
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Václav Remeš

Migration and load-balancing in distributed
hierarchical component systems

Department of Distributed and Dependable Systems

Supervisor: RNDr. Petr Hnětynka, Ph.D.

Study program: Computer Science - Software Systems

2010

I would like to thank my supervisor for all his advice and tolerance, my parents for
all their support and infinite patience, my girlfriend for her amiability and her sense
of humor at 2 a.m. and all the people who gave me useful advice and helped me stay
on the right side of sanity.

I hereby state I have written my master thesis singly and with exclusive use of ref-
erenced sources. I agree with its lending and publishing.

In Prague, Václav Remeš

2

Contents

1 Introduction 7
1.1 Distributed hierarchical component systems 7
1.2 Migration and load balancing . 8
1.3 Goal of the thesis . 8
1.4 Structure of the thesis . 9

2 Background 10
2.1 Components . 10

2.1.1 Component examples . 11
2.2 Connectors . 12
2.3 SOFA 2 . 12

2.3.1 Runtime architecture of SOFA 2 13
2.3.2 Metamodel . 14
2.3.3 Launching a SOFA 2 application 16

3 Implementing migration in a component system 17
3.1 Migration process in theory . 17

3.1.1 Primitive components vs. composed ones 17
3.1.2 Anticipated vs. unanticipated 18
3.1.3 Overview of the migration process 19

3.2 Implementing migration . 20
3.2.1 Migrable components in SOFA 2 20
3.2.2 Stopping the component’s jobs 24
3.2.3 Saving the state of a component 26
3.2.4 Re-instantiating the component 28
3.2.5 Reconnecting the components 28
3.2.6 State loading and resuming component’s work 34
3.2.7 Finalization . 35
3.2.8 Handling error states during migration - reverting back to

the original component . 35
3.2.9 Possible problems with concurrency 36

3.3 Handover protocol . 36
3.3.1 Migration influence on the rest of the application 36

3

3.3.2 Method invocation - incoming calls during migration 36
3.3.3 Reconnection of messaging connectors 38
3.3.4 Migration of a larger number of components 39
3.3.5 Possible problems of the method 40

3.4 Improvements . 40
3.4.1 Preinstantiation and concurrency 42

4 Load balancing 43
4.1 Reasons for load balancing at runtime 43

4.1.1 Resource usage variances . 43
4.1.2 Migrating clients to servers when huge load of communication

is anticipated . 44
4.2 Monitoring system load in a distributed system 44
4.3 Load balancing principles . 44

4.3.1 Example . 45

5 Prototype implementation 46
5.1 Changes which had to be made to SOFA 2 46

5.1.1 Exclusive usage of migrating connectors 46
5.1.2 Deployment Dock changes . 48
5.1.3 Executing migration . 49

5.2 Load balancing . 49

6 Evaluation 51
6.1 Migration time evaluation . 51

6.1.1 Testing environment . 51
6.1.2 Results . 52

7 Related work 55
7.1 Migration in CORBA . 55
7.2 Migration in ProActive . 56

8 Conclusion and future work 59
8.1 Summary . 59
8.2 Future work . 59

Literature 61

A Contents of the enclosed disc 63
A.1 Structure of the disc . 63
A.2 Examples howto . 63

A.2.1 System requirements . 63
A.2.2 Running the examples . 64
A.2.3 List of the example Deployment Plans 65

4

A.2.4 Migration in MConsole . 66
A.3 Known issues . 67

5

Title: Migration and load-balancing in distributed hierarchical component systems
Author: Václav Remeš
Department: Department of Distributed and Dependable Systems
Supervisor: RNDr. Petr Hnětynka, Ph.D.
Supervisor’s e-mail address: hnetynka@d3s.mff.cuni.cz

Abstract: A well balanced usage of resources is one of the goals of distributed ap-
plications. A way to achieve such a balanced usage is by run-time monitoring and
migration of components of already executed applications between computers. There
are many issues related to migration, from monitoring resources usage till obtaining
component state and transferring to a different computer. The goal of this thesis is
to design and implement a support for migration and load-balancing of components
in the SOFA 2 hierarchical component system.

Keywords: migration, distributed systems, load balancing

Název práce: Migration and load-balancing in distributed hierarchical component
systems
Autor: Václav Remeš
Katedra (ústav): Katedra distribuovaných a spolehlivých systémů
Vedoućı diplomové práce: RNDr. Petr Hnětynka, Ph.D.
e-mail vedoućıho: hnetynka@d3s.mff.cuni.cz

Abstrakt: Vyvážené využit́ı zdroj̊u je jedńım z ćıl̊u distribuovaných aplikaćı. Je-
den ze zp̊usob̊u, jak dosáhnout vyváženého využit́ı je monitorováńı běhu aplikaćı
a migrace jejich komponent mezi poč́ıtači. Migrace s sebou přináš́ı mnoho otázek,
od monitorováńı prostředk̊u až po źıskáváńı stavu komponenty a jeho přenosu na
jiný poč́ıtač. Ćılem této práce je navrhnout a implementovat podporu pro migraci a
vyvažováńı zátěže v hierarchickém komponentovém systému SOFA 2.

Kĺıčová slova: migrace, distribuované systémy, vyvažováńı zátěže

6

Chapter 1

Introduction

Distributed systems are taking a great importance in today’s computing. There are
many ways to develop a distributed system. They start with creating an in-house pro-
tocol and beginning from the lowest level. After that follows the option of using some
already available middleware systems like Java RMI, CORBA or .NET Remoting.
The highest level approach is the possibility of using some sophisticated frameworks
like EJB, CCM, DCOM, SOFA 2, etc., which provide a transparent abstraction over
the distribution and communication of the particular parts of software.

1.1 Distributed hierarchical component systems

When designing a large and complicated system, particularly when it is a distributed
system, the overall work is very simplified when it can be split into a number of
logical parts separated from each other. The parts can then operate as black boxes
and communicate with each other only using well defined provided and required
interfaces. These black boxes are called components.

If a system is designed using the component approach and the underlying frame-
work allows it, the developers of the application can get many benefits without (or
almost without) any effort. First of all, the components can be developed by inde-
pendent teams of programmers that can focus only on their own parts and just make
sure they use the provided and required interfaces of their component correctly. Di-
viding components into autonomous units makes the verification of their correctness
much easier. Components can be distributed among a network of computers, they
can be updated and even replaced at runtime and many more.

Last but not least, components can be migrated between the computers which
are involved in the system to balance the load of the computers, their cpu, memory,
disk, networking usage and many more. These are precisely the topics which are
covered by the thesis.

There exists quite a large number of component systems. For example SOFA 2
[4], Fractal [22], EJB [23], DCOM [24] and many more.

7

1.2 Migration and load balancing

Process migration has been discussed a lot during the 90th’s in the context of dis-
tributed operating systems. A lot of research was done those days and some dis-
tributed operating systems which incorporated process migration at runtime saw
the sun, for instance Amoeba [25], MOSIX [27], Sprite [26], etc.

However, the topic was left dead for many years until around 2000 A.D. computer
clusters came into fashion, also migration of virtual computers started to be regarded
highly profitable and so on. These cases are however a bit different from our research
subject since they comprise a very low-level approach at the operating system layer.
When implementing migration into a general distributed component system, there
is no guarantee that the system has direct access to the memory space or even
have a complete knowledge about the state of a component. That’s why component
systems can take inspiration in distributed operating systems but also have to develop
methods of their own when migration is concerned.

The possibility to migrate components between different computers involved in
a distributed system brings many advantages. First of all when a computer needs
to be shut down, the possibility of just migrating away all components which have
been running on it is highly desirable. Another possibility is to have a monitoring
system periodically checking the utilization of the computers that the components
are running on. With a bit of analysis the system can migrate components to better
spread the load on the computers and utilize them more effectively.

Migration can be even used in cases when the system ”knows” that two com-
ponents will be communicating a lot in the following period of time; they can be
migrated to the same node to let them communicate directly - without remote calls
that are, of course, much slower.

It is clear that adapting the component system’s topology at runtime for either
load balancing or any other purposes first requires a fully working migration func-
tionality. This thesis therefore focuses mainly on the migration part and covers load
balancing only marginally.

1.3 Goal of the thesis

The goal of the thesis is to analyze the possibilities of migration in component systems
and to propose a working prototype implementation of migration into the SOFA 2
component system. There are many issues to be solved when wanting to provide
a fully functioning component migration. The most notable issues which the thesis
should solve are transferring the component’s state between different nodes, the ways
of leading the component into a reconfigurable state and solving dynamic dependen-
cies of the inter-component calls to prevent deadlocks. Different communication styles
also require different approaches when reconnecting the software connectors.

The prototype implementation should come also with a simple system analyzing

8

the performance of the running applications and balancing the load of the computers
by migrating components between them.

The thesis focuses mainly on the migration issues.

1.4 Structure of the thesis

Chapter 2 covers background information needed to comprehend the rest of the the-
sis.
Chapter 3 aims at describing the problems of migrating components and ways of
solving them.
Chapter 4 considers the possibilities of utilizing migration to balance the load of
the distributed system.
Chapter 5 covers the prototype implementation which was developed for the SOFA 2
component system as the prototype implementation of the thesis.
Chapter 6 evaluates the work done on the thesis and presents the results of some
measurements.
Chapter 7 tries to delimitate the work done for the thesis to other systems which
provide the migrating functionality.
Chapter 8 sums up the whole thesis and proposes additional work which could be
done in the field.

9

Chapter 2

Background

In this chapter we focus on the background information needed to comprehend this
thesis. The following sections cover the basics of software components and com-
ponent systems, principles of software connectors and their benefits in distributed
systems are taken into account next. The last section contains a brief description of
the SOFA 2 component system.

2.1 Components

Before we can start talking about migration in component systems, we should make
clear what we understand by the term of ”Component”.

This is what a component is defined like by the OMG [5]:

A component represents a modular part of a system that encapsulates its
contents and whose manifestation is replaceable within its environment.
A component defines its behavior in terms of provided and required in-
terfaces. As such, a component serves as a type whose conformance is
defined by these provided and required interfaces (encompassing both
their static as well as dynamic semantics).

In this thesis we see components as black boxes that are either capable of ex-
ecuting their own business code (we call them primitive components) or contain
other components (these are called composed components). A component should
contain processes which are strongly related with each other and it is recommended
for the components to have coarse-grained interfaces to follow the high-coupling and
low-cohesion rule.

These black boxes expose some provided interfaces to which other components
are connected using their required interfaces. The component itself should not be
aware of what is on the opposite side of its interfaces nor should its internals be
concerned too much with the underlying middleware (of course this is just a theo-
retical recommendation, it should for example know whether the communication is
synchronous or asynchronous).

10

Note that the components are forbidden to have other means of communication
than their interfaces. They also cannot share any global variables and so on.

2.1.1 Component examples

Figure 2.1: Example of primitive components

Figure 2.1 shows an example of two components, Component A is connected
through its required interface ”foo” to Component B’s provided interface ”foo”.

Figure 2.2: Example of composed components

In Figure 2.2 there can be seen an example of composed components (in the figure
primitive components have a yellow background color). Primitive component A is
connected to a composed component B which contains components C and D.

The question is how composed components are connected with their subcompo-
nents. Since a normal connection stands between a required and a provided interface,
it cannot be used in the case of composed components because the containing com-
ponent must connect its required interfaces to its subcomponent’s required interfaces
and the same goes with provided interfaces.

When a subcomponent’s provided interface is connected to its containing com-
ponent we say that the provided interface is subsumed (the connection is thus called
subsumption). Composed component’s required interfaces are said to be delegated to
its subcomponents (and so the connection is called delegation).

For a more illuminating example see Figure 2.3. In this figure composed compo-
nent A’s provided interface provA is subsumed to component B’s provided interface
provB. Between component B and component C there is a normal binding between
the interfaces reqB and provC. Component C then delegates its required interface
reqC to component A’s required interface reqA.

11

Figure 2.3: Delegation and subsumption

2.2 Connectors

This thesis bases on the view of software connectors described in [6]. Software con-
nectors are seen as first class entities which are used for communication between
the components. There are two main points of view on connectors in SOFA 2 -
design view and runtime view.

At design time connectors are used to model connections between interfaces
of components. It is also at this time that the application designer has to choose
the communication style of the connector (e.g. method invocation, messaging,...).

At runtime connectors separate components from the underlying middleware so
that the components themselves take no notion of it. This also means that connec-
tors can implement a number of different communication styles which can then be
switched only by using different types of connectors.

In the perspective of this thesis (and also of SOFA 2) every interface (no matter
whether provided or required) of a component has its own Connector Unit. The Con-
nector Unit then contains a set of so-called Elements which actually implement
the inter-component communication.

In this thesis we call server side connectors Skeletons while the client side con-
nectors are called Stubs.

2.3 SOFA 2

SOFA 2 is a component system mainly developed by the Department of Distributed
and Dependable Systems (formerly Distributed Systems Research Group) at the Charles
University in Prague. It employs hierarchically composed components which are dis-
tributed among a number of so called Deployment Docks running on any computer
that is connected to the SOFAnode - a network of computers running the SOFA 2
component system (repository, global connector manager, deployment dock registry
and deployment docks).

SOFA 2 is described by [1] and [2], its complete documentation can be found at
[4], so the following paragraphs focus only on the parts needed to understand this

12

Figure 2.4: Example of a SOFAnode

thesis.

2.3.1 Runtime architecture of SOFA 2

SOFA 2 runtime consists of several separate parts all of which need to be running in
order to provide a fully functioning SOFA 2 environment (called SOFAnode).

• Repository

The repository is used to store all the information about components in both
the form of meta-data describing their structure and relations and the business
code of the components (usually both as source code and as binaries stored in
jars). It also holds the information needed to deploy components as applications
(stored in Deployment Plans) and the libraries and any additional resources
the components might need for their execution (in the form of Code Bundles).

• Global Connector Manager

The Global Connector Manager (GCM) is responsible for connecting compo-
nents together by connecting the parts of connectors of the component’s inter-
faces. In the current implementation it works as a smart RMI registry which
also remembers information on the particular connectors.

Apart from the GCM registry there is also a Local Reference Registry in each
Deployment Dock which is used to resolve local objects inside the same De-
ployment Dock.

• Deployment Dock Registry

13

The Deployment Dock Registry (DDR) is used as a catalog of running Deploy-
ment Docks. When a Deployment Dock is started, it connects to the DDR
and registers itself within the DDR as soon as possible. The DDR checks
the availability of the Deployment Docks it has registered and removes them
from the catalog if they are unavailable. The DDR is also the main way of
getting references to running Deployment Docks.

• Deployment Docks

Deployment Docks are the actual containers of the SOFA 2 components and
applications. A Deployment Dock takes care of the whole lifecycle of the com-
ponent - beginning with its instantiation, then connecting the component with
its surroundings, starting its business code. Deployment Docks look after start-
ing and stopping applications and now newly also after component migration.
It does not matter whether the Deployment Docks run on only one computer
or if they are spread among a larger number of machines, they always run in
separate processes and are thus treated the same as if they were running on
different computers.

Each Deployment Dock has its own name (human-readable) which is unique
within the whole SOFAnode and is the Deployment Dock’s identifier in the DDR.

Deployment Docks contain many more meta-structures which are helpful dur-
ing its work. One of them, especially important, is the Local Reference Registry.
Every connector-skeleton of component’s provided interfaces is registered both
at the GCM and the Local Reference Registry. This concept is described further
in the thesis in Chapters 3 and 5.

The Figure 2.4 shows a sample SOFAnode. The SOFAnode contains four com-
puters which are displayed as clouds and named Host A, B, C and D. On Host A
there runs the DDR and GCM. Host B hosts the Repository and a Deployment
Dock called Dock 1. Hosts C and D contain respectively Deployment Docks 2 and 3.
Among the Deployment Docks in this example of a SOFAnode there are instantiated
components which were also shown as an example in Figure 2.2. Dock 1 contains com-
ponent A, component B being a composed component is virtually ”spread” across
Docks 2 and 3 which contain its subcomponents - components C and D.

Note that a SOFAnode can of course be a lot larger than the example described
above, or it can be even launched on a single computer, there are no constraints on
the topology of the SOFAnode except that the computers must be available to be
accessed by their IP addresses from the rest of the computers of the SOFAnode.

2.3.2 Metamodel

Components developed in SOFA 2 must follow its metamodel. Component’s outward
appearance is described by its Frame, its internals are described by its Architecture.

14

The fabrication of components into applications is described by Assemblies and De-
ployment Plans. Compiled binaries are stored inside Code Bundles. The following
paragraphs give a brief introduction into the metamodel of SOFA 2 applications. For
a more detailed description see [2].

Frame Component’s Frame holds the information about the interfaces the com-
ponent provides and requires. Interfaces are described by an Interface Type which is
just a meta information pointing to the source code containing the actual description
of the Interface Type (e.g. a java interface in the implementation of SOFA 2 we are
using for this thesis). The Interfaces described by the component’s Frame are the only
way a component can communicate with other components in the system. This also
means that all components which implement the same Frame are interchangeable
with each other.

Note that all components have to implement a Frame - even those that have no
interfaces (for example the top-level component which represents the application).

<?xml version="1.0" encoding="UTF-8"?>

<frame name="frame.Forwarder">

<provides itf-type="sofatype://iface.Log" name="provLog"

comm-style="method-invocation"/>

<requires itf-type="sofatype://iface.Log" name="reqLog"

comm-style="method-invocation"/>

</frame>

Figure 2.5: Example of a component’s frame definition

Architecture Component’s Architecture describes the internals of the component.
It decides whether the component is composite or primitive. In case of a compos-
ite component it holds the information about its subcomponents and how they
are connected (including the types of the connection - method invocation, messag-
ing, streaming). If the Architecture describes a primitive component, it holds just
the component’s implementation.

<?xml version="1.0" encoding="UTF-8"?>

<architecture name="arch.Logger"

frame="sofatype://frame.Logger" impl="arch.Logger" />

Figure 2.6: Example architecture definition.

15

Code Bundle A Code Bundle is an entity in the repository which contains com-
piled binaries and possible dependencies on other Code Bundles. For example Code
Bundles store the business code of primitive components (their Architectures), the con-
nectors, libraries and so on.

Deployment Plan A Deployment Plan is the final summary of the integration
of components in the application. When it is created, the developer has to specify
which component is going to be executed on which deployment dock. Then it is
deployed using Cushion1 and it is passed to the Connector generator. The Connector
generator then analyzes the connections between components and generates the glue
code which is used during the instantiation of components (and now also during their
migration) to connect components together. The code of the connectors is then stored
inside the Deployment Plan.

<?xml version="1.0" encoding="UTF-8"?>

<depl-plan name="deplplan.Logdemo" node="nodeA">

<depl-subc name="logger" node="nodeA" />

<depl-subc name="tester" node="nodeB" />

</depl-plan>

Figure 2.7: Example deployment plan.

2.3.3 Launching a SOFA 2 application

To launch a SOFA 2 application the first thing needed is a fully functioning SOFAn-
ode with all the necessary parts running (one instance of the GCM, DDR, Repository
and all the Deployment Docks needed by the application - described by its Deploy-
ment Plan). When an application is launched, the Deployment Docks are actually
instantiating components, as described by the Deployment Plan of the application,
and connecting them together.

The instantiation starts from the top-level component of the Deployment Plan,
which in fact represents the application, and continues recursively through its sub-
components until all components are instantiated. The components are then con-
nected together using the Connector Manager and after that they are started.

The component instantiation part of the deployment process is almost all-round
followed in the second stage of the migration process. The differences are described
in Section 3.2.4.

1Cushion is a command line tool for developing and deploying SOFA 2 applications.

16

Chapter 3

Implementing migration in a
component system

This chapter covers the ups and downs of implementing component migration in a
distributed component system. Section 3.1 makes an overall introduction to the the-
ory of migrating components, Section 3.2 covers the implementation itself. The chap-
ter is ended by Section 3.3, which discusses the protocol of transferring the component
between two Deployment Docks.

3.1 Migration process in theory

First let us define what migration of components means. In this thesis we understand
the migration of a component as taking the component from its original placement
and moving it to a new destination. At its new location, the component resumes its
work in such a manner, that the application, in which the component is involved,
notices as little of the migration as possible.

3.1.1 Primitive components vs. composed ones

When migrating components in distributed hierarchical component systems, it is
important to distinguish the basic types of components since their type influences
certain parts of the migration process (these differences are further discussed in
sections concerning the particular phases of migration). Primitive components are
the actual logic of the application they are participating in. They are the only ones
which can really be migrated in the sense of moving a process (or rather an object)
between different destinations (if they are designed as migrable components - this
will be covered further in this chapter).

Depending on how they are implemented by the actual component system, com-
posed components can be implemented in two ways, only one of them actually need-
ing the functionality for supporting migration:

17

1. As abstract entities which exist only in the model of the application and take
no role in the actual code and running processes. This kind of a composed
component really is not present in the running application and so there is no
need to be troubled concerning this case when designing migration.

2. As a boundary line that has its own connectors really instantiated within
the running application and which fully encapsulates its subcomponents since
they can interact only with its provided and required interfaces. Migrating these
components means reinstantiating their connectors at a different destination
and reconnecting them with the outside world (and with the subcomponents
of the composed component).

Of course that was just discussing the migration of the actual ”instances” of
the composed components. Apart from the possibilities mentioned above, migrating
composed components could also involve migrating all their subcomponents. However
when this possibility is taken into account we implicitly presume that all the com-
ponents in the system are migrable - and that is not always the case. As is shown in
Section 3.2, making a primitive component migrable requires some additional work
from its developers and they need not make this decision - they can develop common
old-way components which do not support migration.

A question might now rise, why, when we are proposing a way to add migration
functionality to a component system, we should retain the possibility of non-migrable
components. The answer is simple: because the developers might want to have a
component in their application which never changes its place and if that is the case,
adding the functionality needed by migrable components would be just a waste of
time. An example could be a component using some hardware connected only to a
particular computer.

3.1.2 Anticipated vs. unanticipated

When implementing migration of components in a distributed component system,
another decision which has to be made is whether the migration is going to be antic-
ipated or unanticipated. The anticipated variant requires the developers of compo-
nents to add some obligatory functionality to their code which allows the migration
to happen. On the contrary, the unanticipated variant should be able to handle
everything by itself without the component’s code noticing that the migration has
occurred.

However, component’s internals can always contain some unpredicted functional-
ities which cannot be effectively handled in a general way. Unanticipated migration
of components within the distributed system would be therefore near impossible to
accomplish.

Unanticipated migration would require the underlying system to have a very
low-level access granting it the possibility to move not only the serialized data of

18

the component, but also all its threads including their stacks and all the synchro-
nization primitives. Resources like network sockets, handles to files and so on would
also have to be resolved and transferred. That would imply too much effort to be
taken by the underlying framework.

A way to achieve the possibility of unanticipated migration would be to apply ad-
ditional heavy constraints on the components and provide a framework which would
handle all the resources the components could need (sole usage of the framework
would be required on the components). Although the paper does not explicitly state
that it describes unanticipated migration, such a method is discussed in [20].

In our prototype implementation we put up with the anticipated variant which
requires the developers of the components to implement callback functions in each
component which ask it to pause itself, resume, store its state and reload it again.

3.1.3 Overview of the migration process

In the following paragraphs we consider the component only in its general principle
and therefore we do not distinguish between primitive components and composite
ones - differences in their migration process will be discussed in the appropriate
sections which are describing the particular phases of migration.

When migrating a component, several steps, which are more or less independent
on each other, need to be performed.

1. Stopping the component.

First the component needs to stop all its jobs and end in a consistent state
in which it can be transferred to its new destination. All incoming calls have
to be delayed in its connectors only to be forwarded to the new destination of
the component when the migration is finished.

2. Transferring the component to its new destination.

When the migrated component is successfully stopped and remains idle, its
inner state should be serialized and sent to its new destination where it will be
used to recreate the component to its original form.

3. Reconnecting the component and it’s dependencies.

In the next step the component practically exists in two separate instances at
once. Before the old instance can be discarded, the new one needs to connect
its required interfaces to the same components as they were connected before
the migration1 and provided interfaces of the old component need to alert their
opposites that the destination of the component has changed.

1Why we do not need to handle the possibility that one of those components is migrated before
the reconnection will be described in Section 3.2.5.

19

4. Resuming the work of the component.

In the last step all jobs of the component need to be resumed in a way that
the application does not notice that anything has changed (if possible). Since
it is quite uneasy to design this step in a general way, we decided to leave
the resuming on the developer of the component.

5. Handling error states during migration.

This phase is not actually separated from the others as it is rather orthogonal
to them. At any time of the migration process it must be ensured that if
anything goes wrong2, the system can go on in a preferably unmodified state
- as if the component was not migrating at all (or as if it has just migrated to
the computer it was originally running at).

That was a general description of the migration process. Of course, there are
many implementation details, which have to be solved before a first component can
be really migrated, but these will be described in Section 3.2.

It should be noted however that the restriction that components can communicate
with each other only using the provided and required interfaces solves many problems
which could otherwise occur. For example it is not necessary to transport the whole
address space, because the component either holds everything it needs within itself or
is connected to it using its required interfaces. Of course, there is the problem of other
resources like files, network sockets and so on, but the developers of the component
must take care of these themselves. Any component which wants to hold a reference
to another one can do so only through its required interfaces, which means that there
can be no broken references when a component migrates to a new destination.

3.2 Implementing migration

During the work on this thesis a prototype implementation of migration was devel-
oped for the SOFA 2 component system. The following paragraphs describe the cho-
sen solutions and show practical examples of the prototype implementation.

3.2.1 Migrable components in SOFA 2

In SOFA 2, components publish their specific features either by implementing inter-
faces which describe the properties and functionality that the component provides
(e.g. the SOFARunnable interface which designates that the component has some
threads which should be started at the start of the application) or applying annota-
tions on specific parts of the component such as the required interfaces, the class of
the component, etc.

2For example if someone accidentally kicks off the power supply from the destination computer.

20

Let us note that implementing the SOFAMigrable interface or using the @Migrable
annotation are the only things needed for the SOFA 2 component system to notice
that a component is migrable. Everything else is done inside the Deployment Docks
using Reflection API and inside the Connector Units.

The examples in the two following subsections do not show the whole implemen-
tation of a SOFA 2 component on a purpose; it would exceed the scope of this thesis.
To get more information about writing components in SOFA 2 see [4].

Before continuing to the description of the actual migration process, let us see
how a migrable component looks in SOFA 2.

SOFAMigrable interface

In order to specify that a component is migrable, the SOFAMigrable interface has
been introduced.

public class MigrableComponent implements SOFAMigrable, ... {

...

public void pause() {...}

public void resume() {...}

public void saveState(Map<String, Serializable> storage)

{...}

public void loadState(Map<String, Serializable> storage)

{...}

...

}

Figure 3.1: A migrating component in SOFA 2 using the SOFAMigrable interface

Figure 3.1 shows one way of adding the migration functionality to a component -
implementing the SOFAMigrable interface. The interface defines four methods that
have to be implement by the developer of the component to support seamless mi-
gration.

Let’s observe the methods in more detail:

• void pause()

This method is probable the most important one needed by migration. As its
title indicates, this method should pause all the internal jobs of the component.
It is presumed that when the method has returned, the component makes no
more changes to itself. The pause() method should stop all the threads which
can be running inside the component and make sure that there will be no more

21

outgoing calls from the component (they are stopped inside the connectors
nonetheless).

Correct implementation of this method is crucial for the migration to go on
without errors.

• void resume()

The resume()method is, literally speaking, an inversion of the pause()method.
It is executed as the last part of the migration process when the component is
both instantiated and connected with the rest of the application.

The resume() method should take the component (with all data on its place)
and return it to its normal functioning - i.e. start again all the threads, allow
calls if they were disallowed by the pause() method and so on. No further
assumptions about the resume() method are made by the framework than
that it starts again the component when it was previously paused.

• void saveState(Map<String, Serializable> storage)

To transport the state of the component to its new destination we decided
not to use the serialization mechanism3. Instead the developer of the compo-
nent is required to implement method for saving the state of the component.
This allows the developers to have more control of the process. The class of
the component thus does not need to be serializable (and also its members do
not have to be serializable) and can transfer more information this way than
with serialization - for instance it can transfer files it uses.

The saveState(...) function is executed on the component after it was suc-
cessfully paused.

• void loadState(Map<String, Serializable> storage)

Just as the resume()method is an inverse for the pause()method, the loadState(...)
method is an inversion of the saveState(...)method. It is invoked on the com-
ponent when it is instantiated at its new destination after it is connected to
the rest of the application but before the resume() method is called to resume
the component’s jobs.

This method should restore all the resources the component is using to their
original state.

Using annotations to mark a migrable component

The second option the developer has to designate that a component is migrable, is
to annotate the component’s class with the Migrable annotation.

Figure 3.2 shows a migrable component implemented using the annotations.
The existing annotations of the SOFA 2 system were extended by:

3This choice is discussed in Section 3.2.3.

22

@Migrable

public class AnnotatedMigrableComponent {

@PersistentAttribute

Serializable someData;

@Resume

public void resume() { ... }

@Pause

public void pause() { ... }

...

}

Figure 3.2: A migrating component in SOFA 2 using annotations

• @Migrable

When using annotations for the implementation of a migrable component,
the @Migrable annotation is mandatory in order to tell the underlying func-
tionality that the component is migrable. This is the only annotation con-
cerning migration that a migrable component cannot do without - the other
annotations are just optional.

• @PersistentAttribute

Instead of having separate functions for saving and loading the state of a com-
ponent, the developer of a migrable component can choose to just annotate
the actual fields they want to be persistent during migration. The constraint
is, of course, that the fields have to be serializable. Values of fields not an-
notated with the @PersistentAttribute annotation are not transferred to
the new location of the component and have default values.

• @Pause

The @Pause annotation is used on the method which has to be run in order
to pause the component’s jobs. It is the same as if it were the void pause()

method declared in the SOFAMigrable interface.

• @Resume

Just as the @Pause annotation on a method replaces the implementation of
the pause()method of the SOFAMigrable interface, the @Resume annotation on
a method replaces the implementation of the void resume()method. Methods

23

annotated with the @Resume annotation are called after the instantiation of
the component at its new location to resume the component’s jobs.

It is possible to use both the SOFAMigrable interface and the annotations. It does
not bring about any additional possibilities though.

3.2.2 Stopping the component’s jobs

The first step of the component migration is stopping the component so that it can
be easily transferred to its new location where its work is then resumed.

In [7] there is stated that:

...a component can be consistently reconfigured only when the following
conditions are fulfilled:

• Its clients carry out no new invocations on it.

• The invocations of its clients on it have been completed.

• It carries out no new invocations on any other components.

• Its invocations on its server components have been answered.

When a component fulfills the above conditions, we say, the component
reaches a reconfigurable state.

In short, a component is in a reconfigurable state when it currently does nothing
and no new calls are passed to it.

Satisfying the precondition ”Component’s clients carry out no new invocations
on it.” is simple at the first glance. Since all communication between components
is carried out through the connectors of their interfaces, all that needs to be done
is notifying the provided interface connectors that they should not pass further any
new invocations on the component.

In [7] the connector is represented by a Virtual Stub. However, they only have
one connector for the whole connection that is on the client side. This means that all
the stubs need to be informed to delay their invocations. On the contrary, since in
SOFA 2 there are both client side and server side connectors, we delay the incoming
calls in skeletons - on the server side. This allows us to generate less communication
during the process and also less utilize the knowledge of the structure of a deployed
application (which is available in SOFA 2 but it may not be available in other com-
ponent systems).

To provide the delay of incoming calls, the server side connectors were extended
with methods pause() and resume() which notify the connector either that no new
invocations should be passed to the component or to continue the execution.

However, delaying incoming calls brings about another problem: in case of syn-
chronous communication, if all the incoming calls are delayed, there can emerge a
dead-lock caused by cyclic dependencies. For example suppose that we have two

24

public void serverMethod(...) {

while(paused)

wait();

... // other connector logic

// call the method of the component

component.serverMethod(...);

... // other connector logic

}

Figure 3.3: Example of code used to delay calls on a method called ”serverMethod”.

components, A and B, both have some provided and some required interfaces and
are interconnected. We want to migrate component A to a new location so we delay
all incoming calls on component A. However, component A has just called a method
on component B which results in component B calling back component A - and
the method called first from component A cannot be finished because the compo-
nent B’s subsequent call is delayed - a dead-lock.

Figure 3.4: Example of a possible dead-lock

In order to prevent the dead-lock, incoming calls must be divided into those which
could cause a dead-lock and those which would not. The ”safe” ones can be securely
delayed while the calls which would cause a dead-lock in case of their delay have to
be let in.

In [7] they come with a solution based on resolving so called ”dynamic dependen-
cies” - a dynamic dependency arises between a client and server on a method when
the client executes the method on the server. It is removed as soon as the method
returns back. The detection of dead-locks then consists of traversing so called ”call
paths” which are formed from the dynamic dependencies. If a call path contains a
cycle, there would be a dead-lock and the call must not be delayed.

In the prototype implementation, the stopping mechanism was partially inspired
with the above solution, but it took the advantage of the fact that SOFA 2 always
passes a Call Context along with the calls. The Call Context is used to uniquely
identify threads within the SOFAnode in such a manner that it can be easily dis-
covered if two threads originated from the same place or even if one thread is an
ancestor of another. To take advantage of the Call Contexts to prevent dead-locks

25

during the pausing of the component and delaying its incoming requests, an auxil-
iary structure called Thread Observer was introduced. Each component has its own
Thread Observer that is notified from the provided and required interfaces about
all the threads which concern the component - either they enter the component’s
provided interfaces or leave it through its required interfaces. The Thread Observer
remembers all the threads within the SOFAnode that the component participates
in. If it is found that the component already participates in a thread which tries to
enter it through its provided interfaces, it means that there would be a dead-lock if
it was not let in.

To ensure that all the on-going invocations (both incoming and outgoing) of
the migrated component are finished, the Thread Observers are used to monitor
the number of operations that the component’s connectors are waiting for. When
the number of threads the Thread Observer monitors is at zero, the component
has no ongoing calls and according to the above mentioned preconditions is in a
reconfigurable state and therefore it can be migrated.

The solution that is proposed in [7] however has a little flaw - it does not count
with the possibility that a component can be changing its inner state itself (for
example when it has multiple threads running which do some nontrivial logic and
store their results within the state of the component). This problem would be near
impossible to figure out on the general level of the component system. For its solution
the ostrich method was chosen - the developers are asked to solve the problem for
the underlying system by implementing the pause() method on their components.

It is silently presumed that the pause() method (and indeed also all the other
methods of the SOFAMigrable interface) is implemented correctly and that after it
has finished, there will be no more changes to the component from its inner code and
that the component will invoke no more outgoing calls. But the outgoing calls that
the component might invoke are still discarded inside the appropriate stubs, just as
a precaution.

3.2.3 Saving the state of a component

There are generally three approaches of handling the component’s state during its
migration.

1. Implicit serialization

Serialization is the first thing that comes in mind when it comes to saving
the state of a software component. It is available in most modern languages
and systems, it is easy to use, and requires almost no additional code from
the developer. It was not chosen though to save the state of the component
because of some of its undesirable consequences (e.g. all the contains of a
serializable component need to be also serializable) and lack of control over
the process.

2. Explicit serialization

26

Another option is to pass the process to the developers. They can then decide
which approach suits them best. Thanks to this alternative the developers of
components also have many more means of control over the process of trans-
ferring the state of the component to the new destination.

3. ”Stateless” components

The last possibility is for the components not to have control over their inner
states at all. All the data and resources could be managed by the compo-
nent framework and so the framework would have absolute knowledge about
the component’s internals. This approach requires the system to provide a large
and sophisticated framework for managing the resources components might
want to use. Since SOFA 2 never counted with this possibility (which is also
rather restrictive), we did not use this possibility of saving the component’s
state either.

This approach is described for example in [20].

In the prototype solution the second option was chosen, passing the responsibility
of saving the component’s state to its developers. Each component has to implement
the function

void saveState(Map<String, Serializable> storage)

which is called from the outside to store the component’s internals in the object
passed as a parameter (Map<String, Serializable> storage is in fact just a
HashMap supposed to contain name-value pairs) or annotate the appropriate fields
with the @PersistentAttribute annotation.

Handling resources used by the migrated component

A component can be using many resources which are not related to the underlying
component system - e.g. handles to files, network sockets, database connections and
so on. In this case it is more than useful to utilize our approach. The developer can
use the storage object even to transfer files (if the expected network connection is
fast enough).

The Serialization option would bring huge difficulties when coping with additional
resources of the components and would probably result in requiring the developers
to implement some additional functionality nonetheless.

It is clear, that the method most suitable for handling the component’s resources
during its migration is the third one - requiring the developers of components to use
purely the resource management framework provided with the component system.

27

3.2.4 Re-instantiating the component

The process of reinstantiating the component is probably the most straightforward
part of migrating a component. It is also highly dependent on the implementation
of the component system.

The reinstantiation process generally follows the process of normal component
instantiation. The main difference is that the newly instantiated component should
begin in a still state in which no process is being executed on it. It is also necessary for
our solution to instantiate the component unconnected to other components. This is
caused by the SOFA 2 component system where components are always instantiated
according to the Deployment Plan of their application. However, since the Deploy-
ment Plan is static and was created before the application was launched and it does
not change during the runtime of the application, it can have no knowledge about
the actual layout of components among the Deployment Docks.

To compensate for the difference between the Deployment Plan of the application
and its actual layout changed by migration, we had to come up with a way of passing
the references of the components during migration. This will be discussed further in
Section 3.2.5.

Apart from instantiating the component unconnected to its opposites, the com-
ponent also needs to be prepared to load back its state before its jobs can be resumed.
That is why it was declared that the component needs to be in a still state in which
there are no executed processes within the component: to assure that it will not
change its state until it has been allowed to resume its work at its new destination.

3.2.5 Reconnecting the components

When the component has been successfully reinstantiated at its new destination,
the next step is reconnecting it with the other components. Since there can be several
different communication styles implemented in the component system, the process
of reconnecting the interfaces has to be generalized as much as possible in order
to enclose the migration intelligence concerning the actual communication styles
only in the connectors that implement it. If every communication style required to
have its specific migration code present in the runtime of the component system4, it
would lead into code explosion and lack of lucidity. Every new implementation of a
communication style would also have to watch out if it does not badly influence the
migration of other communication styles.

In the prototype implementation for SOFA 2 this was done by introducing a com-
mon interface for migrable connector elements. The interface separates the migration
of the connectors into three callback functions:

• onBeforeMigration(Map<String, Serializable> parameters)

• onNewInstanceCreation(Map<String, Serializable> parameters)

4In SOFA 2 this means in the code of the Deployment Docks.

28

• onAfterMigration(Map<String, Serializable> parameters)

With the pause() and resume()methods of the server-side connectors, only these
three methods need to be implemented in the connectors to implement migration for
a newly introduced communication style. Using this concept, it should be unnecessary
to make any other changes to the system when a newly added communication style
is to be used with migration.

The parameters of the methods are used as in/out means of passing data between
the subsequent calls of these functions on the old instance and the newly instantiated
one.

The onBeforeMigration method is invoked on the old instance of the connector
to tell it to prepare for migration and get the data necessary for the new instance
to be able to work correctly(for example the reference to the target of a required
interface).

At the instantiation at the new location, the new connectors are prepared by
calling the onNewInstanceCreation method. The changes made to the parameters
in the onBeforeMigration method are of course passed to this method also.

After the instantiation of the component at its new location, the onAfterMigration
method is invoked on the old instance of the connector.

Migration with method invocation communication

The migration of method invocation connectors can be divided into two parts, that
can be handled separately and which require different approaches - 1. reconnecting
required interfaces and 2. reconnecting provided interfaces.

The correctness of the process described in the following paragraphs is discussed
in Section 3.3.

Required interfaces

Even though there are still a few issues that need to be solved while reconnecting
the required interfaces, this step is a little bit more straightforward than the recon-
nection of provided interfaces.

One of the problems associated with reconnecting required interfaces of a com-
ponent is that the system has to adapt to possible modifications of the application
structure which could have been performed during the application’s runtime (i.e.
previous component migrations). To provide the reinstantiated component with up
to date information about the location of the components the required interfaces are
connected to, the old instance of the component must pass the Remote Reference
Bundles of its required interfaces to the new location. There they are used to connect
the new component to its opposites.

29

Provided interfaces

One of the big differences when reconnecting the provided interfaces is that while
most of the code concerning the reconnection of required interfaces takes place at
the new destination of the component, the reconnecting of provided interfaces hap-
pens mainly at the old location. There are also more complex issues to be solved
- mainly in the actual migration protocol and communication with the opposite
components.

In the prototype implementation, the provided interfaces are not reconnected at
the same time as required interfaces. To enable easier handling of possible errors,
provided interfaces are reconnected just before the old instance of the component is
discarded. This decision is further described in Section 3.2.8.

When designing the reconnection of provided interfaces during the work on
the thesis, the first option that was considered was to employ the knowledge about
the assembly of components. Components which are connected to the provided in-
terfaces of the migrated component would then be traversed and manually asked to
rebind their references. This choice was not implemented though for its dependence
on the knowledge of the application structure, not to mention the need of distin-
guishing primitive components from composed ones and adapting the code to each
possibility. Instead a method based on passing specialized remote exceptions, that
does not require the knowledge of the application structure, was developed.

Just as the reconnection of required interfaces needs the Remote Reference Bun-
dles from the old component instance, the reconnection of provided interfaces needs
to be passed information about the newly instantiated component. The process of
reconnecting the provided interfaces takes place in the provided interfaces of the old
component and in the required interfaces of the components which are connected to
them (or in the provided interfaces of the parental components which are subsumed
to the migrated component).

The provided interfaces of the old instance of the component are informed that
the component was migrated to a new location and the Remote Reference Bundles5

describing the new location of the appropriate provided interfaces are passed to
the old skeletons. When a request enters a skeleton of the old instance of the com-
ponent, the skeleton throws a MigratedException to which it passes the Remote
Reference Bundle of the new skeleton. A similar solution was described for example
in [15].

The MigratedException inherits from RemoteException and is used internally
by the connectors for passing information about the migrated provided interfaces
and telling the required interfaces that they should reconnect their references. When
the MigratedException is caught at a stub (i.e. at the required interface) the client
gets the Remote Reference Bundle from the exception and reconnects its references
appropriately.

5I.e. the local references and remote references of the skeletons - this will be described in the fol-
lowing section.

30

void call(Object [] args) {

...

try {

// try the call

target.call(args);

} catch(MigratedException exc) {

// if the component is migrated

// rebind the reference

rebindTarget(exc.getRemoteRefBundle());

// and try the call again

call(args);

}

...

}

Figure 3.5: Example of the MigratedException usage

Another way of taking care of the provided interfaces (also described in [15])
would be to leave the references as they are and transform the Skeletons of the old
instance’s provided interfaces into Forwarders. These Forwarders would have a ref-
erence to the new instance of the component and forward the calls to it. However,
this attitude is not very advisable. Each time a component with a provided interface
would migrate, the chain of Forwarders would be longer and longer. That would
produce too much overhead and so this option was discarded in the prototype im-
plementation of this thesis.

Deciding whether to use local or remote communication

Orthogonal to the problems with the reconnection itself is the decision whether
the destination is in the same address space or not - i.e. whether to use local or
remote calls. This is not as much of a problem as it is more an optimization since
remote calls can be used any time. But remote calls tend to considerably slow down
the system so it is favorable to be able to distinguish the cases when local calls can
be used instead of remote ones.

The solution was fairly simple to implement in the SOFA 2 component system.
Every Deployment Dock also comes with a Local Reference Registry6. Since there
can be only one Deployment Dock running within one address space (meaning in one
process), every address space also has its own single instance of the Local Reference
Registry7 which contains references to all the components’ skeletons and their stringi-

6Can be seen as RMI registry, but operates only in one address space.
7In SOFA 2, the LocalReferenceRegistry is implemented as a pure static class.

31

fied references. Knowing that the names of Deployment Docks are unique within
the SOFAnode it was possible to alter the process of stringifying the references in
the Local Reference Registry so that the stringified references also contain the name
of the Deployment Dock they reside in. This made every stringified reference also
unique within the whole SOFAnode.

Information needed to get the references to the server side connectors are passed
within SOFA 2 using so called Remote Reference Bundles. Formerly the Remote
Reference Bundles contained only one reference (local or remote) which directly
specified the type of connection. Also if the Remote Reference Bundle contained
only a local reference, it was impossible to pass them to components residing within
other Deployment Docks - they would be useless because of the purely local character
of the local stringified references. To make it available to decide whether to use local
or remote connections the Remote Reference Bundle now contains both stringified
references - local and remote.

Thanks to the local references being now distinguished by the Deployment Dock
their targets are dwelling in, their stringified references have a relevant meaning on
any Deployment Dock of the same SOFAnode. When the reference is being resolved,
the local reference is tried first and if it fails, the remote reference comes in its place.
In Figure 3.6 there is shown an example of the reference binding code.

// try the local reference

localRef = remoteRefBundle.getRef("local");

target = LocalReferenceRegistry.unstringify

(localRef.stringifiedRef);

if(target == null) {

// the local reference failed

// use remote reference instead

rmiRef = remoteRefBundle.getRef("rmi");

java.rmi.registry.Registry rmiRegistry = getRegistry();

target = rmiRegistry.lookup(rmiRef.stringifiedRef);

}

Figure 3.6: Sample code deciding whether to use local or remote calls.

Migration with messaging communication

The second communication style for which migration was implemented during the work
on this thesis is messaging. SOFA 2 uses JMS [11] as middleware for messaging
communication, therefore the following paragraphs will be using JMS terminology.

32

Without limiting the generality, reconnecting messaging connectors can focus only
on 1:n communication using the JMS topics8.

Just as with the reconnection of method invocation connectors, the reconnection
of messaging connectors can be distinguished between the reconnection of required
and provided interfaces. However, when migrating the messaging connectors, the bro-
ker service also has to be taken into account. Since the broker can be running ”almost
anywhere”, let us focus on it first.

The processes taking place when reconnecting connectors for messaging can take
advantage of the fact that any connector can both accept messages from the topic
and send its own. Should the component running the broker be migrated, a new
instance of the broker could be created and then the information about it could
be sent as a special message in the old one. The connectors would then just use
the new broker. The only thing needed is to delay the outgoing messages until every
connector is rebound to the new broker.

When reconnecting required interfaces with the messaging communication style,
the connectors are rebound absolutely the same way as when reconnecting method
invocation required interfaces. They pass the RemoteRefBundle to the new desti-
nation where it is used to bind to the JMS topic again. The difference between
messaging and method invocation required interfaces is, that they do not have to
distinguish between local and remote calls - the messaging service is used always
the same way.

The reconnection of provided interfaces is a bit different both from required
interfaces in messaging and provided interfaces with method invocation communica-
tion style. Messaging communication is usually asynchronous (and without limiting
the generality, the solution can focus only on the asynchronous case) and on top of
that, a required interface can be connected to several provided interfaces. Therefore,
even though message sending could be delayed until a component connected with
the provided interface would be migrated, this case would slow down all the other
components as well.

To prevent such a slow down of the system during migration, when migrating
a messaging provided interface, the connector is set to store all incoming messages
that occur during the migration. Every messaging connector was also extended with
the knowledge of a unique id that it possesses. When the new instance is created and
connected to the topic just the same way as required connectors are, it sends its id
to the old one. The old instance of the provided connector then uses the passed id of
the new instance to send forward all the messages that it delayed during the migration
to the new instance.

The new instance of the provided connector has to be started in a delaying mode
just as well. To prevent the old instance from resending messages which the new
instance could already have received, it stores all the messages it receives since its

8Communication using a message queue can be handled as communication with a topic with
only one recipient.

33

instantiation in a queue. When it receives a message resent by the old instance that it
already has in its queue, it notifies the old instance of the connector to stop receiving
and resending the messages. It simply processes all the messages in its own queue
and when the queue is empty, resumes working in a normal mode.

Other communication styles

In the above sections the text focused mainly on method invocation and messaging
communication styles. This is because they represent the two most wide-spread types
of middleware. These are also the two styles of communication for which migration
was implemented in the SOFA 2 component system during the work on the thesis.
However, the main principles stand still even for other communication styles and a
rule of a thumb this thesis is trying to follow is, that the reconnection of interfaces
during the migration of a component should be mainly the concern of the connectors
themselves, not the containers of the components (Deployment Docks in case of
SOFA 2).

This attitude was successfully tested also on the prototype implementation de-
veloped for the thesis. The Deployment Docks contain only general code invoking
the callback methods of the connector elements. Both the method invocation con-
nectors and the messaging connectors then take care of their migration within their
own code. Their migration required no changes on the migration functionality of
the Deployment Dock.

3.2.6 State loading and resuming component’s work

At this stage the component should be successfully reinstantiated and connected
to its surroundings. To finish making it an effectual replacement of the original
instance and thus bringing the migration process to a close, it only needs to load its
previous state and resume its jobs. In the prototype implementation this is handled
by the loadState(...) and resume() methods.

The state of the component needs to be loaded first. The process is of course
dependent on the method chosen for saving the component’s state, but it will most
probably need some code to be written by the developer. They should help loading
back the resources which would otherwise be hard to manage purely on the general
level of the framework - e.g. database connections, network connections, file han-
dles, specific hardware initialization and so on (this can be of course done also in
the resuming part, but that would break the logical separation of the two methods).

When the component has its state loaded, it can resume its jobs. This in fact
means it can start working inside and generating requests on other components. In
this stage the component still will not be able to receive any requests - all other
components still have references only to the provided interfaces of the old instance
of the component. The references need to be redirected to the new location, but this
is not done till the cleanup part described in Section 3.2.7.

34

3.2.7 Finalization

The migration process is almost over now. The component is sitting at its new place,
happily sending requests to other components and if there occurred no error during
the migration, the old instance of the component can be discarded. Before that is
done, the interfaces have to be informed that the component was migrated to a new
place and to adapt accordingly. In case of method invocation provided interfaces, this
means to send RemoteReferenceBundle using the MigratedException as described
in the subsection concerning the reconnection of provided interfaces.

Discarding the component can vary depending on whether the programming lan-
guage which was used to implement the system has a garbage collector. Either way,
the best thing to do is use the system’s component stopping functionality (if there is
one) and drop all the known references of the actual content of the component to al-
low possible garbage collection. Outgoing calls are already stopped since the stopping
phase, so the component should have no means of communication with the outside
world in case its developers did not follow the recommendations when implementing
the pause() method of the component.

3.2.8 Handling error states during migration - reverting back
to the original component

The migration process is insidious in that if something goes wrong during the migra-
tion (e.g. the computer with the Deployment Dock which should have been the new
location of the component is no longer available), the system has to be able to con-
tinue its work in an unmodified state. To ensure that the system can revert back
from any point during the process of migration, no irreversible changes can be done
to the old component until the new instance is in place and fully functioning. This
is also why the reconnection of provided interfaces was left after all the other steps
- to be certain if there occurs an error during the migration, that the surrounding
components still have a reference of the working component.

If the old instance of the component is left in a reversible state until it is clear
that the new instance can take over its duties, it can be easily reverted back to
its functioning any time an exception is detected during migration. Whenever there
occurs an error during migration, the new instance can be simply discarded and since
the old instance was only paused, it can resume its jobs as if nothing has happened.

It should also be noted that the pause() and resume() methods of the migrable
components are presumed to be implemented in such a way, that if they are called
on the same object one after another, the object normally continues its functions as
if almost nothing happened.

35

3.2.9 Possible problems with concurrency

There might occur some problems if the component is tried to be migrated several
times at once (from different threads or processes). Since the migration process is
quite delicate and should happen preferably as an atomic operation, concurrent mi-
gration of the same component has to be precluded. If a component would be tried
to be migrated by several threads at once and the system would allow it to happen,
it could result in the component being instantiated on several computers at once.
Not to mention that other components could be given references to any of those
instances.

3.3 Handover protocol

In the above sections there are described the principles of migrating a component and
it is discussed how to implement the migration process so that it is as transparent
to the application and as seamless as possible. The following paragraphs focus on
summing up the hand-over protocol when reconnecting the components and proving
that the reconnection is logically consistent and cannot break causal dependencies of
the calls that might occur during the migration. There is also discussed what happens
when two or more reciprocally dependent components are trying to be migrated at
once.

3.3.1 Migration influence on the rest of the application

When discussing the correctness of component’s migration, the influence on the rest
of the application should be thought over first. According to common sense, the only
component (if any at all) of a running application which should notice the migration,
is the migrated component itself.

The proposed solution manipulates only with the internals of the migrated com-
ponent. The rest of the migration process takes place in Deployment Docks and
the connectors of the provided and required interfaces. Hence the only part of
the components remaining in place which notices the migration, lies in their in-
terfaces. Since the interfaces are not a part of the component’s code, no component
that is not migrated can notice that migration takes place.

3.3.2 Method invocation - incoming calls during migration

During the migration of a component, requests which are sent to it have to be delayed
in the connectors. While reconnecting the method invocation provided interfaces, first
the request is rejected with the MigratedException informing the required interface
of the opposite component to reconnect to the new instance. These steps could break
the causal dependencies of the incoming calls so the contrary has to be proved.

36

Demonstration of correctness

To prove that the migration handles correctly the requests which are generated on
the migrated component during its migration, the rules that have to be obeyed in
order to call the communication correct have to be defined:

1. Any request laid on the component is processed no matter the odds.

2. Any two requests invoked in a synchronized manner are processed in the same
order as they were called.

The requests mentioned in the first constraint can be divided into those before
the migration starts and those after the migration begins. It is clear that all requests
which arrive before the migration starts, are answered according to the common
ways of the component system. They either finish and are returned back before
the migration starts or they are processed during the first stage of migration when
the component is being stopped. Just to remind of the stopping mechanism - when
the component is being stopped, all its running jobs are finished before the process
passes to the next stage.

Requests which are received during the migration are delayed inside the Skeletons
of the migrated component until it is successfully reinstantiated at its new location. If
the component cannot be moved to the new Deployment Dock or if any error occurs
during the migration, the old version of the component is told to continue its jobs and
the delayed requests are passed to the original component. When the component is
seamlessly transferred to its new destination, the delayed requests are passed further
and treated just like any other requests generated after the migration. They are
returned back with the MigratedException to the Stubs of the components that
generated them. Inside the Stubs the exceptions are parsed, the Stubs are reconnected
to the new destination and the requests are sent again.

The above two paragraphs prove the first point. As for the second one, it is obvious
that if the two requests come from the same thread, the condition is fulfilled. Since
the requests are synchronous and therefore the code waits for a request to finish
before it continues further, no request can be invoked until the previous one is done.

The rest of the incoming requests comes either from different threads of the same
component or different threads of different components. In case they were invoked
from two different threads of the same component, they were either synchronized
using synchronization primitives or nothing can be said about their synchrony. If they
were synchronized using synchronization primitives, their invocations were serialized
and are the same as if they were invoked from the same thread.

If the requests are invoked from separate components, their synchronization would
have to be either implemented by the components themselves or by the underly-
ing component system. If the developers of the components decide to synchronize
the calls on their own, the reconnection during migration shows off just as a de-
lay caused by the network and middleware. In this case the migration process knows

37

nothing about the synchronization but also does not cripple it in any way. If the com-
ponent system supports synchronization amongst components, it should also be re-
flected in the connectors somehow. However, in our prototype implementation we did
not have to solve such problems because SOFA 2 does not support synchronization
of threads amongst different components. The only way that two calls from threads
from different components could be synchronized would be that they emerged from
two threads which were synchronized among one component and then traversed other
components to end up in the migrated one. In this case the synchronization is actu-
ally the same as synchronization in one component, which we have shown makes no
problem.

3.3.3 Reconnection of messaging connectors

The correctness of migration of messaging components is quite different to define.
Messaging communication in SOFA 2 is asynchronous and causal dependencies are
not enforced. Therefore the correctness of component migration when messaging is
concerned should focus mainly on three conditions:

1. There occurs no loss of messages during migration.

If the messaging middleware used to implement the messaging communication
in the component system does not lose any messages, there should occur no
message loss when a component is migrated. It is easy to see that the proposed
migration procedure fulfills this condition. When the component is stopped
during migration, it stores all the incoming messages in a queue. As the new
instance is prepared for functioning, all the messages stored in the queue of
the old instance are resent to the new one which then processes them. This
way no message should be lost if the messaging middleware is reliable.

2. No message is processed more than once.

If a message should be processed more than once, it would mean it is processed
either both at the old instance of the component and the new one, or twice at
the new instance. For the message to be processed more than once at the old
instance could occur only if it were received more than once and this should
be omitted by the underlying messaging middleware. The message cannot be
processed at both the old and the new instance of the component. If the old
instance processes the message, it means it was not stopped and so the message
is not queued to be resent to the new instance.

A message could be received more than once (actually twice) by the new in-
stance of the component in only one case. The message would have to be sent
after the new instance was already running and also resent by the connectors
of the old instance. However, since the messages at the new instance’s connec-
tors are stored in a queue until it receives all the messages generated during

38

migration, it is more than easy to check the messages for duplicity. For this
check to be possible, each message has a unique id.

3. The messages are processed in a non-changed order.

Presuming that the underlying middleware preserves message order when the com-
munication occurs between two components, this condition just means that
the old instance’s connectors should resend the messages accepted during mi-
gration in the same order as they were received. The new component instance’s
connectors should then store all incoming normal messages until all the resent
messages are received and then continue first from its message queue.

3.3.4 Migration of a larger number of components

When a number of components is migrated in the system, several notable situations
might arise. The first of them is, that a component migrates several times in a row
and other components do not rebind their required interface connectors in time.
That is, before the component is migrated again. In this case the consistency of
the application holds. There will only be some overhead as the required interfaces
trace the subsequent locations of the migrated component until they get a reference
to a live instance. The same goes for the case when a component is migrated before
it can rebind its interfaces to new locations of components that were migrated before
itself.

Concurrent migration

A problem might arise when the system migrates several components at once. Let
us presume that there are components A and B which both have provided and
required interfaces connected to each other, thus forming cyclic dependencies. If
component A is asked to be migrated just after it sends a request to component B
and component B sends a request to component A and is migrated before the request
from component A arrives, there can be a deadlock. In [7] this problem is solved by
keeping track of the so called dynamic dependencies and searching for cycles in
the graph. The overhead generated by keeping the graph of dynamic dependencies
however seems quite large to be neglected.

Instead of tracking the dynamic dependencies, the prototype implementation sim-
ply uses a lock at the level of the whole SOFANode that is set whenever a component
is migrating. Thus even if several components are trying to migrate, the migration
takes place only once at a time.

39

3.3.5 Possible problems of the method

The only major issue that we can see in the proposed protocol is that the Deployment
Dock which contained the old instance of the migrated component has to be running
until all the provided interfaces are reconnected - i.e. until all the components which
were connected to them try to invoke a request. If the Deployment Dock is shut down
before all the interfaces are reconnected, when the components invoke a request on
the migrated component, the system will crash. This is caused by the fact that
the Skeletons, which the opposite component’s Stub’s references were pointing to,
will no longer be in their places. The system has no means of restoration in that
case.

This is a serious problem indeed. It was not solved in the prototype implemen-
tation because it is presumed that the Deployment Docks are running faultlessly at
their place and are shut down only if the whole SOFAnode is quit. Should this prob-
lem be untwisted, the easiest solution would be to extend the Stubs and Skeletons
with a dummy method used for checking whether the opposite has migrated (let’s
call the method checkConnection). The method would contain no code except for
the functionality which handles migration of components.

The checkConnection method could then be periodically executed to check
whether the referenced component is still in the same place (but this solution would
generate additional unwanted network traffic). Another possibility would be to call
the method only when a component migrates. For optimization purposes it would
be good to distinguish the components which are dependent on the migrated com-
ponent but it is not necessary. Since the method would be executed only once for
each required connector per migration and migration needs some nontrivial time
to finish nonetheless, the system would do even if all the components executed
the checkConnection method at once.

3.4 Improvements

The general migration procedure described above, if it is implemented blindly and
just following the main steps, has one notable flaw. Since the component is paused
during the very first step of the migration algorithm, the system has to wait all
the time until the new instance is instantiated and set up to substitute the old
instance. This means that it counts on the idea of component instantiation being so
fast that it does not slow down the migration process.

However, if components need some nontrivial functionality to be instantiated
(for example network communication with a repository as in SOFA 2), the instanti-
ation of the component at its new location can take quite a significant time. When
the algorithm was first implemented for the SOFA 2 component system and some

40

measurements were made, the reality was, that for components with the inner
state size of less than about 1 MB, the component instantiation and preparation took
most of the migration time. Even a stateless component took hundreds of milliseconds
to be migrated and pausing the component for such a long time was undesirable.

When the above proposed migration procedure is viewed with the instantiation
duration problem in mind, it is easy to see that the component instantiation at
the new location is independent from the component’s inner state and its processes.
The new instance of the component at its migration destination can therefore be
created before the component is paused. This is even based on the idea of using fault
tolerance to implement migration - to have a secondary instance of the component
prepared at a different DeploymentDock and synchronize the inner state of the com-
ponent with the second instance. When the component would want to migrate, all
that would be necessary to do would be to reconnect the interfaces.

If fault tolerance is not present at the component system, the idea can be im-
plemented as follows. The reinstantiation phase of the migration is split into two -
preinstantiation and state loading. Stopping the component can then be moved after
the preinstantiation phase. The migration process then looks:

1. Preinstantiation

The preinstantiation phase utilizes the fact, that loading a new instance of a
component into a DeploymentDock does not influence the running system at
all. The first step of the migration process can thus be instantiating a clean
component at the migration destination. Of course, it has to be instantiated
into an inert state in which it does not communicate with the rest of the system,
but this is the same case as in normal migration.

During this phase, even the required connectors of the migrated component
can be reconnected. This choice is only optional since reconnection phase is
due to come some time later, but it can lower the amount of communication
needed in the phases when the component is stopped - these are desirable to
be as fast as possible.

2. Stopping the component

The phase in which the component is stopped and all the communication sent
to it is delayed, is moved to the second place. This way, only the phases that
need the component to be stopped really lengthen its inaccessibility time.

3. State transfer

When the new instance of the component is prepared at the migration destina-
tion and the old one is successfully stopped, the state of the component has to
be transferred to the new instance.This step is the first one which really needs
to component to be stopped.

If the inner state of the component is very large and does not change too
thoroughly and too often, the state transfer phase could be also split into

41

preparation and finalization. The preparation phase could transfer the state
of the component without the need of stopping it. During finalization, when
the component would be stopped, only the difference between the state trans-
ferred by preparation and the state which the component would really have
could be sent. This might reduce the time needed for migration of components
with a large inner state.

4. Reconnecting, Resuming, Finalization

The reconnecting, resuming and finalization phases remain the same as in
the migration process described earlier. Only the reconnection focuses just
on provided interfaces, because required interfaces are reconnected at the pre-
instantiation phase.

The advantage of this improvement is that it does not need any special func-
tionality to be added when component migration is implemented in the component
system the way described in the previous sections. It only ”shuffles” a bit the code
concerning migration and requires it to be well structured. The differences between
using the unmodified migration procedure and the improved one are described in
Chapter 6.

3.4.1 Preinstantiation and concurrency

There is one more reason why the modification of the migration process by introduc-
ing preinstantiation can be beneficial. The reason is, that since the preinstantiation
phase does not influence the rest of the system, it enhances the possibility of paral-
leling the migration of a number of components.

If there should occur a migration of several components, the preinstantiation
phase of their migration can be taken concurrently. In an ideal case this would mean
that migration of several components would take only as much time as preinstanti-
ating ”one” component (since all the preinstantiations would be run simultaneously)
and then the times needed for serial finishing of migration of the components. As
mentioned in Section 3.3.4, the infrastructure needed for completely concurrent mi-
gration of components searching for and respecting dynamic dependencies between
the components would produce too much overhead.

By the modification of the migration procedure, the bottleneck of the serial mi-
gration of several components - the time needed to migrate one component before
another migration could be carried out - was widened a lot. In Chapter 6 there is
shown that the inaccessibility time of a component during migration9 can be reduced
to a fraction of time needed with the general migration procedure.

9Which is in fact the same time that is the bottleneck of concurrent migration.

42

Chapter 4

Load balancing

Chapter 3 discussed the process of migrating a component at runtime of the applica-
tion. It was shown that component migration can be implemented into a component
system (on the prototype implementation added to SOFA 2) and that migration
can be transparent to all components of an application except for the migrated one,
which needs to support some additional control functionality.

What needs to be discussed yet are the possibilities of utilizing the migration of
components to improve system performance.

Since the thesis focuses mainly on the questions coming with the migration of
components, this chapter only generally sums up the load balancing. The prototype
implementation therefore focuses on providing a framework for helping with imple-
menting sophisticated load balancing algorithms to separate them from the need of
directly using the component migration.

4.1 Reasons for load balancing at runtime

4.1.1 Resource usage variances

When describing the components’ layout among the Deployment Docks before launch-
ing the distributed application, full information about the computers within the dis-
tributed component system might not be available. If the application runs long
enough, there might for example occur some changes in the network topology -
e.g. new computers can be added which are not utilized by the system because their
Deployment Docks were not known at deployment time. Another example might be
that the computers the Deployment Docks are running on could be used by other
applications for nontrivial computation tasks. This could lead to high cpu usage on
machines that contain components that also generate heavy load on the processor.
It would be therefore favorable to migrate them to computers with lesser load.

However, the requirements vary from system to system. It would be nearly im-
possible to design an algorithm that would befit all possible situations.

43

4.1.2 Migrating clients to servers when huge load of com-
munication is anticipated

Another option is to utilize the migration of components to eliminate the latency
caused by network communication between components which interact a lot with
each other.

Which components are communicating a lot with each other and should therefore
be migrated to the same location can be detected in a number of ways. The most
simple method would be utilizing the connectors to monitor the number of method
invocations per some given time quantum. In some systems (for example ProActive
[19]) components are even given the option to migrate to another one. This possibility
could be utilized by the developers of the application when they know that two
components are going to communicate a lot with each other.

4.2 Monitoring system load in a distributed sys-

tem

Monitoring the system resources usage is fundamental for balancing the load. It
can be done on many levels - from the global view of the performance of the com-
puters participating in the distributed system all the way down to the components
themselves and the connectors they are interconnected with. For a good support
of the implementation of load balancing algorithms, the component system should
provide the means of analyzing the load on the different resource types (or the load
index, as called for example in [8] or [9]).

4.3 Load balancing principles

Load balancing is a discipline which has been studied ever since the beginnings of
distributed systems. Therefore, most of the known algorithms of load balancing are
focused on the load balancing based on the migration of processes, not components.
The basic principles are however applicable in both cases.

Load balancing algorithms can be either static or dynamic. Static algorithms
utilize the knowledge gained by the analysis of the system before it was launched.
The rules for load balancing are hard-coded in the static algorithms. Since they can-
not adapt to the changes in the running system, the static load balancing algorithms
are not very suitable for general purposes.

On the contrary, dynamic load balancing algorithms focus solely on utilizing
the knowledge of the load of a running systems. According to [8], dynamic load
balancing algorithms use the following four policies for making their decisions:

1. Transfer policy decides whether a node of a distributed system should be used
for load balancing at the moment by either accepting new tasks (in which case

44

the node is called a receiver) or for handing over some of its tasks (in which
case the node is called a sender).

2. Location policy has the responsibility of finding either suitable receivers in case
of sender initiated transfers or senders in case of receiver initiated transfer.

3. Selection policy takes care of choosing which tasks should be moved from
the senders.

4. Information policy handles the options of when the information about the state
of the system should be collected, what types of values should be measured and
where they should be measured. According to [8] there are three types of infor-
mation policies : demand driven1, periodic2 and state-change driven3 policies.
The difference between demand driven and state-change driven policies is that
while in demand driven policies a node collects data about its surroundings,
in state-change driven policies it sends information about itself to the others.

4.3.1 Example

Even though the issue of distributing tasks among the nodes for an optimal load
distribution is an NP hard problem, it seems that even simple heuristics can lead to
acceptable results. For example, in [21] there is described a load balancing algorithm
which uses constant thresholds (both for overloading and underloading of the nodes)
on cpu utilization to decide whether a node becomes a sender, a receiver or remains
neutral to the load balancing at the moment. The selection policy uses random targets
and the location policy chooses the first suitable receiver found. The information
policy is demand driven. Since the article demonstrates that such a load balancing
algorithm is efficient enough to spread the load evenly between the computers, the
prototype load balancing implementation of this thesis builds on the same principles.
The details are described in Chapter 5.

1These are usually decentralized policies in which a node collects data about its surroundings
only when it becomes either a sender or a receiver.

2These policies can be both centralized and decentralized. The state of the system is collected
in time periods.

3These can be also both centralized or decentralized. Under state-change driven policies, a node
reports the data about itself when its state changes by a given degree.

45

Chapter 5

Prototype implementation

During the work on the thesis there was developed a prototype implementation of
both component migration and simple load balancing to prove that the concepts
described in the thesis are applicable on a real component system. SOFA 2 was
extended with transparent migration of components and tools for handling migration
(including an extension of the MConsole which is, however, beyond the scope of this
thesis and will not be described here).

This chapter sums up the changes which had to be to SOFA 2 and should therefore
belong also in its documentation (available at [4]).

5.1 Changes which had to be made to SOFA 2

Most changes committed to SOFA 2 on behalf of this work were done to the im-
plementation of the Deployment Dock and related classes and to the Connector
Generator (congen). The following paragraphs describe the most important ones.

5.1.1 Exclusive usage of migrating connectors

The connectors supporting migration of components are crucial for the prototype
implementation and their sole usage had to be enforced. The changes made to the
connectors are not of fundamental base, so the migrable connectors are compatible in
the previously used non-migrable ones. It would be unreasonable to combine the two
types together though and non-migrable connectors have been declared deprecated.

Method invocation connectors

Method invocation connectors had to be implemented in such a way that they would
provide both the local and remote communication types1. In order to obtain such

1Until now SOFA 2 distinguished between local and remote method invocation connectors.
Their usage was decided with respect to the topology of components described in the application’s
Deployment Plan.

46

connectors, templates of hybrid connectors (as they started to be called) were added
to the connector generator. They are based on the Remote variant of Stubs and
Skeletons of the method invocation connectors. They utilize the fact that the Remote
Reference Bundles can carry both local and RMI stringified references to connect
locally if available2.

As stated earlier in the thesis, connectors provide the migration functionality by
correctly implementing the methods of the ElementMigrable interface. For method
invocation connectors this means:

• Stubs use the onBeforeMigration method to store and send forward the
RemoteReferenceBundles describing the location of the skeletons they are
pointing at. The onNewInstanceCreation method then binds the remote ref-
erences. The onAfterMigration method contains no code for the stubs.

• Skeletons on the other hand don’t need to use the onBeforeMigrationmethod.
Instead, when the new instance is created, the skeletons store their
RemoteReferenceBundles in the onNewInstanceCreation method which is
then sent back to the old instance of the skeleton. There it is processed by the
onAfterMigration method and set to be thrown as the data of
the MigratedException which is used to notify the clients of the skeleton to
reconnect to the new instance.

Messaging connectors

Since the messaging connectors are implemented by only one class describing both the
connectors of the provided and required interfaces (Mesg_send_recv), the migration
functionality had to be implemented wisely to avoid mixing the code needed by
required connectors with the code needed by provided connectors.

SOFA 2 uses JMS [11] for the implementation of the messaging communication
between components. Communication using a topic is used for all the cases because
it allows general communication of m senders with n receivers. Thanks to this fact,
the binding of the connectors to the topic is the same for both senders and receivers
(i.e. provided and required interfaces).

The old implementation of messaging connectors used the JMS’s ObjectMessage
objects to pass the messages. All the required interface connectors connected to the
topic then processed the message. Since the migration functionality needs to target
specific instances during the migration, the implementation had to be extended.
Objects of the type SOFAMessage are used for publishing into the topic now. They
contain the information about the type of the message (whether it is a normal one
or a message received during migration and now being resent to the new instance)
and the target ID3.

2The principle is described in Chapter 3.
3All messaging connectors now have a unique ID used for their addressing during migration.

47

In the code, the reconnection looks precisely like the reconnection of the method
invocation stubs. In the onBeforeMigration method, the RemoteReferenceBundle
describing how to connect to the topic is stored in the parameters. It is later used in
the onNewInstanceCreation method at the new instance to bind to the topic. The
required interfaces have to do some additional functionality though.

Since the communication of the messaging connectors is not delayed as with
method invocation, the required interfaces of the old instance have to store all the
messages received during the migration4. The switch of the required interface’s mode
from receiving to storing in a queue is done inside the onBeforeMigration method.

As the new instance is created, it also has to set its required interfaces in the
onNewInstanceCreation method to postpone incoming messages until it receives all
the messages that were sent during the migration. In the onNewInstanceCreation

method the connector’s ID is also passed to be sent back to the old instance which
then uses it as the target of the resent messages. The onAfterMigration method at
the old instance then takes care of resending those messages.

The Thread Observer

The connectors have to not forget to use the ThreadObserver of the component. Par-
ticularly, the enterThread and leaveThread methods should be executed whenever
the connectors pass a synchronous call to the component. The ThreadObserver’s

threadInside method is then used for checking the cycles in the dynamic depen-
dencies when the component is being stopped and the calls are delayed inside the
connectors.

5.1.2 Deployment Dock changes

Deployment Docks contain and manage all the components within a SOFAnode and
also contain additional information needed for controlling the components. It was
more than natural that the Deployment Dock also had to take care of migrating
the components.

Since the migration process takes place on two different Deployment Docks, it
could not be handled within one method. The process was split up into two sep-
arate parts which are executed at the source and destination Deployment Dock.
The called emigrateComponent takes care of the source side migration. During
the emigrateComponentmethod the component is first asked to preinstantiate at the
destination dock using the preInstantiateComponent method. When the method
successfully returns back from the destination dock where the component is pre-
pared, the component is stopped and its state is transferred to the destination where
it is resumed using the loadAndResumePreInstComponent method.

4Otherwise these would be lost for the new instance and the component would never receive
them.

48

At the appropriate parts of the migration process, the onBeforeMigration,
onNewInstanceCreation and onAfterMigration methods are executed on all the
component’s interfaces and the parameters of the methods are transferred to be
passed to be following calls.

The instantiation of components and the data structures describing them at run-
time had to be altered a bit. They were changed to make it easier to distinguish
between migrable components and to pass the necessary data needed by migration.
The MigrationInfo and MigrationResult classes were also introduced to carry the
data needed to be exchanged between the source and destination Deployment Docks.

5.1.3 Executing migration

For executing component migration from the command line, the class MigrateComponent
was implemented. This class only has the main method which expects to be passed
two arguments. The first argument is the id of the component which should be mi-
grated. The second argument is the name of the destination Deployment Dock. The
main method takes these arguments and calls the emigrateComponent method of
the Deployment Dock which the migrated component resides in.

5.2 Load balancing

In the prototype implementation, the main class taking care of load balancing is
the MigrationManager. It actually does not do almost any work itself. For making
decisions about the migration of components to balance the load of the system,
the MigrationManager has to be presented with an instance of a class implementing
the MigrationWorker interface. The MigrationManager simply periodically asks
the worker it has been presented with for new orders on component migration. If
the returned list of orders is non-empty, the MigrationManager goes through the list
and sequentially migrates the components to the required destinations.

For example purposes, two implementations of the MigrationWorker have been
developed. The implementations have been developed for presentation purposes be-
cause they provide rapid generation of migration orders triggered by even a small
disturbance of the equilibrium they try to maintain.

• SimpleCPULoadBalancer

The SimpleCPULoadBalancer distributes the components among Deployment
Dock depending on the load of the cpus the Deployment Docks are run-
ning on. At instantiation time, the SimpleCPULoadBalancer gets the thresh-
old of the cpu load above which a Deployment Dock is regarded as over-
loaded. The second parameter passed when creating an instance is the ratio of
the threshold value which marks a Deployment Dock as underloaded.

49

A random number of migrable components from overloaded Deployment Docks
is ordered to be migrated evenly spread over the underloaded Deployment
Docks.

• SimpleDistributionBalancer

The SimpleDistributionBalancer does not monitor the system load at all.
It just tries to spread components evenly among Deployment Docks with as
little the deviation as possible. The maximum allowed deviation is passed as a
parameter when instantiating the SimpleDistributionBalancer.

50

Chapter 6

Evaluation

The thesis describes a fully functioning process of migrating components in dis-
tributed hierarchical component systems. On the prototype implementation for SOFA 2
it was shown that the migration process described in the thesis is easy to implement
with little changes made to the actual architecture of a component system. The con-
cept of separating the migration intelligence of different communication styles exclu-
sively in the software connectors has proved to be usable on the implementation of
migration for the method invocation and messaging communication styles.

The following sections of this chapter show the measured differences between
component inaccessibility time during migration when using the general migration
procedure and the proposed preinstantiation based modification.

6.1 Migration time evaluation

6.1.1 Testing environment

In section 3.4 there was proposed a modification of the general migration procedure
which should reduce the time at which a component is stopped1 during migration.
To experimentally prove the advisability of such a modification, two computers were
set up. They had the following configuration:

• Core 2 Duo T9600 on 2.8GHz with 4GB RAM, running Ubuntu 10.04 64bit,
further marked as Computer A

• Two AMDOpteron 244 processors on 1.8GHz with 2GB RAM, running Ubuntu
8.04 64bit, further marked as Computer B

The two computers were connected by 100Mbps ethernet. Computer A ran the Zeroconf
server, the DeploymentDockRegistry, the GlobalConnectorManager and the SOFA 2

1And thus inaccessible and also delaying the application if there emerges a call on it.

51

Repository. Both the computers then ran a DeploymentDock. The SOFA 2 applica-
tion developed for the experiment consisted of a modified SOFA 2 LogDemo. There
were two components connected by method invocation communication style. On one
side there was a tester component with one required interface sending requests
to the provided interface on the logger component. The logger component was
implemented by the class shown in Figure 6.1.

Subsequently, the logger component carrying no data, 1kB of data, 1MB and
10MB of data was migrated 20 times (10 times in each direction) each time first
with the general migration procedure and then in another set with the improved one.
Times of inaccessibility of each of the component’s sizes on both procedures were
noted down. The environment was restarted between the experiments on the different
component sizes.

The components were simple implementations of a migrating component with one
provided interface. The different data sizes were obtained by a field of the component
class carrying an array of the type byte. The size of the array then was the size of
the component’s data in bytes. Figure 6.1 shows the code of the component. Note
that for the component with no data, the field data was removed.

@Migrable

public class ExperimentLogger implements iface.Log {

final int COMPONENT_SIZE = 1024; // or 1024*1024 or 10*1024*1024

@PersistentAttribute

byte [] data = new byte[COMPONENT_SIZE];

public void log(String message) {

System.out.println("LOG: " + message);

}

}

Figure 6.1: The component used in the experiment for measuring migration times.

6.1.2 Results

When the times of migration of different sized component and using either of the mi-
gration procedures were measured, a mean value was calculated and the results were
plotted in a graphic chart. The results themselves are shown in a table in Figure 6.3,
the chart is shown in Figure 6.2.

Several conclusions can be drawn from the results. The main one which this
section aimed for is, that separating the migration process into component prein-
stantiation (during which the old instance is still fully working) and the actual state

52

Figure 6.2: Measured migration times for different component sizes

A → B B → A
Component
size

Component
stopped

Whole migra-
tion

Component
stopped

Whole migra-
tion

0 60 ms 855 ms 73 ms 342 ms
1kB 64 ms 855 ms 74 ms 340 ms
1MB 158 ms 970 ms 175 ms 456 ms
10MB 1004 ms 1832 ms 1015 ms 1314 ms

Figure 6.3: Table of values shown displayed in Figure 6.2 chart

transfer, is profitable for the whole process. From the results we can see, that the size
of the inner state of a component influences the migration (and inaccessibility) time
noticeably only when its size is more than several kilobytes. Even at the inner state
size of 1MB, the inaccessibility time of the improved migration procedure is several
times shorter.

An interesting thing is, that the inaccessibility time of the unimproved pro-
cedure is a lot different when migrating from Computer A to Computer B from
when migrating a component from Computer B to Computer A. The difference
is caused by the fact that Computer A contained all the SOFA 2 infrastructure -
mainly the Repository. Since the communication rate with the Repository is quite
high during component instantiation, migration is mainly slowed down by this part.
Therefore, when the component was migrated to Computer A, which could commu-
nicate locally with the Repository, since it was running it, the whole migration time
was a lot shorter.

Even though the inaccessibility time when using the unimproved migration pro-
cedure differs so much, the measured inaccessibility time when using the improved
migration procedure is about the same. The about 10 millisecond difference that

53

occurred by all the component sizes can be caused by differences in both hardware
and software of the two computers.

Another notable fact is that the difference between the inaccessibility time for
the improved migration procedure and unimproved one is (in the same direction)
the same no matter what is the size of the inner state of the component. This means
that the size of the component’s inner state only influences the inaccessibility time
of the migration.

54

Chapter 7

Related work

The process of migrating components described in this thesis is of course not the only
possible way. There have been published several papers for component migration.
In this chapter we focus on examples of migration in CORBA and ProActive and
compare it to the solution proposed and implemented in this thesis.

7.1 Migration in CORBA

In [16] there is proposed a solution for the migration functionality based on the Life-
cycle Service (described in [17]). According to it, CORBA objects, which want to
be manageable, have to implement the LifeCycleObject interface that also defines
the move() method. Since CORBA itself is not a component system and contains
no containers like Deployment Docks which would take care of object instantiation,
the creation of objects needed by the migration functionality is done using facto-
ries1. The system utilizes a central registry for factories which can be queried using
a factory finder. The migration functionality does not modify the ORB but simply
builds on top of CORBA.

The first major difference to the solution proposed in this thesis is, that an object
can be requested to migrate by ”anyone” - starting with an outside entity just as
with the migration implementation in SOFA 2, but also by the client that uses
the proxy to the object and even by the migrable object itself. This choice seems
logical. Since there is present no Deployment Dock-like container that would present
additional location abstraction (only the factories, but these primarily take care of
object instantiation), there is no reason not to give the migrable objects full control.
It also gives the developers using the migration functionality more possibilities.

However, the choice to present the components in SOFA 2 with the possibility to
initiate migration of themselves (or other components as well) would be against its
basic philosophy. SOFA 2 aims at such a high level of distribution transparency that
component code contains no sign of distribution. The components have no way of

1Implemented as CORBA objects which can create other objects.

55

discovering whether the opposites they are connected to are within the same process
or at the other side of the Earth. This information is not even available at the time
of development of the components.2

The article then proposes two mechanisms of the migration process. A so called
passive migration and a state sharing migration. The difference between these two is
in the handling of the incoming calls which occur during object migration. The pas-
sive migration is mostly the same as the mechanism described in this thesis. It pauses
incoming calls which emerged after the request to migrate the component and waits
with the migration until the ongoing requests are processed. However, the paper does
not handle cycles in the dynamic dependencies of the delayed invocations. In this
case the solution of this thesis seems better thought out.

The state sharing migration aims at reducing the time during which the object
is unavailable. When an object is migrated, the mechanism creates a new instance
at the destination site, but the state of the object is not transferred. Instead, a
remote reference to the state is passed to the new instance. When there emerge new
invocations on the object, they are directed at the new instance which can handle
them with no delay. The state of the object is transferred to the new instance no
sooner than when all ongoing invocations laid on the old instance are processed.
The incoming calls of course have to be delayed during the state transfer.

There is no doubt that the state sharing migration mechanism spares time when
the unavailability period of the migration is concerned. The question is, whether it
repays the fact that the object has to access its state remotely for a nontrivial time
period. This would depend on a particular situation.

Similarly to the solution proposed by this thesis, the relocation transparency is
handled by a client-side proxy object. The reconnection of the remote references uti-
lizes a naming service to rebind the references when their old values become invalid.
Unlike the solution of the thesis, the article does not take care of the possibility of
reconnecting locally to objects which might have been migrated to the same address
space as where the clients reside.

7.2 Migration in ProActive

One of the well known systems for distributed computing is ProActive [19]. It sup-
ports object migration in its default implementation, and thus it is more than in-
teresting to compare the way ProActive migrates objects with the way this thesis
does.

Just like SOFA 2, ProActive is in fact a Java framework with no modifications
to the Java runtime. Java objects in ProActive are separated into active objects
and passive objects. The active objects are the ones which can be transparently
distributed. They consist of a so called body and the standard object. The body
is similar to SOFA 2’s skeletons. Passive objects are normal java objects. When

2As described in [2], the distribution of components is set when creating the Deployment Plans.

56

methods with parameters are invoked on an active object, active object parameters
are passed by reference and passive object parameters are passed by deep copy.

Furthermore, ProActive presents a model of an application which is structured
into so called subsystems. Each active object belongs to a particular subsystem and
each subsystem has just one active object. The subsystems resemble a lot components
as they are understood by SOFA 2. There can be no shared passive objects between
several subsystems and if an active object has a reference to a passive object, it means
they are in the same subsystem. Only the active object is visible to the outside of
the subsystem.

Active objects are hosted inside so called nodes. The nodes are containers for active
objects and provide location transparency in the same way as SOFA 2 Deployment
Docks do.

Even though there are the similarities described above, some ProActive concepts
differ from those of SOFA 2 in fundamental parts. First of all, any object can be
made active, the decision can be made anytime. Another one, and probably the most
fundamental, is that each subsystem (and thus each active object) has its own thread
which handles all invocation made on the active object. All the calls made on the ac-
tive object are processed by its body which stores them in a queue of pending calls.
No additional parallelism is allowed in an active object. The last difference impor-
tant for the sake of this comparison are the future objects. When an invocation is
made on an active object, the invocation at the client side returns instantaneously.
If the invoked method returns a value, the instantaneous return without waiting for
the method to run (not to mention waiting for its return) means that the return
value cannot contain the actual method’s result. Instead, a future object is created
which can be seen as a proxy. When the future object is really accessed for the data,
it waits for the method to finish if it has not done so already. ProActive is said to
use asynchronous calls with automatic synchronization.

Just as the CORBA example mentioned above and unlike the proposed solu-
tion for SOFA 2, ProActive provides the active objects with the option to mi-
grate themselves. Migration can be also triggered from the outside. The possibil-
ities of aiming the migration to a destination are either migrating to a specified
node or to a specified active object. An object that wants to migrate must call one
of the ProActive.migrateTo(...) methods and the call has to be the last call of
the method which uses migration. External agents can migrate an active object by
calling one of the ProActive.migrateTo(...) methods with the active object as a
parameter.

The concepts of ProActive give it many advantages when migration is concerned.
When a ProActive active object is being migrated, the system first suspends its
execution. Since the active object’s calls are stored within the queue of pending
calls, it can be simply given no new calls from the queue. Moreover, because there is
always only one thread of execution, it means there is just one call being executed
at the active object at a time. The suspending mechanism can therefore just wait for
this one call to finish.

57

Another notable fact is that ProActive does not have to take care of dynamic
dependencies among the suspended calls. This is caused by calls on active objects
being asynchronous and the usage of the future objects. If there would be a cycle in
the dynamic dependencies on a call from a currently migrated active object, the in-
coming call would be also simply put in the queue. Thanks to the synchronization
being lead through only when the results of the call are needed, the active object has
enough time to migrate before processing the request.

When the state of the active object is transferred to the new location, the whole
subsystem is transferred using deep copy. It comprises also the copy of all the pending
calls from the queue, all the passive objects and future objects. As the active object
is reconstructed at the new node, references to and from other active objects are
updated and changes of local and remote references are taken care of. For calls
invoked on the active object during its migration, future objects are utilized.

The way migration is implemented in ProActive is doubtlessly very elegant and
in some ways more simple than the solution of migration implemented with this
thesis for the SOFA 2 system. Some things about ProActive might be however too
restrictive - for example the condition that there is just one thread taking care of an
active object. The way migration is implemented in ProActive is also very specialized
and would be rather hard to implement in a component system without turning it into
a second ProActive. On the contrary, SOFA 2 and the prototype implementation of
migration developed for this thesis put no limitations on threads inside a component.
The concept of migration described in the thesis aimed to be as general as possible.

58

Chapter 8

Conclusion and future work

8.1 Summary

The goal of this thesis was to analyze the problem of migrating components in a
component system and to propose and implement a working solution. Throughout
the thesis there was shown that by following some basic principles, component mi-
gration can be easily implemented into a complex hierarchical component system
that SOFA 2 doubtlessly is.

The thesis focused mainly on the migration of components in a component sys-
tem and problems that can be encountered during its implementation. The issues
have been analyzed and their possible solutions have been described. The prototype
implementation developed with the thesis proves that the proposed solutions are
applicable enough to provide a means of transparent migration of components with
seamless integration to an already developed component system. When developing
migration enabled components in SOFA 2 only little additional code is required. It
was also shown that the principles described in the thesis are general enough to be
used to provide migration in other component systems as well.

Since load balancing is absolutely dependent on the migration of components,
the thesis focused purposely mainly on the migration part. A simple framework
for component migration was developed for the possibilities of easy adding load
balancing implementations later.

8.2 Future work

The scope of load balancing was left behind a little in this thesis. Possibilities of
utilizing the knowledge of the components and measuring their resource consumption
could lead to interesting load balancing algorithms.

One of the bottlenecks of the proposed solution for component migration can
be that the proposed system does not support concurrent migration of a larger
number of components. To make it available, the deadlock checking functionality

59

should be improved to provide intelligence needed to analyze possible cyclic dynamic
dependencies between migrated components.

It is clear that when migrating components with a large inner state, the migration
can take quite a long time. The possibilities of synchronizing the component’s state
and its differences and other possible means of transferring the component’s state
faster should be also analyzed.

60

Bibliography

[1] Bures, T., Hnetynka, P., Plasil, F.: SOFA 2.0: Balancing Advanced Features in a
Hierarchical Component Model, Proceedings of SERA 2006, Seattle, USA, Aug
2006

[2] Bures, T., Hnetynka, P., Plasil, F.: Runtime Concepts of Hierarchical Software
Components, In International Journal of Computer & Information Science, Vol.
8, No. S, ISSN 1525-9293, pp. 454-463, Sep 2007

[3] Bures, T., Malohlava, M., Hnetynka, P.: Using DSL for Automatic Generation
of Software Connectors, In procceedings of ICCBSS’08, Madrid, Spain, IEEE
CS, Feb 2008

[4] SOFA 2, http://sofa.ow2.org/

[5] OMG (2008): OMG Unified Modeling Language (OMG UML), Superstructure,
V2.1.2, http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/

[6] Balek, D., Plasil, F.: Software Connectors and Their Role in Component De-
ployment, Proceedings of DAIS’01, Krakow, Kluwer, Sep 2001

[7] Chen, X., and Simons, M. A component framework for dynamic reconfiguration
of distributed systems. In Lecture Notes in Computer Science, Volume 2370
(Jan 2002), vol. 2370.

[8] N. G. Shivaratri, P. Krueger, and M. Singhal. Load distributing for locally dis-
tributed systems. Computer, 25(12), 1992.

[9] K. Chow and Y. Kwok. On Load Balancing for Distributed Multiagent Com-
puting. IEEE Transactions on Parallel and Distributed Systems, 13(8):787–801,
August 2002

[10] Java SE 6 Documentation, http://java.sun.com/javase/6/docs/

[11] JMS documentation, http://java.sun.com/products/jms/

[12] Apache Ant, http://ant.apache.org/

[13] The Ivy dependency manager for Ant, http://ant.apache.org/ivy/

61

[14] M. Henning, ”Binding, Migration, and Scalability in CORBA,” Communications
of the ACM special issue on CORBA, vol. 41, Oct. 1998.

[15] D. Janaki Ram, A. Vijay Srinivas, Object migration in CORBA, J. Comput.
Soc. India 32 (1) (March 2002) 18–27.

[16] Peter, Y. and Guyennet, H. 2000. Object mobility in large scale systems. Cluster
Computing 3, 2 (Apr. 2000)

[17] Common Object Services Specification, Vol. I, Technical Report 94-1-1, Revision
1.0, Object Management Group (March 1994)

[18] Xu B., Lian W., Gao Q. Migration of active objects in ProActive (2003). Infor-
mation and Software Technology, 45 (9), pp. 611-618

[19] ProActive, http://proactive.inria.fr/

[20] Arregui D., Pacull F., Willamowski J., Rule-Based Transactional Object Migra-
tion over a Reflective Middleware, Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms Heidelberg, p.179-196, November
12-16, 2001

[21] Javier Bustos-Jimenez , Denis Caromel , Alexandre di Costanz , Jose M. Pi-
quer, Balancing Active Objects on a Peer to Peer Infrastructure, Proceedings of
the XXV International Conference on The Chilean Computer Science Society,
p.109, November 07-11, 2005

[22] Fractal, http://fractal.ow2.org/

[23] Enterprise Java Beans, http://www.oracle.com/technetwork/java/index-jsp-
140203.html

[24] Microsoft DCOM, http://www.microsoft.com/com/default.mspx

[25] Amoeba, http://www.cs.vu.nl/pub/amoeba/

[26] Sprite, http://www.eecs.berkeley.edu/Research/Projects/CS/sprite/sprite.html

[27] Mosix, http://www.mosix.org

62

Appendix A

Contents of the enclosed disc

A.1 Structure of the disc

• /tex

The /tex directory contains the sources of the thesis in LATEX. It also con-
tains all the images displayed in the thesis. They are stored in the directory
/tex/images.

• /bin

The /bin directory contains the binaries of the examples for easy launching.

– /bin/sofa

The /bin/sofa directory contains a prepared SOFA 2 environment in-
cluding a pre-filled repository.

– /bin/mconsole

The /bin/mconsole directory contains prepared MConsole environments
for several architectures: Linux x86, Linux x86 64, Windows x86 and Win-
dows x86 64.

• /src

In the /src directory there are the full sources of SOFA 2 extended with
migration which are needed to compile the examples.

• /master_thesis.pdf

The pdf in the root of the disc contains this text in an electronical form.

A.2 Examples howto

A.2.1 System requirements

The examples provided with this thesis run (were tested) on 32bit or 64bit GNU/Linux
and 32bit Windows with Java 1.6.

63

To compile the sources included with the thesis, JDK 1.6[10] is required along with
Ant[12] and Ivy[13]. The build can be initiated by running ant in the build directory.
The repository is refilled by running ant in the sofa-j/trunk/dist directory.

A.2.2 Running the examples

The scripts needed for running the included demos are located at /bin/sofa/bin.
Since SOFA 2’s logging system requires write access to the /bin/sofa/log direc-
tory, the contents of the /bin/sofa directory should be copied to the harddisk first.
Windows users then have to set the environment variable SOFA_HOME to the location
of the contents, otherwise SOFA 2 will not launch.

Running the examples needs several of the scripts to be launched in correct
order. All the scripts come both in manually configured and automatically configured
versions. It is strongly recommended to use the autoconfigured scripts, especially
when running SOFA 2 distributed among a number of computers. Windows users
use the *.bat files (or the *.sh scripts from Cygwin) while GNU/Linux users should
use the *.sh files.

The following scripts need to be launched correctly in order to run the examples.

1. sofa[-auto]-node.(bat/sh)

This script is an essential one. Almost every action which SOFA 2 provides
requires it to be launched. It starts the GCM, DDR and Repository. The auto
version of the script also launches the Zeroconf server needed by all the other
auto scripts.

2. sofa[-auto]-dock.(bat/sh) dock-name

The Deployment Docks have to be run to host the components of SOFA 2
applications. They are typically called nodeA, nodeB,...

3. sofa[-auto]-launch.(bat/sh) deployment-plan -v version

The launch script is used for executing the SOFA 2 application. It needs the full
name and version of the Deployment Plan describing the application to be
passed as its parameters.

4. sofa[-auto]-migrate.(bat/sh) component-id new-dock

This script is used to manually migrate components between the Deploy-
ment Docks. Be sure to pass a correct id of a migrable component, otherwise
the script will report an error.

The component-id is the internal id of the component in form dockname@number

- e.g. nodeA@1. The new-dock means the name of the Deployment Dock which
is going to be the new destination of the component.

64

5. sofa[-auto]-migration-manager.(bat/sh) {options}

The sofa[-auto]-migration-manager script is used to run the sample load
balancer. The example migration manager provided at the disc runs the simple
distribution worker and thus needs only one parameter - the allowed difference
of the number of components between the deployment docks.

6. migration_demo_(rmi/messaging).(bat/sh)

These scripts were introduced for easier launching of two of the demo migrable
applications. They can be used instead of the sofa[-auto]-launch.(bat/sh)
script.

For a more detailed information about the usage of SOFA 2, refer to [4].

A.2.3 List of the example Deployment Plans

The prefilled SOFA 2 repository provided at the disc contains the standard SOFA 2
logdemo, newly added migrable logdemos and messaging demos, which are also mi-
grable.

• org.objectweb.dsrg.sofa.examples.logdemo.deplplan.Local

• org.objectweb.dsrg.sofa.examples.logdemo.deplplan.Distributed

• org.deplplan.Composed[Local/Distributed]

• org.deplplan.Migrable[Local/Distributed]

• org.deplplan.MigrableForwardingLogdemo

• org. ... examples.messaging.deplplan.MessagingDemoLocal

• org. ... examples.messaging.deplplan.MessagingDemoDistributed

Launching of these demos requires one Deployment Dock called nodeA to be
running for the Local variants and three Deployment Docks called nodeA, nodeB,
nodeC for the Distributed variants of the SOFA 2 applications.

To list all the entities that are stored in the repository, cushion can be used by
running cushion print all.

The easiest way of launching the deployment plans is probably using the MCon-
sole. In the list of the deployment plans in the repository, simply right click the
deployment plan intended to run and select Run As->SOFA 2 application in the
context menu. The SOFANode and Deployment Docks have of course to be running.

65

Figure A.1: Example MConsole

A.2.4 Migration in MConsole

For a more illuminating view of the migrable components, the standard MConsole
of the SOFA 2 was extended with visually distinguishing migrable components from
non-migrable ones. The MConsole also contains the possibility of migrating the com-
ponents by dragging them in the navigator toolbar.

Since MConsole is an Eclipse plugin, launching it requires the same as launching
Eclipse. In the directory /bin/mconsole there are archives with an Eclipse distribu-
tion for either 32bit GNU/Linux, 64bit GNU/Linux or 32bit Windows. To install it,
simply copy it to your disc and extract the archives. They contain a prepared Eclipse
environment with the MConsole plugin.

Before the MConsole can be used to migrate the running components, it must
be first set up to connect to a running SOFAnode. If you have a running SOFAnode
(preferably an autoconfigured one), select File->New Wizards->SOFAnode. A dialog
for configuring the SOFAnode connection should pop up. Enter the name you wish
to use for your SOFAnode, select the Autoconfigured connection and click Finish.

Figure A.1 shows a sample MConsole with a configured SOFAnode with four
Deployment Docks and several running components. As can be seen in the diagram
view, normal components are painted in a pale green color while migrable components
are distinguished using a tone of purple.

To migrate components using the MConsole, simply drag a component marked
as migrable in the MConsole Navigator and drop it into a Deployment Dock in
the navigator. The MConsole should then ask if the migration should be executed.
When it is done, the navigator tree will collapse the open branches and needs to be
open again to view the changes. To refresh the diagram view, click the SOFAnode in
the navigator. Note that the diagram view cannot be used for component migration.

For a more detailed description on the usage of the MConsole, refer to [4].

66

A.3 Known issues

There are several problems not caused by the prototype implementation which need
to be mentioned. The problems might occur depending on which system the imple-
mentation is executed on. Most of them can be successfully bypassed.

• On MS Windows, the log4j does not find the target directories where
the logs should be saved.

This problem might happen when launching the Deployment Docs and spams
the execution console. It does not however affect the runtime.

• Distributed execution does not work on GNU/Linux.

This might be caused by the hostname of the computer in /etc/hosts being
set to 127.0.1.1. To solve the problem, change it to the computer’s IP address.

• Build of sofa-j/dist ends with errors without publishing entities into
the SOFA 2 repository.

It can happen that the repository does not start in time to accept requests
generated by the build process. Try until it goes through successfully.

• MS Windows cannot compile the sources of SOFA 2.

This might happen when there are several versions of Java installed on the sys-
tem. Uninstall all of them and make a clean install of JDK1.6.

• Distributed execution does not work when using the messaging de-
mos.

This is a problem of SOFA 2 itself, not the thesis. A bugfix should be coming
soon.

67

