with the gad mouse model which
lacks the expression of one of the most common protein in the brain — deubiquitinating
enzyme UCHL1 which is exclusively expressed in neurons and gametes (Setsuie and Wada
2007; Yi et al. 2007). The histological hallmark of the disease is the formation mutant
huntingtin aggregates which are subsequently ubiquitinated (DiFiglia et al. 1997). Aggregates
in HD are ubiquitinated (ubiquitinated aggregates present in HD neuronal nuclei are often
called inclusion bodies — IBs) and therefore the formation of IBs has always been linked with
UPS malfunction.

UCHL1 represents one of the major deubiquitinating enzymes (DUB) in the brain (Cartier
et al. 2009) as it is ubiquitously expressed in neurons and because it functions as a
deubiquitinating enzyme, ubiquitin ligase and monoubiquitin stabilizer (for review see
(Setsuie and Wada 2007)). Mutations of UCHL1 have been linked to several
neurodegenerative diseases (for review see (Setsuie and Wada 2007)) and it has been shown
that its potentiation can rescue amyloid B protein (AP) induced pathology by regulating
BACEI] protein level, APP processing and AP production in vitro and in vivo (Gong et al.
2006; Zhang et al. 2012).

Early studies of the UPS impairment in HD suggested that polyQ aggregates could directly
inhibit the function of 26S proteasome (Bence et al. 2001), that the degradation of polyQ
proteins is inefficient (Holmberg et al. 2004) and that the eukaryotic proteasome is not able to
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digest polyQ sequences of polyQ-containing proteins (Venkatraman et al. 2004). Conflicting
results later showed that the proteasome is fully capable to degrade the expanded polyQ
proteins (Michalik and Van Broeckhoven 2004), that the UPS impairment is not caused by
direct choking of purified proteasomes but revealed that the UPS impairment is most likely
global as detected both in in vitro (Bennett et al. 2005) and in in vivo studies where the
elevated levels of polyUb chains were observed in R6/2 and Hdh®*¥?*° mouse models and
human post-mortem HD brains (Bennett et al. 2007).

To facilitate the assessment of the UPS activity, recombinant probes typically comprised
of enhanced green fluorescent protein appended with a destabilizing modification (degradation
signals) which promotes their constitutive degradation by the UPS (“GFPu” UPS reporters)
were generated (Bett et al. 2009). In early studies of UPS activity in HD, these artificial
reporters of UPS activity were successfully applied in in vitro cellular HD models (Bence et
al. 2001; Bennett et al. 2005) but when translated into in vivo studies using R6/2 mouse model,
these reporters failed to accumulate and thus failed to confirm global UPS impairment in vivo
(Bett et al. 2009; Maynard et al. 2009). Nevertheless, in more recent study fusing of the UPS
GFPu reporters to either postsynaptic PSD95 or presynaptic SNAP25 proteins revealed
increased levels of GFPu reporters in the synapses of R6/2 and Hdh®*® HD mouse models
(Wang et al. 2008) which is strikingly similar to what was observed in wild-type hippocampal
neurons with inhibited UCHL1 activity (treated with LDN UCHL1 inhibitor) (Cartier et al.
2009). Wang and colleagues also demonstrated that while there is no decrease in proteasomal
activity in whole brain lysates of R6/2 mice (Bett et al. 2006; Wang et al. 2008) examination
of the chymotrypsin-like proteasomal activity in isolated synaptosomes revealed that
proteasomal activity was decreased in synaptosomes isolated from the cortex or striatum of
HD mice compared with samples from wild-type. Striatal synaptosomes showed lower
proteasomal activity than cortical synaptosomes in both wild-type and HD mice. They also
detected an age-dependent decrease in synaptic proteasomal activity in the brain (Wang et al.
2008). These observations suggest that the malfunction of UPS in HD could be region-specific
rather than global.

Generation of R6/2xgad mouse allowed us to examine the effect of the ~50% loss of
UCHLLI in the disease environment driven directly by the exon 1 of the mutant huntingtin
(Mangiarini et al. 1996; Sathasivam et al. 2013). Interesting functional link between UCHL1
and HD pathology could be found in recent discoveries of UCHL1-dependent regulation of
synaptic structure (Cartier et al. 2009) and that UCHLL1 is required for maintaining the
structure and function of the neuromuscular junction (Chen et al. 2010). UCHLL1 is present in
spines and postsynaptic densities and the main function of UCHL1 in synapses is most likely
free mono-ubiquitin stabilization (Cartier et al. 2009). Our data showed that the reduced
UCHL1 expression caused aggregates of mHTT to accumulate more in the neuropil of
R6/2xgad mouse if compared to the R6/2 mouse. We also found that soluble exon 1 mHTT
from R6/2xgad brain lysates migrate faster in the gel (Hruska-Plochan et al. 2013 in review).
This suggests that the locally disturbed UPS in synapses in HD mouse models (Wang et al.
2008) could be caused by decreased monoUb-stabilizing and DUB activities and possibly by
increased ligation activity of UCHL1 which in turn may lead to deprived free monomeric
ubiquitin pools and to accumulation of polyUb chains and increased polyubiquitation of high
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molecular weight proteins as detected in previous works in vivo (Bennett et al. 2007; Maynard
et al. 2009) and in R6/2xgad striatum in our experiments (Hruska-Plochan et al. 2013 in
review). As a result, less ELmHTT could be targeted to UPS and more EImHTT could be
available for aggregation in R6/2xgad brain. It is not clear, however, how mHTT alters
UCHL1 function(s) in HD. In our experiments, we observed that UCHL1 co-localized with
both soluble mHTT and with aggregated mHTT and with wild-type huntingtin (Hruska-
Plochan et al. 2013 in review) (see Fig. 13). We therefore hypothesize that abnormal
interaction(s) of UCHL1 with mHTT in HD could lead to impaired UCHL1 functioning or
that the UCHLL1 could be exhausted due to an ongoing clearance of mHTT by the UPS and
autophagy. It has been shown that UCHL1 expression is regulated by the REST/NRSF (for
review see (Day and Thompson 2010)) and because mHTT causes a reduction in the
transcription of RE1/NRSE neuron-linked genes (Zuccato et al. 2003), mHTT could decrease
the levels of UCHLL1 indirectly. Another study showed that stimulation of NMDA receptors
increases expression of UCHL1 (Cartier et al. 2009) and because the NMDA receptors are
over-activated in HD (YYoung et al. 1988; Zeron et al. 2002; Fan and Raymond 2007; Estrada-
Sanchez et al. 2009) this could explain why we did not see decreased levels of UCHLL1 protein
in R6/2 brain. Finally, recent data suggests that oxidative modification of UCHL1 caused by
oxidative stress in neurodegenerative diseases greatly affects UCHL1 activity (for review see
(Setsuie and Wada 2007)). More experiments need to be performed to precisely explore the
relations between the presence of mHTT aggregates/IBs, neuronal death and UCHLL1. It will
be important to evaluate UCHL1 enzymatic activities in the presence of exonl and also full-
length mHTT in the complex in vivo HD settings as wells as in cell-free systems.

R6/2 /JUCHLA1/ /JUCHLA1

Fig. 13 Confocal microscopy analysis of UCH L1 and mhtt. Fig 6 from author’s publication Partial
UCHL1 depletion in R6/2 mouse model of Huntington’s Disease accelerates mutant huntingtin
aggregation.
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6.1.2. tgHD minipig

Despite their great importance in understanding of the disease mechanisms, the rodent
models are relatively short-living animals with small lysencephalic brains and therefore will
never accurately resemble human disease conditions (Morton and Howland 2013). The short
life span offers just a very limited therapeutic window for the test of new potential therapies
and the small size of brain and spinal cord limit the beneficial outcomes of such therapies
because they are most of the times invasive (i.e. cell grafting, intraparenchymal vector
delivery etc.) thus injuring the CNS just by simple delivery of the therapeutics.

The miniature pig (Sus scrofa) has similarities to humans in anatomy, physiology, and
metabolism (Modicka et al. 2005; Lunney 2007; Swindle et al. 2012). The size and structure of
pig brain makes it amenable to neurosurgical procedures and non-invasive high resolution
neuroimaging methods similar to those performed in humans (such as MRI and PET) (Ishizu
et al. 2000; Gizewski et al. 2007; Keereman et al. 2010). The lifespan of minipigs and their
sophisticated cognitive and motor abilities also make them useful for long-term studies of
learning, memory and behavior (Lunney 2007; Gieling et al. 2011a; Gieling et al. 2011b).
There has been recent progress in defining the porcine genome (Jorgensen et al. 2005;
Wernersson et al. 2005; Jiang and Rothschild 2007; Archibald et al. 2010), porcine single
nucleotide polymorphisms (Ramos et al. 2009), microRNAome (Kim et al. 2008; Reddy et al.
2009; Duff et al. 2010), and improved techniques for genetic modification of pigs (Hofmann et
al. 2003; Nagashima et al. 2003; Kurome et al. 2006; Lavitrano et al. 2006). The porcine
homologue of the huntingtin gene has a large ORF of 9417 nucleotides encoding 3139 amino
acids with a predicted size of 345 kDa (GenBank, Accession No. AB016793). There is a 96 %
similarity between the porcine and human huntingtin genes (GenBank, Accession No.
AB016794). The number of CAG repeats in the porcine HTT gene is polymorphic, ranging
from 8 to 14 units, and falls within the range of the normal human huntingtin gene
(Matsuyama et al. 2000). Similar to humans, miniature pig possesses two HTT transcripts of
approximately 11 and 13 kb (Lin et al. 1993; Matsuyama et al. 2000). The similarities between
porcine and human huntingtin genes and proteins have provided further impetus to use the pig
as a model of HD (Aigner et al. 2010; Swindle et al. 2012). Moreover, to our best knowledge,
minipig (or pig in general) represents the only large animal with multiple transgenic models
already in place and available for broad scientific community at the National Swine Resource
and Research Center (NSRRC) (28 models at the time of writing) and at the Exemplar
Genetics (ExemplarGenetics) (7 models at the time of writing). Moreover, the availability of
different immunodeficient pig models (Ishikawa et al. 2010; Basel et al. 2012) makes pigs
ideal for transplantation studies. Pigs are in general established model animals in biomedical
research and the use of pigs in preclinical safety research is rapidly increasing (Hagan 2011).

We have therefore decided to generate a minipig transgenic model of HD. Transgenic
HD minipigs were generated using lentiviral transduction of porcine zygotes in syngamy, at
the onset of embryonic DNA synthesis (Baxa et al. 2013). The precise timing of lentiviral
transduction enhances incorporation of the transgene cDNA into embryos. The lentiviral
delivery did not cause mosaicism, since the mutant HTT was revealed in all tissues tested in
F1 and F2 tgHD minipigs and maintained the same number of glutamines. We found an in-
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frame deletion of the expanded CAG/CAA tract such that the integrated transgene encoded
124 glutamines instead of the original 145 glutamines. Importantly, one single copy of
exogenous HTT was found in chromosome 1 (1g24-g25) where it was maintained in F1 and
F2 offspring. Both female and male transmission of the HD transgene with a Mendelian
inheritance was confirmed in our tgHD minipigs. The tgHD minipigs of FO — F2 generations
had two alleles coding endogenous pig HTT and one allele for the N-terminal human mutant
HTT. Mutant HTT protein expression was detected in different brain regions including cortex,
caudate nucleus and putamen and in a variety of peripheral tissues and confirmed by both
Western Blot analysis and TR-FRET. With one exception (hypothalamus in one of the TgHD
minipigs), the data from WB and TR-FRET biochemical assays showed a good
correspondence for the relative distribution of human mutant HTT in different brain regions
and peripheral tissues (Baxa et al. 2013).

Midbrain dopaminergic neurons play a critical role in basal ganglia circuitry and function
including coordination of movement. Protein phosphatase 1 regulatory subunit 1B, also known
as dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP32), is highly expressed
in caudate-putamen medium-sized spiny neurons (Walaas and Greengard 1984; Ouimet and
Greengard 1990). Dopamine D1 receptor stimulation enhances cyclic AMP formation,
resulting in the phosphorylation of DARPP32 (Walaas and Greengard 1984) at Thr34 by PKA
(Hemmings et al. 1984). A loss of DARPP32 levels in medium-sized spiny striatal neurons
was observed in several rodent models of HD (Bibb et al. 2000; van Dellen et al. 2000), and in
the globus pallidus and putamen of 7 month old HD sheep (Jacobsen et al. 2010) probably as a
consequence of degeneration of nigrostriatal projections of dopaminergic neurons in the
substantia nigra (Oyanagi et al. 1989; Yohrling et al. 2003). A 16 month old tgHD minipig
brain had a reduction compared to WT in the intensity of neuronal labeling for DARPP32 in
the caudate nucleus and putamen suggesting that changes in DARPP32 may begin in the tgHD
minipig brain at around 16 months of age.

As mentioned earlier, the formation of aggregates is a hallmark of HD pathology. Nuclear
and cytoplasmic inclusions of mutant HTT are seen in human postmortem HD brain and in
mouse models of HD (Davies et al. 1997; DiFiglia et al. 1997). There was no evidence of
aggregates of mHTT protein in the tgHD minipig up to 16 months of age based on
biochemical (AGERA, filter retardation) and immunohistochemical assays with antibody to
anti-HTT1-17 (AB1) (DiFiglia et al. 1997). This antibody detects mutant HTT inclusions in
the human HD brain (DiFiglia et al. 1997). Other antibodies commonly used to detect nuclear
inclusions of human HTT fragments in HD mice including MW8 and EM48 produced no
staining in the tgHD minipigs. The absence of nuclear inclusions in the tgHD minipigs was
consistent with the negative results for aggregation observed using the AGERA and filter
retardations assays. Many factors influence the incidence of aggregated mHTT including
levels of mutant protein expression, polyglutamine length, the length of the mHTT fragment,
and age of the animal (Hackam et al. 1998; Li and Li 1998; Chen et al. 2002).

A surprising finding was evidence for a constant decline in fertility in F1 boars caused by
reduced sperm number and penetration rate (see Fig. 14). This phenotype can be easily
monitored in the tgHD minipigs and therefore represents a biomarker that can be suitable for
therapeutics. Pathology in the germinal epithelium has been documented in human HD and
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YAC 128 HD mouse on histological sections where a decreased number of germ cells and
reduced seminiferous tubule cross-sectional area have been observed (Van Raamsdonk et al.
2007). The testicular pathology in humans was related to the presence of mutant HTT since
severity was greater in patients with longer CAG repeats (Van Raamsdonk et al. 2007). The
YAC 128 HD mouse develops testicular pathology between 9 and 12 months prior to
significant reduction in testosterone or GnRH levels but coinciding with changes in the brain
and the appearance of motor deficits. Unlike the tgHD minipigs, problems with sperm quality
and fertility have not yet been reported in HD patients.

Interestingly, reduced number of sperm cells in tgHD minipig boars and their decreased
zona pellucida (ZP) penetration capability (Fig. 14) can be directly attributed to reduced
activity of the proteasome as the sperm acrosome-borne proteasomes degrade the sperm
receptor protein on the ZP that becomes ubiquitinated during oogenesis (Sutovsky 2011;
Zimmerman et al. 2011). Moreover, inhibition of proteasomes blocks IVF (Sutovsky 2011)
and ubiquitinated sites were identified in all the three protein components of pig ZP, i.e. ZPA,
ZPB, and ZPC (Sutovsky et al. 2004; Zimmerman et al. 2011) further confirming the
importance of the sperm acrosome-borne proteasomes in fertilization. It is therefore tempting
to hypothesize that the decreased impaired penetration rate of ZP by tgHD spermatozoa could
be caused by mutant huntingtin-impaired proteasome function. UCHLL1 is uniquely expressed
in neurons and germ cells (Setsuie and Wada 2007; Yi et al. 2007) and is present in
spermatogonia but not in mature spermatozoa where UCHL3 is found and vice versa (Yi et al.
2007). Given the fact that UPS is crucial for sperm quality control (Sutovsky et al. 2001) and
that UCHLZ1 is required for normal spermatogenesis (Kwon et al. 2005), potential aberrant
interaction of mutant huntingtin with wild-type UCHL1 in spermatogonia, similar to what we
have seen in R6/2xgad mouse brain in our experiments (Fig. 13), can help to explain the
reduced levels of spermatozoa in tgHD minipig (Fig. 14). On the other side, the complete loss
of UCHLL1 function in gad mice led to decreased apoptosis and increased number of
spermatogonia but the weight of epididymis as well as the number of spermatozoa in it was
reduced (Kwon et al. 2005). Neurons from gad mice were also reported to be apoptosis-
resistant (Harada et al. 2004). But, in the case of neurodegenerative diseases (lysosomal
storage diseases), downregulation of UCHL1 was observed and overexpression of UCHL1 by
plasmid transfection decreased caspase-mediated apoptotic cell death in the disease cell
models suggesting anti-apoptotic function of UCHL1 (Bifsha et al. 2007). It has also been
previously shown that the inhibition of UCHL1 in pig oocytes led to decrease of free mono-
ubiquitin and increased K63-linked polyubiquitin resulting in functional deficits which in this
case was demonstrated by polyspermy, thus increased penetration rate through ZP (Susor et al.
2010). It would be therefore interesting to also examine the wild-type minipig sperm
penetration rate into the tgHD minipig oocytes with intact ZP once sufficient female tgHD
minipigs are available.

As we mentioned earlier, the number of various minipig genetic models which are already
available just underline the advantages of this large animal in modeling and research of
different diseases. The very recently generated transgenic minipig expressing fluorescently
tagged 20S core particles with the EGFP (fused to the proteasomal subunit a-6/ PSMAL
(PSMA1-GFP transgene) (Miles et al. 2013) could be crossed with the tgHD minipig (Baxa et
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al. 2013) which would allow better investigation of the proteasome dysfunction not only in the
sperm cells but also in the brain.

Several large transgenic models were recently produced and characterized (Morton and
Howland 2013). A transgenic non-human primate model (Yang et al. 2008) was generated
using a lentiviral construct expressing exon 1 of the human htt gene with 84 CAG repeats.
Five HD transgenic macaques were generated exhibiting HD neuropathology with rapid onset
of an HD like phenotype, though only 2/5 animals survived past 6 months. Two other large
animal species were used to generate large animal model in HD in the past years — HD
transgenic sheep carrying full-length human htt with 73 polyglutamine repeats under the
control of the human promoter (Jacobsen et al. 2010) and in addition to our tgHD minipig
(Baxa et al. 2013), cloned transgenic HD minipigs bearing N-terminal mutant HTT (208
amino acids and 105Q) have been generated via somatic cell nuclear transfer technology
(Yang et al. 2010), but the extremely high expression levels of the transgene led to premature
(3 days old) death of three of the 5 born piglets, fourth lived for only 25 days and the fifth
founder was still viable at the beginning of 2013 (Morton and Howland 2013). The very short
fragment of mutant huntingtin which is expressed in this pig questions its usefulness although
no other data were published since the initial report. Considering the “pros” and “cons” of all
large animal models which have been generated so far, the primate model of HD (Yang et al.
2008) seems to be less likely to become widely used because of several disadvantages namely
the public and ethical issues, the age of sexual maturity and small number of offspring, very
high price and need of separate housing etc. Both pigs and sheeps share advantages and
disadvantages, but it is clear that the use of just one large animal model will not lead to answer
to all the questions we are looking forward to address and thus the full characterization and
future use of all currently available large animal model should be pursued (Morton and
Howland 2013).

Fig. 14 Failure of reproductive
capacity in TgHD boars
Fig. 10 B from author’s publication
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6.1.3. HD summary

In summary, we have developed a heterozygote tgHD minipig that expresses a human
mutant HTT fragment throughout the CNS and peripheral tissues in a stable fashion through
multiple generations (Baxa et al. 2013). The tgHD minipig is healthy at birth and through
early development and does not exhibit obvious signs of abnormal movement up to 40 months
of age. However, a decline is evident at 16 months in DARPP32 immunoreactivity in the
neostriatum, the region most affected in HD. Thus, tgHD minipig should be valuable for
testing long term safety of HD therapeutics. We have also have found that UCHL1 is most
likely affected in HD as the reduction of UCHL1 expression accelerated mutant huntingtin
aggregation and increased the levels of polyUb chains in the striatum of R6/2 HD mouse
(Hruska-Plochan et al. 2013 in review). As UCHL1 is present in mutant huntingtin
aggregates/IBs and both wild-type huntingtin and soluble mutant huntingtin colocalize with
UCHLL1 in the R6/2 neurons, and in addition, as the UPS is crucial for sperm quality control
and UCHLL is required for normal spermatogenesis, the tgHD minipig boar’s decline in sperm
number and ZP penetration rate could therefore be a consequence of aberrant interaction of
mutant huntingtin with UCHL1 and strongly suggest UPS impairment in tgHDminipig testes.

6.2. (NEURAL) STEM CELL THERAPY IN SPINAL CORD DISORDERS AND
INJURY

Even though the large number of mouse models allows researchers to choose the mouse
that is best suitable to address their questions, the small size of mouse CNS greatly
complicates and/or hampers the use of mouse models in pre-clinical research where invasive
approach is used to deliver therapeutic agents. For that reason the rat disease and injury
models are superior to the mouse ones when it comes to cell grafting. In our grafting of human
neural stem cells experiments we therefore used i) the already available transgenic rat model
of Amyotrophic Lateral Sclerosis which carries human mutant SOD1 protein with G93A point
mutation (SODL1 rat) and ii) we established the rat model of acute lumbar (L3) compression
injury.

6.2.1. Rationale for spinal cell-replacement therapy after spinal trauma and in ALS

Based on the numerous grafting experiments published in recent years and on the
characteristics and properties of neural stem cells (NSCs), the use of NSCs for acute spinal
cord grafting after trauma serves three purposes. First, it serves to provide local trophic
support in the areas of previous injury (provided that grafted cells are able to home and
survive long-term once grafted into the injured spinal cord milieu) and to minimize or halt the
process of progressive axonal/neuronal degeneration. Second, it serves to provide a cavity-
filling effect by replacing previously injured-degenerated necrotic tissue and thus prevent the
long-term (or progressive) formation of rostro-caudal cavitations (i.e., syringomyelia) (Wirth
et al. 2001) (Fig. 17). Third, by the development of synaptic contact with the host
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axons/neurons above and below the injury level it can potentially lead to formation of a
functional relay through the injury site (Fig. 16).

Accordingly, the use of NSCs for intraspinal grafting into the ALS spinal cord serves the
following three purposes. First, similarly as in SCI, it serves to provide local trophic support to
the motor neurons and to certain extend, minimize neuronal degeneration. Second, it serves to
partially replace the host cells which are affected by the mutant SOD1 expression leading to
partial clearance of the not yet known toxic factors which are being released by the host
diseased astrocytes and/or third, it serves to partially restore the function of the host glial cells
— thus, to reuptake of the glutamate from the synaptic cleft and potentially to partial
restoration of the myelin insulation of motor neurons. But in the case of ALS, it has to be
noted, that the primary outcome of the HSSCs transplantation in human ALS patients is the
partial improvement of function and quality of life as the life-extension is not expected based
on the aggressive course of the disease and because the majority of the ALS patients will most
likely receive the HSSCs grafts after the onset of the disease thus when the progressive motor
neuron and oligodendrocyte degeneration, neuroinflammation and toxicity is already on place.

6.2.2 Cell survival and differentiation

In both studies near pure population of nestin+ human fetal spinal stem cells were grafted
intraspinally at 3 days after contusion-induced spinal cord injury (van Gorp et al. 2013 in
press) or at age ~65 days in SOD1 rat (Hefferan et al. 2012). Analysis of the graft survival at 2
(SCI) or ~2.5 (SOD1) months after grafting showed a dense population of grafted ANUMA+
cells in grafted previously trauma-injured regions or in the central and deep gray matter
(laminae VII-I1X) with occasional extension into the white matter with slight enlargement of
the spinal cord noted typically in the area closest to the graft in SOD1 rats (Hefferan et al.
2012). In addition, numerous hNUMA+ cells which migrated out of the graft in distances
ranging between 2-3 mm were also seen in SCI rats (van Gorp et al. 2013 in press) while the
migration of HSSC in the spinal cord of SOD1 rats was limited (Hefferan et al. 2012) (even
with 25% longer survival after grafting than in SCI animals) which can most likely be
explained by space limitation of the relatively “intact” (i.e. without traumatic injury) spinal
cord tissue of SOD1 rats.

K hSYN GAD65 |L hSYN VGIuT

r
-

Fig. 15 Human spinal neural stem cells grafted into lumbar spinal cord of SOD1G93A rats show
long term survival and preferential neuronal differentiation. Fig 1 J-L from author’s publication
Human Neural Stem Cell Replacement Therapy for Amyotrophic Lateral Sclerosis by Spinal
Transplantation
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Using human-specific antibodies against NSE and synaptophysin (hNSE; hSyn,
respectively - markers of mature neurons), we have also shown that a majority of grafted cells
developed into a neuronal phenotype in both studies (Fig. 15). Essentially all structures within
the graft core labeled for both hNSE and doublecortin (DCX; early postmitotic neuronal
marker which is not present in the parenchyma of adult spinal cord) (Hefferan et al. 2012). In
addition, quantitative analysis of the grafts in SOD1 rats demonstrated that 78+6% of
hNUMA-positive nuclei were surrounded by a DCX+ cytoskeleton, suggesting that those cells
were young, migrating, post-mitotic neurons. Likewise, no cells with DCX were found lacking
a hNUMA+ nucleus. Similar to the hNSE staining pattern, fibers with doublecortin were
found extending often more than 500 pm radially from the graft core, sometimes crossing
through/near lamina X to the opposite side. On average 12.5+1.2% of hNUMA-positive cells
expressed the mature neuron marker NeuN (Hefferan et al. 2012). Many hSyn+ boutons were
found to reside in the vicinity of host neurons in both studies. Because of the nature of the
study, many more hSyn+ bouton-like structures adjacent to the host neuronal cell body and
associated processes (even on some persisting a-motoneurons) were found in SODL1 rats (Fig.
15) (Hefferan et al. 2012). By examining specific neurotransmitter phenotype markers in 0.5
um-thick optical sections, 0.8+0.3% of hSyn+ structures were co-labeled with glutamate
decarboxylase 65 (GAD65), a marker for y-aminobutyric acid (GABA)-producing neurons.
Immunostaining for each of the three vesicular glutamate transporters known to exist in the
spinal cord (VGIUT 1, 2, and 3) revealed that 1.3+0.5% of boutons with hSyn were
glutamatergic (Fig. 15). Glycinergic boutons, identified by immunostaining for a glycine
transporter, (GlyT2) represented 0.9+0.6% of these boutons. In the vast majority (>97%) of
cases hSyn+ cells did not contain any differentiated cell marker, indicating a persistent
immature phenotype at 2.5 months after grafting in SOD1 rats (Hefferan et al. 2012).

On the contrary, analysis of the neurotransmitter phenotype in grafted cells in SCI animals
showed only the development of putative inhibitory GABA-ergic synapses with host neurons
(i.e. GADG65/67+; Fig. 16) (van Gorp et al. 2013 in press). This could be explained by the
relatively shorter surviving time of the grafted cells (25%) and by the observed behavior of the
HSSCs grafted into the injured lumbar spinal cord — we have determined that while the density
of grafted cells is relatively low to fill the cavity-forming region, the grafted cells continue to
proliferate after grafting to the point when a cavity is near completely filled with grafted cells
(unpublished data). The cell proliferation is inhibited once the cavity is filled and after that the
cells differentiate normally. That the cells do not develop into pre-neoplastic or neoplastic
cells has been assessed in a 9-month tumorigenicity study with nude rats whose Th9 spinal
cord segment was first injured by contusion (manuscript in preparation). Thus the delayed
neuronal maturation/differentiation seen in SCI spinal cords was most likely caused by the
initial period of proliferation of HSSCs which led to complete filling of the injury-induced
cavity.
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6.2.3. Effect of spinal grafting of HSSC on the recovery of motor function and
muscle spasticity

In our HSSCs transplantation studies, a combination of several motor performance tests
were employed including open field modified BBB scoring, CatWalk gait analysis, inclined
ladder climbing, single frame hind limb motion analysis, and myogenic motor evoked
potentials to identify the degree of motor function recovery after cell grafting. The changes in
muscle spasticity in lower extremities (i.e., below the level of injury) were also measured
using a computer-controlled ankle rotational system (Marsala et al. 2005). The CatWalk gait
analysis showed significantly improved paw placement in HSSC-injected SCI animals when
compared to control SCI animals (van Gorp et al. 2013 in press). In addition, a significant
suppression of otherwise exacerbated muscle spasticity response measured during ankle
rotation was seen in cell-treated SCI animals (van Gorp et al. 2013 in press). In SOD1
animals, Hoffmann reflex spasticity measurements revealed a higher average H-wave
amplitude (increase in rate-dependent depression; RDD) for the HSSCs-grafted group
compared to the media-treated animals (3.5+0.6 vs. 1.1+0.3 mV; p,0.05; t-test), indicating
functional preservation between sensory la afferent, a-motoneuron and motor plate (Hefferan
et al. 2012). However, no improvements in other functional CatWalk parameters (runway
crossing time, hind paws base of support, regularity index/coordination, stride length, phase
dispersions), MEPs, BBB score, single-frame motion analysis or ladder climbing test) were
seen in the HSSC-treated SCI rats (van Gorp et al. 2013 in press). On the other hand, the BBB
score (measured from each animal every 3-4 days) was significantly preserved at age 135-
142d in the cell grafted SOD1 animals compared with the media-treated group (Hefferan et al.
2012).

Fig. 16 Development of putative GABA-ergic synaptic contact between HSSC and the host
neurons. Fig 6 B from author’s publication Amelioration of motor/sensory dysfunction and spasticity
in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation.
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Consistent with our current data, several other studies from different laboratories have
demonstrated a variable degree of motor function recovery after spinal grafting of rodent or
human fetal, adult or embryonic stem-cells derived neural precursors using a variety of spinal
injury models in mice and rat (McDonald et al. 1999; Hofstetter et al. 2005; Mitsui et al. 2005;
Davies et al. 2006; Macias et al. 2006; Cizkova et al. 2007; Davies et al. 2008; Alexanian et al.
2011; Boido et al. 2011; Jin et al. 2011; Lu et al. 2012). Importantly, these data together
suggest that some degree of therapeutic effect can be achieved once cells are grafted during
the early post-injury period (i.e., 3-7 days after spinal trauma) or in early pre-symptomatic
stages of the disease in SODL1 rats (i.e. before the first symptoms can be clinically diagnosed).

6.2.4. Grafted HSSCs into lumbar cord offered no effect on survival of SOD1 rats

Despite the transient improvement of neurological/motor functions and local improvement
in motor neuron survival, we found no survival benefit versus our control media-injected
group (Hefferan et al. 2012). This was not unexpected, since for humane reasons survival in
this animal model is defined by a loss of righting reflex (i.e., the ability of the animal to right
itself). An intact righting reflex requires coordinated hindlimb and forelimb motor function
and continuing functional coupling of the upper and lower motor neuron system. In deficits
which include upper and lower motor neuron degeneration (such as seen in SOD1%%* rats),
region-restricted treatments (as achieved after spinal segmental cell grafting) is not expected to
significantly modify upper motor neuron degeneration and loss and the associated progressive
decline in righting reflex (Hefferan et al. 2012). Nevertheless, using lumbar spinal grafting of
human spinal neural stem cells similar to those of our current study, Xu et al. (2006)
previously reported an apparent lifespan extension of SOD1%%** rats of 11 days compared to
control animals receiving injection of dead cells (Xu et al. 2006) and even longer extension of
survival (17 days) was achieved when the HSSCs (in this case, the same cell line as we have
used in our study) were grafted into both cervical (C4-C5) and lumbar (L4-L5) segments of
the spinal cord (Xu et al. 2011). Similar to our study a significantly higher number of
persisting lumbar a-motoneurons was found in HSSCs treated animals in both studies. Given
the robust graft survival, cell differentiation and migration seen in our study (Hefferan et al.
2012), we speculate that the differences between ours and these prior studies may reflect the
occurrence of natural drift in the onset of disease between different cohorts of animals (a
feature that has been argued to necessitate >25 animals per group in order to draw statistically
valid conclusions) (Scott et al. 2008) and/or difference in the design of the control groups (i.e.,
injections of dead cells vs. media only) and potentiation of local neuronal degeneration in dead
cell injected animals.

6.2.5. Effect of spinal grafting of HSSC on the recovery of sensory function

In our SCI study, we assessed the sensory function below the level of injury (hind paws)
by measuring the mechanical and thermal thresholds for supraspinally mediated escape
behavior (van Gorp et al. 2013 in press). Using this method (in contrast to hindpaw
withdrawal reflex methods) we did not observe SCIl-induced hyperalgesia at the hindpaws
(below-level), which is in line with observations reported from other laboratories (Hofstetter et
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al. 2003; Baastrup et al. 2010). We did, however, find significant improvement of both SCI-
induced mechanical and thermal hypoesthesia. It is important to note that the sensory
thresholds did not yet plateau at the end of the 2-month survival period. We speculate that an
additional quantitative and qualitative improvement in the sensory function would likely be
seen should a longer post-grafting interval be studied (van Gorp et al. 2013 in press).

In addition to sensory tests, quantitative analysis of spinal parenchymal markers indicative
of developing (spinal) hypersensitivity (i.e., CGRP/GAP43, an indicator of aberrant sprouting
of primary sensory neurons (Ondarza et al. 2003; Macias et al. 2006), and Ibal staining, a
marker of microglia activation (Hains and Waxman 2006)) were studied and showed a
significant decrease in CGRP staining intensities in HSSC-treated animals if compared to SCI
controls (van Gorp et al. 2013 in press). This suggests that the recovery/decrease in sensory
thresholds observed in our study is not a result of aberrant sprouting or microglia activation.
Consistent with the observations from our study, previous studies from other laboratories have
demonstrated similar functional and histopathologically-defined (i.e. decrease in CGRP
staining around the injury site) improvements after spinal grafting of fetal-tissue derived
human or rodent neural or glial-restricted precursors in several mouse or rat spinal injury
models (Hofstetter et al. 2005; Mitsui et al. 2005; Macias et al. 2006; Davies et al. 2008;
Baastrup et al. 2010; Alexanian et al. 2011; Jin et al. 2011).
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Fig. 17 Effective cavity-filling effect by transplanted cells in SCI HSSC-injected animals.
Fig 4 A-D from author’s publication Amelioration of motor/sensory dysfunction and spasticity in
a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation.
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6.2.6. Mechanism of HSSC-mediated therapeutic action in SCI and ALS

Quantitative analysis of the host axon survival in the injury epicenter showed no
significant sparing effect in HSSC-grafted SCI animals vs. medium-injected or untreated SCI
animals. These data suggest that i) the majority if not all axons which succumb to pathological
processes resulting from secondary changes post injury such as edema, ischemia were already
lost or irreversibly damaged at 3 days after trauma (i.e., the time point when the cells were
grafted), or ii) regional cell grafting is not therapeutically effective in providing acute
neuroprotection.

As we mentioned before, transplanted HSSC into the spinal cord both SCI and ALS rat
models engrafted and differentiated into neural or glial cells with no extensive proliferation or
tumor formation observed (Hefferan et al. 2012) (van Gorp et al. 2013 in press). Analysis of
the neurotransmitter phenotype in grafted cells in the SCI model showed the development of
putative inhibitory GABA-ergic synapses with host neurons (Fig. 16). These data show that
the restoration of the local functional inhibitory circuitry by grafted cells can in part lead to the
observed functional improvements (van Gorp et al. 2013 in press). While under specific
pathological conditions (such as inflammatory or neuropathic pain) the spinal GABA can have
excitatory effects due to reduced expression of the potassium-chloride exporter KCC2) (Coull
et al. 2003; Anseloni and Gold 2008), systematic experimental and clinical studies have
demonstrated a potent anti-spasticity effect after intrathecal treatment with GABAg receptor
agonist baclofen, suggesting continuing inhibitory GABAg receptor-mediated action (Rawlins
2004; Kakinohana et al. 2006).

In addition, we have recently demonstrated an effective anti-spastic effect after spinal
parenchymal GADG65 (glutamate decarboxylase) upregulation if combined with systemic
tiagabine (GABA uptake inhibitor) treatment in animals with spinal ischemia-induced muscle
spasticity (Kakinohana et al. 2012a). Jointly, these data suggest that the anti-spasticity effect
observed in our current SCI study can be mediated by a synaptically coupled GABA-
inhibitory effect. Accordingly, in our previous study using the same cell line, we have
demonstrated the development of putative GABA-ergic synaptic contacts between grafted
neurons and persisting a-motoneurons of the host in a rat spinal ischemia model. In the same
animals, a significant amelioration of spasticity was measured (Cizkova et al. 2007).
Similarly, the transient anti-spastic effect of HSSCs-grafted SOD1 expressed by increased
RDD of Hoffmann reflex can be at least partially attributed to the development of putative
inhibitory GABA-ergic and/or glycinergic synapses (Fig. 15) with host surviving a-
motoneurons (Hefferan et al. 2012). This could have been further supported by the partially
corrected glutamine uptake from the extracellular space/synaptic cleft by the HSSC-derived
glial cells/astrocyte EAAT2 as it was suggested in previous work (Lepore et al. 2008).
Furthermore, the temporary improvement of BBB score in the HSSC-treated SOD1 animals
can be explained by “dilution” of the yet unknown host astrocyte-secreted toxic factors by the
engrafted human neural and glial cells present in the vicinity of host motor neurons which
most likely led to their temporary protection. The presence (although small) of the mature
human oligodendrocytes could also helped retain the neurological and/or motor function in
SODL1 rats by re-myelination of the axons of host motor neurons preserving their conductivity.
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The overall improvement in the ventral horn grey matter in the HSSC-treated rats also led to
~50% reduction of neuroinflammation (astrogliosis and microgliosis) as demonstrated by the
reduction of total immunoreactivity for GFAP and Ibal when compared to media treated
SODL1 rats (Hefferan et al. 2012). In the same study using EM analysis, we have confirmed the
development of synaptic contacts with the host neurons at 9 months after intraspinal grafting
of HSSC in normal non-injured immunodeficient rats (Hefferan et al. 2012). Similarly, in a
more recent study, the development of functional contacts and restoration of axon potential
conductivity across the region of complete Th3 spinal transection by grafted HSSC was seen
(Lu et al. 2012). Based on these transplantational experiments, we suggest that ideal cell
lineage for spinal cord injury therapy would probably be a certain proportion of
oligodendrocytes and neurons (Kim et al. 2007; Sabelstrom et al. 2013), and for ALS it most
likely would include delivery of all three neural cell lineages with a high content of astrocyte
precursors (Maragakis et al. 2005; Vargas and Johnson 2010).

6.2.7. Defining the optimal TAC immunosuppressive regimen to permit long-term
survival and maturation of spinally grafted human neural precursors in rats

Even though we successfully used combinatory immunosuppression protocol which
included Prograf (FK506; Astellas Pharma) in combination with Cellcept (mycophenolate
mofetil (MFF); Roche Pharmaceuticals) in all our xenografting studies (Cizkova et al. 2007;
Usvald et al. 2010; Hefferan et al. 2011b; Hefferan et al. 2012; Kakinohana et al. 2012b) (van
Gorp et al. 2013 in press), we have occasionally observed graft rejection. In our HSSCs
grafting study in SOD1 rats (Hefferan et al. 2012), hNUMA staining revealed identifiable
human grafts in 18/22 animals. Four animals were thus graft-negative as indicated by injection
tracks which were clearly visible, but with no human antigen detected. Moreover, in one of
our recent studies, we demonstrated consistent cell survival for up to 2 months after spinal
grafting of HUES7-NPCs after using 1 mg TAC/day dose delivered s.c. as a bolus in caster-oil
preparation in SD rats with previous spinal ischemic injury. However, no cell survival was
seen if animals were allowed to survive for total of 4 months (Kakinohana et al. 2012c). Thus,
we decided to develop a more consistent and less labor intensive immunosuppression protocol.

In this study, quantitative analysis of T-cells (CD8, CD4) in grafted spinal cord regions
showed a near complete absence of this cell population in 3.4 and 5.1 mg/kg/day TAC group
if analyzed at 77-90 days after cell grafting (Sevc et al. 2013 in revision). Similarly, the
analysis of CD8 and CD4 cells in circulating blood showed a significant decrease in the 5.1
mg/kg/day TAC group if compared to non-immunosuppressed SOD1 rats. In contrast to the
3.4 and 5.1 mg/kg/day TAC groups, a clear population of CD4/8 cells was seen in 1.9
mg/kg/day TAC-treated and cell grafted animals. Interestingly, a substantially higher density
of CD8 population was seen on the dorsal surface of individual grafts facing the pial
membrane. We speculate that the presence of grafted cells in heavily vascularized but BBB-
lacking pial arterial system is more susceptible to extravasation of the circulating T-cell
population and the resulting T-cell mediated response (Sevc et al. 2013). We also hypothesize
that even if a satisfactory cell survival was seen in the 1.9 mg/kg/day group at 77 days after
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cell grafting, a progressive grafted cell rejection will likely develop should the same level of
low level immunosuppression continue over an extended period of time.

Independent of the daily TAC dose delivered (i.e., 1.9, 3.4 or 5.4 mg/k/day) in a form of
TAC pellet, consistent survival of grafted ES-derived NPCs or HSSCs was seen at intervals
30-90 days after grafting (Sevc et al. 2013 in revision). This was expressed as the presence of
high density DCX or hNSE immunoreactive-grafted neurons in targeted spinal cord regions.

In addition, high density neuronal processes derived from grafted human neurons

expressing human-specific synaptophysin and projecting toward host interneurons and o-
motoneurons were identified. Comparable grafted cell survival and maturation was seen in
both SODL1 rats and in SD rats with previous L3 contusion injury (SCI) (Sevc et al. 2013 in
revision). In our previous experiment, we demonstrated consistent xenograft survival three
weeks after the transplantation of HSSCs into the spinal cord in rats treated with daily i.p.
injection of TAC (3 mg/kg/day) combined with daily i.p. injection of Mycophenolate mofetil
(30 mg/kg) (Hefferan et al. 2011a).
Together, these data show that the TAC dose of around 3 mg/kg/day and divided into two 12-
hr doses (if delivered as a bolus s.c injection) or in a form of continuously TAC releasing
pellet is required for long-term effective immunosuppression to permit xenograft survival in
rats.

6.2.8. (Neural) stem cell therapy in spinal cord summary

In summary, HSSCs transplanted into the lamina VII of the SOD1 rat lumbar spinal cord
(L2-L5) provided local protection to the lamina IX a-motoneurons residing in the close
proximity of the grafted cells and showed transient protection of hind-limb motor function and
preservation of Hoffman reflex activity and decreased inflammatory responses but offered no
protection to a-motoneuronal pools distant from grafted lumbar segments. Using the same
GMP-grade HSSC cell line (NSI-566RSC) in immunosuppressed Spreg-Dowley rats with
previous L3 contusion injury we demonstrated progressive and significant improvement in
motor and sensory function, effective filling of spinal injury/trauma-induced cavity with
grafted cells and development of putative GABA-ergic synapses between grafted and host
neurons at 2 months after grafting. In addition, we have developed new immunosuppressive
tacrolimus-loaded pellets which are now commercially available and provide steady drug
release for up to 3 months, making delivery labor efficient, minimally invasive, and producing
stabilized blood concentration levels.

It is clear that cell replacement therapies will require effective multi-site delivery and will
need to be supplemented by drug and/or gene therapies. Nevertheless our data demonstrated
that transplantation of human neural stem cells represent safe and effective potential therapy
for both neurodegenerative diseases and acute spinal cord injuries with limitations given by
the complexity of the disease and the size of the injury.
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6.3. GENERAL CONCLUSION

My doctoral thesis was primarily focused on the animal disease models development and
characterization and pre-clinical xenogeneic cell therapies focused on spinal cord disorders
and injury. We successfully generated and characterized the first transgenic minipig model of
Huntington’s disease which carries one copy of the human HTT transgene encoding 124
glutamines integrated into chromosome 1 24-g25. Our cross-breeding studies revealed
possible role of UCHL1 in UPS impairment in HD which could be linked to relative early
reproductive problems in tgHD boars which by one year had reduced fertility and fewer
spermatozoa per ejaculate. As UPS is crucial for sperm quality control and UCHLL1 is required
for normal spermatogenesis, the tgHD minipig boar’s decline in sperm number and ZP
penetration rate could therefore be a consequence of aberrant interaction of mutant huntingtin
with UCHL1 and strongly suggest UPS impairment in tgHDminipig testes.

Our human neural stem cells transplantation studies in rat models of ALS and spinal cord
injury clearly demonstrated that the engraftment of HSSCs is safe, efficient and offers
therapeutic potential which, of course, is limited by the complexity of the disease and the size
of the injury. Transplanted HSSCs differentiated mainly into neurons and some astrocytes and
oligodendrocytes. In addition, we observed transient protection of a-motoneurons and
improvement of neurological/motor functions in HSSCs-treated SODL1 rats and even more
apparent motor and sensory function improvement in SCI HSSCs-grafted rats. During our
grafting experiments we have also developed a new immunosuppressive protocol based on
TAC-loaded pellets which we extensively tested in our lab and which are already available for
broad scientific community.

Results of our work helped to expand our understanding on the potential clinical use of
cell-replacement therapies in human patients with chronic spinal trauma and ALS. The
development of a porcine HD model represent a critical step in large animal HD modeling
with the primary utilization of such a model in gene-targeted and cell-replacement therapies.
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LIST OF ABBREVIATIONS

A4V
AchE
ADAM10
ALS
BAK
BAX
BBB

Alanine 4 changed to valine mutation

Acetylcholinesterase

A Disintegrin and metalloproteinase domain-containing protein 10
Amyotrophic Lateral Sclerosis

Bcl-2 homologous antagonist killer

Bcl-2-associated X protein

blood brain barrier or Basso, Beattie, and Bresnahan (BBB) scores

(depends on the context)

BCL-2

Bdnf

bFGF

BID
Biotin-16-dUTP

B-cell lymphoma 2

Gene for brain derived neurotropic factor

Basic fibroblast growth factor

Bis in die

Biotin-16-2’-deoxyuridine-5’-triphosphate, can be used to produce

biotinylated DNA probes

BNDF Brain derived neurotropic factor

bp Base pairs

CI90RF72 Chromosome 9 open reading frame 72 mutation
CAG CAG triplet

CBP CREB-binding protein

CD4, CD14 etc. Cluster of differentiation no4, no14 etc.

CGRP Calcitonin gene related peptide

ChAT Choline acetyltransferase

DAPI 4',6-diamidino-2-phenylindole

Daxx Death-associated protein 6

EImHTT Exon 1 of mutant huntingtin

EAAT2 Excitatory amino-acid transporter

EGF Epidermal growth factor

EGF Epidermal growth factor

EMG Electromyography

FADD Fas-Associated protein with Death Domain
FALS Familiar ALS

Fas FAS receptor (FasR), also known as apoptosis antigen 1 (APO-1 or
APT), cluster of differentiation 95 (CD95) or tumor necrosis factor receptor superfamily
member 6 (TNFRSF6)

FDA Food and Drug Administration

FISH Fluorescence in situ hybridization

FITC Fluorescein isothiocyanate
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FK506 Tacrolimus (also FK-506 or fujimycin, trade names Prograf,
Advagraf, Protopic)

FKBPS FK506 binding protein

FTD Frontotemporal dementia

FTLD Frontotemporal lobe degeneration

FUS/TLS FUS (fused in sarcoma) or TLS (translocation in liposarcoma)
G93A Glycine 93 changed to alanine mutation

GABA y-Aminobutyric acid

GAP43 Growth Associated Protein 43

GDNF Glial cell-derived neurotrophic factor

GFP Green fluorescent protein

GFPu GFP appended with a destabilizing modification (degradation
signals) which promotes their constitutive degradation by the UPS

GLT1 Excitatory amino-acid transporter in rodents

GMP Good manufacturing practice

GnRH Gonadotropin-releasing hormone

H3 Histone H3

H46R Histidine 46 changed to arginine mutation

HD Huntington’s disease

Hdh promoter Mouse huntingtin promoter

HEAT Consensus sequences called huntingtin, elongation factor 3, protein
phosphatase 2A, and TOR 1 repeats

hES-Ops Human embryonic stem cell-derived oligodendrocyte progenitors
HSSCs Human spinal cord-derived neural stem cells

V. Intravenous

Ibal lonized calcium-binding adapter molecule 1

IBs Inclusions (polyubiquitinated) of aggregated huntingtin

IETD Caspase-8 inhibitor peptide

IGF-1 Insulin-like growth factor 1

IKK IkappaB kinase complex

IT15 Interesting transcript 15 (HTT)

K6, K9, K15, K48, K63 Position of lysine in a protein

KCC2 Chloride potassium symporter 5

KO Genetic knock-out

L3 3" lumbar vertebrae

LAMP-2A Lysosome-associated membrane protein 2 variant A, receptor for
chaperone-mediated autophagy

LDN LDN-57444 UCHLY1 inhibitor

LMN Lower motor neuron

MFF Mycophenolate mofetil

MSNs Medium spiny-sized striatal neurosn
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mTOR Mammalian target of rapamycin

MVC Motor vehicle collisions

NADPH Reduced form of Nicotinamide adenine dinucleotide phosphate
NES Nuclear export signal

NGF Nerve growth factor

NLS Nuclear localization signal

NMDA N-Methyl-D-aspartic acid

NMDAR N-Methyl-D-aspartic acid receptor

nNOS Nitric oxide synthase 1 (neuronal)

NOX2 Subunit of NADPH oxidase

NR2B Glutamate [NMDA] receptor subunit epsilon-2 also known as N-
methyl D-aspartate receptor subtype 2B

null mutation Mutation of both alleles of one gene

P/CAF P300/CBP-associated factor, trancriptional coactivator

P300 E1A binding protein p300

p38 p38 mitogen-activated protein kinases

p53 Protein 53 or tumor protein 53; is a tumor suppressor protein
polyQ Polyglutamine stretch in huntingtin protein

polyUb Polyubiquitin chain

PSD95 Postsynaptic density protein 95

PUMA p53 upregulated modulator of apoptosis

RE1/NRSE Repressor element 1/ also known as the neuronrestrictive silencer
element

REST/NRSF RE1-silencing transcription factor/ also known as neuronal
restrictive silencing factor

ROS Reactive oxygen species

s.C. Subcutaneous

S13, S16, S536 Position of serine in protein

SALS Sporadic ALS

SClI Spinal cord injury

SNAP25 Synaptosomal-associated protein 25

SOD1 Copper/zinc superoxide dismutase 1

T12-L1 12" thoracic through 1% lumbar vertebrae

TAC tacrolymus

TDP-43 43 kDa TAR DNA-binding protein

tgHD Huntington’s disease transgene

TKX mixture of Tiletaminum 250 mg, Zolazepamum 250 mg, Ketamine
10 % 3 ml, Xylazine 2 % 3 ml

TREG CD4+CD25+ regulatory T (lymphocyte) cells

Ub Ubiquitin

UMN Upper motor neuron
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UPS Ubiquitin proteasome system

VEGF Vascular endothelial growth factor
WT Wild type
oaMN a-motoneuron
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Plochan M, Hefferan MP, Motlik J, Rypacek F, Machova L, Kakinohana O, Santucci C,
Johe K, Lukacova N, Yamada K, Bui JD, Marsala M. Effective long-term
immunosuppression in rats by subcutaneously implanted sustained-release tacrolimus pellet:
effect on spinally grafted human neural precursors survival. Experimental Neurology (in
revision)

IF (2012): 4.699; 5-year IF (2012): 4.416

9.2. Publications in Scientific Journals without IF with relation to Ph.D. thesis

Baxa M, Hruska-Plochan M, Juhas S, Vodicka V, Pavlok A, Juhasova J, Miyanohara A,
Nejime T, Klima J, Macakova M, Marsala S, Weiss A, Kubickova S, Musilova P, Vrtel R,
Sontag EM, Thompson EM, Schier J, Hansikova H, Howland DS, Cattaneo E, Difiglia M,
Marsala M, Motlik J. A Transgenic Minipig Model of Huntington's Disease. Journal of
Huntington’s Disease 2 (2013) 47-68. DOI 10.3233/JHD-130001 (first two authors are joint
first authors)

Journal launched in June 2012 and thus does not have an IF yet
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9.3. Publications in Scientific Journals with IF without relation to Ph.D. thesis

Kovalskd M, Hruska-Plochain M, QOstrup O, Adamkov M, Lehotsky J, Strejcek F, Statelova
D, Mikuskova K, Varg I, Petrovi¢ova I. The embryonic nucleologenesis during inhibition of
major transcriptional activity in bovine preimplantation embryos. Biologia 67/4: 818—825,
2012. DOI: 10.2478/s11756-012-0066-1

IF (2012): 0.557; 5-year IF (2012): 0.630

9.4. Poster presentations

e 5th Plenary Meeting of EHDN in Lisbon, Portugal, September 5-6, 2008.

e |V Meeting on Molecular Mechanisms of Neurodegeneration, Milan, Italy, May 8-10,
2009

e World Congress on Huntington Disease in Vancouver, BC, Canada, September 12- 15,
2009

e 7th Forum of European Neuroscience, Amsterdam, The Netherlands, July 3-7, 2010

e 6th Plenary Meeting of EHDN in Prague, Czech Republic, September 3-5th, 2010

e 6th Annual Huntington's Disease Therapeutics Conference: A Forum for Drug Discovery
& Development in Palm Springs, CA, USA, February 07-10, 2011
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