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me, my supervisor Ladislav Krĺın for all his generous effort which made this
thesis possible, the former head of the tokamak department at the Institute of
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Part I

Background
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Chapter 1

Introduction

1.1 Thermonuclear fusion — nuclear power

from plasma1

Controlled fusion of light nuclei, if mastered, would be one of the best meth-
ods of energy production. Compared to chemical reactions (burning of fossil
fuels) it has the advantage of much higher energy density: the most favor-
able reaction of deuterium and tritium nuclei releases 17.6 MeV for a single
reaction, or 338 × 106 MJ for a kilogram of fuel, above million times more
than burning of oil. This advantage is shared with fission of heavy nuclei like
uranium which provides similar amount of energy per unit of fuel. Compared
to fission fusion has several other important advantages:

• Fusion reactions are inherently safe because, unlike fission, they are not
chain reactions so there is no risk of a runaway reaction and explosion.

• Fission reaction uses uranium, which is a fairly rare element, while for
fusion there is a nearly limitless supply of deuterium in water. The most
favorable deuterium-tritium reaction would be limited by the supply of
lithium which would be used to produce the required tritium. Still, the
estimated reserves of lithium would suffice for tens thousands years of
extensive exploitation of fusion energy.

• Fusion reactions do not produce long-living radioactive waste which is
a serious concern for fission. The only waste is the result of irradiation
of reactor components and its lifetime can be minimized by the choice
of materials. The ultimate product of the deuterium-tritium reaction
is just helium.

1This section follows mainly the derivations in [21].
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A fusion reaction involves two nuclei while a fission of a nucleus is trig-
gered by a neutron – a neutral particle. This difference has fundamental
implications for the design of fusion reactors. The neutron can reach the
nucleus easily and thus a fission reaction is fairly easy to achieve. In contrast
for a fusion reaction the nuclei must overcome the repulsive Coulomb force
before they approach enough for the strong nuclear force to take over and
make the reaction happen. A crude estimate of the required kinetic energy
can be done classically by evaluating the electrostatic potential energy at the
distance of the nuclei where the attractive strong nuclear force overcomes the
Coulomb force. This estimate gives 288 keV for the deuterium-tritium reac-
tion. In practice the quantum effects can not be neglected at this scale and
thanks to the tunneling effect reaction can happen even for lower energies.
The reaction rate is proportional to the square of density n and the product
of velocity v and the cross-section of the reaction σ. This quantity has to
be averaged over the velocity distribution (the averaging is denoted by angle
brackets) to obtain the total reaction rate per unit of volume:

R ∝ n2〈vσ〉. (1.1)

The deuterium-tritium (D-T) reaction is preferable because it has by far the
largest cross-section σ among the reactions of light nuclides. For a Maxwell
distribution of particle velocities the D-T reaction rate has a maximum at a
temperature of 70 keV2, where most of the reactions occur for particles from
the tail of the energy distribution. At this temperature (about 8×108 K) the
light elements exist only in a ionized state – plasma, as the corresponding
energy is much higher than the ionization energy. The operation of fusion
reactors is thus governed by plasma physics.

To maintain the required temperature the fusion plasma will need a source
of energy to compensate the thermal losses. The energy source can be either
external (induction of current, heating by microwaves or injection of energetic
particles) or internal – the fusion reactions themselves. This energy will be
used to compensate the inevitable loss of energy from the plasma associated
with the enormous temperature gradient from the temperature in the plasma
core needed for the fusion reactions down to the temperature of the solid
structures of the reactor. It follows that the plasma must have a very low
thermal conductivity in order to minimize this loss and make a practical
fusion reactor possible. We will note this loss as Pκ in the following discussion.

For a fusion energy source it is necessary to make the fusion output power
significantly larger than the input power of the external heating sources. This

2As usual in fusion, temperature is given in the units of energy: T [J] = kBT [K],
T [eV] = kB/e · T [K] where kB is the Boltzmann constant and e the value of elementary
charge in Coulombs.
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is quantified by the fusion gain factor Q defined as the ratio of the fusion
power to the input power:

Q =
Pfus

Pin

. (1.2)

If the fusion power is sufficiently high, it can heat the plasma itself, thus the
external heating can be switched off and Q = ∞. This condition is called
ignition. An economically viable fusion reactor shall have the fusion power
close to ignition, with Q on the order of 30 or more so that the fusion power,
taking into account all the losses associated with power conversion (thermal
to electric and electric to the beams or electromagnetic waves used to heat
the plasma) is able to supply the input power Pin and enough net power
remains as the output of the power plant.

As a concrete example we will take again the D-T reaction

D + T −→ α + n + 17.6 MeV.

The kinetic energies of the reaction products are inversely proportional to
their masses, so the neutron carries away 4/5 of the energy and the alpha
particle 1/5. The neutron can escape the plasma freely – it is not bound by
the electromagnetic field that is used to confine the plasma, nor it interacts
with the charged particles. The fact that 4/5 of fusion output is carried by
fast neutrons has profound implications for the construction of the reactor.
The first wall will have to sustain this high neutron flux which is damaging to
the structure of materials and creates radioactive nuclides. Behind the first
wall a blanket will capture the neutrons and protect the rest of the plant
from them. It will also convert their energy to thermal and provide the heat
to the conventional steam turbines of the power plant. Another important
function of the blanket will be the breeding of the required tritium by nuclear
reactions of the incoming neutrons with lithium.

Only the alpha particles remain in the plasma and are available to supply
the energy to maintain its temperature. The losses of energy from the plasma
are equal to the external input plus the alpha power: Pin + Pα = Pκ and we
have seen that Pα = Pfus/5. In the fusion gain (1.2) we can substitute for
Pin:

Q =
Pfus

Pκ − Pfus/5
. (1.3)

It is clear that to maximize Q one has to minimize the losses Pκ and maximize
the fusion power Pfus. This can be formulated as a requirement on the plasma
parameters. The global parameter corresponding to the losses is the energy
confinement time τe. If the thermal losses are proportional to the temperature
gradient, thus (for a given density) to the stored energy in the plasma, the
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plasma temperature and its energy would fall exponentially if power sources
are absent. The energy confinement time τe is defined as the time constant
of the exponential decrease. The losses Pκ are inversely proportional to τe:

Pκ =
V U

τe

(1.4)

where U is the plasma energy per unit of volume V . If we normalize all the
power-related quantities per unit of volume, thus defining power densities
Sκ ≡ Pκ/V , Sfus ≡ Pfus/V etc., we may use the relation between plasma
pressure p and the energy density U :

U =
3

2
p (1.5)

to express Sκ in terms of pressure:

Sκ =
3p

2τe

. (1.6)

According to (1.1), the fusion power density Sfus is proportional to the square
of density3 n, which is related to the total pressure p:

p = 2nT. (1.7)

The relations (1.6) and (1.7) allow us to rewrite (1.3) using the pressure p:

Q =
Kfusp

2 〈σv〉
T 2

3p
2τe
− Kfus

5
p2 〈σv〉

T 2

. (1.8)

The quantity 〈σv〉/T 2 is a function of temperature only. Its maximum de-
termines the optimum temperature for the reaction. For the D-T reaction
the maximum is reached at Tmin = 15 keV. The condition for ignition is

pτe ≥ 15

2Kfus

T 2

〈σv〉 ,

it sets the critical required value of the product pτe, which is minimized for
T = Tmin. The actual value at this temperature is pτe = 8.3 atm.s.

The derivation summarized above assumed that the losses of energy from
the plasma are all thermal conductive losses Pκ, proportional to the tem-
perature gradient. In reality there are also radiative Bremsstrahlung losses
PB associated with the collisions of charged particles in the plasma. Their
scaling with temperature is different: PB ∝ T 1/2 for a given density. In
the regime of interest the thermal losses dominate over the Bremsstrahlung
losses, which justifies our approach.

3Density is electron density (number of electrons per unit of volume) unless stated
otherwise. The total density of particles (electrons and ions) is 2n for a plasma consisting
of hydrogen isotopes.
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1.2 Scope of this work

The present thesis explores several examples of application of deterministic
chaos to fusion plasmas. The unifying theme is chaos arising from small
non-axisymmetric perturbations of the originally symmetric fusion plasma
configuration – the tokamak. This situation corresponds to the nearly in-
tegrable Hamiltonian dynamical systems studied in the chaos theory. The
symmetric tokamak equilibrium corresponds to an integrable system and the
perturbation causes non-integrability, however it is considered small enough
that a perturbative approach is justified. The general theory of integrable
and nearly-integrable Hamiltonian dynamical systems is summarized in Ap-
pendix A.

A particular attention is given to the case when the perturbation is intro-
duced artificially to exploit its beneficial effects. A strong motivation is the
recent installation of the tokamak COMPASS in IPP Prague. COMPASS is
equipped with a set of coils which can create non-axisymmetric perturbations
and a large part of this thesis is dedicated to preparation of experiments with
these coils. Many results are however generally applicable to devices with
similar coil systems.

The following sections will introduce the tokamak – the most advanced
concept of a fusion reactor. It will be shown what is the role of deterministic
chaos in solving some of the problems that tokamaks face on the road to
achieving the basic requirements of a working fusion power source, given in
section 1.1. The author’s own results will be presented mainly in the form of
published papers with comments.
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Chapter 2

Magnetic confinement and the
tokamak

In section 1.1 it was shown how obtaining a net power from fusion requires
conditions at (or close to) ignition, which is reached when pτe ≥ 8.3 atm.s at
a temperature close to T = 15 keV. There are two ways to achieve this goal:

• Inertial confinement fusion which seeks to maximize p by maximizing
the density n. The high pressure leads to rapid instabilities and the
quickly expanding plasma is maintained for some time only thanks to
its inertia. The whole process is inherently non-stationary and explo-
sive and the confinement time is very short. The plasma must be com-
pressed into the initial high-density state by powerful energy sources
such as lasers. An example of inertial confinement fusion is the hy-
drogen bomb where a nuclear (fission) bomb is used for this purpose.
For electric power generation the pulsed operation is a disadvantage,
another one is the poor efficiency of lasers used to start the reaction.

• Magnetic confinement fusion which aims at achieving a stable, ideally
steady state plasma. This requirement sets the limit on the pressure
p which must be low enough to not cause instabilities. The typical
pressure is at the order of 1 atm and energy confinement time at the
order of 1 s. This is the most developed road to fusion energy.

In the magnetic confinement fusion a magnetic field is used to confine
the plasma. It is able to do so because, as will be shown in section 2.1, the
charged particles in the plasma are constrained to follow the magnetic field
lines. In this way it is possible to prevent the plasma from being lost by
touching the wall of the vessel of the reactor. Plasma still can escape along
the field lines and a linear device with straight magnetic field lines would

9
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lose the plasma at its ends. It is thus necessary to bend the field lines into
a toroidal shape where they stay inside the vessel and never intersect its
wall. The basic configuration of a magnetic confinement fusion experiment
is a toroidal plasma ring around a central axis, called the major axis. Any
plane containing the major axis and intersecting the plasma column is called
a poloidal plane. The angle around the major axis is called the toroidal
angle φ and specifies the position of a given point along the plasma ring. In
a poloidal plane one may introduce two coordinates. The simplest choice is
(R,Z) where the major radius R is the distance from the major axis while
Z is the vertical position relative to a plane perpendicular to the major axis
and passing through the center of the vessel (the midplane). (R, φ, Z) form
together a cylindrical coordinate system.

If one field line is followed for many toroidal turns, it will eventually
either cover a 2-D surface or densely fill a 3-D volume. In the second case
the plasma parameters (like density, temperature, pressure) can be expected
to stay approximately constant across this 3-D volume because by following
the field lines the particles can get from any point in the volume to the
vicinity to any other point. In the first case the plasma parameters will stay
constant only on the surface, which will act as a barrier to the transport of
energy and particles. The first case is clearly preferable for achieving a long
energy confinement time τe. Magnetic confinement fusion devices shall thus
have their magnetic field forming a set of toroidal, nested magnetic surfaces
in most of the plasma volume. The detailed requirements of the magnetic
configuration are among others determined by the properties of single particle
motion which are briefly summarized below.

2.1 Charged particle motion in a magnetic

field

In a magnetic field ~B, a particle with mass m, charge q and speed ~v is subject
to the Lorentz force ~F = q~v × ~B. As the force is always perpendicular to
the field lines and the particle velocity, the particle rotates around the field
line on a helix with angular frequency (the cyclotron frequency or Larmor
frequency)1 ωc = qB/m. The particle velocity can be decomposed in the
component parallel to the field, which is not affected by the Lorentz force,
and the component perpendicular to the field: ~v = ~v‖ + ~v⊥. The radius
of the circle the particle makes in the plane perpendicular to the field (the
Larmor radius) is rL = mv⊥/(|q|B). The center of the circle is known as

1The sign of ωc expresses the direction of the rotation, which depends on the sign of q.
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the guiding center and the particle motion in a homogeneous magnetic field
can be described as gyration around the guiding center with the Larmor
frequency ωc while the guiding center moves along the field line with the
velocity v‖.

In a non-uniform magnetic field or in the presence of an electric field
the guiding center motion does not follow exactly the field lines. There are
several contributions to the drift motion of the guiding centers across the
magnetic field, among them:

• ~E× ~B drift in the electric field with the drift speed

~vE×B =
~E× ~B

B2
. (2.1)

It is a flow of the whole plasma because it is the same for all the
particles.

• Curvature drift when the magnetic field lines are not straight, with the
drift speed

~vr =
v2
‖

ωc

~R× ~B

BR2
(2.2)

where the vector ~R is the radius of curvature of the field lines.

• Gradient B drift in an inhomogeneous field, with the drift speed

~v∇B =
v2
⊥

2ωc

~B×∇B
B2

(2.3)

In addition, it can be shown that the magnetic moment µ ≡ mv2
⊥/(2B)

is an approximate constant of motion (it is a conserved quantity when the
variation of field is slow compared to the Larmor frequency). The kinetic
energy E = m(v2

‖ + v2
⊥)/2 is also a constant of motion, so for a field whose

strength increases along the field lines, a particle coming along a field line
in the direction of ∇B with a given E and µ may arrive to the point where
all its energy is in the perpendicular velocity v⊥ and v‖ = 0. This happens
when B = E/µ. At this point the particle stops and is reflected back to the
region of weaker field.

2.2 Safety factor

Consider now a very simple toroidal magnetic confinement device with purely
toroidal magnetic field produced by coils wound around the vacuum chamber.
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The field lines form simple horizontal circles, so it is a degenerate case of
magnetic surfaces, where a field line does not densely cover a surface but
rather closes on itself. This configuration does not really confine the plasma
because of the drift motions. If there are no significant currents in the plasma
contributing to the toroidal field, the toroidal field decreases with the distance
R from the main axis of symmetry of the torus as B ∝ 1/R. (The inner side
of the torus is thus known as the high field side (HFS) and the outer side as
the low field side (LFS).) This dependence causes a grad B drift ~v∇B (2.3).
R is at the same time the radius of curvature of the field line and the drift
from field curvature (2.2) is present in addition to the grad B drift. From

∇ × ~B = 0 one can derive the relation between the curvature of field lines
and the gradient of the field: (∇B)/B = −~R/R2. The total drift is then:

~v∇B + ~vr =
1

ωc

~R× ~B

BR2

(
v2
‖ +

1

2
v2
⊥

)
(2.4)

The ~vr and ~v∇B drift velocities are vertical and from (2.4) it can be seen
that they have the same direction for every particle species, so the total drift
~vr + ~v∇B is always nonzero. For electrons this total drift is in the opposite
direction than for ions because of the charge dependence in (2.4). This will
lead to a vertical separation of electrons and ions and the appearance of a
vertical electrical field. The resulting ~E× ~B drift (2.1) will be horizontal and
will eject the plasma outwards to the wall of the chamber.

To eliminate this instability, the field lines may be helically twisted to
connect the regions of opposite charge at the top and the bottom of the
plasma. Particles may return along the field lines and eliminate the voltage
created by the charge separation. This way a return current is produced,
called Pfirsch-Schlüter current.

In the center of the plasma there is one circular field line at a major
radius R0, called the magnetic axis. Around the magnetic axis there are
nested magnetic surfaces, covered by the helical field lines.

To twist the field lines a field component perpendicular to the toroidal
field is required, called the poloidal field BP. The twisting of field lines can
be expressed using the safety factor q defined as the number of toroidal turns
of the field line after whose the field line returns to the starting position in a
poloidal plane (makes one poloidal turn around the magnetic axis). However
it does not necessarily return to the poloidal plane at the same toroidal
position – this happens only if q is an integer. If q is a rational number,
q = m/n for m,n integers, the field line will return to the same point in
the starting plane after m toroidal and m poloidal turns. If q is irrational,
the field line will never return to the same position in space and will densely
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cover the whole magnetic surface. The safety factor is by its construction
a function of the magnetic surface. Surfaces with a rational value of q are
called rational surfaces. Rational surfaces with low values of m and n are
important because many plasma instabilities develop on them.

If we follow a field line on one full poloidal turn around the magnetic axis
and note ϑ the angle in the poloidal plane with respect to the magnetic axis,
the distance ∆φ in the toroidal direction the field line traverses is

∆φ =

∫ 2π

0

~B · ∇φ
~B · ∇ϑ dϑ (2.5)

where the integral is taken along the field line. By the definition of the safety
factor q = ∆φ/(2π).

If the configuration is toroidally symmetric, the integral along a field line
in (2.5) can be replaced by an integral along a closed curve in a poloidal
plane because there is no φ dependency:

q =
1

2π

∮ ~B · ∇φ
~B · ∇ϑ dϑ. (2.6)

The term ~B · ∇φ corresponds to the toroidal field: ~B · ∇φ = BT/R. The

term ~B · ∇ϑ corresponds to the poloidal field: ~B · ∇ϑ = BP dϑ/ dl where l is

the distance along the magnetic surface in the poloidal plane (
∫ 2π

0
dl/ dϑ dϑ

is the circumference of the surface). Substituting into (2.6) gives

q =
1

2π

∮
BT

RBP

dl

dϑ
dϑ. (2.7)

The integral (2.7) can be simplified by taking the toroidal field term as ap-
proximately constant: BT/R ≈ B0/R0, where B0 ≡ BT(R0) is the value of
the toroidal field BT at the magnetic axis. Moreover, if we consider flux
surfaces with an approximately circular cross section with a distance r from
the magnetic axis and a constant poloidal field, then BP dϑ/ dl ≈ BP/r. We
obtain

q ≈ rB0

R0BP

. (2.8)

The poloidal field is linked to the current I flowing in the plasma inside the
flux surface: BP = µ0I/(2πr), so

q ≈ 2πr2B0

µ0R0I
. (2.9)

It follows that in order to have helically twisted field lines, corresponding to
a finite q, there must be a nonzero toroidal current I in the plasma.
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The distance of the plasma edge from the magnetic axis is called the
minor radius a. The value R0/a is called the aspect ratio. The foregoing
approximations were derived using the assumption of large aspect ratio, or
small inverse aspect ratio ε ≡ a/R0. This is an often used assumption in
magnetic fusion theory.

The magnetic confinement device with toroidal symmetry, significant
toroidal current I and toroidal field BT imposed by coils around the vessel
is called the tokamak. Its safety factor is at the order of unity, so according
to (2.8) the poloidal field is smaller than the toroidal field by an order of ε.

The toroidal current in the tokamak is traditionally formed by varying
the magnetic flux through the torus, as in a transformer. In order to allow
steady-state operation, another solution which does not involve time-varying
fields will have to be used. Another drawback is the energy stored in this
current, which has a potential to cause instabilities. If an instability abruptly
terminates the plasma (a so-called disruption), the current can not flow any-
more, but the release of the huge magnetic energy associated with it can
cause damage to the tokamak structures.

2.3 Stellarators and 3D fields

If we want to obtain a configuration with twisted field lines but without the
toroidal current which complicates the tokamak, the toroidal symmetry has
to be abandoned. The passage from the field line integral (2.5) to the inte-
gral along a closed contour in the poloidal plane (2.6) is then not valid and
a finite value of the safety factor q (or equivalently a nonzero value of the
rotational transform ι ≡ 2π/q which is the poloidal angle the field line per-
forms in one toroidal turn) may exist even with I = 0. The nonaxisymmetric
field required for the rotational transform is produced by three-dimensional
shaping of the coils and/or different coils along the torus. The complexity of
those coils is a disadvantage in comparison to the tokamak, whose toroidal
field coils are planar (each coil lying in one poloidal plane) and all identical.
Another disadvantage is the complexity of the magnetic field and the asso-
ciated complexity of modelling a stellarator. In a tokamak many problems
can be reduced to two dimensions thanks to the symmetry. In particular,
the symmetry of a tokamak automatically ensures the existence of magnetic
surfaces (see section 4). This is not the case for a stellarator whose magnetic
field has to be carefully optimized to form magnetic surfaces in most of the
volume. An analogous issue arises with the particle orbits. Due to the drifts
mentioned in the previous section, the particle orbits deviate from the mag-
netic surfaces. Thanks to the symmetry of the tokamak, the particle orbits
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Figure 2.1: Definition of the flux functions.

are closed, which is not a priori guaranteed for a stellarator, where a particle
might drift from the plasma completely [22]. The modern stellarators are
again optimized to minimize this effect. If the tokamak field deviates from
perfect symmetry, many of the stellarator issues apply to it too.

2.4 Magnetic fluxes

When magnetic surfaces are present, they allow to define functions which
express the fluxes of magnetic field through the surfaces [23]. One such

function is the toroidal flux Φt, defined as the flux of the toroidal field ~BT

through the inside of a magnetic surface, i.e. as the surface integral

Φt ≡ 1

2π

∫
Σt

~BT · d~S (2.10)

where the surface Σt (Fig. 2.1a) is the part of the poloidal plane delimited
by the given magnetic surface.

Analogously the poloidal flux ψ is defined as the flux of the poloidal field
~BP through the surface Σp reaching from the magnetic axis up to the chosen
magnetic surface (Fig. 2.1b) :

ψ ≡ 1

2π

∫
Σp

~BP · d~S. (2.11)

Both Φt and ψ are conventionally defined as fluxes per radian, this is
the reason for the division by 2π in the defining formulae. They depend
only on the choice of a magnetic surface by definition, i.e. they are constant
functions on every magnetic surface. As such they can be used to label
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Figure 2.2: The differentials of the flux functions. According to [23].

magnetic surfaces (which are often called flux surfaces). This is useful for
arbitrary, non-circular magnetic surfaces, as the distance r from the magnetic
axis is constant only on circular surfaces. Sometimes the fluxes normalized
to their value at the edge are used for this purpose, e.g. ψN ≡ ψ/ψedge, which
then lie in the range (0, 1) inside the plasma. Other option is to use square
roots of the normalized fluxes: ρ ≡ √Φt/Φtedge, s ≡

√
ψN . The reason is

that those functions are close to the normalized geometric minor radius r/a
in the approximation of circular magnetic surfaces.

Consider two close magnetic surfaces, separated by a distance dx (Fig. 2.2).
The toroidal flux enclosed between them is

dΦt =
1

2π

∫ 2π

0

BT dx
dl

dϑ
dϑ (2.12)

where l is the same as in (2.7). The enclosed poloidal flux is

dψ = BPR dx. (2.13)

By substituting for dx in (2.12) from (2.13), we obtain

dΦt

dψ
=

1

2π

∫ 2π

0

dl

dϑ

BT

BPR
dϑ

which is exactly the expression (2.7) for the safety factor. Thus

q =
dΦt

dψ
. (2.14)
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2.5 Divertor

Beyond a certain distance from the magnetic axis the flux surfaces must
intersect the wall of the vacuum vessel. The flux surface which separates the
inner closed flux surfaces and the outer flux surfaces intersecting the solid
components is called the last closed flux surface (LCFS). The LCFS is not
usually left to interact with a significant area of the wall. It is rather defined
by a solid component protruding from the wall inside the vacuum vessel,
called the limiter [23]. Beyond the LCFS there is a region of cold plasma
connected by the field lines to the limiter, called the scrape-off layer (SOL).
The limiter, being in contact with the LCFS, is the focus of the plasma-wall
interaction. It must be able to withstand the high power fluxes from the
inner plasma and its role is to protect the rest of the wall which can then be
less tolerant to high temperatures. The disadvantage of the limiter is that it
acts as a source of impurities close to the core plasma.

This disadvantage is eliminated by the divertor, which moves the LCFS-
wall interaction far from the core plasma. The key part of the divertor is
an axisymmetric coil under the plasma with a current parallel to the plasma
current. At one point at the plasma edge called the X-point the field of this
coils compensates the field of the plasma current and the total poloidal field
is zero. The flux surface passing through the X-point is called the separatrix.
The upper branches of the separatrix join together and encircle the magnetic
axis, forming the LCFS. The lower branches intersect the wall in two circles,
the strike points. Plasma particles which pass the LCFS are carried by the
field lines to the vicinity of the strike points, where they deposit their energy.
This area is reinforced by the divertor plates, which, like the limiters, have
to sustain high power fluxes. The strike points are far from the core plasma,
so any impurities released from there have less probability to diffuse to the
core plasma and contaminate it.

The divertor changes significantly the edge magnetic field. Due to the
null of the poloidal field in the X-point the safety factor q is infinite at the
separatrix. This can be seen from (2.7) because in the X-point BP in the
denominator of the integrand is zero. Close to the separatrix q diverges
logarithmically [24]. The edge profile of q can not be characterized by its
value at the separatrix, as it is always infinite. Instead the value at ψN = 0.95
is conventionally used, called q95.
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2.6 Magnetic coordinates

Any of the surface flux functions defined in the section 2.4 can be used
as a coordinate in the poloidal plane. An additional coordinate to specify
the position on the magnetic surface is needed. In (2.5) we have used the
geometric poloidal angle ϑ. Other choices of the poloidal angle coordinate are
possible. Especially advantageous are those where the generalized poloidal
angle θ∗ is a linear function of φ along a field line:

q dθ∗ = dφ. (2.15)

The factor q ensures that θ∗ is always in the range (0, 2π) on any magnetic
surface. Field lines look as straight lines when drawn in the (θ∗, φ) plane. The
functions ψ(R,Z), θ∗(R,Z) form together a coordinate system in the poloidal
plane and (ψ, θ∗, φ) are a complete coordinate system for the plasma. Any
coordinates with the property (2.15) are called magnetic coordinates [25] or
straight field line coordinates. The coordinate θ∗ is uniquely determined by
(2.15) up to an additive constant which gives the origin θ∗ = 0. By conven-
tion θ∗ = 0 at the outboard midplane. Those coordinates are called PEST
coordinates [25] after the code using them [26]. Other choices of magnetic
coordinates are possible by using another toroidal coordinate φ′ instead of
the geometric angle φ. The new toroidal coordinate differs from φ by an ad-
ditive term which is a function of the poloidal position [25]: φ′ = φ+f(R,Z).
Examples of such coordinates are the Boozer or Hamada coordinates. In this
work we will use the PEST coordinates because of the simplicity arising from
using the geometric toroidal angle as the toroidal coordinate.



Chapter 3

The road to a tokamak fusion
reactor

As shown in the introductory section 1.1, obtaining a significant net power
output from fusion in a plasma requires sufficient value of the product of
pressure p and confinement time τe. Additional requirements come from
the engineering of the reactor. In a tokamak the plasma is confined by the
magnetic field which serve to limit the transport and to balance the internal
pressure p. The attainable p and τe both scale favorably with the magnetic
field, therefore the field shall be as high as possible from the engineering
point of view. Mechanical load on the coils at this field is one engineering
constraint of the fusion reactor. Another one comes from the neutron power
flux which carries 4/5 of the power output. The blanket must be thick enough
to shield the rest of the machine from the neutron irradiation, and it must be
located between the plasma and the coils which will be superconductive and
thus sensitive to irradiation. Nuclear physics constraints lead to an estimate
of blanket thickness of about 1.2 m and the mechanical stress requires the
coil thickness of about 0.8 m. The plasma minor radius shall be comparable
to those values in order to obtain a favorable ratio of the volume of plasma
(which determines the power output) relative to the volume of the expensive
coils and blanket. It follows that a fusion reactor shall be a large device, a
quantitative estimate based on the foregoing reasoning is a ≈ 2 m, R0 ≈ 5 m.

The requirement on τe necessary to obtain a significant power amplifi-
cation Q also favors a large device. The thermal flux associated with the
temperature gradient can be expected to decrease with the plasma diameter.
This is indeed the case, experiments show a favorable scaling of τe with R0.

In the introduction it was explained how a significant power amplification
Q (see (1.2)) is required for a viable fusion energy source. Even for an
experimental reactor achieving high Q is desirable. Given that only 1/5 of the

19
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fusion power remains in the plasma1, the fraction fα of the self-heating power
of the plasma Pα to the total required heating power Pκ is (cf. equation (1.3):

fα ≡ Pα
Pκ

=
1

5

Pfus

Pκ
. (3.1)

In terms of the fusion gain Q we may express fα as

fα =
Q

Q+ 5
. (3.2)

The domain of high values of fα needs to be explored. In this regime (burning
plasma) plasma will be heated predominantly by its own fusion power and
determine its profiles itself, as opposed to the external heating used on present
devices which provides a means of control. This will be a qualitatively new
regime, not an extrapolation from the present devices.

The highest Q to date was achieved on the JET tokamak, Q = 0.62,
corresponding to fα = 0.11. From (3.2) it follows that one needs to achieve
Q = 5 in order to have the plasma supply half of the needed power on its
own, fα = 0.5. For the investigation of the burning plasma regime with
fα ≥ 0.5 an experimental reactor much more performing than JET is clearly
necessary, with a significant increase in size.

In the following sections it will be discussed what problems are encoun-
tered when trying to achieve the desired power amplification. We may divide
them in two areas:

• equilibrium and stability, which determine the achievable pressure p,

• transport, which sets the confinement time τe.

3.1 MHD equilibrium and stability

3.1.1 Equilibrium

The fusion plasma must be first of all in a force equilibrium in order to be
maintained. Equilibrium is usually studied using the magnetohydrodynamic
(MHD) model of plasma. Plasma is here considered as a conductive fluid
in an electromagnetic field and is described by Maxwell’s equations coupled
with the momentum conservation equation of the fluid

ρ
d~v

dt
=~× ~B−∇p (3.3)

1in the form of kinetic energy of the α particles which is eventually transferred to the
rest of the plasma by collisions.
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and the Ohm’s law
~E + ~v × ~B = η~ (3.4)

where ρ is the plasma mass density,~ the current density and η the resistivity.

In the equilibrium the equation (3.3) becomes

~× ~B = ∇p (3.5)

which is a force balance equation: the force originating from the pressure
gradient is balanced by the electromagnetic force ~ × ~B. According to (3.5)
~B ⊥ ∇p, so the magnetic surfaces are also surfaces of constant pressure and
~ is also tangent to them.

The force balance equation (3.5) can be reformulated using the Ampère’s

law µ0~ = ∇× ~B and the identity ∇(B2/2) = ~B × (∇× ~B) + ~B · ∇~B. We
obtain [27]

∇⊥
(
p+

B2

2µ0

)
−B2~b · ∇~b = 0 (3.6)

where ∇⊥ is the perpendicular component of the gradient and ~b · ∇~b is the
curvature of field lines. The pressure gradient is thus balanced by the gradient
of the quantity B2/(2µ0) which by the analogy with pressure is called the
magnetic pressure, and by the force originating from the curvature of field
lines. The ratio of the plasma pressure p to the magnetic pressure is called
beta: β ≡ 2µ0p/B

2. Beta is related to the economic efficiency of the fusion
reactor: p determines the power output while the cost increases with B since
the coils are one of the most expensive parts of the tokamak.

The force balance equation must be in general solved numerically. Many
tokamaks use the code EFIT to reconstruct the MHD equilibrium from the
magnetic field measurements and other experimental quantities obtained dur-
ing the discharge. EFIT determines the dependence of the poloidal flux
ψ(R,Z) and other functions describing the equilibrium, such as the toroidal
field and current density.

3.1.2 Stability

Ideal and resistive MHD

If one takes a curl of the Ohm’s law (3.4), one may substitute for ∇× ~E from
the Faraday’s law

∇× ~E = −∂
~B

∂ t
(3.7)
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and for~ from the Ampère’s law, obtaining an equation of the time evolution
of the magnetic field

∂ ~B

∂ t
= ∇× (~v × ~B) +

η

µ0

4~B. (3.8)

Resistivity in tokamak plasmas is very low, which justifies considering it to
be zero and using only the first term. The approximation of zero resistivity
is called ideal MHD. It can be shown that under this assumption two points
which move with the plasma and are on the same field line will remain always
in the plasma. In other words, field lines are carried by the plasma flow, it
is said that they are frozen in.

If we do not neglect plasma resistivity (resistive MHD) and consider a
situation without plasma flows, ~v = 0, we obtain from (3.8)

∂ ~B

∂ t
=

η

µ0

4~B (3.9)

which is a diffusion equation for ~B, analogous to the classical equation of
heat conduction.

The conclusion is that the magnetic field is advected by the plasma flow
(first term of (3.8)) and diffuses across the field with the diffusion coefficient
η/µ0 (second term of (3.8)). In the ideal MHD, the frozen-in law for magnetic
field lines prohibits certain types of magnetic field evolution – the magnetic
field lines can not tear and reconnect, the topology of magnetic surfaces thus
can not be changed. Only non-zero resistivity allows the magnetic recon-
nection to occur. The importance of resistive MHD is in the inclusion of
qualitatively different phenomena compared to the ideal MHD, even if they
occur on much slower time scales than the ideal phenomena due to smallness
of the resistivity η.

Instabilities

Stability is the property of a system with respect to perturbations from an
equilibrium state. If the system returns to the equilibrium, it is stable. If
the initial perturbation increases, it is unstable. The stability of MHD equi-
libria are typically studied using the ideal MHD. The linear approach to
stability analysis consists of analyzing the force caused by a displacement
from equilibrium in a linear approximation. If the force acts to diminish any
displacement, the equilibrium is stable, otherwise if there is a displacement
which gets augmented by the resulting force, the equilibrium is unstable.
The linear stability theory is valid for displacements small enough to allow
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a linear approximation. A linear instability grows exponentially until non-
linear effects become important, which may act against the linear instability
drive and stop the growth, in this case one speaks of saturation. Resistive
instabilities have much slower growth rate than ideal instabilities, their im-
portance is that they can present qualitatively different plasma behavior than
ideal instabilities, consisting of changes in magnetic topology, as explained
in section 3.1.2. An example change of magnetic topology is the opening
of magnetic islands, as described in section 4.1. The instabilities based on
formation of islands are called tearing modes.

In a plasma the most important MHD instabilities are driven by the
gradient of pressure and by the current. In a tokamak the former occur
preferentially on the low field side. A displacement of the flux surface away
from the plasma on the low field side is in the direction of decreasing toroidal
field, thus decreasing magnetic pressure. This increases the force imbalance
between the plasma pressure and the magnetic pressure. This is called bal-
looning instability. The current-driven instability is called kink instability.

An example of instability which is not primarily of MHD origin is the ra-
diative instability. In section 1.1 we have neglected the radiative losses while
deriving the fusion reactor power balance. This assumption relies on suffi-
cient purity and temperature of the plasma. Impurities with a high atomic
number Z may be only partly ionized even at temperatures where hydrogen
is fully ionized. The resulting line radiation may become a significant energy
loss channel. If it leads to a decrease of plasma temperature, the amount
of incompletely ionized atoms increases and so does the line radiation. The
plasma edge is most susceptible to this instability because of lower temper-
atures and higher impurity concentration. If the edge cools as a result of
the radiative instability, the current becomes more peaked in the hotter core
region and the resulting change of the safety factor profile can lead to other
instabilities of MHD origin.

In addition to be in equilibrium, the fusion plasma shall avoid instabilities.
This places additional constraints on the equilibrium, in particular the value
of β, because the pressure is a destabilizing factor and the magnetic field a
stabilizing one, as the magnetic pressure compensates the plasma pressure
and bending the field lines produces a force which opposes the instability.
The most important limits are [21]:

• The upper limit on the plasma current, caused by kink modes, which
can be restated as the lower limit of the edge safety factor. This is
known as the Kruskal-Shafranov limit.

• The β limit, which is determined by coupled peeling-ballooning modes.
The maximum allowable value of β is proportional to I/(aB). The
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value βN ≡ βaB/I is known as the normalized beta. The limit on βN is
known as the Troyon limit and has the value of βN = 0.028 when the
current is measured in MA.

• The density limit, caused by the radiative instability at the plasma
edge if the rise of density at a given pressure results in a decrease of
temperature.

MHD stability can be improved by the presence of a conducting wall.
Field lines can not diffuse through a perfectly conducting material, so a per-
fectly conductive wall repels plasma displacements associated with the insta-
bilities and stabilizes them. A realistic resistive wall will only slow down the
instability to the timescale required for field penetration through the wall
(caused by resistive dissipation of the eddy current). As an example, the
β limit is lower for a plasma without a wall than for a plasma with a per-
fectly conducting wall. For values of βN between the no-wall limit and ideal
wall limit the instability may develop thanks to the resistivity of the wall
and is caused resistive wall mode (RWM). This can be alleviated by rotating
the plasma. If the toroidal rotation is fast enough, the perturbation associ-
ated with the instability does not penetrate through the resistive wall. The
toroidal rotation has thus a beneficial effect on MHD stability and braking
it is undesirable.

3.2 Transport and confinement

The plasma confinement in a tokamak is ensured by the magnetic field. Con-
finement is reduced when the particles can diffuse across the field lines. The
transport can be measured using the transport coefficients. Assuming that
the fluxes are proportional to the gradients, the diffusion can be expressed
using equations analogous to the classical equation of heat conductivity:

∂ T

∂ t
= ∇ · (χ∇T ) (3.10)

∂ n

∂ t
= ∇ · (D∇n) (3.11)

The equation (3.10) expresses transport of heat and equation (3.11) the trans-
port of particles. χ is the thermal diffusivity and D the particle diffusion coef-
ficient. Both have the units [m2s−1]. If the diffusion is a simple random walk
with step size ∆l and duration τ , the diffusion coefficient is D = (∆l)2/τ .
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3.2.1 Classical transport

An elementary reason why the plasma particles may diffuse across the field
are their collisions [22]. If a particle performing gyro motion changes its
perpendicular velocity significantly as a result of a collision, its gyration
center moves by a distance on the order of its Larmor radius rL (section 2.1).
The diffusion coefficient shall then be D ∼ r2

L/τ where τ is the average time
between collisions. A more precise analysis shows that only collisions between
unlike particles cause particle diffusion and that the diffusion coefficients
for electrons and ions are the same (the transport is ambipolar). A similar
estimate can be done for the heat diffusivity, which is greater than the particle
diffusion coefficient because even collisions between like particles exchange
energy and contribute to heat conduction. For a fusion-relevant plasma the
classical diffusion coefficients are at the order of χ ≈ 10−3, D ≈ 10−5.

3.2.2 Neoclassical transport

In a toroidal plasma the transport is significantly enhanced due to the particle
drifts described in section 2.1 which make the particles deviate from the
field lines [22]. The particle orbits are closed due to the toroidal symmetry,
but they deviate from the flux surfaces. The drift is always vertical (see
section 2.2), but it moves the particle either inwards or outwards relative
to the magnetic axis. If the drift points downwards, the particle moves
outwards when below the midplane and inwards when above. Depending
on the direction of the particle motion in the poloidal plane (which in turn
depends on the helicity of field lines and the toroidal direction of particle
motion) the particle orbit is shifted with respect to the flux surface outwards
on the LFS and inwards on the HFS, or vice versa. The radial distance ∆r
of the inner and outer position is the drift velocity (given by equation (2.4))
divided by the frequency of the poloidal motion, and is expressed by the
formula

∆r = 2
q

ωc

v2
‖ + v2

⊥/2

v‖
(3.12)

If a collision reverses the direction of the particle velocity, its new orbit
is shifted in the opposite direction than the original orbit and the maximum
displacement between the new and the original orbit is ∆r. Such collisions
cause a diffusion with a diffusion coefficient D ∼ ∆r2/τ . As ∆r is larger
than rL, this leads to significant increase of the diffusion compared to the
classical estimation.

The conservation of the magnetic moment µ (section 2.1) causes a fraction
of particles to be trapped on the low field side of the torus. The parallel
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velocity of these particles is low enough to cause them to be reflected by
the increasing magnetic field as they move along a field line back to the low
field side. The turning point is at a position where B = E/µ. On the way
back the particle orbit is displaced in an opposite direction relative to the
flux surfaces than on the way forward, and thus does not return on the same
path. The full orbit is called banana orbit because of its shape. Its width is

∆r = 2
q

ωc

v2

v‖
(3.13)

(we use the fact that the perpendicular velocity dominates, v2 ≈ v2
⊥, and the

average parallel velocity is v‖/2, v‖ being the maximum parallel velocity at
the LFS).

It turns out that the transport by banana particles dominates. While
they represent only a fraction on the order ε of the particles, their step size
∆r is greater than for the trapped particles and due to the smallness of v‖
the collisions reverting its direction are more likely (τ needs to be replaced
by an effective collision time which is the characteristic time between such
collisions and is smaller than τ).

3.2.3 Anomalous transport and H-mode

The actual transport coefficients in tokamaks are on the order of 1 m2s−1,
larger than the neoclassical estimation. This discrepancy is explained by
the existence of small-scale instabilities, or microinstabilities. Unlike the
large instabilities they do not terminate the plasma, but produce a turbu-
lence whose characteristic property is varying electrostatic potential. The
electrostatic turbulence causes a significant transport due to the E × B (cf.
section 2.1) convection along the equipotential surfaces. The confinement
regime characterized by anomalous transport is called the L-mode (low con-
finement mode). Its poor confinement necessitates a large size of a reactor
operating in L-mode, even larger than the optimum size for a fusion reactor
(cf. the introduction of the chapter 3), which would lead to increase in cost.

It was first discovered on the tokamak ASDEX that when a sufficient
external heating power is reached, the plasma transitions into a regime with
higher confinement, called the H-mode [28]. In the H-mode the energy con-
finement time is increased with respect to the L-mode by a factor of about
two. The transport coefficients in the H-mode are not reduced in the whole
volume of the plasma, the transport is decreased only in a layer near the
edge, called the transport barrier. In the transport barrier there are strong
gradients of the temperature and density profiles, corresponding to low trans-
port coefficients. Inside the transport barrier the profiles are similar to the
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L-mode. In this way, H-mode profiles are raised with respect to the L-mode
profiles on a so-called pedestal. The pedestal values determine the values in
the plasma center, as outside the transport barriers the gradients are difficult
to increase (the profiles are stiff ). The energy which the plasma would have
if the profiles had the pedestal values everywhere inside the transport barrier
is called pedestal energy.

The transition between L-mode and H-mode is not gradual but is has a
character of a bifurcation, with no stable intermediate state. It is facilitated
by several conditions, among them [28]:

• Magnetic configuration with a divertor instead of a limiter (see sec-
tion 2.5). In particular, the ion drift (section 2.1) should have a direc-
tion towards the divertor.

• Clean plasma (low impurity level) which can be achieved by special
wall conditioning procedures (boronization).

• Operation with deuterium.

The H-mode is believed to be a result of shear flows in the pedestal,
corresponding to a strong gradient of the radial electric field. The shear flow
reduces the turbulent “eddies” by decorrelating them in the radial direction
(“tearing them apart”). The reason for the appearance of a radial electric
field gradient is not yet well known, although several explanations exist [29].

3.2.4 ELMs

The reduced turbulent transport in H-mode is partially compensated by pe-
riodic events, called edge localized modes (ELMs) [30, 31]. An ELM causes a
sudden release of a part of the pedestal energy and particles which eventually
hit the divertor. It could be expected that a H-mode without ELMs would
have the best confinement. This is indeed the case, but the good particle con-
finement causes the density and impurity levels to rise, eventually leading to
a radiative instability (cf. section 3.1.2). The ELMs, by ejecting part of the
plasma particles, maintain stable density and impurity levels and are thus
essential for the H-mode operation. The ELMs are classified into many types.
One classification is phenomenological: after the L-H transition, the smaller
type III ELMs appear, with frequency decreasing as the heating power in-
creases. With the increasing heating power they eventually disappear and
the plasma enters an ELM-free regime. Above a certain threshold in the
external heating power (about twice the threshold needed for the L-H tran-
sition) ELMs again appear, called type I ELMs. Their frequency increases
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with the applied heating power. There are other ELM types accessible at
special conditions, such as type II ELMs in strongly shaped plasmas. The
H-mode with type I ELMs is the favored regime for a reactor because of its
good confinement.

Another criterion is to consider the origin of the ELMs. ELMs are as-
sociated with MHD instabilities, as proven by magnetic fluctuations mea-
sured during the ELMs. It is believed that the good confinement of the
H-mode causes an increase of the pressure gradient in the pedestal above
a point where it triggers a MHD instability. Type I ELMs are believed to
be ideal instabilities, so-called peeling-ballooning modes, which are in addi-
tion to the pressure gradient triggered by the edge current. Indeed, plasma
exhibiting type I ELMs are located at the boundary of a region stable to
peeling-ballooning modes. Type III ELMs occur in plasmas inside the stable
region so their mechanism may be different, e.g. a resistive instability.

While the linear ideal MHD stability calculations can predict when the
plasma will exhibit type I ELMs by determining the onset of the instability,
the evolution of the ELM is eventually a nonlinear process and is much more
difficult to simulate theoretically. From the experimental observations it is
known that the ELMs have filamentary nature [32] — hot filaments are being
ejected from the plasma and eventually lose their energy to the divertor and
wall. The complete dynamics of the ELM is important because it determines
the amount of losses during the ELM. While a progress in nonlinear simu-
lations of the ELM evolution is being made, quantitative estimates of the
ELM size (the amplitude of the ELM loss) still rely on experimental studies.
A good parameter governing the relative ELM size is the pedestal electron
collisionality ν∗e which is a dimensionless parameter inversely proportional
to the electron mean free path and normalized to the tokamak parameters:
ν∗e ≡ πRq95/λe,e where λe,e is the mean free path between electron-electron
collisions. The ELM energy loss relative to the pedestal energy increases with
decreasing ν∗e [33]. Predicting the ELM energy loss is important because a
large enough loss could lead to unacceptably high transient power loads on
the divertor plasma-facing components.

3.3 ITER

In the introduction of this chapter the need for a tokamak experiment sig-
nificantly larger than the present experiments to explore the burning plasma
regime (at or near ignition) was mentioned. This planned device is called
ITER. Its original design is presented in [34]. The goal of this design was
to achieve ignition. Since then the design was scaled down for cost reasons.
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The new design [35] has a goal of achieving the power amplification Q = 10,
which will still allow investigation of a regime predominantly heated by its
own fusion power. ITER will have a major radius of 6.2 m, minor radius
of 2.0 m and superconducting coils providing a toroidal field of 5.3 T. Its
dimensions will be about twice as great as those of the present largest toka-
mak JET. Its aspect ratio is however similar to many existing tokamaks,
including JET, DIII-D, ASDEX and COMPASS. The required power am-
plification (corresponding to the absolute fusion power of 500 MW) will be
made possible by the H-mode (section 3.2.3), more precisely the type I ELM
H-mode (section 3.2.4) which has the required confinement. (This prediction
is however based on an extrapolation from the present experiments.) The
construction has started at the chosen site in Cadarache, southern France,
while the ITER design is being refined.

One of the most serious issues with the ITER design are the transient
power loads on the plasma-facing components caused by the type I ELMs.
Type I ELMs (also called “giant” ELMs) have the disadvantage of being large
compared to the other ELM types. The scaling with the pedestal electron
collisionality (section 3.2.4) predicts a larger fraction of the pedestal energy
to be lost compared to the present tokamaks, as the ITER collisionality will
be lower. At the same time the absolute pedestal energy will be greater.
Both factors contribute to the large expected ELM energy. The problem
of ELMs and plasma-facing components in ITER is reviewed in [36, 37] and
references therein. The ELM energy according to the scaling is expected to be
about 20 MJ, but intolerable damage (erosion, melting, crack formation) to
the divertor plasma-facing components is expected to occur at ELM energies
above 1 MJ. Clearly, type I ELMs are unacceptable and the fact that at
the same time they are the standard operating scenario for ITER presents a
serious obstacle to achieving ITER’s goals.

A solution to this problem involves finding an operating scenario which
would have the same desirable properties of type I ELM H-mode while avoid-
ing the giant ELMs. Many such scenarios wit small or no ELMs have been
proposed, but their applicability to ITER is a question, as they usually re-
quire some set of special conditions.

Another possible solution is some sort of active control of the ELMs. As
the ELM size decreases with their increased frequency, if they could be driven
fast enough, their size might be reduced to a benign scale. It is known that
injection of pellets of frozen fuel and fast vertical movements (“kicks”) trig-
ger ELMs, so those methods might be used to drive the ELMs to the desired
frequency. Finally, one promising method is the application of nonaxisym-
metric magnetic perturbations to the plasma by external coils. This method
is the motivation of much of the work presented in this thesis. To explain
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the role of magnetic perturbations we shall return to the configuration of
the tokamak magnetic fields and present the magnetic perturbations as an
application of the theory of dynamical systems, in particular the theory of
chaos in hamiltonian systems.



Chapter 4

Field lines as a dynamical
system

A field line can be considered as a trajectory of a dynamical system. The
independent variable, which in physical dynamical systems has usually the
meaning of time, is here instead a suitable parameter ξ increasing along the
field line. The dynamical system is given by first-order ordinary differential
equations of evolution of the space variables along the field line. As a concrete
example, in the (R,Z, φ) coordinate system, those equations are:

dR

dξ
= BR

dZ

dξ
= BZ

dφ

dξ
= Bφ

where (BR, BZ , Bφ) are the contravariant components of the field ~B.
In a magnetic confinement device with a strong toroidal field Bφ is always

nonzero, which allows us to factor out ξ using the third equation and use
instead φ as the field line parameter:

dR

dφ
=

BR

Bφ
(4.1)

dZ

dφ
=

BZ

Bφ
. (4.2)

Analogous equations hold for any other choice of coordinates in the poloidal
plane instead of (R,Z).
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The solution of the equations (4.1), (4.2) is a function T ((R0, Z0);φ) with
values in the (R,Z) space which gives the position at φ of a field line started
at a position (R0, Z0) for φ = 0.

The evolution of field lines in the toroidal direction given by T ((R0, Z0);φ)
has a remarkable property: for a set of field lines starting in a surface Σ0

in the poloidal plane at φ = 0, the flux of the magnetic field through Σ0

is the same as the flux through the surface Σφ formed by those field lines
at any other toroidal angle φ: Σφ = T (Σ0;φ). This is a consequence of
zero divergence of the magnetic field. In other words, the transformation by
T ((R0, Z0);φ) conserves the differential form BT dR∧dZ which expresses the
flux of the toroidal field BT through the infinitesimal surface dR dZ. It can
be shown that one can find new coordinates (p(R,Z, φ), x(R,Z, φ)) where
this property is simplified to conservation of surface in the (p, x) plane, or
the volume form dp ∧ dx in the language of differential forms. The choice of
(p, x) (called canonical coordinates1) is not unique. The coordinate x can be
chosen e.g. as the vertical position Z and the corresponding p will be noted
pz. Another special choice will be given below.

Moreover it can be shown that for any choice of coordinates (p, x) in which
the evolution of field lines satisfies the condition of conserving the surface in
the (p, x) plane, the equations (4.1), (4.2) can be rewritten in the form

dp

dφ
= −∂ H

∂ x
(4.3)

dx

dφ
=

∂ H

∂ p
(4.4)

for a suitable scalar functionH, called the hamiltonian. Equations of the form
( (4.3),(4.4)) are called canonical equations or Hamilton’s equations and are
of fundamental importance in classical mechanics, where the physical time t
instead of φ is used as the independent variable. In a toroidally symmetrical
situation, the transformation (R,Z) → (p, x) is the same for every poloidal
plane2 and H is independent on φ. Then H is conserved along field lines3:
dH/ dφ = 0 and the surfaces of constant H are flux surfaces. It follows that
in an axisymmetric configuration flux surfaces always exist.

1The canonical coordinates are usually labeled p, q. Here x is used instead of q to avoid
confusion with the safety factor q.

2This holds even for a weaker assumption: it is enough that the toroidal field BT be
independent on φ.

3An equivalent statement in the language of classical mechanics is that the total energy
of the system which is equal to the hamiltonian is conserved when the hamiltonian does
not depend explicitly on time.
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It has been know for a long time that the canonical coordinates and the
hamiltonian in the mechanical analogy of the field lines are related to the
magnetic fluxes defined in 2.4. As shown in [1], when the magnetic field
is expressed using the vector potential, the equations of field lines have the
form ( (4.3),(4.4)):

dAθ∗

dφ
= −∂ Aφ

∂ θ∗
(4.5)

dθ∗

dφ
=

∂ Aφ
∂ Aθ∗

(4.6)

where Aθ∗ , Aφ are the covariant components of the vector potential ~A cor-
responding to the coordinates θ∗, φ. Aφ is expressed using the physical
component Aφ̂ as Aφ = RAφ̂. Aθ∗ is used as a coordinate in the poloidal
plane together with θ∗. It follows that the field lines are equivalent to a
hamiltonian dynamical system, where (Aφ, θ

∗) are canonical coordinates, Aφ
takes the role of hamiltonian and φ the role of time. Moreover, when flux
surfaces exist, the magnetic flux functions are equal to the covariant compo-
nents of the vector potential: Aφ = ψ, Aθ∗ = Φt. We will use those relations
to generalize the flux functions ψ, Φt to the non-axisymmetric case when the
magnetic surfaces may not exist. Using this notation, the canonical equations
((4.5), (4.6)) may be written as

dΦt

dφ
= − ∂ ψ

∂ θ∗
(4.7)

dθ∗

dφ
=

∂ ψ

∂ Φt

. (4.8)

In particular, in the case of toroidal symmetry and magnetic surfaces, ψ
depends only on Φt and using (2.14) the equations ((4.7), (4.8)) reduce to

dΦt

dφ
= 0 (4.9)

dθ∗

dφ
=

1

q
. (4.10)

The first equation (4.9) expresses that the field line stays on the flux surface,
which is a surface of constant Φt, while the second (4.10) is consistent with
the definition of θ∗ (section 2.6, equation (2.15)).

The poloidal flux ψ determines the poloidal field. By the definition of
flux surfaces ~BP ⊥ ∇ψ. As ψ is related to the vector potential, ~BP can be
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easily determined explicitly:

BR = − 1

R

∂ ψ

∂ Z
(4.11)

BZ =
1

R

∂ ψ

∂ R
(4.12)

Any variables (I, ϑ) of a hamiltonian system which are canonical and
moreover have the property that the hamiltonian H depends only on I are
called action-angle variables, I being the action and ϑ the angle. In our case
Φt is the action and θ∗ is the angle. When a transformation to the action-
angle variables has been found, the canonical equations are essentially solved
because in the action-angle variables they have a particularly simple form –
in our case the equations (4.9), (4.10).

4.1 Magnetic islands

The equations ((4.9), (4.10)) are valid for the toroidally symmetrical situ-
ation where (Φt, θ

∗) are exact action-angle variables. Let us now consider
an almost-axisymmetric case, assuming that the non-axisymmetry is a small
perturbation to the axisymmetric one. We will assume further that only the
poloidal field is perturbed, i.e. the perturbation can be expressed using the
poloidal flux. The poloidal flux can be written as

ψ = ψ0(Φt) + Lδψ(Φt, θ
∗, φ) (4.13)

where ψ0 is the toroidally symmetrical and exactly integrable part, while
Lδψ(Φt, θ

∗, φ) is the perturbation. L is a small parameter expressing the am-
plitude of the perturbation. The unperturbed part defines field line dynamics
given by equations ((4.9), (4.10)) where q is now defined as q = dΦt/ dψ0. For
the perturbed dynamics the general equations ((4.7), (4.8)) are applicable.
Using (4.13) they can be written as

dΦt

dφ
= −L∂ δψ(Φt, θ

∗, φ)

∂ θ∗
(4.14)

dθ∗

dφ
=

1

q
+ L

∂ δψ(Φt, θ
∗, φ)

∂ Φt

. (4.15)

The relation (4.13) is an exact analogy of the perturbed hamiltonian (A.11)
from Appendix A. In the presence of a toroidally asymmetric perturbation
the field lines are thus a dynamical system with 1 1

2
degrees of freedom. Anal-

ogously to (A.12) we may decompose the perturbation in a sum of harmonic
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modes:

δψ(Φt, θ
∗, φ) =

∑
(m,n)

δψm,n(Φt) cos(mθ∗ − nφ+ φm,n). (4.16)

The sum is over all pairs of integers (m,n) with n being conventionally non-
negative, φm,n are the phases of the modes.

From the results summarized in Appendix A it follows that the pertur-
bation will strongly modify field lines in the vicinity of a resonance. The
resonance condition is here q = m/n, because due to (4.10) the expression
qθ∗ − φ is constant on an unperturbed field line, and for q = m/n is con-
stant also the corresponding term in the series (4.16). The perturbation thus
disrupts magnetic surfaces in the vicinity of the resonance in a way which
can be also deduced from the results of Appendix A. Magnetic surfaces are a
special case of invariant tori in an integrable system – they are determined by
constant values of the action Φt. In the vicinity of the resonance a different
type of magnetic surfaces are thus formed, called magnetic islands. They
are a special case of the islands mentioned in section A.2.1 and have, in the
coordinates Φt and ζ:

ζ ≡ mθ∗ − nφ (4.17)

(ζ is defined to be constant on an unperturbed field line), the form of phase
trajectories of the pendulum. From (4.17) it follows that the island is helically
wound around the magnetic axis and during m turns around the major axis
it turns n times around the magnetic axis and returns to the same point in
the poloidal plane, which it have intersected m times, showing as a chain of
m islands. Each of these has an elliptic fixed point in the center and they
are separated by hyperbolic fixed points.

Depending of field line position relative to the island separatrix it can
be trapped in the island – a periodic libration around the elliptic fixed point
occurs, or it may remain in the mostly unperturbed invariant tori (KAM tori)
farther from the resonance. A limiting case is the movement in the chaotic
layer around the separatrix. Here one can not speak about a flux surface,
because the field line densely fills the volume of the chaotic layer, delimited by
the KAM tori. As a general perturbation is a sum of harmonic modes (4.16),
there are many island chains, one corresponding to every mode which has
a corresponding safety factor q = m/n in the plasma. If the perturbation
is strong enough, the magnetic surfaces (KAM tori) separating the island
chains may be destroyed and the chaotic layers around the island separatrices
merge to form a global chaotic region. One speaks about transition to global
stochasticity[38]. The onset of global stochasticity can be estimated using
the Chirikov criterion (see section A.2.3): the neighboring island chains shall
be so wide that they overlap.
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The behavior of a field line is well observable by plotting the points of its
intersections during many toroidal turns with a given poloidal plane, which
has a role of a Poincaré section (section A.2.4).

Magnetic islands can appear due to several causes: the perturbation can
be either internal or external to the plasma.

• On the rational surfaces an instability may develop which, in the lin-
ear approximation, occurs when a perturbation causes its own growth
in a positive feedback loop. The perturbation is produced by a he-
lical current layer which develops around the resonant surface. The
growth of magnetic islands is accompanied by tearing and reconnection
of magnetic surfaces (change of the topology) which is not possible in
an ideally conductive plasma. This instability is thus an example of a
resistive instability (cf. section 3.1.2) and is called a tearing mode.

The field lines inside an island connect its inside edge to the outside
and facilitate the transport across the island. The island thus causes
flattening of plasma profiles. In some situations this can drive an in-
stability. The pressure gradient in the plasma drives a parallel current
due to neoclassical effects, called the bootstrap current. The flattening
of pressure profile make the bootstrap current disappear inside the is-
land, effectively producing a helical current perturbation aligned with
the island. The magnetic field perturbation caused by the current per-
turbation acts to enlarge the island and thus an instability develops.
This variant of tearing mode is called the neoclassical tearing mode.

• Perturbation external to the plasma may be caused by deviations from
a perfect symmetry of the tokamak. Examples are misalignments of
the coils and the presence of current conductors supplying the coils.
Perturbation fields from such sources are called error fields.

The presence of error fields aggravates the plasma instabilities. By
interaction with the plasma they can stop the rotation. An instability
which does not rotate is called a locked mode. Locking of an instability
cancels the stabilizing effect of the conductive wall (cf. section 3.1.2).

The existing error fields shall be compensated by error field correction
coils (EFCCs) which produce a perturbation opposing the natural error
field.

• Magnetic perturbations can be introduced artificially, as it turns out
that in some cases they have beneficial effects, in particular on the
ELMs (section 3.3). We speak often about resonant magnetic pertur-
bations (RMPs) as it is the resonant component of the perturbation
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which is responsible for the island formation. The perturbations are
produced by coils outside the plasma, which create mostly radial per-
turbation field (to break the magnetic surfaces a perturbation perpen-
dicular to them is the most efficient). Care must be taken however to
not trigger locked modes. The applications of such magnetic perturba-
tions are described in the next chapter.
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Chapter 5

Resonant magnetic
perturbations from coils

5.1 Ergodic divertor

The first application of resonant magnetic perturbations was to provide an
alternative to the limiter. If the stochastic zone is located at the edge and
connected to the wall, it will define a LCFS at its inner edge. Beyond the
LCFS, however, the plasma does not immediately touch the wall but is sep-
arated from it by the stochastic zone. Here the field lines are eventually
connected to the wall, but at a rather large distance. (The areas where the
field lines connect to the wall after a short distance form the laminar zone.)
The ergodic divertor has similar benefits as the axisymmetric divertor with
an X-point (cf. section 2.5) — it reduces the contamination of plasma by the
impurities from the wall. In particular, the plasma flows along the field lines
in the stochastic layer towards the wall will drag with itself the impurities,
thus screening the core plasma from them [39]. However, the ergodic diver-
tor does not facilitate the transition to H-mode [40], unlike the axisymmetric
divertor.

Two best known examples is the ergodic divertor on the Tore Supra toka-
mak and the dynamic ergodic divertor (DED) on the TEXTOR tokamak.
Both are formed by helical coils inside the vessel aligned with the charac-
teristic pitch of field lines (the safety factor). In the case of Tore Supra the
coils were modular [41], while in the DED, they are continuous and cover all
the HFS. The DED coils can be wired in several configurations with varying
toroidal and poloidal mode numbers (n,m), but the ratio m/n determining
the resonant value of q can not be changed, as it is determined by the pitch
angle of the coils. In practice the spectra do not contain only the corre-

39
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sponding poloidal mode but also some sidebands, which allow the formation
of several island chains and their overlap into a stochastic layer. The di-
vertor on TEXTOR is dynamic because it can be supplied with alternating
currents, producing a rotating perturbation.

The ergodic divertors have contributed significantly to the understanding
of the stochastic layers. Especially on the DED which is still in operation
(the ergodic divertor on Tore Supra was replaced by a standard limiter) many
interesting experiments and comparisons with theory have been done. It was
confirmed on both machines that the stochastic zone leads to a reduction of
the temperature gradient [42] because of the parallel transport of heat by
the fast moving electrons [43]. Changes in the radial electric field [42] and
plasma rotation [44] were observed. This is consistent with the theoretical
picture that the electrons which are faster escape along the stochastic field
lines and create a positive radial electric field. This results in an enhanced
transport of ions in order to maintain plasma quasineutrality, however as
the ions are slower, their parallel transport is slower and the transport is
partly perpendicular to the field lines, which produces a force spinning up
the plasma.

On TEXTOR many investigations were dedicated to examining the struc-
ture of the edge magnetic field. The complicated pattern of interwoven
stochastic and laminar zones near the DED coils was observed, as were struc-
tures corresponding to the magnetic islands . The heat flux patterns on the
divertor plates have been shown to correspond to the invariant manifolds of
the island X-points, which guide the field lines.

5.2 RMPs in tokamaks with poloidal divertor

One characteristics of the poloidal (axisymmetric) divertor is the divergence
of the safety factor q near the separatrix (section 2.5). The safety factor
passes through infinitely many resonant values m/n for a given n, creating
infinitely many island chains. This situation is favorable to island overlap
at the edge. The island width scales with the radial derivative q′ of q as
1/
√
q′, while the distance of the neighboring island chains scales as 1/q′.

The Chirikov parameter then scales as
√
q′ This means that sufficiently close

to the separatrix (where q′ is also divergent) the islands will always overlap
and create a stochastic layer.

The ergodic divertor in a circular plasma is tuned to one resonant value
of q and its near sidebands. In contrast, at the edge of a configuration with
an X-point, one geometric mode is resonant with all the rational values of
q. This is because the divergence of q is caused by the X-point, outside the
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X-point region the field line pitch angle varies slowly. If the coils are placed
in such a region (typically the LFS), their field may be resonant with the
rational surfaces of a given n because it is the alignment with the local pitch
angle which matters. This is explained in more detail in our works [9, 14].

Moreover, the presence of perturbations in a separatrix configuration
causes the separatrix to split into two surfaces (invariant manifolds of the
X-point) in a similar way as for the separatrix of an island chain. The
invariant manifolds intersect each other infinitely many times and this com-
plicated structure (homoclinic tangle) leads to the formation of a stochastic
layer (thinner than the stochastic layer formed by the island overlap [45])
around the separatrix. The invariant manifolds also guide the field lines
coming from the plasma core to the divertor plates, creating a splitting of
the divertor strike points into structures known as divertor footprints.

For those reasons the divertor configuration is more susceptible to creating
an edge stochastic region than a circular configuration such as Tore Supra or
TEXTOR.

The first divertor tokamak where the RMPs were applied to create a
stochastic edge was JFT-2M [46]. Improvement of the density limit was
observed. The observed formation of a positive radial electric field and the
change of toroidal rotation seem to be consistent with the ergodic divertor
results, however the reduction of the edge temperature gradient was not
observed [47]. An interesting result was the impact on ELMs: the RMPs
triggered frequent ELMs in an ELM-free H-mode [46]. A similar result was
observed on COMPASS-D [48]. The RMPs were then proposed as a solution
to the ELM problem of ITER [49]. It was supposed that they would allow
to control the edge temperature and thus pressure gradients, similarly to the
ergodic divertor, in order to suppress the instability which is driven by the
pressure gradient. Successful experiments have been indeed performed on
the DIII-D tokamak.

5.3 ELM control with RMPs

The DIII-D tokamak is equipped with a set of twelve coils, called I-coils, in-
side the vacuum vessel in two horizontal rows of six coils each. By alternating
the currents one can produce a n = 3 perturbation. Two configurations are
possible: either the lower row has the same polarity as the upper row and the
configuration is vertically symmetric (called even parity), or the rows have
opposite polarities (or shifted phase by π) and the configuration is vertically
antisymmetric (called odd parity). The odd parity configuration was tested
first in high collisionality (ν∗e ≈ 1) experiments. Most of type I ELMs dis-
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appeared, although some isolated events remained. It is interesting that the
odd parity perturbation field is not resonant with the field lines and thus the
effect is not due to the resonance. Since then further experiments have been
done at a more ITER-relevant lower collisionality ν∗e ≈ 0.1 and mostly with
even coil parity which is resonant with the safety factor at the edge [50, 51].
In those experiments the ELMs are completely suppressed for a narrow range
in the edge safety factor q95. An empirical criterion was derived for the onset
of the effect on ELMs [51]: the edge region where the Chirikov parameter is
greater than one shall have a width at least 0.165 in terms of ψN . If q95 is
outside the resonant window for ELM suppression and the stochastic region
is narrower, ELMs remain, but they are smaller and more frequent than in
the case without perturbation. Application of RMPs results in changes in the
edge radial electric field [52] and increase of the plasma toroidal rotation [50],
similar to the ergodic divertor.

This criterion supports the picture of ELM suppression cited in the pre-
vious section: creation of a stochastic region and reduction of the pressure
gradient in the pedestal under the critical value which triggers the ELM
instability. Indeed, when ELMs are suppressed, the ideal MHD stability
analysis shows that the pedestal has moved to a stable region [52]. However
the edge profiles does not correspond to this theory, as the pressure reduc-
tion is caused by a reduction of density and the expected flattening of the
temperature profile is not observed [51]. The density pump-out is not as
sensitive to the value of q95 as the ELM suppression, indicating that there
is some additional cause of the ELM suppression, such as current profile
changes [51], to which the peeling-ballooning modes are also sensitive. The
density pump-out is an unwanted effect, as the reduction of density would
decrease the fusion power output of a reactor.

Following these successful experiments there were attempts to reproduce
the ELM suppression on other tokamaks. Coils similar to the ones on DIII-D
were not available, so other coils capable of producing the RMPs were used.
On JET and MAST there are the error field correction coils (EFCCs) —
four large coils around the machine, able to produce n = 1 or n = 2 per-
turbation fields. The JET experiments succeeded in obtaining smaller and
more frequent ELMs [53], accompanied by a density pump-out. A complete
suppression of ELMs has not been observed so far. The effect is also corre-
lated with the width of a region where the Chirikov parameter is greater than
1 [11]. On MAST coils similar to the DIII-D I-coils were later installed [11],
but ELM suppression was not observed despite having satisfied the Chirikov
parameter criterion [54]. In L-mode the RMPs produce a density pump-
out [10], which resembles the DIII-D and JET results, but this effect has
not been observed in H-mode. In L-mode changes in turbulence [55] and
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the electric field [55, 56] are also observed. In ELM-free H-mode discharges
the RMPs trigger ELMs similarly to the earlier COMPASS-D and JFT-2M
results.

As the potential of the RMPs to suppress ELMs is very promising, similar
experiments on other tokamaks are planned. On ASDEX the installation of
an extensive set of coils is in progress [57]. JET is considering the installation
of additional RMP coils which would be able to produce more localized per-
turbation and higher n. There are plans to install RMP coils on TCV [58].
Experiments with the existing coils on COMPASS are a significant element
of its scientific programme. Installation of a flexible set of RMP coils on
ITER [37] is under discussion in the hope that they could solve the problem
of ELM-caused heat loads.

5.4 Plasma response to RMPs

The picture of ELM suppression by the creation of a stochastic region relies
on the vacuum approximation of the perturbation field: the total magnetic
field is assumed to be the sum of the field without the RMPs and the vacuum
field of the perturbation coils. The vacuum approximation is also used to
evaluate the empirical criterion for ELM suppression. It has been known that
the RMPs may interact strongly with the plasma, especially with rotating
plasma. The perturbation induces parallel eddy currents at the resonant
surfaces which produce an opposing perturbation. At the same time the
interaction of this current with the perturbation field leads to a localized
braking of the rotation [59]. The braking can be compensated by the viscosity
transferring the momentum to the plasma at the resonant surface. The
balance of forces is nonlinear and has two bifurcated solutions [60]: in one
the resonant mode of the perturbation is mostly screened at the resonant
surface and the braking is weak, in the other the plasma rotation is stopped
and a magnetic island appears. The transition from the former to the latter
at a sufficient RMP strength is called mode penetration. Mode penetration
is facilitated by high resistivity and slow rotation.

If the RMPs used to control ELMs do not penetrate, the vacuum approx-
imation is clearly invalid. This topic has thus been a subject of intense mod-
elling effort. High resistivity and slow toroidal rotation at the edge seemed
to indicate that the perturbations should penetrate, and such was the result
of nonlinear MHD modelling [8]. However in H-mode the situation is compli-
cated by the strong gradients in the pedestal. The rotation considered shall
be the electron rotation, which has an important diamagnetic component due
to the pressure gradient. The electric field associated with the H-mode also
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contributes to the rotation and screening of the perturbation. With those
effects included, the total electron rotation shall be so fast that perturba-
tion should be mostly screened [61, 62]. Screening of the perturbation would
mean that the wide stochastic layer predicted by the vacuum approximation
is absent, which would explain the lack of effect on the electron temperature
profile. If however the level of screening is different on different machines,
it may explain why the effects on ELMs are different despite having reached
the DIII-D criterion.

5.5 The role of COMPASS

The COMPASS tokamak, originally from UKAEA Culham, started recently
operation in IPP Prague [12]. COMPASS is a small tokamak (major radius
R = 0.56 m) and has a divertor configuration similar to ITER with a similar
aspect ratio, and the ability to enter H-mode. In Culham COMPASS was
used for the study of locked modes and mode penetration and is equipped
with a rich set of coils for producing magnetic perturbations. In Prague we
plan to focus on the edge region [63] and the ELM suppression by RMPs will
be among the research topics thanks to the availability of the perturbation
coils. One of the main enhancements with respect to the original operation
in Culham will be the installation of two neutral beam injectors (NBIs) [64].
The additional heating provided by them may enable us to obtain type I
ELMs and so test the ELM mitigation technique directly. Even if type I
ELMs are not obtained, we may use the perturbation coils to study the basic
physics of the RMPs, especially the unsolved problem of plasma response
to RMPs. The toroidal momentum input provided by tangential NBI will
be useful for such studies as the toroidal rotation is an important factor.
Varying of the momentum input is foreseen by making possible to install one
beam in the opposite direction than the other, thus balancing the momentum
imparted to the plasma.
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Chapter 6

Particle motion in a perturbed
magnetic field

The first topic of the present thesis is the investigation of the difference in
field lines and trajectories of the particles from the point of view of the
formation of a stochastic layer. It is usually the stochasticity of field lines
that is studied (e.g. the studies on relation of the ELM suppression effect to
the stochastic layer width, see section 5.3). However the particle transport
may be different because they (especially the ions) do not follow precisely the
field lines (section 2.1). The question arises if the transition to chaos and the
associated transport is not qualitatively different for particle trajectories and
field lines. We tried to answer this question by numerically following particle
trajectories in a simple model of perturbed toroidal magnetic field. We did
the simulations using the full hamiltonian formulation (with three degrees of
freedom) of particle motion. There are methods of simplifying the problem
by averaging over the fast gyro motion and calculating the trajectory of the
particle gyration center (the drift approximation). We avoided this method
because one reason for different behavior of particle trajectories might be
the finite Larmor radius. One inspiration for our work was the fact that in
a simple periodic electrostatic potential [65] used to model the electrostatic
turbulence (cf. section 3.2.3) the dynamics of ions is very different if drift
approximation is not used. In the drift approximation the ions are confined,
while using the full hamiltonian their trajectories become chaotic and diffuse
across the potential structures [66, 67, 65]. Another factor which might
contribute to a difference in field line and particle dynamics is the particle
drift (cf. section 2.1) which makes the trajectories deviate from the flux
surfaces.

Our results are presented in the following three papers [1, 2, 3]. In ad-
dition, the first one presents a summary of the hamiltonian formalism for
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field lines (cf. section 4). It should be noted that all the calculations were
done for passing particles. The trapped (banana) particles (section 3.2.2)
have trajectories completely different from the field lines so a comparison
was not considered worthwhile. We thus avoided the parameters correspond-
ing to trapped particles in the velocity scan in the third paper. The third
paper also presents a comparison of the impact of chaotic behavior due to
the electrostatic turbulence with the magnetic perturbations.
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1 I n t r o d u c t i o n  

In the pioneering period of the s tudy of Hamiltonian deterministic chaos, the 
possibility of generation of chaos of static magnetic field lines was found [1]. This 
appeared due to the formal identity of equations, describing the geometry of mag- 
netic field lines with the canonical Hamiltonian equations. Such possibility follows 
from the two following equations: 

V . B = 0 ,  B - V r  (1) 

Here, ~b(x) is a function which is constant on the magnetic surfaces (specifically, the 
toroidal flux inside a surface) and the second equation in (1) expresses the tangency 
of B to the magnetic surface r  = const. 

The equilibrium magnetic field, which satisfies the condition (1), may be repre- 
sented by the Clebsch form [2, 3] 

B = V r  x V0* - V F ( r  x V r  (2) 

Here, F ( r  is the dimensionless poloidal flux and 0* is the intrinsic coordinate 
standing for the poloidal angle. (The definition of 0* will be precised later.) Using 
the toroidal angle ( as a running parameter  [2, 4], field lines can be represented by 
the following equations: 

d e  OF dO* OF 
d~ -- 0 0 ' '  d~ - 0---r (3) 
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The field line equations have a Hamiltonian s t ructure  [2], the role of Hamiltonian is 
taken over by F,  the role of time by ~. r and 0" represent here canonical variables 
(~ as a radial coordinate). In the simplest form, the first term is equal to zero, 
as F only depends on r The field line dynamics is then regular with r and 0" as 
action-angle variables. (The magnetic field is considered independent of the physical 
time.) 

In the general non-equilibrium state, the description is still valid, if a dependency 
of the Hamiltonian F on the variable 0" is allowed. Due to that ,  the space develop- 
ment of field lines can have a form of Hamiltonian deterministic chaos, assuming 
that  the corresponding Hamiltonian is non-integrable. This chaotic behavior is a 
basic property of ergodic divertors. Here, namely, the stochastic behavior of field 
lines is identified with stochastic behavior of particles, and with their stochastic 
diffusion [4-6]. 

Neglecting the drift due to the curvature of field lines, the drift motion of par- 
ticles can be indeed identified in many cases with the corresponding field lines. A 
question appears, whether this possibility is general. In the present paper, a dif- 
ference between the field line and particle behavior is documented,  especially, in 
the simple case of a nonstochastic magnetic field, a particle was found to behave 
stochastically. 

2 Hamil tonian formalism for the b e h a v i o r  o f  magnet ic  field l ines 

We shall start  from the s tandard definition of toroidal coordinates (~, 0, r),  where 
0 is the poloidal angle and r is the radius in the poloidal plane. We denote the major  
radius of the torus by R0. Using the calibration freedom in the choice of the vector 
potential A, we can choose it in a form which leads to the Clebsch form of the 
magnetic field B: 

A = A0V0 + AcVr  (4) 

B = VAe x V0 + VAr x Vr  (5) 

Our goal is to identify the covariant components of A with the fluxes • and F 
from the previous section [4]. (The reason is tha t  the meaning of magnetic fluxes is 
not well defined when the magnetic surfaces cease to exist, because the fluxes are 
defined as surface functions. On the other hand, the vector potential  A preserves 
its meaning and will be also used in the particle motion Hamiltonian.) For this, 
it is useful, instead of the poloidal angle 0, to define a new poloidal coordinate 
0*as a function 0" (r, 0). (Those coordinates are called intrinsic coordinates [4].) We 
require that  

O*(r,O + 2~r) = O*(r,O) +27r .  (6) 

The coordinate system (~, 0", r) is generally non-orthogonal.  The 0*coordinate is 
chosen so that  the covariant components of A in this coordinate system are: Ao* = 

and Ar = - F .  We shall outline a proof that  such choice of 0", Ao, ,  and A; is 
possible. (A more detailed description was presented e.g. in [7].) 
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Here, V0* is given as 

ve*=((ge*'/ Vr (r) 
(90 ]~,r k (gr ]~',e 

6o 
= 

where (6r is the orthonormal basis, connected with the geometrical basis 
(e O eo, e~) by means of the transformation 

eg = hr162 

eo = ho6o, 
e r  = e r .  

(See Appendix for the definition of the coefficients hi.) 
Assuming that the Ao. component is independent of the toroidal angle, that is, 

(OAo./(9~)0,~ = 0, the magnetic field B is given as 

B = V A e .  x V 0 * + V A c x V ~  

O(Ae.,O*)^ 6e (((9Ar 6~ + (0Ar 6 o ) e r  
-- ~ erXh--o0+ \--~-r ];, ~ \ (90 ]r x h-- ~ 

(9(Ao*,8")6r ((gA,~ 6o {(9Ar 6~ 
- (9(r, 0) he \ Or ]r -~ + \-ffO']g,r h-~  

1 f(9(Zo*,O*) (oa(~  ((ga(~ ) 
. . . .  eo + e~ , (9) hoh~ ~ ~ er \ Or ] r \ (90 ,] r 

where O(Ao., 0")/0(r, 0) is the Jacobi determinant. 
Using the transformation between (r 0, r) and (r 0*, r) we get the following 

expression for components of B in the basis (er e0*', er ') of the (r O*, r) coordinate 
system: 

B 1 (aO*'~ (((gAo*~ _((gAi~ ((gA<'~ ) 
hohr \ 00 ] r \ Or ]r . er \--~rrr ] (,o. e~ + \ (9---~-J r e~' " 

(10) 
The components of B can be interpreted as derivatives of the coordinates of 

a field line with respect to a suitable parameter { (which is related to the length 
parameter s by d{/ds = IIBII). The differential equations of the field line are then 

d C 1 (00"  OA0. 
d~ hohi k, (90 ] r Or ' 

d O *  1 (Oe" "~ (9A_____s 
d~ hohr k, (90 ]g,r Or ' 
d r  1 ((ge*'~ (gA i 
d~ hohr \ (90 ] r (90* 
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Using the first equation, we can eliminate the parameter { and use ( as the field 
line parameter instead: 

dO* oA, (oAe. h -1 
dr = -  Or \ ~ ] ' (11) 

dT OA,(OAe. h 
d--~ = 0O* \ ~ ]  " (12) 

Taking the coordinate Ae* as the radial coordinate instead of r and transforming 
equations (11), (12) to the (r 0, Ae* ) coordinate system, we obtain the differential 
equations for the magnetic field lines in the form 

dO* OAr 
- ( 1 3 )  

d~ OAe. ' 
dAe. OA; 

- -  ( 1 4 )  
de 08" 

We recognize the Hamiltonian form of equations (3) presented above, with the 
desired meaning of the components of A: Ae* -- ~b and Ar = - F  (up to additive 
constants). To prove that  such identification of vector potential components with 
fluxes is possible, we shall consider a toroidally symmetrical case, where Ar is 
independent of r It is then possible to choose 0* so that  Ar only depends on Ae* 
[3]. Equation (14) is then zero, so the field line remains in a surface of constant A~ 
and Ae-, which is then a magnetic surface and Ar and Ae- are surface functions. 
The toroidal flux r being defined as the flux of the toroidal component of B inside 
a magnetic surface [3, 8], can be expressed as a surface integral 

r = ~ B . d S ,  (15) 
t 

where the surface ~Tt is a section of the poloidal plane contained in the chosen 
magnetic surface. Using B = V • A and the Stokes theorem, we get 

1/, 
!b = ~ A .  ds ,  (16) 

with the curve ~ being the boundary of 52t and ds being the line element. Only the 
Ae.~Y0* component contributes to this integral, as the projection of Ar162 to the 
poloidal plane vanishes. The differential of 0* corresponding to ds is dO* -- ~70" �9 ds; 
thus, Eq. (16) can be expressed as 

1fo2  r = ~ Ae*d8* = Ae* , (lr) 

where the integral was substituted by a simple multiplication. As Ae*is constant 
on a magnetic surface, it is also constant on the curve ~. To prove that  the poloidal 
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flux surface function F, defined analogically to r as the flux of the poloidal field 
inside a magnetic surface, is equivalent to -Ar we can compare equation (13) with 
the usual equation [8] 

dO* dF  
= ( 1 8 )  

d( de  

From the comparison we see that F is equal to - A (  up to an additive constant 
which is not important in the case of vector potential. 

The meaning of r and F variables can now be extended to the case where 
magnetic surfaces do not exist so the flux functions are not well defined. We note 

= Ae. and F = -Ar (Those variables usually continue to be called toroidal and 
poloidal fluxes.) 

The explicit form of equations requires a choice of the toroidal and poloidal 
magnetic fields. For the toroidal field, we choose the standard form [3] 

- ~ B0  1 -  c o s 0  (19)  r N 1 + ~ cos 0 

(in the following we shall use the linear approximation). The poloidal field is given 
by the function F(r 

From equation (19) and the assumption of circular cross section of magnetic 
surfaces it follows that the toroidal flux is given as 

r = �89 2 . (20) 

To obtain this toroidal field we choose the function 8" in the approximate form 
?- 

0"(0, r) ---- ~ - ~ sinO (21) 

and the function r as (20). (To verify that (21) and (20) lead to (19), we note 
that from the third line of (9) follows that Bt = [0(Ae*, O*)/O(r, 0)]h~ -1, and for a 
circular cross section O ( A p ,  O*)/O(r, 8) = (dr  

Using the definition of the safety factor q [2, 8], 

de  (22) q - _ - -  
d F  ' 

F(r = /q - ldr  (23) 

the function F(r  is given as 

This description is valid in the equilibrium case, when every field line remains 
on a 2-dimensional magnetic surface. To introduce effects of magnetic islands, we 
shall choose the poloidal flux function according to [2, 4] in a perturbed form 

F( r  = F0(r + L S F ( r  (24) 
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where L is the small parameter representing the perturbation created by a system 
of magnetic islands and F0 is the unperturbed part introduced above (Eq. (23)). 
The perturbation can be expressed in a Fourier form 

~F(r 0", r = ~ ~F~,~(r cos(m0* - nr + Cm,~) �9 
(m,~) 

(25) 

The choice of integers m, n then determines a periodic chain of magnetic islands. 

3 H a m i l t o n i a n  f o r m a l i s m  for particle dynamics 
in a s y s t e m  of  magnetic islands 

Motion of charged particles in a magnetic field is generally described by the 
Hamiltonian 1) 

1 
H(p,  q) = ~ ((p~ - eA~)2g ~r + (Pe - eAe)2g  ~ + (Pr - eAr) 2) - (26) 

(In this paper we only deal with single-particle motion in a magnetic field, not 
taking into account the particle collisions and the electrostatic potential.) 

Here, M and e are mass and charge of the particle, respectively, Pi are gen- 
eralized momentum and gii are components of the metric tensor. The generalized 
coordinates qi are the toroidal coordinates ~, 0, and r. Since the toroidal system is 
orthogonal, the metric tensor is diagonal. 

In the previous section we choose a particular form of the potential A in the 
coordinates ~, 0", and r. Using again the magnetic flux notation ~ -= Ae* and 
F =- -Ar  and transforming to the (~, 0, r) coordinates, we may express the final 
form of the Hamiltonian with this potential as 

1 ( p o e r  2 H(p ,q )  = ~ ( p r  r162  - - 

1 (p~ + ecS__~) 2 (27) +~-~ 

Substituting for gee and for r using formula (20), the corresponding equations of 
motion are 

< 1 
at - (P~ + e F ) g ~ '  (28) 

dO pe eBo ( r 1 - 
dt  M r  2 2M 1~o c~ ' (29) 

dr  Pr eBor  2 sin 0 
dt  - M + 2 M R o  ' (30) 

1) See Appendix for the explicit form of the metric components gii. 
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Full Hamiltonian description ... 

dpr 
dt 

dpe 
dt 

dp~ 
dt 

e OF Cr ~ (p ;  + eF) -~g  , (31) 

e OF r162 1 Og r162 (32) 
M ( P r  g 2M (pc+eF)2 08 

Po eBo 1 - cos 0 
+ -~ 2 -~  2MRo 

eBo r2 sin 0"~ eBor 2 cos 0 

- Pr + ~--p~ ] 2MRo ' 
1 ( Og r162 

2M \(PC + eF) 2 Or (33) 

2p~ cos 9 e2B2r 
- V~ + eB0p0--~- + 

3e2 B2r 2 cos 9 e2 B2r 3 cos 2 9~  

2Ro + Ro 2 ) 
M(P,+eF)OF~r gr162 _ --Me (pr + eBor2sing~2Ro ] BorsingRo 

In  this sys tem,  only the  funct ion F has  to  be  defined. T h e  u n p e r t u r b e d  p a r t  F0 
depends  on the  q radia l  profile (see Eq. (23), which in t u r n  depends  on the  cur ren t  
profile. T h e  p e r t u r b e d  pa r t  defines the  fo rm of magne t i c  islands.  
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Fig. 1. Magnetic surfaces in the system of two-island chains, q = 3 and q = 4: L = 0.0007. 
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Fig. 2. S tochas t i c i t y  of m a g n e t i c  field l ines in  t h e  s y s t e m  of two- i s l and  chains ,  q = 3 a n d  
q = 4: a) L ---- 0.0017, b) L = 0.0020. 
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4 Numerical  s imulations of  field lines and particle trajectories 

To compare the difference between particle and field line dynamics, we com- 
puted trajectories of both of them and examined their intersection with a poloidal 
plane (perpendicular to the minor axis of the torus). For field lines, this cross 
section is directly the Poincar~ surface of section. For the computation the Runge-  
Kut ta  method, as implemented by the ode45 subroutine of the Matlab package, was 
used to integrate the differential equations of the field line (3) and of the particle 
trajectory (28)-(33). 

The equations must be completed by a choice of the function F .  We derive the 
unperturbed part F0 from the expression of q given in [2] for a parabolic density 
profile. From this assumption, a profile of q in the form 

4 
q ( x ) =  (34) 

w(2 - x 2 ) ( 2  - -  2 x 2 + x  4) 

is derived in the cited work, where x - r / a  is a dimensionless radial coordinate (a is 
the minor radius of the tokamak). The parameter w determines the value of q at the 
edge. The F0 profile is then given by the integral (23). For the parameters, we used 
values of the CASTOR tokamak (see e.g. [10]): major radius Ro = 0.4 m, minor 
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Fig. 3. Magnetic field lines (blue) and stochasticity of particle trajectory (red) in one 
magnetic island chain for q = 4, and nonstochastic motion of a particle without magnetic 

islands (green), all for energy of particles 20 eV and for CASTOR parameters. 
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radius a -- 0.1 m, and central toroidal magnetic field B0 = 1 T. The parameter  w 
was set to 1/2, corresponding to q = 8 at the edge. 

For the perturbat ion field we choose the simplest model where magnetic islands 
can appear. This is already satisfied for a single Fourier component  of the per turba-  
tion (25). We choose m = 4 and n = 1, corresponding to one magnetic island which 
appears as four structures in the poloidat plane in the area where the field lines 
are resonant with the perturbation.  We further choose a quadratic dependency of 
F on the radial coordinate r, which leads to a linear increase of the per turbat ion  
field with r. The complete expression for the per turbat ion is then 

5F(r  0*, 4) = r cos(40* - 4). (35) 

For field lines, this Hamiltonian is integrable, as could be demonstra ted by a canon- 
ical transformation to suitable action-angle variables. (The system is equivalent to 
the dynamics of a pendulum.) Therefore, there is no chaos in the field line dynamics 
in this case. For particles, the answer is not a priori clear. 

To demonstrate the effect of chaos in magnetic field lines, we choose another  
perturbat ion with two harmonic components 

5F( r  0", 4) = •(cos(40* - 4) + cos(n0* - 4)).  (36) 

Such Hamiltonian leads to formation of two different chains of magnetic islands, 
three- and four-island structures in the poloidal plane. In Figs. 1 and 2, results 
for three values of the stochasticity parameter  L are presented, each of which was 
computed for several initial values and for 20000 turns of each field line around the 
major axis. Figure 1 shows the poloidal section for L = 0.0007. The per turbat ion  
is not sufficiently strong for stochasticity to appear, all plot ted field lines remain 
on magnetic surfaces. For L = 0.0017, areas of stochasticity around island chains 
appear (Fig. 2a). Two sets of initial conditions were distinguished by color, one 
closer to the minor axis (red) and one farther (blue). We can see that  there is 
no remarkable mixing between those two areas. The boundary  marks a remaining 
magnetic surface ( K A M  torus after Kolmogorov, Arnold, and Moser) acting as an 
impenetrable barrier [11]. Finally, for even greater value of L = 0.002, the two 
areas merge in a large chaotic "sea" (Fig. 2b). Similar results already appeared in 
numerous papers (see e.g. [2, 9]), usually using the method of Poincar@ mappings. 

To investigate the main topic of our work, which concerns comparison of field 
lines with particle trajectories (discussed in Hamiltonian approach from Sect. 3), 
we return to the one-island case given by Eq. (35). Even in this simple model, inter- 
esting results can be derived. In particular, a chaotic regime in particle dynamics 
appears, contrary to field lines regularity. Particles chosen were singly-ionized ions 
of carbon. 

In the integration of the particle motion, choice of the t ime step is important .  
A distinctive feature of the motion of a charged particle in a magnetic field is the 
Larmor gyration with the frequency e B / M .  To obtain a faithful picture of the par- 
ticle motion including the Larmor circles, the time step must be smaller than  the 
Larmor gyration period. We used 1/12 of the Larmor period as the maximum time 
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step. This value was determined empirically: for larger values we observed signif- 
icant loss of energy during computations.  (Since the Hamiltonian is conservative, 
conservation of energy can be used to check accuracy.) 

Figure 3 presents the intersection of both  the particle t ra jec tory  and several 
field lines with the poloidal plane. 20000 intersections were plotted. In the case of 
a particle, we plot the position of gyration center, not the actual particle position. 
The particle energy is 10 eV for both  the perpendicular and parallel energy. An 
important  and clearly visible feature is the particle drift with the velocity [12] 

M R x B  / 1 2  / 
v d -  e B 2 R 2  , (37)  

where vii and v j_ are respectively the parallel and perpendicular velocities and 
R describes the actual particle position relative to the major  axis. Due to the 
cross product  in (37), the drift velocity has a vertical direction. If the particle is 
above the poloidal plane, this drift has a radial component oriented to the minor 
axis, and causes a decrease of the r coordinate. After the particle passes below 
the poloidal plane, the drift will carry it away from the minor axis, tha t  is, the 
r coordinate increases. After one turn in the poloidal direction, the particle will 
return to the same position in the poloidal plane (but not necessarily to the same 
toroidal position ~) where it started. This cancellation of drift is one of the reasons 
why a helically curved field is necessary in a toroidal configuration. As the drift 
carries the particle to the center of the poloidal plane, when it moves from the 
outer side to the inner side (the poloidal movement is counterclockwise in 4), and 
to the edge, when it returns, it results in a shift of the t ra jec tory  to the outer side 
relative to the center of symmetry  and to the field lines, which do not exhibit this 
behavior. This shift is well visible in the figure. To illustrate the effect of the drift 
more clearly, we also plotted the case without magnetic islands (L -- 0), where the 
particle motion is regular. 

As was said above, field lines show no stochasticity at all in the one-island case. 
Thus the presence of strong stochasticity for particles in this case is remarkable. 
Particle motion shows a chain of four islands corresponding to the one seen in the 
field line dynamics, but  there are also the 5-island, 6-island chains, and so on. All 
those island chains merge to form a large stochastic sea extending beyond the edge 
of the torus. We did not include the effect of the edge in our model, but  ra ther  
extended the model beyond the edge, setting the current density to 0 outside. 
Overlap of trajectories with the edge (located at r = 0.1 m) gives an idea about  the 
importance of particle t ransport  towards the edge, where, in reality, they would be 
stopped. 

To find more about  the mechanism of this surprising result, we carried more 
computations for different models. A question appears, whether  the difference be- 
tween particle and field line dynamics is caused by the Larmor gyration of the 
particles, or is due to the drift motion. To distinguish between those two effects, 
we choose a model totally neglecting the toroidal curvature. Instead of a toroidal 
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Fig. 4. Magnetic field lines (blue) and a particle trajectory (red) in cylindrical model, 
using Cartesian (a) and cylindrical (b) coordinates. 
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system, we consider a cylindrical geometry with periodic boundary  conditions. If a 
particle or field line leaves at one face of the cylinder, it is re turned at the other  
face. In this way, we simulate a toroidal configuration in which the effects of cur- 
vature are excluded. In spite of the fact tha t  this model is unrealistic, it allows us 
to estimate the effect of drift, as drift is virtually nonexistent in such field. Results 
are shown in Fig. 4a, where the positions of the particle gyration center and field 
lines are plotted. Despite the changed geometry, the parameters  are identical to 
the toroidal case. We see that  the picture for gyrat ion centers is similar to the one 
of field lines - -  there is no offset due to drift motion, and also, there is no visible 
stochasticity. Figure 4b shows the same, but  in cylindrical coordinates, with the 
poloidal angle 0 on horizontal axis and radial coordinate r on vertical axis. 

Those results show that  stochasticity is caused by the interaction between mag- 
netic islands and drift motion. From the previous paragraph it follows that  magnetic 
islands alone do not lead to stochasticity in a model without drift motion, and the 
result for a case without magnetic per turbat ion  (as shown in Fig. 3) shows tha t  the 
drift motion alone is also regular. 

5 S u m m a r y  

In widely used approach of taking into account only magnetic field lines dy- 
namics, at least two-island chains are necessary for chaotic behavior of field lines. 
Contrary to that ,  we have found that  in a more precise Hamiltonian description of 
charged particle motion, chaos appears already in the case of one-island chain. 

We shall discuss this phenomena more thoroughly in a following paper, to- 
gether with examination of differences in more complicated cases, such as two-island 
chains. 

Appendix: Metric o f  a t o r o i d a l  c o o r d i n a t e  s y s t e m  

In the toroidal coordinate system (~, 0, r),  the contravariant components  of the 
metric tensor are 

gr162 = 1 

( / t o  + r c o s  e )  2 ' 

ge0 1 
r 2 , 

g r r  : 1 

and the coefficients hi which express lengths of the base vectors are 

he = (gr  = / t o  + r c o s 0 ,  

he = (gOO)-l /2 = r ,  

hr  = ( g ~ ) - 1 / 2  = 1. 
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1 Introduction

Idea of ergodic divertor awoke an interest in stochastic behavior of magnetic
field lines in some magnetic systems. The first discussion of this phenomenon goes
back to Rosenbluth et al. [1]. Intensive studies of ergodic divertors for Tore Supra
and Textor proved the effectiveness of this method for the extraction of undesirable
ions from the plasma. The method consists in the chaotization of magnetic lines
which are close to the first wall, and, consequently, in the chaotization of particles,
coupled to the field line system.

Chaotization is here performed by means of an artificial resonant generation of
a set of mutually overlapping magnetic islands at rational surfaces. The chaotization
of field lines is then a result of non–integrability of the dynamics of field lines in
such magnetic systems.

It is of some interest to compare the threshold for the chaotic field lines geometry
and particles behavior in such chaotic field line system. Generally, it is expected that
a particle remains close to its field line. There are two reasons why particles may
not follow it. Both are caused by the fact that Hamiltonian description of particles
trajectories (as a more exact solution of particle dynamics) is close to the field line
system only for the homogeneous magnetic field. For a non–homogeneous magnetic
field, important drifts appear and force the particle to move far from the field
line. (First informations appeared in [2]). Secondly, in a full Hamiltonian approach,
the particle exhibits Larmor motion. This could form a nonlinear coupled system
with the perturbation of the magnetic field which creates the magnetic islands.
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Such coupling could possibly lead to effects which the field line description or drift
approximation could not describe.

In the paper, both effects are discussed. For a set of used parameters, the effect
of the drift in non–homogeneous magnetic field dominates. The effect of mutual
influence of the Larmor motion and the field of magnetic islands was for our pa-
rameters not recognizable.

We consider the case when magnetic islands appear as a perturbation of the
basic magnetic field of a tokamak, generated resonantly at some rational surfaces.
We assume that the amplitudes of magnetic islands can be changed in some region.
The basic drift is caused by the curvature of toroidal field lines. To realize the effect
of this drift, we compare this dynamics with an equivalent case without the effect
of the curvature (and, therefore, without this drift) in an equivalent cylindrical
approximation.

First results of our study appeared in the paper [2]. There, we discussed the
dynamics of particles, influenced in the tokamak magnetic field by one magnetic
island. We found there that the effect of the vertical drift, caused by the curvature
of the toroidal magnetic field lines is very important and changes a bit the con-
temporary expectations. That paper also contains a more thorough discussion and
proofs of the facts that we briefly summarize in the next section.

Our present paper can be considered as a continuation of [2]. The goal is to
extend the study of the dynamics of particles in the tokamak magnetic field to the
case two magnetic islands, which has important qualitative differences compared
to the case of one island. We also explored the range of parameters (especially the
perpendicular and parallel energies) more systematically.

Our paper is organized as follows: Section 2 summarizes the formalism used,
Section 3 describes the models investigated and the method used and Section 4
describes the results obtained.

2 Hamiltonian description of field lines and particles

It is a long known fact that magnetic field lines in a toroidal geometry (such as
that of a tokamak) can be described by equations formally identical to the Hamilton
equation of motion [3, 4]:

dψ
dζ

= − ∂F
∂θ∗

;
dθ∗

dζ
=
∂F

∂ψ
. (1)

Here, the poloidal flux F represents the Hamiltonian, the intrinsic poloidal angle θ∗

and the toroidal flux ψ are the conjugate position and momentum and the toroidal
angle ζ has the role of time. The poloidal and toroidal fluxes can be identified with
components of the vector potential: Aθ∗ = ψ and Aζ = −F .

(For a more thorough discussion of the above stated facts we refer e.g. to the
previous paper [2].)

In an equilibrium configuration, F depends only on ψ as dψ
dF = q, where q

is the safety factor. The equations (1) are then integrable and magnetic surfaces
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originate. For internal (turbulence) or external (divertors) reasons, the field can
be perturbated. Such perturbation can be expressed by adding a term δF to the
Hamiltonian:

F (ψ, θ, ζ) = F0(ψ) + LδF (ψ, θ∗, ζ) , (2)

L is a dimensionless parameter expressing the magnitude of the perturbation.
The added perturbation can cause nonintegrability of the Hamiltonian, with

the possibility of appearance of deterministic chaos. For the study of chaos, it is
convenient to decompose δF in a Fourier series:

δF (ψ, θ∗, ζ) =
∑

(m,n)

δFm,n(ψ) cos(mθ∗ − nζ + φm,n) . (3)

Every term in the series can resonate with a value of q equal to m/n, creating a
a chain of magnetic islands. Chaotic regions usually appear first at the separatrix
surface which separates the island from the magnetic surfaces around it.

For the case of magnetic surfaces with a circular cross–section, the θ∗ and ψ
coordinates are related to the toroidal coordinate system (ζ, θ, r) as: θ∗(θ, r) =
θ − r/R0 sin θ and ψ(r) = B0r

2/2.
A charged particle in this magnetic field moves according to a Hamiltonian

H(p,q) =
1

2M
(
(pζ + eF )2gζζ + (pθ − eψ(1− r/R0 cos θ))2gθθ

)
+

+
1

2M

(
pr + eψ

sin θ
R0

)2

, (4)

where (pζ , pθ, pr) are the generalized momentum conjugate to (ζ, θ, r) and gii are
components of the metric tensor. The equations of motion can be obtained by
differentiating the Hamiltonian. This has been done explicitly in [2].

3 Methods used for comparing field lines and particle trajectories

We integrated numerically the differential equations of the field line and the
canonical equations of a charged particle. The intersections of field lines and tra-
jectories of gyration centers of particles with a poloidal plane were plotted. The
resulting figures were used for the comparison of field line and particle behavior.

The calculations were done for a model of the magnetic field with two Fourier
components of the perturbation, one with m = 3 and n = 1 and the other with
m = 4 and n = 1. This perturbation gives two magnetic islands, located at the
value of q = 3 and q = 4, because there the field lines are resonant with the
perturbation. In the poloidal cross–section, they appear as two chains of three and
four island structures encircling the minor axis of the torus. The perturbation δF
depends quadratically on the radial coordinate r. The corresponding perturbation
of B then grows linearly from the minor axis towards the edge. The expression for
the perturbation is then

δF (ψ, θ∗, ζ) = ψ (cos(4θ∗ − ζ) + cos(3θ∗ − ζ)) . (5)
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This perturbation was chosen to be as simple as possible, while having specific
properties from the point of view of the chaos theory. It is known to lead to chaotic
behavior of field lines, which manifests itself mainly in the separatrix regions of
the island chains. It is also known that a transition to a global chaos can occur,
where the field lines starting at one island chain can reach the area of the other
island chain. This happens approximately when the perturbation is so large that
the islands chains become wide enough for their stochastic separatrix regions to
overlap. This is called the Chirikov criterion. As this result holds for field lines, we
were interested if there are significant differences for particle trajectories.

In the previous paper [2], we also used a perturbation with only one Fourier com-
ponent. It leads to an integrable Hamiltonian for the field lines, because a canonical
transformation can transform it to a system equivalent to a pendulum. This makes
such a system an interesting point for comparison of field line and particle dynam-
ics, because the field lines do not show chaotic behavior, while for particles, the
possibility of nonintegrability and chaos can not be ruled out.

The actual parameters used for the computations were: major radius
R0 = 0.4 m, minor radius a = 0.1 m, and toroidal magnetic field at the minor axis
B0 = 1 T. Those are the parameters of the CASTOR tokamak (see e.g. [5]). The
edge value of q was 8. The particle mass and charge were chosen equal to those of
a singly–ionized ion of carbon. For a numerical solution of a particle performing cy-
clotron motion, the time step must be sufficiently smaller than the Larmor gyration
period. We chose 1/12 of the Larmor period 2π/ωc as the maximum integration
time step. The accuracy of computation was checked by comparing the final energy
to the original values. For an exact solution, they would be equal, as the particle
Hamiltonian is conservative. For both field lines and particles, we obtained 20 000
intersections with the poloidal plane for every initial condition.

As a characteristic property of charged particle motion is the drift of the gyration
center relative to the field lines, we were interested in estimating the contribution
of this effect to differences in chaotization of field lines and particles. Because the
drift is caused by the curvature of the field lines in the toroidal geometry and by
the radial gradient of the magnetic field [6], we developed a cylindrical model with
periodic boundary conditions which neglects the curvature. In this model, the torus
is replaced by a straight cylinder. As there is no drift due to curvature and field
gradient, any observed differences would be caused by other characteristics of the
particle motion, such as the the cyclotron motion.

4 Results

First two figures (Fig. 1, Fig. 2) compare the dynamics of field lines and particles
for two values of the stochasticity parameter L: L = 0.0007 and L = 0.0025 in the
cylindrical approximation. For those values, we did not find a significant difference
in chaotization, which is small for the smaller value of L and important for the larger
value for both field lines and particles. This shows so far that in this approximation,
which neglects the drift but not the cyclotron motion, the diffusion of the magnetic
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Fig. 1. Trajectory of a particle with parallel and perpendicular energies of 20 eV (green)
and field lines (red) in the cylindrical approximation

Fig. 2. Same as in Fig. 1, L = 0.0025

field lines is a sufficient approximation for the estimation of the diffusion of particles.
The impact of the interaction of the two magnetic islands on the particle motion is
here similar to the impact on field lines, at least for the parameters investigated.

The following figures (Fig. 3, Fig. 4) show the results from the toroidal model
with two magnetic islands. In Fig. 3, the stochasticity of the field lines is limited
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Fig. 3. Trajectory of a particle with parallel and perpendicular energies of 5 eV (green)
and field lines (red) in the toroidal model, L = 0.0014

Fig. 4. Trajectories of particles with parallel energy 8 eV and perpendicular energy 16 eV
(green) and field lines (red) in the toroidal model, L = 0.002

to the area around the separatrix, because the parameter L is not large enough
for the islands to overlap. Contrary to this, the particle trajectory fills a large
stochastic region which extends to the edge of torus. A similar result has been
already obtained in the model with one magnetic island in [2]. In that case the
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field lines are not chaotic at all due to the integrability of the Hamiltonian, while
the particle trajectory shows the same behavior as shown here. This shows that the
cause of this effects is not the interaction of magnetic island chains. We did not find
such result in the cylindrical approximation. We therefore believe that this effect
is caused by the interaction of the drift with magnetic island(s).

Fig. 4 shows the impact of increased drift velocity. If the particle energy is
increased, the magnitude of the drift also increases. At a certain point, the large
chaotic area disappears and the particle trajectories starting near the separatrix
do not diverge significantly from it. We confirmed the results for multiple initial
conditions and values of L in both the one island and two islands models. An
example is shown in Fig. 4. Here the parameter L is large enough for the two
islands to overlap and to create a single large stochastic area of field lines, like in
Fig. 2. Contrary to this, the particle motion (shown for three initial conditions near
the separatrix of the outer island chain) does not show such stochasticity.

5 Summary

We found that in a cylindrical approximation (which excludes the effect of the
curvature of the toroidal magnetic field lines), the stochasticity regime of field lines
and particle stochasticity agree. The expected nonlinear effect of mutual influence
on the dynamics of particles, trapped in one island by the field of the second island
was not recognizable. The discussion of the same dynamics, but in the tokamak field,
brings very interesting phenomena. Namely, in the case of moderate vertical drift,
the effect of particle stochasticity clearly dominates over the effect of stochasticity
of magnetic field lines. On the contrary, for large vertical drift, we found the regime
of strong stochasticity of magnetic field lines, which is accompanied by a negligible
stochasticity of particles. More activity in this area to examine a broader set of
parameters is necessary.

This research has been supported by the Grant agency of the Academy of Sciences of
the Czech Republic, grant No. IAA100430502.

We thank the referee for constructive suggestions on the text.
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Introduction

It is generally accepted that generation of transport barriers is connected with existence of

a radial electric field and with the localization of the barrier in the region of rational magnetic

surfaces. Moreover, stochastization of magnetic field lines around rational surfaces plays the

key role behind the concepts of ergodic divertor and ELM mitigation by magnetic field pertur-

bation [1]. Magnetic islands are generated just at the rational surfaces, thus it is interesting to

investigate all features accompanying their existence.

Our contribution is based on numerical simulations from thefirst principles. Our goal is to

compare the chaotic behavior of particles (ions) in a systemof magnetic islands and to examine

the differences between chaotization of magnetic field lines and particle trajectories.

Methods and results

We have taken the perturbation of equilibrium magnetic fieldwhich creates either one mag-

netic island chain atq = 4 or two island chains atq = 4 andq = 5. For the former, the field

lines are regular everywhere, but particles can behave chaotically [2]. The latter case can lead

to chaotic behavior of field lines because of island overlap.

The canonical equations of particle motion resulting from the full Hamiltonian with this

perturbed field were integrated numerically for 20000 revolutions around the major axis and the

intersections with the poloidal plane were plotted. (See [2] for details.) Other parameters are

those of the CASTOR tokamak, and charge and mass of a deuterium ion, to compare with the

case of carbon ions from our previous work.

We have confirmed that our former result of a single island leading to stochastization of parti-

cle trajectories (originally shown for carbon ions) is alsovalid for deuterium ions. To determine

how this effect depends on particle parameters, we did numerous calculations with varying

perpendicular and parallel energy. We then classified the Poincaré plots as strongly stochastic

(where the large chaotic sea appears) or weakly stochastic (when it does not). The results are

shown in Fig. 1. We see that strong stochasticity sometimes disappears apparently randomly.
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Figure 1: Initial conditions (perpendicular and parallel energy) which cause the motion of deuteron to be

strongly stochastic (blue) or weakly stochastic (green), and lines of constant amplitude of drift (red).

We believe that this is caused by sensitivity to initial conditions and roundoff errors. However,

in a certain region of parameters stochasticity disappearsconsistently. This happens for large

values of drift, whose amplitude, proportional to√
E‖+

E⊥
2
√

E‖

is also drawn in Fig. 1. Thus the drift not only drives the stochastization, as shown in [2], but

for larger values suppresses it, as well.

When a second mode of perturbation was added, we discovered asurprising effect. With

only one mode of perturbation, we chose the parameters so that particle trajectory fills a large

stochastic sea. With the second mode of perturbation and allother parameters identical, this

stochastic sea disappeared. On the contrary, field lines arestochastic in the case of two modes

and regular in the case of one mode, as expected. (Fig. 2) Thisdisappearance of the particle

chaos after the addition of a second magnetic island can probably be explained by the phase of

this second (m = 5) island, which has an O-point at the right (low field) side, see the plot of

field lines (red). The phase of them = 5 island structure seen in the plot of particles (green) is

opposite - the X-point is at the right side. When them = 5 magnetic island is added, it probably

cancels the effect of chaos because of its opposite phase (blue).

We also calculated the diffusion coefficient of the particlemotion in the stochastic sea created

by one magnetic island. We have computed the variance, i.e. the mean square distance from the

initial point for multiple trajectories:

S(t) =
1
N

N

∑
i=1

(xi(t)− xi(0))2
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Figure 3: Time evolution of the mean square displacements from the initial position for a group of particle

trajectories, for the case of chaotic motion in one magneticisland.

If the variance depends linearly on time (regular diffusion), its time derivative is the diffusion

coefficient:D = dS(t)/dt. The time dependence of this variance is shown in Fig. 3. For short

times, it is linear, indicating a random-walk diffusion with a diffusion coefficient with an order

of magnitude of 5.10−4m2.s−1.

Further effects influence the dynamics besides magnetic islands; the most important ones

being collisions and edge plasma turbulence. To estimate the latter effect, we model the action

of the turbulence by means of a time-independent electrostatic potential, periodical in both the

poloidal angle and the radial coordinate. We used a cylindrical configuration for simplicity,

disregarding the curvature of the tokamak. Our focus was seton the diffusion of once-ionized

carbon in the radial direction.
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We therefore consider the potential in the form

V = U0cos(kr)cos

[
m

(
θ − z

R0q(r)

)]
.

The choice ofk andm stems from the following physical considerations. Given that a lot of

phenomena in plasma occur on the scale of millimeters, the parameterk is set to 1000m−1.

Thenm is chosen to give a similar scale in the poloidal direction. The introduction of the safety

factorq ensures that the potential remains constant on the unperturbed field lines. The amplitude

of the potentialU0 is in range 0−100V.

U [V ] D[m2.s−1]

10 2.2

15 5.5

25 13.9

40 17.1

Table 1: Dependence of radial diffusion

coefficient on the potential amplitude.

Numerical simulations show that the addition of the po-

tential has a dramatic impact on the value of radial diffu-

sion coefficient. Firstly, the coefficient rises significantly

with the magnitude of the potential. Secondly, the pres-

ence of the potential significantly increases the value of

the diffusion coefficient from the unperturbed case.

Conclusion

We have investigated cases where field lines are

chaotic, while the particle motion is not and vice versa,

and found nontrivial dependencies on particle and perturbation field parameters. We note that

a similar investigation of ion motion in the perturbed field of the TEXTOR DED has been de-

scribed in [3]. In the case where we computed diffusion coefficient, we have found that its value

is rather low. It is an open question if in a different regime adiffusion important enough to have

a tangible impact on the plasma would appear. We are currently investigating the impact of an

additional electrostatic potential similar to [4]. Preliminary results show that such potential has

a strong impact on diffusion of carbon ions, with diffusion coefficients exceeding 10m2.s−1.
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6.1 Conclusions of chapter 6

Our results show that, unlike in the case of electrostatic turbulence, the
gyro motion of ions does not affect their chaotic behavior in a perturbed
magnetic field and the drift approximation would be appropriate. The drift
causes qualitative differences in the behavior of ions, namely the case of
a single perturbation mode, which is completely regular for the field lines,
exhibits significant chaotic motion of ions. The quantitative significance of
this effect is unclear. The diffusion coefficient calculated in the third paper
is very low (cf. section 3.2). Our simulations were however done for a very
idealized situation and we do not claim that the quantitative results are
representative. It may be possible that for different parameters the diffusion
would be considerably higher. One possibility which should be investigated
in a future work is to repeat the simulations near the separatrix in an X-point
geometry. This would be relevant for the ELM suppression experiments and
might yield very different results from the circular cross section geometry
investigated here. It should be noted that similar topic has been investigated
in parallel by other groups, see e.g. [68] where a more significant diffusion
coefficient is reported for a realistic situation of the TEXTOR DED (cf.
section 5.1).

While our results were obtained for ions with low energies typical for the
plasma edge, it is certain that stochastic diffusion plays a significant role for
fast ions. Even if they had same trajectories as slower ions, the diffusion
coefficient would be higher proportionally to the velocity. Moreover the drift
is more important for faster particles so the effects that we observed can
be expected to be enhanced. Diffusion of fast ions resulting from the NBI
heating due to a magnetic island associated with a neoclassical tearing mode
(cf. section 4.1) was studied in [69]. Diffusion of α particles from the fusion
reactions due to magnetic perturbations was predicted in [70]. Another class
of fast particles are the so-called runaway electrons (section 9.2). The mag-
netic perturbation coils, in addition to controlling ELMs, may find another
application in controlling the runaway electrons. Our contribution to this
topic is presented in chapter 9.



Chapter 7

Preparation of RMP
experiments on COMPASS

As mentioned in section 5.5, RMPs are going to be an important part of the
research programme on COMPASS. To prepare for this research, we have
evaluated the spectra of the existing RMP coils according to the vacuum
island overlap criterion. We used the same approach as many other works
which evaluate the island overlap criterion [71, 72, 73, 74, 57, 58] in order to
allow a comparison. In particular, we used a version of the code ERGOS by
M. Bécoulet and E. Nardon which had been used for many of those studies.
Our results are presented in the following two articles. The first one [5]
is an initial study and presents the background in more detail, while the
second one [9], in addition to having a precised model of the COMPASS
coils, explains the general guidelines of construction of the RMP coils if the
resonances are to be maximized. Note that the formula for island width is not
the same as in e.g. [74], but a precised version derived in [71] and reproduced
here in chapter 8.
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1. INTRODUCTION

The COMPASS tokamak, now being transferred to
the Institute of Plasma Physics (IPP) Prague from
UKAEA Culham [1], is equipped with a unique set of
saddle coils for producing resonant magnetic perturba-
tions (RMPs). It was recently discovered on the DIII-D
tokamak that RMPs can lead to complete suppression
of Type-I ELMs [2]. Although the COMPASS-D toka-
mak operated only in H-mode with type-III ELMs in
UKAEA, the design of the additional heating systems
(mainly NBIs) in IPP Prague is focused on obtaining
type-I ELM regime. Due to incomplete understanding
of the ELM physics this prediction relies mainly on
empirical (scaling) laws (e.g., the available additional
power is more than two times higher then L-H thresh-
old, 

 

T

 

i

 

 

 

≈

 

 

 

T

 

e

 

, etc.). The availability of a flexible set of
RMP coils thus opens a way to test this ELM mitigation
technique. This research topic is very relevant for
ITER, as ITER will need a way to mitigate large Type-
I ELMs and it will be equipped with a set of perturba-
tion coils for this purpose. The lack of a good theoreti-
cal explanation of the experimental ELM suppression
results [3] makes this research even more important.
Even without obtaining Type-I ELMs, experiments on
COMPASS could make valuable contributions to this
research, for example by investigating plasma response
to the perturbation field, braking of the plasma rotation
by the perturbation or the “pump-out'' effect, which is
believed to be responsible for ELM mitigation. Saddle
coils can also be used to investigate other effects
involving RMPs, such as neoclassical tearing modes
(NTMs) or mode penetration. Those effects were the
main subject of study in experiments involving “saddle

 

1

 

The text was submitted by the authors in English.

 

coils” performed during the operation of COMPASS-C
(circular cross section) and COMPASS-D in UKAEA
Culham [4–6]. Those studies were focused on simula-
tion of naturally occurring error fields and thus used a
toroidal mode number 

 

n

 

 = 1 with the main poloidal
mode number 

 

m

 

 = 2, creating a large island in the
plasma core. Another experiment with COMPASS-D
saddle coils that is closer to our work is described in
[7]. The authors have demonstrated an effect of a per-
turbation resonant at the edge on ELMs and suggested
RMPs as a mechanism of ELM control. This work,
however, did not include estimates of edge ergodization
and island overlap.

The key effect of RMPs is creation of magnetic
islands and resulting ergodization of magnetic field
lines. As a part of preparations for COMPASS exploita-
tion in IPP Prague, we have thus performed calcula-
tions of spectra of RMPs caused by saddle coils, with
the objective of determining the magnetic island width
and the extent of ergodic regions. Unlike most of the
experiments in Culham (except [7]), we were interested
in edge ergodization, so we chose a coil configuration
with toroidal mode number 

 

n

 

 = 2 and poloidal mode
numbers 

 

m

 

, which are resonant in the region near the
separatrix.

2. METHODS

The calculations with the code ERGOS follow the
same principle as was used for the calculations of RMP
spectra for the ELM suppression experiments on DIII-
D [9], JET [10, 11], and MAST and for the design work
of RMP coils for ITER [12, 13]. We use the straight
field line coordinate system, with coordinates (

 

s

 

, 

 

θ

 

*, 

 

φ

 

).
Here, 

 

φ

 

 is the toroidal angle; 

 

θ

 

*

 

 is the straight field line
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poloidal angle which satisfies 

 

d

 

θ

 

*/

 

d

 

φ

 

 = 1/

 

q

 

 along a field

line, where 

 

q

 

 is the safety factor; 

 

s

 

 = 

 

 is a dimen-
sionless radial variable that labels the magnetic sur-
faces; and 

 

ψ

 

 denotes the poloidal flux, normalized to
value 1 at the separatrix. The transformation to the
straight field line coordinate system and the magnetic
surface data are obtained from predictions by the MHD
equilibrium code ACCOME [14] with the help of the
HELENA equilibrium reconstruction code [15].

The perturbation induced by the coils is treated as a
vacuum field, calculated using the Biot–Savart law
from the coil positions and currents. Only the radial
component (perpendicular to magnetic surfaces—thus
the 

 

s

 

 component) of the perturbation field is relevant for
island formation and ergodization. For the following
calculations, we need the value 

 

b

 

1

 

 

 

≡

 

 

 

δ

 

B

 

1

 

/

 

B

 

3

 

, where 

 

B

 

1

 

 is
the contravariant 

 

s

 

 component of the perturbation field
and 

 

B

 

3

 

 is the contravariant 

 

φ

 

 (toroidal) component of
the equilibrium field. A Fourier transform in poloidal
angle 

 

θ

 

*

 

 and toroidal angle 

 

φ

 

 is applied to 

 

b

 

1

 

. The
modes resulting from this Fourier transform are noted
as 

 

b

 

mn

 

, where 

 

m

 

 is the poloidal and 

 

n

 

 the toroidal mode
number.

The radial half-width 

 

δ

 

m

 

, 

 

n

 

 of an island produced by
the 

 

m

 

, 

 

n

 

 mode of perturbation in terms of the dimen-

sionless radial variable 

 

s

 

 = 

 

 is given by the formula

 

(1)

 

Here, 

 

q

 

' 

 

≡

 

 

 

dq

 

/

 

ds

 

. Formula (1) is a generalized version of
the formula in [16] for the case of magnetic surfaces
with a noncircular cross section. We use the expression

 

B

 

3

 

 = 

 

B

 

T

 

(

 

R

 

)/

 

R

 

 for the toroidal contravariant component
of the magnetic field, where 

 

R

 

 is the radial distance
from the major axis and 

 

B

 

T

 

(

 

R

 

) ~ 1/

 

R

 

 is the toroidal field
at the position given by 

 

R

 

.
The island described by Eq. (1) appears at a radial

position where 

 

q

 

 = 

 

m

 

/

 

n

 

 (resonance condition). We note

 

∆

 

m

 

, 

 

m

 

 + 1

 

 the distance (in terms of the 

 

s

 

 variable) between
island chains at 

 

q

 

 = 

 

m

 

/

 

n

 

 and at 

 

q

 

 = (

 

m

 

 + 1)/

 

n

 

. Large-
scale ergodization of field lines happens when succes-
sive islands overlap, causing the ergodic regions around
them to merge. This happens when the Chirikov param-
eter 

 

σ

 

C

 

hir

 

 = (

 

δ

 

m

 

,

 

 

 

n

 

 + 

 

δ

 

m

 

 + 1, 

 

n

 

)/

 

∆

 

m

 

, 

 

m

 

 + 1

 

 is greater than 1. It
is known that in practice ergodization happens also for
values of 

 

σ

 

Chir

 

 slightly less than 1, because the criterion
does not take into account secondary resonances that
ease merging of ergodic regions from neighboring
island chains [17].

In addition to computing the Chirikov parameter,
direct integration of field lines (field line tracing) was
also performed. A plot of intersections of field lines
with a poloidal plane after many turns around the torus
(a Poincaré plot) gives a more precise picture of mag-
netic islands and ergodic regions.

ψ

ψ

δm n,
4q2bmn

q'm
-----------------.=

 

3. RESULTS

The “saddle coils” of COMPASS are a mesh of sev-
eral dozens of independently connectable coil segments
on the vacuum chamber. This system is able to generate
RMPs with the main toroidal number 

 

n

 

 = 1 or 

 

n = 2 due
to its toroidal symmetry. To produce good edge
ergodization comparable to the DIII-D experiments, we
used a heuristics rule that RMP coils at the low field
side are able to produce modes with the highest m to
create resonances with high q. Using this rule, we chose
from the numerous possible configurations the one
shown in Fig. 1, which uses the outermost coil loops
and has the main toroidal mode number n = 2. Only the
n = 2 Fourier component of the perturbation is taken
into account in the following results. The current con-
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Fig. 1. Scheme of the coils used in the studied configura-
tion, with an outline of the plasma volume.
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sidered is 2 kA, which is realistically achievable with
the saddle coil system. For the equilibrium a shot with
NBI heating and other parameters as expected for the
COMPASS exploitation in IPP Prague was chosen,
using a prediction from ACCOME [18].

The resulting spectrum of the perturbation field is
presented in Fig. 2. It shows the dependence of the
radial perturbation component Bmn on the radial posi-
tion and the poloidal mode number m. The rational val-
ues of the q profile q(s) = m/n are shown as diamonds

in the figure. The values of Bmn at those points deter-
mines the width of the corresponding islands.

Figure 3 shows the radial dependence of the Chir-
ikov parameter. According to the theory, appearance of
the large ergodic region is expected when σChir > 1. This
value is indicated by a horizontal dashed line. The
Poincaré plot in Fig. 4 can be used to check the Chir-
ikov criterion. The ergodic region (where the field lines
densely fill a volume instead of staying on a magnetic
surface) includes the island with q = 3/2, while the
Chirikov criterion indicates that this island should not
be in the ergodic region, as its σChir ≈ 0.69 < 1 (Fig. 3).
The criterion thus underestimates ergodization, as
explained in the previous section.

4. CONCLUSIONS

Our results show a formation of an ergodized layer
in the edge region (see Fig. 4), which, according to the
DIII-D [2] and JET [11] experiments, is crucial for the
ELM suppression effect. If COMPASS succeeds in pro-
ducing Type-I ELMs, we can expect an ELM mitigation
effect of the saddle coils. Thanks to the flexibility of the
saddle coil system, there is probably room for optimi-
zation of the coil configuration. More work in this area
is planned.

Finally, the limitation of our calculations is that they
are done by superposing the vacuum field of saddle
coils with the equilibrium field. This disregards possi-
ble plasma response to the perturbation field. The
impact of plasma response to the perturbation field is
currently subject of intense research based on nonlinear
MHD codes taking into account plasma rotation [3, 12,
13]. The main effect is expected to be the screening of
RMPs by toroidal rotation due to the generation of eddy
currents on resonant surfaces in response to the pertur-
bation field [19]. However, this effect is expected to be
larger in the plasma core for isolated islands and at
lower resistivity (collisionality). In the edge stochastic
layer where the rotation is usually smaller and resistiv-
ity larger, one could expect less screening due to the
rotation. Also, the existing theory does not take into
account islands overlapping (stochasticity) and large
gradients of plasma parameters in the pedestal region
that introduce large nonlinearity in the plasma
response. At the same time, the RMPs causes plasma
resonant and nonresonant braking due to the electro-
magnetic force [19] and neoclassical viscous force
[20]. As a consequence of the plasma braking, RMPs
will penetrate more. All these questions will be
addressed in our future work. At the present time, how-
ever, to justify vacuum modeling results, one can rely
on the experiments on DIII-D [2] and on JET [11]
where the criterion of stochastization of the pedestal
developed from vacuum fields was confirmed experi-
mentally.
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G. Huysmans2 and E. Nardon3

1 Institute of Plasma Physics AS CR v.v.i., Association EURATOM/IPP.CR, Prague,
Czech Republic
2 Association Euratom-CEA, IRFM, Cadarache, 13108, St-Paul-lez-Durance, France
3 Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX143DB, UK

E-mail: cahyna@ipp.cas.cz

Received 30 December 2008, accepted for publication 31 March 2009
Published 28 April 2009
Online at stacks.iop.org/NF/49/055024

Abstract
The COMPASS tokamak, recently transferred from UKAEA Culham to IPP Prague, is equipped with a set of saddle
coils for producing controlled resonant magnetic perturbations (RMPs). In the future experimental programme
of COMPASS we plan to focus on studies of RMPs, especially in view of their application as an ELM control
mechanism and their considered use in ITER. In the present contribution we describe the preparatory calculations
for the planned experiments. We computed the spectra of perturbations for several different equilibria predicted by
MHD simulations and determined the positions and sizes of the resulting islands. It is shown how the saddle coils
of COMPASS can be adapted to our equilibria to obtain good island overlap at the edge, which is believed to be a
key component in the ELM mitigation effect. The techniques used for adapting the coils to achieve this result are
described. Those are fairly general and could be used in the design of RMP coils on other machines.

PACS numbers: 52.55.Fa

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In past years there has been a growing interest in the
physics of resonant magnetic perturbations (RMPs) applied
externally to a tokamak plasma. The main motivation is that
they are a promising tool to control type I edge localized
modes (ELMs)—an important issue for ITER. The ability
of mitigating ELMs has been discovered on DIII-D [1] and
subsequently confirmed by recent experiments on JET [2].
Coils to induce RMPs for ELM mitigation are proposed in the
ITER design [3]. There are however still many open questions
concerning the mechanism itself and related issues, and the
theory of the mitigation effect is far from being complete.

The COMPASS tokamak, which is now being reinstalled
in IPP Prague [4], is a device suitable for the research of
magnetic perturbations. It is a tokamak with single-null
divertor plasma and geometry similar to JET or ITER at a much
smaller scale with the major radius of 0.56 m. Its unique feature
is a rich set of ‘saddle coils’ to produce magnetic perturbations.
Our plan is to use them to investigate the effects associated with
the ELM mitigation technique. Examples of effects which

should be studied are: the density pump-out or the impact of
perturbations on the plasma rotation by both resonant [5, 6] and
non-resonant braking [7, 8], which is especially important for
ITER. If we succeed in obtaining type I ELMs on the reinstalled
COMPASS thanks to the new NBI heating system, it will
be also possible to study the ELM mitigation effect directly.
Given that COMPASS has a similar geometry to DIII-D or
JET but much smaller dimensions, experiments with RMPs on
COMPASS can extend the present experience to a wider range
of parameters and thus contribute to the understanding of the
fundamental mechanisms of the RMP technique.

In this paper we present calculations of the perturbation
field that we have done in preparation for the experiments with
‘saddle coils’. We start with the analysis of spectra of the
vacuum field. In this simplified model, the plasma response to
the perturbation is not taken into account, the field is modelled
as the plasma equilibrium field with the vacuum field from
the saddle coils added. We use this approach to determine
the optimal coil configuration for producing sufficient island
overlap at the edge, which has been suggested to be the
key for ELM mitigation [9, 10]. Knowledge of the required
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configuration will be important for adjusting the coils before
the COMPASS operation starts.

2. Vacuum field calculations with the code ERGOS

Nonaxisymmetric perturbations of the tokamak magnetic field
are able to produce magnetic islands. One mechanism through
which the perturbation field may influence the plasma is the
destruction of magnetic surfaces and stochastization of the field
lines. This effect is linked to the magnetic islands, because it
arises when neighbouring island chains become large enough
to overlap each other. The overlapping of magnetic islands
at the plasma edge was proposed as the criterion for the
ELM suppression effect, according to the observed correlations
[9, 10]. We are therefore using the same criterion for evaluating
the suitability of COMPASS for the research of the ELM
suppression effect and for choosing among the configurations
of the perturbation coils the one which will be optimal for this
research.

In accordance with many previous works [9–12], we use
the vacuum field of the perturbation coils superimposed with
the equilibrium field of the plasma in the absence of the
perturbation. This simple approach will be referred to as the
‘vacuum approximation’. It neglects possible modification of
the perturbation field by the presence of the plasma. We use
this approach because of its proven ability to characterize the
ELM suppression effect [9, 10], but we are aware that it might
not be an accurate model of the actual magnetic field in the
plasma.

The width of the magnetic islands is calculated according
to the procedure described in [11, 13] in a magnetic coordinate
system [14] (s, θ∗, ϕ), where s is a dimensionless flux surface
label defined as the square root of the normalized poloidal flux
ψ : s = √

ψ . The poloidal and toroidal angular coordinates
θ∗ and ϕ represent a field line as a line of a constant slope:
dθ∗/dϕ = 1/q(s) along a field line, where q(s) is the safety
factor on a surface given by s. In addition, the coordinate ϕ is
taken equal to the geometric toroidal angle, leading to the PEST
coordinate system [14, 15]. The magnetic islands are produced
by the contravariant radial component of the perturbation field
B1 = δ �B · ∇s, δ �B being the perturbation field. Islands appear
at the rational values of the safety factor q and their size is
determined by the Fourier component b̃1

(m,n) of B1 normalized
to the toroidal contravariant component B3 of the equilibrium
field: B3 = �B · ∇ϕ = BT/R, where R is the distance from the
major axis. b̃1

(m,n) is thus defined by the equation

b1(s, θ∗, ϕ) ≡ B1/B3 =
∞∑

m,n=−∞
b̃1

(m,n)(s) exp [i(mθ∗ + nϕ)]

(1)

and can be calculated using the formula

b̃1
(m,n)(s) = 1

2π

∫ 2π

0
exp(−imθ∗)b̃1

n(s, θ
∗) dθ∗, (2)

where b̃1
n(s, θ

∗) is the n toroidal Fourier component of
b1(s, θ, ϕ):

b̃1
n(s, θ

∗) = 1

2π

∫ 2π

0
exp(−inϕ)b1(s, θ∗, ϕ) dϕ. (3)

The resulting island is created on a resonant surface with
q = m/n and its half-width δm,n is given by the formula [16]

δm,n =
√

8q2b̃1
(m,n)

q ′m
, (4)

where q ′ ≡ dq/ds. Those formulae are a variant of the
formulae given in [11], improved to include the radial variation
of the toroidal equilibrium field (B3 in (1)) instead of using
the value at the magnetic axis. This gives a more accurate
result [17].

To quantify the overlap of magnetic islands on
neighbouring rational surfaces with the same value of n we
use the Chirikov parameter σChir defined as σChir ≡ (δm,n +
δm+1,n)/�m,n where δm,n is defined in (4) and �m,n is the radial
distance (in terms of the coordinate s) between the surfaces
with q = m/n and q = (m + 1)/n. The criterion for island
overlap is σChir > 1. (However, transition to stochasticity
occurs for smaller values of σChir because of secondary island
chains which appear between the primary ones [18]. Islands
created by perturbation modes with another toroidal number
n will also facilitate the transition to stochasticity by ‘filling
in gaps’ between the islands with one value of n [9].) The
transition to stochasticity can be verified by tracing the field
lines and displaying the Poincaré plot of their intersections
with a chosen poloidal plane. Such a plot will clearly show the
magnetic islands, the stochastic areas and remaining magnetic
surfaces between them.

For actual calculations we used the code ERGOS [11],
which had been previously used for the cases of DIII-D [12],
JET and MAST [10] and proposed designs of the ITER RMP
coils [11, 13], for example. The input to the code is the
configuration of the coils (given by their geometry and current
distributions) and the magnetic equilibrium. The equilibrium
is needed for calculating the contravariant component B1, for
transforming to the magnetic coordinate system (s, θ∗, ϕ), and
for knowing the profile of q and its derivative q ′, which are in
turn needed to know the positions and sizes of the magnetic
islands—equation (4). The perturbation spectra thus depend
on the equilibrium.

The output of the code is the profile of σChir, radial
dependence of the perturbation spectrum (dependence of b̃1

(m,n)

on s) and the Poincaré plot resulting from field line tracing in
the perturbed magnetic field.

3. Techniques for spectrum optimization

Especially in the case of a new coil design or of choosing a
configuration of a very flexible coil system (as it is the case of
COMPASS) it is useful to have general rules which allow one to
heuristically choose a good configuration. For the application
we are interested in an optimal configuration maximizes the
overlap of islands at the plasma edge for a given coil current
(governed by technical and financial constraints).

As the island sizes are given by the value of b̃1
(m,n) at the

radial position s where q(s) = m/n, they will be maximized
when the maxima of b̃1

(m,n)(s) in the (m, s) space are located
at the points where the condition q(s) = m/n holds. This can
be checked graphically by plotting b̃1

(m,n)(s) as a function of
(m, s) and checking the overlap of its maxima with the safety

2
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factor profile given by q(s) = m/n. This gives an indication
of whether the maximal value of b̃1

(m,n)(s) needs to be moved to
higher or lower values of m, which can be done by making the
coils narrower or larger, respectively. (In this procedure n is
kept constant, it is assumed that there is one dominant toroidal
mode, corresponding to the toroidal symmetry of the coils.)

The resonances at the edge, where the q is high, occur for
large values of m. To obtain a b̃1

(m,n) spectrum with a maximum
at high values of m the corresponding b1 as a function of θ∗

must be narrow in the θ∗ space. To achieve this it is preferable
to place the coils at a position where θ∗ changes slowly as
a function of the geometric poloidal angle, i.e. with a steep
pitch angle of the field lines. Areas near the X-points should
be avoided because there the pitch angle of the field lines is
low due to the small poloidal field. In addition the low-field
side (LFS) is preferable to the high-field side (HFS), because
the field lines are steeper at the LFS as a consequence of the
toroidal geometry. Moreover the Shafranov shift of magnetic
surfaces outwards causes ∇s to be maximal at the LFS which
maximizes the value of b1, being given by the contravariant
radial component: b1 = B1/B3 = (δ �B · ∇s)/(�B · ∇ϕ). At the
same time the denominator B3 is minimized because of the low
toroidal magnetic field. All those geometric effects make the
LFS the optimal place for placing the perturbation coils [16].

To estimate what are the best coil positions for a given
equilibrium it is useful to display possible coil positions in
a poloidal cross-section together with the mesh of (s, θ∗)
magnetic coordinates. The coils produce a radial perturbation
which is directed either inwards or outwards. If the coils
are symmetric with respect to the midplane, there may be an
‘even’ configuration (where an upper coil has the same field
orientation as the symmetric lower coil) or an ‘odd’ one (where
upper and lower coils have opposite fields). To maximize the
Fourier component b̃1

(m,n)(s) on a resonant surface with q(s) =
m/n the maxima and minima of the radial perturbation’s main
toroidal mode b̃1

n(s, θ
∗) as a function of θ∗ shall correspond

to maxima and minima of the function cos(mθ∗) for an even
configuration and to sin(mθ∗) for an odd configuration4. This
follows from the formula (2) for b̃1

(m,n). According to (2)

the even (resp. odd) function b̃1
n(θ

∗) of a given norm which
maximizes b̃1

(m,n) is cos(mθ∗) (resp. sin(mθ∗)), thus we are

looking for a realistic perturbation b̃1
n(θ

∗) which is close to one
of those optimal ones, so it has corresponding maxima, minima
and zero points. For that we display the sign of cos(mθ∗) or
sin(mθ∗) on resonant surfaces and place the coil loops so that
one direction of the field is close to areas with positive sign
and other direction to areas of negative sign. The toroidal coil
segments which delimit the loops in the poloidal direction shall
be placed against zeros of sin(mθ∗) or cos(mθ∗), because at the
vicinity of those segments the radial field component changes
direction and thus has a zero.

Figures 1 and 2 illustrate this procedure for an example
equilibrium and coil configuration (the SNT-02 equilibrium,
see section 5). The radial perturbation b̃1

(m,n) for the best
coil configuration is compared against the ideal perturbation
of the form sin(mθ∗) on a resonant surface with q = 6/2

4 The coordinate θ∗ is chosen to be zero at the outboard midplane, so cos(mθ∗)
and sin(mθ∗) are even and odd functions, respectively, with respect to the
midplane.

Figure 1. Example radial perturbation b̃1
n(θ

∗) (generated by the
optimal coil configuration for the SNT-02 equilibrium on
COMPASS) on the m = 6, n = 2 resonant surface—dashed line,
with 10−3 sin(mθ∗) shown for comparison—full line (green online).
The sign of sin(mθ∗) is shown as narrow dark (blue online) and thick
light (orange online) bands on the x-axis for positive and negative
signs, respectively—this scheme is used in the following figures.

(m = 6, n = 2). In figure 2 b̃1
(m,n) is shown on this surface

in a poloidal cross-section of the equilibrium. Its values
are represented as displacements in the direction of the θ∗

coordinate lines from the surface. In addition the positions
where sin(mθ∗) is positive or negative are displayed. To
generate this perturbation the toroidal coil segments were
placed as close as possible to the zeros of sin(mθ∗), those
positions are also shown in figure 2.

The procedure described above optimizes the perturbation
on a selected resonant surface. In practice it can be observed
that at the LFS the zeros of sin(mθ∗) or cos(mθ∗) are well
aligned between different magnetic surfaces. This means that
for coils at the LFS we can optimize the spectrum at a range
of surfaces simultaneously, which is advantageous to obtain a
good overlap of islands.

4. COMPASS RMP coils

Each of the four quadrants of the vacuum vessel of COMPASS
is covered by a set of toroidal and poloidal coil segments5 to
produce RMPs. Because of the four-fold symmetry the main
toroidal mode number n can be 1 or 2. (We focus on the
n = 2 toroidal mode as the n = 1 one is more problematic
because of locked modes [2].) There are four outer toroidal
segments at each of the two opposite quadrants and five at
each of the remaining two quadrants. The symmetry is only
approximate because the poloidal positions of the four outer
toroidal segments are different in each quadrant and there
are many irregularities as the coils need to avoid the ports.
The outermost toroidal segment at the outboard midplane is
also present only in two opposite quadrants and is missing

5 They are sometimes called ‘saddle coils’, not to be confused with ‘saddle
loops’ which are diagnostic coils to measure the radial magnetic flux.
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Figure 2. The graph of b̃1
n(θ

∗) (black dashed line) from figure 1
mapped to the corresponding mesh of the equilibrium magnetic
coordinates, as explained in the text. The sign of sin(mθ∗) is shown
as narrow dark (blue online) and thick light (orange online) bands
on the resonant surface for positive and negative signs, respectively.
The positions of the toroidal coil segments that generated the
perturbation are shown as crosses (blue online).

Figure 3. The outboard coils used in the studied configurations (full
lines, blue online) with an outline of the plasma volume (dotted
lines, red online).

from the other two quadrants because of large midplane ports
(see figure 3)—that is why those two quadrants have only
four outer toroidal segments instead of five. This means that
a configuration avoiding the outermost segments in the two
quadrants where they are present will have a better toroidal
symmetry and a dominant n = 2 toroidal mode, while for
a configuration using them the imperfect symmetry will lead
to larger sidebands in addition to the main n = 2 toroidal
mode. All the coil segments can be connected independently.
In principle there is an enormous number of possibilities for
the configurations distinguished by the current directions in
the segments. In addition the four outer toroidal segments in
each quadrant can be moved in the poloidal direction, which
adds another degree of freedom in the configuration. But only

a small percentage of the configurations are practical. We are
looking for configurations that have a well defined toroidal
mode number and use the outer (LFS) coils for the reasons
given in section 3. Moreover there is a constraint that at
every point where several coils meet the sum of incoming and
outgoing currents from the power supplies should be zero. The
bars which connect the coils to the linkboards are for all such
points close to each other so if the total current in such a bundle
of bars is zero, the total force from the toroidal field will be also
zero, minimizing the mechanical stress [19]. It is also ensured
that the bars will not create stray fields, thus we don’t need to
include them in the coil model. This constraint means that the
coils can be effectively thought of as a sum of closed loops,
with some segments shared between two loops (their current
will be two times higher compared with the others).

All the above-mentioned requirements determine what
coils should be used (see figure 3) and constrain the directions
of their currents. The positions of the movable coil segments
shall be tuned to the magnetic equilibrium using the methods
described in section 3. So far we have not tried to optimize the
distribution of the currents but we have always chosen identical
currents in all the segments except those which are shared
between two loops. The free parameters are thus the positions
of the movable segments, the loops used and the orientation of
the current in each loop. The current orientations determine if
the configuration is ‘odd’ or ‘even’.

5. Results for selected equilibria

To demonstrate the ability of producing overlapping islands
at the edge we used several equilibria that we believe to be
representative for the future operation of COMPASS. Those
equilibria are predicted by the MHD code ACCOME [20],
taking into account the planned neutral beam injection
and lower hybrid current drive, which together produce a
substantial fraction of the current [21]. The equilibria are:

• SNT-02—a high field, high current (B = 2.1 T, I =
250 kA) equilibrium with a high triangularity (δ = 0.5–
0.7)

• SND-02—a high field, high current equilibrium with a
low triangularity (δ = 0.3–0.4)

• SND-01—a low field, low current (B = 1.2 T, I =
175 kA) equilibrium with a low triangularity (δ = 0.3–
0.4).

The code HELENA [22] is used to produce the mapping to the
magnetic coordinate system used by ERGOS.

Figure 4 shows the magnetic coordinate system of the
SNT-02 equilibrium. An odd parity configuration needs to be
used because it has narrower coil loops (there are two narrow
coil loops above and below the midplane separated by the
midplane toroidal segment, instead of one larger loop centred
on the midplane in an even parity configuration), thus is able
to produce the high m poloidal modes which are needed for
resonances with the safety factor profile in this equilibrium.
The sign of sin(mθ∗) is shown in colour for several resonant
surfaces. Also shown are the ranges of positions of the
outer movable toroidal coil segments. It can be seen that to
match the equilibrium the outermost possible positions shall be
used. They still do not perfectly match the positions of zeros
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Figure 4. Magnetic coordinates for the SNT-02 case, with
sgn sin(mθ∗) shown as in figures 1 and 2 on three resonant surfaces
with m = 7, 8, 9. Ranges of possible positions of the four movable
coil segments are shown as lines and the position of the outermost
(midplane) segment as a cross outside the plasma volume (blue
online).

of sin(mθ∗). The radial dependence of spectrum shown in
figure 5 confirms these conclusions. The maxima of the spectra
occur at smaller values of m than those corresponding to the
q profile, which means that it would be beneficial to move the
coils even more outwards to produce a narrower perturbation,
if there were such a possibility. The maxima of the spectrum
form a curve in the (m, s) space which is parallel to the q

profile, so the same conclusion holds for all radial positions at
the edge. (This confirms the conclusion about simultaneous
optimizing for a range of radial positions and is a fairly generic
feature of the edge perturbation spectra.) Figure 6 shows the
resulting profile of the Chirikov parameter. We have shown
that the available coil positions are not ideal, but despite this
there is a good island overlap in the edge region for a current in
the coils of 2 kA. (The coil segments that are shared between
two adjacent loops will have twice as much current, i.e. 4 kA.
The coils are designed for a maximum current of 5 kA.). This
result can be compared with the criterion suggested in [9] on
the basis of the DIII-D experiments: the region with σChir > 1
should extend to ψ = 0.83, or

√
ψ

.= 0.91. According to
figure 6 this criterion is satisfied. Figure 7 shows the resulting
Poincaré plot for a current of 2 kA. The SND-02 equilibrium
has similar properties as the SNT-02 one with respect to the
conclusions about optimal positioning of the coils and the
resulting spectrum, which is thus not shown for brevity. This is
related to a similar value of q95 between these two. The profile
of the Chirikov parameter is shown in figure 6.
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Figure 5. Spectrum of b̃1
(m,n) and the positions of resonances

(diamonds) for the SNT-02 case.

 

 

Figure 6. Radial dependence of the Chirikov parameter for the
equilibria considered.

The SND-01 equilibrium has a substantially lower q95 than
the preceding two. Zeros of sin(mθ∗) are much more distant
poloidally which could be accommodated for by moving the
coils outwards to produce a wider perturbation. It is more
practical, however, to use an even parity configuration which
keeps the coils at the same place but uses a large loop in the
midplane for a perturbation wider in the poloidal direction. The
reason is technical: while the coils are movable in principle, it
is preferable to avoid readjusting them between shots because
of access difficulties. It will be much easier to rewire the coils
for different currents, as this is done on linkboards designed for
easy reconfiguration. By avoiding the midplane coil segments
we also obtain better symmetry and a stronger main n = 2
toroidal component. Because of the even parity the positions
of the coils should be compared against zeros of cos(mθ∗).
The sign of cos(mθ∗) on several resonant surfaces is shown
together with the coordinate mesh on figure 8. Again the coil
positions are not ideally matched to the equilibrium, but the
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Figure 7. Poincaré plot for the SNT-02 case, coil current 2 kA. The
colour of the dots represent the number of toroidal turns that the
field lines need to escape beyond the separatrix.
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Figure 8. Magnetic coordinates for the SND-01 case, with
sgn cos(mθ∗) and coil positions shown as in figure 4 for m = 4, 5, 6.

resulting island overlap (figure 6) is very good even at a current
of 1 kA.

Our results have been so far confined to examining the
coil field without taking the plasma response into account—
the vacuum approximation. A complete description of the edge
structures created by the external perturbation shall include the
modification of the coil field by the plasma response. We may
expect that the plasma rotation will screen the perturbation
in the core but the pedestal region shall remain ergodized

because of slower rotation and lower temperatures, as shown
by analytic estimates for TEXTOR in [23] and MHD modelling
for DIII-D and ITER parameters in [24]. Similar modelling
shall be done for COMPASS when the relevant plasma profiles
(especially toroidal rotation and temperature) are better known,
either from simulations or from the upcoming experiments. As
noted in [24], the situation for an H-mode plasma is further
complicated by the diamagnetic effects which may be an
important contribution to the screening due to steep pedestal
gradients.

6. Conclusions

We have demonstrated that for a wide variety of magnetic
equilibria the perturbation coils on the COMPASS tokamak
are able to produce overlapping magnetic islands at the plasma
edge. We are thus confident in the relevance of planned
experiments with the magnetic perturbations to the research of
interactions of resonant magnetic perturbations with plasma,
especially the mechanism of ELM suppression. We developed
methods for optimizing the coil geometry and we have used
them to specify the required positions of the perturbation coils.
The result will be used to configure the coils before COMPASS
operation starts. It is encouraging that so far we have not found
necessary to adjust the coil positions differently for different
plasma parameters, which will facilitate the operation a lot.
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[11] Bécoulet M. et al 2008 Numerical study of the resonant
magnetic perturbations for Type I edge localized modes
control in ITER Nucl. Fusion 48 024003
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7.1 Conclusions of chapter 7

We have seen that COMPASS can present an interesting comparison to other
tokamaks with the RMP capability. The possibility of switching the pertur-
bations between even and odd parity will be important, as the dependence of
the effects on the perturbation alignment with the field lines is one of the un-
solved problems1. We plan to further increase flexibility by adding new coils
with eight-fold symmetry in order to be able to produce n = 4 perturbations
and investigate the importance of the toroidal mode number.

Besides coil enhancements, our current work on COMPASS is focused
on planning of the experiments and specification of the requirements on di-
agnostics. COMPASS will be equipped with many diagnostics for the edge
layer, for example Thomson scattering system, reciprocating probes, visible
cameras and edge rotation measurements. One of diagnostics available for
the first experiments are the divertor Langmuir probes. They can provide a
radial profile on the divertor and observe the splitting of strike points which
shall occur when RMPs are applied (cf. section 5.2). As we are interested
in the problem of RMP screening by the plasma (cf. section 5.4), we should
know if strike-point splitting can provide us with some information about
the screening. This is the topic of the next chapter.

1Of course, if the creation of a stochastic layer in the vacuum approximation is the key
element, the alignment shall not play a role if the resonant components are the same. This
is however just a hypothesis to be verified.



Chapter 8

Divertor footprints and RMP
screening

In the following papers we explore the connection between resonant magnetic
perturbation and the divertor strike point splitting in spiralling patterns,
called footprints. The first paper [14] deals with the vacuum approximation.
It has been known that the resonant perturbation modes and the footprints
can be expressed using the same function [45, 75]. We present a rigorous
Melnikov function formalism and we prove that under additional assumptions
on the location of the coils a formula relating the resonant perturbation
modes to the footprints can be derived. In this way it is proven that magnetic
islands and footprints are correlated. The question if the correlation still
holds in the case when the perturbations are screened by the plasma. This is
the topic of the second paper [15], which was submitted to the proceedings of
the international conference on plasma surface interactions (to be published
in Journal of Nuclear Materials).
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Resonant magnetic perturbations and divertor footprints in poloidally diverted
tokamaks
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General formula describing both the divertor strike point splitting and width of magnetic islands
created by resonant magnetic perturbations (RMPs) in a poloidally diverted tokamak equilibrium
is derived. Under the assumption that the RMP is produced by coils at the low-field side such as
those used to control edge localized modes (ELMs) it is demonstrated that the width of islands
on different magnetic surfaces at the edge and the amount of divertor splitting are related to each
other. Explanation is provided of aligned maxima of the perturbation spectra with the safety factor
profile – an effect empirically observed in models of many perturbation coil designs.

I. INTRODUCTION

Resonant magnetic perturbations (RMPs) are being
investigated as tool to control edge localized modes
(ELMs), in particular their application to ITER is fore-
seen. The RMPs for ELM control are produced by
coils whose design is specific to each tokamak. This
method is reminiscent of the ergodic divertor on toka-
maks Tore Supra and TEXTOR which also essentialy
relies on RMPs produced by dedicated systems of coils,
and many aspects are similar, especially the formation
of magnetic islands on rational surfaces and possible
stochastic transport when the islands overlap. However
the presence of X-point in the poloidally diverted toka-
maks provides some unique features: the splitting of di-
vertor strike points, or divertor footprints – a signature
of the homoclinic tangle created by the perturbation1,
and the divergence of the safety factor profile at the sep-
aratrix, due to which the number of rational surfaces
even for one toroidal mode is infinite and island over-
lap on them is facilitated. The noncircular geometry
of the plasma cross-section also complicates analytical
treatment of magnetic islands, requiring cautious use of
non-orthogonal coordinate systems.

Since both the homoclinic tangle and magnetic islands
with the resulting stochasticity are consequences of the
perturbation, it is natural to ask if there is any relation
between them. It has been known that while every island
chain is related to a different polodal mode of the pertur-
bation, their sizes can be expressed by a single function
– the Poincaré-type integral which also generalizes to an
expression for the length of the divertor footprints2.The
present paper uses instead the more familiar formalism of
the Melnikov integral3 (a standard tool for the analysis
of the homoclinic tangle) and explores the radial depen-
dence of this function in the often encountered case of
RMPs from the perturbation coils localized at the low-
field side (LFS), as it is the case for most ELM control
coil designs.

The paper starts with a review of the method to calcu-
late island sizes. Care is taken to provide a formula valid
in a plasma with a general aspect ratio and non-circular

cross-section as this is essential for the edge pedestal re-
gion near the separatrix which is crucial for ELM con-
trol. It is shown how the island sizes are determined by
a function whose definition is not affected by the coor-
dinate singularity on the separatrix, and which we call
the Melnikov-like function. The homoclinic tangle and
divertor footprints are then explained together with the
method of Melnikov integral for determining analytically
the divertor footprints length. A particularily simple ex-
pression is given for the case when the perurbation has
only one dominant toroidal mode. The relation between
Melnikov integral and the Melnikov-like function is ex-
plained. Then we restrict our treatment to the case of
perturbation localized on the LFS. Under this assump-
tion the relation between modes at the different surfaces
is derived and it is shown how does the divertor footprint
length relate to the sizes of magnetic islands at the edge.

II. WIDTH OF MAGNETIC ISLANDS IN A
REALISTIC GEOMETRY

A. Expression using the resonant modes of the
perturbation

Nonaxisymmetric magnetic perturbations of a toka-
mak magnetic field produce chains of magnetic islands
on magnetic surfaces with low-order rational values of
the safety factor q. Those islands are created by reso-
nances of the perturbation field δ~B with the unperturbed
field lines on the rational surface. To express these res-
onances we use a magnetic coordinate system4 (s, θ∗, ϕ)
where s is a flux surface label, θ∗ the poloidal coordinate
and ϕ the toroidal coordinate. The angular coordinates
θ∗, ϕ are chosen as in the PEST coordinates5 and the ra-
dial coordinate s is defined as square root of the normal-
ized poloidal magnetic flux ψN : s =

√
ψN , in accordance

with previous works (e.g. Refs. 6,7). The coordinate ϕ
is simply the geometric toroidal angle and the coordi-
nate system has the property that θ∗ = oϕ/q(s) + const.
along a field line, where o represents the orientation of
the magnetic field: o = 1 for the left-handed field and
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o = −1 for the right-handed field17. The islands are cre-
ated by the (m,n) Fourier component b̃1(m,n) of the nor-

malized perturbation δb1 ≡ B1/B3, where B1 ≡ δ~B · ∇s
is the contravariant s component of the perturbation and
B3 ≡ ~B · ∇ϕ is the contravariant ϕ component of the
equilibrium field. The Fourier transform is taken with
respect to the θ∗ and ϕ coordinates, thus we have

δb1 =
∞∑

m,n=−∞
b̃1(m,n) exp [i(mθ∗ − nϕ)] (1)

and the Fourier harmonics can be obtained as

b̃1(m,n) =
1

(2π)2

∮
exp[−i(mθ∗ − nϕ)]δb1 dθ∗ dϕ. (2)

A Fourier component is resonant with the unperturbed
field lines when q = om/n. The values b̃1(m,n) are com-
plex, and as δb1 is real, the following relation for the
complex conjugate holds:

(
b̃1(m,n)

)∗
= b̃1(−m,−n). An

alternative to (1) is a representation using purely real
coefficients:

δb1 =
∞∑

m=−∞,n=1

b1(m,n) sin(mθ∗ − nϕ+ χmn) (3)

b1(m,n) = 2|b̃1(m,n)| (4)

χmn = arg b̃1(m,n) (5)

Widely used formulae exist for determining the width
of magnetic islands from the Fourier spectrum of the
perturbation6,8. They are typically derived in a cylin-
drical geometry where the toroidal curvature is not be-
ing taken into account (the toroidal magnetic field is
considered constant), thus B3 in the expression for δb1
is approximated by its value at the magnetic axis. As
noted in Ref 9, this leads to an error in estimating the
island width. In the example of TEXTOR and its dy-
namic ergodic divertor (DED), the island size was over-
estimated because the DED coils are located at the high-
field side, thus the actual value of B3 is larger and δb1

is smaller than in the cylindrical approximation. For the
ergodic divertor of Tore Supra, which was located at the
low-field side, the island sizes were underestimated. It
should be noted that while the toroidal field magnitude
BT varies with the radial distance R from the major axis
as BT ∝ 1/R, for the contravariant component the de-
pendence is stronger: B3 ∝ 1/R2.

Moreover the cylindrical formula for island widths uses
r (the distance from the magnetic axis) as a radial coordi-
nate and thus is valid only in a situation where the mag-
netic surfaces have circular and concentric cross-sections.
In divertor tokamaks we are far from this geometry, espe-
cially in the edge region near the separatrix which is the
most important when perturbations are used as an ELM
control mechanism. We thus need a formula which would
be usable in a general geometry, with a varying toroidal

field and noncircular flux surfaces, using for example the
coordinate s as a general flux surface label instead of r.

To derive this formula we introduce new coordinates
χ ≡ θ∗ − n/mϕ and s ≡ s− s0 where s0 is the flux label
of the resonant surface where q = m/n. The differential
equation of the field line are

ds
dϕ

=
B1

B3
(6)

dθ∗

dϕ
=

1
q

(7)

Using the coordinates χ and s and the relation

dχ
dϕ

=
1
q
− n

m
(8)

the equation (6) becomes

1/q − n/m ds = B1/B3 dχ (9)

Keeping only the resonant part of the perturbation, thus
substituting B1/B3 by b1(m,n) sin(mχ+ χmn), we obtain

1/q − n/m ds = b1(m,n) sin(mχ+ χmn) dχ (10)

Using a linear approximation of the left side, we obtain

dq−1

ds

∣∣∣∣
q=m/n

s ds ≈ b1(m,n) sin(mχ+ χmn) dχ (11)

This equation can be easily integrated to obtain an alge-
braic equation for field lines:

s2 ≈
2q2b1(m,n)

q′m
[cos(mχ+ χmn) + C] (12)

where q′ ≡ dq/ds at the resonant surface and C is an
integration constant. The choice C = 1 corresponds to
the island separatrix whose maximum radial excursion is
the island half-width δ, given by the formula

δ =

√
4q2b1(m,n)

q′m
(13)

An alternative to this approach is to use a Hamilto-
nian approach where the field lines are interpreted as
trajectories of a Hamiltonian dynamical system whose
Hamilton function is the poloidal flux and the pertur-
bation is represented as a perturbed Hamiltonian (flux).
This approach has been used in many theoretical works.
We briefly review it in the appendix A and prove its
equivalence to the approach described above. It should
be emphasized that the hamiltonian approach automat-
ically includes correctly the effects of toroidal geometry
and non-circular cross-section – no corrections are nec-
essary. It is however still important to have a correct
formula using the perturbed magnetic field (13), because
this is the approach usually used in numerical studies of
perturbation coil designs, as the perturbed field can be
readily calculated from the coil geometry by the Biot-
Savart formula. We will also see that the harmonics of
the perturbed field are directly related to the Melnikov
function.
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B. Expression using Melnikov-type integral

The coordinate system (θ∗, s) on a poloidal plane has a
singularity at the separatrix. It is useful to define a value
characterizing magnetic islands which, unlike b̃1(m,n), will
not use the θ∗ coordinate, so it will stay well-defined even
at the separatrix.

We start by defining a coordinate φ which will be used
instead of θ∗. We follow a procedure used in the defini-
tion of the separatrix map and the Melnikov integral3,10.
For every magnetic surface the point on the outboard
midplane has φ = 0. Following a field line parameter-
ized by the toroidal angle ϕ from this point, we assign
to any other point on the field line the value φ = ϕ.
Thus φ of a given point is the toroidal angle needed to
reach it by following a field line from the outboard mid-
plane. Since the field line returns to the same poloidal
position after making q toroidal turns, the range of the
coordinate φ needed to cover a magnetic surface in the
poloidal plane is (−qπ, qπ) where the endpoints of this
interval are identified with each other. Together with a
flux surface label such as s we obtain a coordinate system
on the poloidal plane. The separatrix is a special case:
it is covered by φ ∈ (−∞,∞) since q is infinite on the
separatrix, and the X-point corresponds to φ = ±∞. In
this case φ is called a homoclinic coordinate3. As on a
field line ϕ = oqθ∗ + const. and θ∗ = 0 on the outboard
midplane where φ = 0, the relation between θ∗ and φ is
φ = oqθ∗. Using this relation, the definition (2) of b̃1(m,n)

can be rewritten as

b̃1(m,n) =

1
oq(2π)2

∫ qπ

−qπ

∫ 2π

0

exp
[
−i
(
o
m

q
φ− nϕ

)]
δb1 dϕdφ

(14)

If we define a toroidal perturbation Fourier mode b̃1n as

b̃1n(φ) =
1

2π

∫ 2π

0

exp(inϕ)δb1(φ, ϕ) dϕ (15)

we may write (14) as

b̃1(m,n) =
1

o2πq

∫ qπ

−qπ
exp

[
−io

(
m

q
φ

)]
b̃1n(φ) dφ (16)

On resonant surfaces with q = om/n this may be simpli-
fied to

b̃1(m=onq,n) =
1

o2πq

∫ qπ

−qπ
exp(−inφ)b̃1n(φ) dφ (17)

(b̃1n, b̃1(m,n) and δb1 all depend also on the magnetic sur-
face, this was omitted from the expressions above for
brevity). In (17) there appears a complex Melnikov-like
function S̃n(s) given by

S̃n(s) ≡
∫ qπ

−qπ
exp(−inφ)b̃1n(s, φ) dφ, (18)

defined using the coordinate φ which does not have a
singularity at the separatrix, so the definition can be ex-
tended to the separatrix:

S̃n(s = 1) ≡
∫ ∞
−∞

exp(−inφ)b̃1n(s = 1, φ) dφ. (19)

The function S̃n fulfills our requirement: it can replace
b̃1(m,n) = S̃n/(o2πq) and is defined using values which
remain regular at the separatrix. The island width (13)
can be expressed using S̃n instead of b̃1(m,n):

δ =

√
4|S̃n|
nπq′

. (20)

The only remaining divergent term in (20) is the shear
q′ which grows to infinity at the separatrix. This depen-
dence is physical: its consequence is that island width
has a zero limit at the separatrix.

III. DIVERTOR FOOTPRINTS

Since the particle and heat transport are mostly paral-
lel to field lines, the patterns of particle and heat flux to
the divertor plates can be expected to be related to the
divertor magnetic footprints, i.e. the patterns of inter-
sections of field lines with the divertor. Field lines which
carry heat and particle fluxes from inside the plasma are
those with a high connection length, i.e. the number of
toroidal turns following the field line in the plasma before
it reaches the wall again.

Since the field lines can be interpreted as trajectories of
a Hamiltonian dynamical system with the toroidal angle
in the role of the time, methods of the theory of Hamil-
tonian systems can be used. A concept especially useful
for the study of divertor footprints is the one of invari-
ant manifolds1. An invariant manifold is a surface in the
phase space of the dynamical system which remains in-
variant by the time evolution of the system, thus a trajec-
tory with an initial point on the invariant manifold is con-
strained to remain on it3. In our case the trajectories are
field lines and one example of invariant manifolds are the
magnetic surfaces of the toroidally symmetric tokamak
equilibrium. A particularly interesting case of invariant
manifolds are the stable and unstable manifolds of hyper-
bolic fixed points. A stable manifold is formed by field
lines asymptotically approaching the fixed point, while
the unstable manifold is formed by field lines asymptot-
ically leaving the fixed point. The definition depends on
the direction in which the field lines are followed. If we
follow them in the opposite direction, the stable mani-
fold becomes unstable and vice versa. In plasma equi-
libria the hyperbolic fixed points are called X-points and
are associated with the poloidal divertor or with mag-
netic islands. An example of invariant manifolds to a
fixed point is the separatrix of a toroidally symmetric
configuration with a poloidal divertor. Here the stable
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and unstable manifolds coincide to form the separatrix.
When a perturbation appears, the separatrix splits into
the stable and unstable manifolds which no longer co-
incide, but intersect transversally infinitely many times.
Close to the X-point in the direction from which the field
lines approach it (the stable direction) the stable mani-
fold is close to the unperturbed separatrix, but the unsta-
ble manifold wildly oscillates, creating lobes that become
longer and narrower when the X-point is approached1. In
the direction of field lines leaving the X-point (the unsta-
ble direction) we obtain a similar picture with the roles
of the stable and unstable manifolds reversed. This com-
plex structure is called a homoclinic or heteroclinic tan-
gle. An important property of the invariant manifolds is
that field lines can’t cross them, because field lines can’t
intersect. Invariant manifolds thus act as boundaries for
the field lines. Field lines originating in the hot plasma
core are contained inside the invariant manifolds of the
X-point and the only way they can reach the divertor tar-
gets is when the lobes of the (un)stable manifolds near
the X-point intersect the target plates11. By tracing the
intersection of the manifolds with the plates one obtains
curves which delimit the region connected to the plasma
core, characterized by mostly high connection length in
the laminar plot. Those divertor footprints typically take
the form of long spiralling bands, each band correspond-
ing to the intersection of a protruding lobe of a stable or
unstable manifold with the divertor.

The divertor footprints have a complicated inner struc-
ture and not all points inside the manifolds have high
connection length. Some of them are connected to the
opposite divertor plate after two poloidal turns by lami-
nar flux tubes which do not penetrate deeply under the
separatrix. The points with high connection lengths are
the images of invariant manifolds of the X-points of the
inner island chains11. This fine structure was studied in
detail in12. Here we focus on the on the overall shape
of the divertor footprints which is given by the invariant
manifolds of the divertor X-point and is better experi-
mentally accessible.

The length of the spiral can be characterized by the
maximum value of s reached, i.e. the value stip at its
tip. The difference ∆smax of stip and the separatrix
value s = 1 expresses the radial distance on the divertor
plate between the footprint’s tip and the unperturbed
strike point, which lies at the intersection of the unper-
turbed separatrix with the divertor plate. The unstable
manifold18 is the footprint’s boundary and so the foot-
print’s tip is the point on the manifold which is the most
distant from the unperturbed separatrix, the distance in
terms of s being ∆smax. The value ∆smax thus quantifies
the magnitude of the separatrix splitting.

To estimate the separation between the unperturbed
separatrix and the unstable manifold we will follow two
field lines – one in the unperturbed field, lying on the
separatrix, and the other in the perturbed field, lying
on the unstable manifold. They are parameterized by
the toroidal angle ϕ. Let us choose them so that they

are initially (in the vicinity of the X-point which they
approach asymptotically when followed backwards in ϕ)
close to each other. The parametric equations of the
perturbed field line are

s = s′(ϕ) (21)
φ = φ′(ϕ). (22)

For the unperturbed field line they can be written ex-
plicitely using the definition of φ and the fact that the
unperturbed field line lies on the separatrix where s = 1:

s = s(ϕ) = 1 (23)
φ = φ(ϕ) = ϕ− φ0 (24)

where the constant φ0 determines the toroidal phase: it is
the toroidal angle of the point where the field line crosses
the outboard midplane.

The rate of change of s along the perturbed field line
is

ds′

dϕ
= δb1(s′(ϕ), φ′(ϕ), ϕ) (25)

If the perturbed field line does not deviate significantly
as a result of the perturbation, we may use a first-order
perturbative approximation and evaluate b1 on the un-
perturbed field line:

ds′

dϕ
= δb1(s = 1, φ(ϕ), ϕ) (26)

The deviation ∆s of the perturbed field line from the
unperturbed one after a full poloidal turn is given by the
integral of (26):

∆s(φ0) =
∫ ∞
−∞

δb1(s = 1, φ(ϕ) = ϕ− φ0, ϕ) dϕ (27)

or using φ as the parameter:

∆s(φ0) = S(φ0) ≡
∫ ∞
−∞

δb1(s = 1, φ, φ+ φ0) dφ. (28)

Note that ∆s(φ0) is a function of the toroidal phase φ0

and may be zero: this happens when the unstable mani-
fold intersects the unperturbed separatrix.

The function S defined by the integral (28) is closely
related to the Melnikov function M :

M(φ0) =
∫ ∞
−∞

δbψ(s = 1, φ, φ+φ0) dφ =
dψ
ds
S(φ0) (29)

where δbψ(s = 1, φ, φ + φ0) = dψ
ds b

1(s = 1, φ, φ + φ0) is
the contravariant component of δB with respect to the
ψ coordinate. The only difference between M and S is
that S gives the change of s while M gives the change of
ψ3.
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If there is only one toroidal mode b̃1n(φ) of the pertur-
bation [cf. equation (15)], the function S can be replaced
by a single complex number S̃n(s = 1):

S(φ0) =
∫ ∞
−∞

δb1(s = 1, φ, φ+ φ0) dφ

=
∫ ∞
−∞

2<
{

exp[−in(φ+ φ0)]b̃1n(s = 1, φ)
}

dφ

= 2<
[
exp(−inφ0)

∫ ∞
−∞

exp(−inφ)b̃1n(s = 1, φ) dφ
]

= 2<
[
exp(−inφ0)S̃n(s = 1)

]
(30)

S̃n(s = 1) is defined by the equation (19), which also
naturally extends the definition of S̃n(s) to the domain
s < 1. Analogously the value M̃n(s) ≡ dψ

ds S̃n(s) can
be used to express the Melnikov function M as a single
number M̃n(s = 1).

The value ∆smax is the maximum deviation of the un-
stable manifold: ∆smax = maxφ0 ∆s(φ0). Using S̃n(s =
1) it is expressed as

∆smax = 2|S̃n(s = 1)| (31)

The island widths and the magnitude of separatrix split-
ting, and consequently the length of the divertor foot-
prints, are given by a single function S̃n(s): the island
widths by its values at s < 1 and the magnitude of split-
ting by the value at s = 1.

It has been already known that island widths and the
magnitude of splitting can be described by a signle ra-
dial function2: the Poincaré-type integral Rn which is an
integral of the modes of the perturbed poloidal flux H1

(cf. (A8)) instead of the perturbed field b̃1n. It can be
shown that M̃n = εnRn so for a single toroidal mode of
the perturbation our formalism of the Melnikov-like func-
tions S or M is equivalent to the Poincaré-type integral
approach. The reference 2 gives also other results ex-
pressed in terms of the function Rn such as the width of
the stochastic layer and the field line diffusion coefficient
which can be also simply reformulated using Melnikov-
like functions.

IV. SPECIFIC FORM OF THE MODES OF A
LOCALIZED LOW-FIELD SIDE PERTURBATION

In the previous sections we introduced the Melnikov-
like function S̃n and showed how it expresses both the
sizes of the magnetic islands and the sizes of the diver-
tor footprints. This is not sufficient to relate the sizes of
the footprints to the sizes of the islands unless the radial
dependence of S̃n is known. In this section an approxi-
mative form of this dependence at the edge will be given
for the special case of external magnetic perturbations
imposed by coils located at the low-field side. The mo-
tivation for this case is the use of such coils as an ELM

control mechanism13 where the the coils are supposed to
impact the edge region where the ELMs originate.

We will use a simplified model of the perturbed mag-
netic field where the perturbation is localized at the low
field side where the field line pitch angle dϕ/dθ (θ being
the geometric poloidal angle) is assumed to be constant
poloidally and radially. This is a realistic assumption
for the edge region near the separatrix which is our re-
gion of interest. We will note the local pitch angle q1:
q1 = dϕ/dθ = const. The variation of the safety factor is
assumed to be caused only by the variation of the pitch
angle in the regions where the perturbation is negligible:
the high-field side and especially the X-point. This re-
quires the perturbation coils to be placed sufficiently far
from the X-point region.

Along a field line in the low field side region we have

θ∗ = oϕ/q = oq1θ/q. (32)

It follows that the φ function has a simple dependence
on θ in this region:

φ = q1θ. (33)

The m Fourier component of the perturbation w.r.t the
geometric poloidal angle θ is defined as

b̃′1(m,n) =
1

2π

∫
exp(−imθ)b̃′1n (θ) dθ (34)

where b̃′1n (θ) is the n toroidal Fourier component of
δb1(θ, ϕ) considered as a function of θ:

b̃′1n (θ) ≡ b̃1n(φ(θ)). (35)

We will now find the relation between the Fourier com-
ponents b̃1(m,n) and b̃′1(m,n). We are neglecting the pertur-
bation outside the region where the Eq. (33) holds which
allows to express b̃1(m,n) [Eq. (16)] in terms of the θ coor-
dinate:

b̃1(m,n) =
q1

o2πq

∫ π

−π
exp

[
−io

(
mq1

q
θ

)]
b̃′1n (θ) dθ (36)

Equations (36) and (35) finally give simple relations be-
tween b̃1(m,n) and b̃′1(m,n):

b̃1(m,n) =
q1

q
b̃′1(mq1/q,n) =

q1

q
b̃′1(nq1,n) (37)

and

b̃′1(m,n) =
q

q1
b̃1(mq/q1,n).

From those it can be seen why the maxima and min-
ima of the spectrum b̃1(m,n) in (m, s) space form “ridges”
and “valleys” aligned with the q profile, as can be seen
e.g. for the proposed ITER designs in Ref. 7 (Fig. 15c
therein) and noted for DIII-D in Ref. 14 (see Fig. 1b
therein). The Fourier component w.r.t. θ∗ – b̃1(m,n) –

94 CHAPTER 8. DIVERTOR FOOTPRINTS AND RMP SCREENING



6

is given by Eq. (37). Assuming that the Fourier com-
ponent of the perturbation w.r.t. θ – b̃′1(m,n) – does not
change significantly between different magnetic surfaces,
the only radial dependence is the inverse proportional-
ity to q which is the same for all the poloidal modes. If
b̃1(m,n) has the maximum on one surface with s = s1 for
m = mmax(s1), on other resonant surface with s = s2

it will have also maximum for m = mmax(s2) equal to
mmax(s1)q(s2)/q(s1) so maxima will be aligned with the
q profile which is given in the (m, s) space as the set of
points satisfying m = nq(s).

Using these resuls the an approximate radial depen-
dence of b̃1(m,n) can be found. The radial dependence
of the geometric poloidal Fourier component B̃′rm of the
radial perturbation Br ≡ δ~B · ~er (with ~er being the
unit vector perpendicular to the magnetic surfaces) is15

B̃′rm ∝ rm−1. The contravariant s component B1 is given
by B1 = Br∂s/∂r. Assuming that ∂s/∂r and B3 do
not depend significantly on the poloidal angle in the
area with a non-negligible perturbation, the geometric
poloidal Fourier component of the normalized contravari-
ant perturbation is given by

b̃′1(m,n) ∝ rm−1 ∂s

∂r

1
B3

. (38)

The radial dependence of b̃1(m,n) is given by the for-
mula (37) where Eq. (38) can be used to substitute for
b̃′1(mq1/q,n).

For resonant modes we may use the Melnikov-like func-
tion instead. From Eqs. (33), (18) and (34) it follows that

S̃n(s) =
q1

o2π
b̃′1(nq1,n) (39)

The radial dependence of S̃n(s) can be obtained from
Eqs. (38) and (39):

S̃n(s) ∝ q1r
nq1−1 ∂s

∂r

1
B3

(40)

At a sufficiently narrow edge region the right-hand side
is not strongly radially dependent, so we may expect
the values of S̃n(s) on different resonant surface to be
strongly correlated. Note that (40) and this conclusion
applies also to the value on separatrix S̃n(s = 1), which
is thus the limit of S̃n(s) at the resonant surfaces ap-
proaching the separatrix, because (40) does not contain
discontinuous terms.

V. CONCLUSION

We derived a generalized formula for analytic estima-
tion of width of magnetic islands which does not rely on a
simplified cylindrical geometry, but instead takes into ac-
count toroidal toroidal geometry and arbitrary (i.e. non-
circular) cross-section of magnetic surfaces. This makes

it especially suitable for estimating the edge ergodization
in an X-point tokamak geometry, where the edge region is
substantially different from a cylindrical approximation.
The formula is based on the perturbed magnetic field and
we demonstrated its equivalence to formulae expressed in
terms of the perturbed poloidal flux. We then formulated
assumptions about the form of the perturbed magnetic
field which correspond to the perturbations typically used
inmo the ongoing effort to control ELMs with magnetic
perturbations on a range of tokamaks. Namely, we sup-
pose that the perturbation acts mostly in a region away
from the X-point, where the pitch angle of the field lines
does not have a significant radial variation in the region of
interest, which is the edge zone near the separatrix. This
assumption is valid for the coils used for ELM control
experiments in most tokamaks, as well as the proposed
coils for ITER. Using this assumption we then derived
more concrete results about the perturbation harmon-
ics which determine the island sizes. We demonstrated
that all the resonant harmonics are correlated. Our re-
sult expresses formally the alignment of the maxima and
minima of the perturbation spectra with the safety fac-
tor profile, which is often observed in the calculations of
perturbation harmonics. We also show that the quantity
which determines the island sizes is also directly linked
to the Melnikov integral and thus determines the extent
of the footprints on the divertor plates.

Our results show that by using coils on low field side
it is not possible to create significantly diffferent reso-
nant perturbations on different rational surfaces. Max-
imizing the resonant mode on one surface also leads to
maximization of resonant modes on other surfaces. This
is advantageous if one wants to optimize the coil sys-
tem for maximum island overlap and stochastization. If
one rather wants to study the effect on perturbation on
each surface separately it might be more advantageous
to choose a different position of the coils, as it is the case
for the new perturbation coils on DIII-D. Maximizing the
island overlap will also lead to maximization of divertor
footprints due to the relation between island sizes and
the Melnikov integral.

As our method is restricted to a LFS-localized pertur-
bation, the results do not apply to a perturbation field
created inside the plasma itself, e.g. a locked mode. In
this case the relation between magnetic islands and the
divertor footprints may be much less constrained.
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Appendix A: Hamiltonian representation of field
lines and magnetic islands

In the theory of hamiltonian dynamical systems (see
Ref. 16), the formula for the island width is derived using
the hamiltonian description of field line dynamics, with
the poloidal flux function in the role of the hamiltonian
and the toroidal angle in the role of time (see e.g. Ref. 2).
The hamiltonian is defined as

H = Aϕ = RAϕ̂ (A1)

where Aϕ is the covariant toroidal component of the vec-
tor potential and Aϕ̂ = ~A ·~̂eϕ is the physical component,
with ~̂eϕ being the unit basis vector in the toroidal di-
rection. A convenient choice of canonical coordinates is
the action-angle representation, where the action is the
toroidal flux Φ and the angle is θ∗. The Hamiltonian
equations are:

dθ∗

dϕ
=
∂H

∂Φ
(A2)

dΦ
dϕ

= −∂H
∂θ∗

(A3)

In the equilibrium case H is a function of poloidal po-
sition only and is independent on the toroidal angle ϕ.
Moreover, Φ and θ∗ being action-angle variables, they are
chosen so that H is only a function of Φ and Eq. (A3)
is identically zero. A nonaxisymmetric perturbation is
represented by the addition of a small term εH1(Φ, θ∗, ϕ)
to the hamiltonian, which can then be written as

H(Φ, θ∗, ϕ) = H0(Φ) + εH1(Φ, θ∗, ϕ). (A4)

H0 is the equilibrium part, which can be identified
with the unperturbed poloidal flux ψ. The per-
turbed part εH1(Φ, θ∗, ϕ) corresponds to a perturbation
δAϕ(Φ, θ∗, ϕ) of Aϕ. The equilibrium part has the prop-
erty

dH0

dΦ
=

dψ
dΦ

=
1
q

(A5)

which reduces Eq. (A2) to the form (7). (We assume
that the perturbation term εdH1(Φ,θ∗,ϕ)

dΦ is negligible in

comparison with the equilibrium term 1/q and can be
neglected.) The equation (6) can be derived from (A3)
by expressing the perturbed field δb1 using the perturbed
potential δAϕ. This expression is

δb1 = − ds
dψ

1
q

∂δAϕ
∂θ∗

. (A6)

The derivative ds
dϕ can be expressed as

ds
dϕ

=
ds
dψ

dψ
dΦ

dΦ
dϕ

=
ds
dψ

1
q

dΦ
dϕ

. (A7)

From Eqs. (A6) and (A7) it follows that Eq. (6) is equiv-
alent to (A3).

It is useful to decompose the perturbed potential in
Fourier modes, analogously to the decomposition (1) of
δb1:

δAϕ = εH1 = ε

∞∑
m,n=−∞

H̃(m,n) exp [i(mθ∗ − nϕ)](A8)

= ε
∑
m,n

H(m,n) cos(mθ∗ − nϕ+ χmn) (A9)

From (1), (A8) and (A6) we obtain the relation between
b̃1(m,n) and H̃(m,n):

b̃1(m,n) = − ds
dψ

1
q

imεH̃(m,n) (A10)

b1(m,n) =
ds
dψ

1
q
mεH(m,n). (A11)

The half-width of islands measured in terms of the ac-
tion variable (toroidal flux Φ) is16:

δΦ = 2q

√
εH(m,n)

dq
dΦ

(A12)

In a linear approximation, the half-width in terms of s
is related to δΦ by the relation δs = ds

dΦδΦ. Moreover,
dq
dΦ = ds

dΦq
′ and ds

dΦ = ds
dψ

1
q , so using Eq. (A11) we see

that the expressions (A12) and (13) are equivalent.
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Introduction 

An axisymmetric, single null, poloidally diverted tokamak has two strike-lines where the 

plasma hits the divertor targets: one on the high field side (HFS) and one on the low field side 

(LFS). In the presence of a non-axisymmetric magnetic perturbation, these strike-lines are 

replaced by spiralling patterns [1]. If an experimental profile (e.g. Dα or infrared [IR]) is taken 

along the radial direction at a given toroidal location, the strike-points are then observed to 

split. Such a splitting is for instance commonly observed during locked modes [2]. In the 

presence of external resonant magnetic perturbations (RMPs) a splitting may also be expected. 

On DIII-D, the splitting is observed during Edge Localised Mode (ELM)-suppressed 

discharges using n=3 perturbations from the I-coils [3,4]. It is important to notice that the 

splitting is seen much more clearly on particle flux (Dα) profiles than on heat flux (IR) 

profiles, at least in low collisionality experiments [3] (at high collisionality, the splitting is 

however clearly observed on the heat flux [4]). Recently, DIII-D also reported on splitting 

observations (both on heat and particle fluxes) in L-mode plasmas [5]. JET (using the Error 

Field Correction Coils (EFCCs)) and MAST (using n=3 perturbations from the ELM control 

coils [6]) find consistent effects on the heat flux profiles: the splitting is observed in L-mode 

but not in H-mode [7]. 

In the field of ELM control by RMPs from perturbation coils, one major question is to know 

whether the RMPs stochastize the magnetic field at the edge of the plasma, as assumed by the 

vacuum modelling. Studies based on the vacuum field assumption [8] have led to a design 

criterion for the considered ITER ELM control coils [9]. However, two important elements 

cast doubt on the stochastization of the magnetic field. The first one is the absence of a 

degradation of the electron temperature gradient in the edge transport barrier, which would be 

expected in the presence of a stochastic field [10]. The second one is the strong rotational 

screening effect [11,12] found in simulations of the DIII-D ELM suppression experiments 

[13,14]. On the other hand the RMPs can also become amplified by the interaction with MHD 

modes [15] – an effect which works against rotational screening [16]. 

In this paper, we analyse the possible consequences of the rotational screening (without taking 

into account the possibility of amplification by MHD modes) on the strike-point splitting in 

order to assess whether screening effects may explain the absence of a clear splitting of the 

heat flux profiles in some experiments, in particular in the DIII-D, JET and MAST H-mode 

discharges referred to above. 

 

Modelling and theoretical understanding of the strike-point splitting 
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Under a non-axisymmetric perturbation the magnetic separatrix splits into two surfaces: the 

stable and unstable manifolds of the X-point. The stable (resp. unstable) manifold is the set of 

field lines that asymptotically approach the X-point when followed in the direction of (resp. 

opposite to) the magnetic field. The manifolds are of interest to experiments because they 

delimit the first passage through the wall of field lines arriving from the plasma core. Their 

intersections with the divertor plates thus define areas (divertor footprints) where high heat 

and particle fluxes are carried from the plasma core along the field lines [17]. Those areas 

take typically the form of spirals of high temperature and particle recycling around the 

original (unperturbed) divertor strike point.  

The divertor footprints can be visualized by plotting a map of the connection length on the 

divertor plates (a laminar plot) [18]. The connection length is the distance (measured as the 

number of toroidal turns) needed to reach the wall again by following a field line starting at a 

given position. Field lines with large connection lengths remain in the plasma for many turns 

and carry high fluxes from the hot plasma core. The extent of the footprint can be 

approximated analytically using the Melnikov function [19] whose maximum is the difference 

of ψ between the unperturbed strike point and the tip of the footprint [20]. When the 

perturbation has one dominant toroidal mode further simplification is possible and the 

difference of ψ can be expressed using a single number – the one-mode Melnikov integral 

nM~  [20]. 

An example of the laminar plot and the stable manifold is shown on Figure 1 (left plot) for an 

equilibrium predicted for the COMPASS tokamak [21] in the case of a magnetic field of 1.2 T, 

low triangularity, single-null (SND) geometry and heating by one co-injected neutral beam 

[22]. The n=2 perturbation is imposed by the existing perturbation coils whose description can 

be found in [23]. 

Physics-motivated method for taking screening currents into account 

Coordinate system and resonant field components 

We use an ( )*,, θϕs  system of equilibrium coordinates, where ( ) ( ) 2/1

axissepaxiss ψψψψ −−≡  

(with ψ  the poloidal magnetic flux), ϕ  the geometric toroidal angle and *θ  the 

corresponding straight field line poloidal angle (i.e. such that qdd == const*θϕ  along a 

field line, with q  the safety factor).  

Magnetic islands are known to arise from the component of the magnetic perturbation which 

is perpendicular to the equilibrium flux surfaces. We characterise the latter by the quantity 
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ϕ∇⋅∇⋅≡ BsBb1 . It can be shown that its Fourier components 1
mnb  are directly related to the 

half-width of the magnetic islands and moreover they are related to the Melnikov integral [24], 

more precisely proportional to a function which is a generalization of the one-mode Melnikov 

integral nM~  (the Melnikov-like function) [20] or equivalently the Poincaré integral [25]. At 

the same time the radial extent of the invariant manifolds (estimated by the Melnikov integral) 

gives the lower bound of the stochastic layer width because the intersections of the invariant 

manifolds (the homoclinic tangle) create themselves a thin stochastic layer. The actual 

stochastic layer can be much wider than this lower bound because it is formed also by the 

overlap of the magnetic islands [24]. 

 

Model of the screening currents 

Without loss of generality, we consider one toroidal mode n of the screening currents in the 

plasma. A generic current can be represented a Fourier sum of these modes which are 

independent thanks to the toroidal symmetry. 

Screening currents are modelled under the following assumptions: 

1) They are radially localised on infinitesimally thin layers around the resonant surfaces: 

( )∑ ∈
−=

Sq nqnq jssj ,,δ , where δ is the Dirac delta function and S is the set of rational values 

of the safety factor which define the screening surfaces: nmq =  for integer m and the given 

toroidal mode number n. The corresponding values of the radial coordinate s are noted as nqs , . 

2) They are parallel to the equilibrium field lines: eqeqnqnq BBjj ⋅= ,, . 

3) They are divergence-free: 0=⋅∇ j , which implies that  eqnqnq Bj ,, ≡α  is constant on a 

field line. 

The first assumption corresponds to the fact that the current density is generally localised in a 

thin layer around the resonant surface [11,12,26]. The second assumption follows from the 

fact that the screening currents are induced to oppose the radial perturbation and to create a 

radial screening field perpendicular to the field lines a parallel current is needed. The third 

assumption expresses quasi-neutrality.  

The angular dependence of nq,α  has the form of one Fourier mode: 

 ( ) ( )[ ]( )ϕθβϕθα nmmnnq +ℜ= **
, iexp,  (1) 

with qnm = , where the toroidal dependence is the consequence of working with one toroidal 

mode, while the poloidal dependence follows from the third requirement: nq,α  constant on 
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field lines. mnβ  is a complex quantity containing both the amplitude and phase of nq,α . Thus, 

the screening current density can be expressed as a linear combination of base currents 0,mnj  

 







ℜ= ∑

∈Snmm
mnmn jIj

/;
0, , (2) 

with coefficients refrefmnmn jBI β≡  and the base currents 

 ( ) ( ) ( )[ ] eqnq
ref

ref
mn Bnmiss

B
j

sj ⋅+−≡ ϕθδϕθ *
,

*
0, exp,, . (3) 

refref jB is an arbitrary value expressing the choice of base current amplitudes (and thus the 

normalization of Imn) relative to the magnetic field strength. 

 

Coupling matrix 

We calculate the field 0,mnB  created by the base resonant current 0,mnj . The numerical method 

approximates 0,mnj by discrete helical current filaments on the screening surface and calculates 

their vector potential on a flux surface aligned mesh. It avoids the mesh points which are too 

close to the screening surface and uses instead an interpolation in order that the discrete 

approximation of currents not cause an error. 0,mnB  is then obtained as the curl of the 

interpolated vector potential, which gives all its components and automatically satisfies the 

condition of zero divergence. The corresponding 1b  component, denoted mnb ,1
0 , is then Fourier 

transformed at each resonant surface '' nmq =  in order to obtain the resonant components 
mn
nmb ,1

0,′′ . Thus, mn
nmb ,1

0,′′  designates the resonant part, on the '' nmq =  surface, of the 1b  created by 

a resonant current 0,mnj  located at the nmq =  surface. Thanks to the toroidal symmetry of 

the field equations in mn
nmb ,1

0,′′  we have nn ′= , otherwise 0,1
0, =′′

mn
nmb . 

 The plasma response field corresponding to the total current j  as given by Eq. (2) is 

( )∑ ∈
ℜ=

Snmm mnmn BIB
/; 0,plasma  whose resonant 1b  components are ∑ ⋅= ′m mn

mn
nmnm Ibb 2,1

0,
1

plasma,'  

and ( )∑ ⋅= ′−− m mn
mn
nmnm Ibb 2*,1

0,
1

plasma,' . The RHS is the product of the matrix mn
nmb ,1

0,′  with 

subscripts m  and m′ , which we call the coupling matrix, by the current vector mnI . 

Calculation of the screened field by inversion of the coupling matrix 
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To determine the coefficients mnI  one needs an assumption about the character of the plasma 

response, i.e. if it amplifies or screens the perturbation and by what amount. In the following 

we assume an efficient screening which completely eliminates magnetic islands at the rational 

surfaces in the pedestal region, i.e. the resonant Fourier components 1
mnb  of the total magnetic 

field are zero. 

The procedure to obtain the screened field begins with the calculation of the coupling matrix, 

for a given choice of the set of screening surfaces S. Independently, the vacuum RMP 

spectrum 1
vac,'nmb ′  is calculated from the coil geometry. The screening current distribution 

screen
mnI  is obtained by solving 1

vac,'
,1

0,' 2 nmm
screen
mn

mn
nm bIb −=⋅∑ , i.e. by inverting the coupling 

matrix. The full, screened field fullB  is then obtained as ( )∑ℜ+=
m mn

screen
mnvacfull BIBB 0, . It is 

easy to verify that its resonant Fourier components 1
, fullmnb  on rational surfaces with 

Snmq ∈=  satisfy the property 01
, =fullmnb  up to the error introduced by the numerical 

method. 

If the set S consists of only one screening surface, the coupling matrix is trivial, with one 

element. The screening currents for each surface alone are given by using only the diagonal 

terms of the coupling matrix: mn
mnmn

screen
mn bbI ,1

0,
1

vac,diag, 2−= . If more screening surfaces are 

considered, the currents screen
mnI  on each one required to cancel the resonant components may 

be different than for one surface alone due to off-diagonal components of the coupling matrix. 

This effect can be quantified by the ratio between screen
mnI  calculated using the full matrix and 

screen
mnI diag, . If for example the ratio is lower than 1, it means that the perturbation field from 

different screening surfaces reinforce each other and smaller currents are required for 

screening than if screening were due only to one surface. This is the case for all the examples 

described in the next subsection, where we present actual values of this ratio. This is one of 

the geometry effects neglected in cylindrical models such as [13,14,27] where the coupling 

matrix is always diagonal.  

Numerical examples 

We chose two cases to illustrate the method and to show the effect of screening on footprints: 

the COMPASS case described above and an equilibrium from an ELM control experiment on 

JET with n=2 perturbation of the EFCCs [7] (shot #79729 at 19.38s). For both cases we first 

calculate the screening field needed to cancel the perturbation on a single surface ( 24=q  for 
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COMPASS, 25=q  for JET). In those cases the coupling matrix is trivial, with one element. 

Then we calculate the screening field choosing four screening surfaces with 27,...,24=q  

for COMPASS, 28,...,25=q  for JET. The n=2 mode of the screening field 1
screenb  as a 

function of *θ  on the outermost screening surface is shown on Figure 2 for the four cases 

(each equilibrium with one and four screening surfaces). The screening field of one screening 

surface is distributed all over the resonant surface, due to the helical structure of the screening 

current, while for four screening surfaces the screening field is mostly localized on the LFS. 

Both COMPASS and JET show this effect. It shall be noted that the vacuum field is also 

localized at the LFS because of the position of the coils in both tokamaks, so the screening 

field of four currents is more similar to the vacuum field than the field of a single current. The 

ratio screen
nm

screen
nm II diag,2525 / ====  for JET is 0.63, for COMPASS screen

nm
screen

nm II diag,2424 / ====  is 0.72, with  

similar and generally decreasing values for other surfaces. 

The numerical error in determining the screening current amplitudes was estimated by 

increasing four times the resolution of the discretization of the screening currents. The largest 

change was observed for the outermost surface (6.3% for COMPASS, 8.3% for JET). The 

error decreases for the inner surfaces down to 0.1% for COMPASS, 0.2% for JET at the 

innermost surface. 

Impact of screening currents on the splitting 

For the mnb ,1
0  field created by the resonant current 0,mnj  we may compute the one-mode 

Melnikov integral at the separatrix which we will note mnM 0
~ . The total Melnikov integral 

which estimates the splitting from all the screening currents and the vacuum field is 

 ∑
∈

+=
Snmm

mnscreen
mnvacnn MIMM

/;
0,

~~~  (4) 

The ratio of the footprint extent measured in terms of ψ for the screened vs. the vacuum field 

is given by vacnn MM ,
~/~ . Table 1 lists this value for the COMPASS and JET cases as a 

function of the choice of screening currents, and Figure 3 shows the same data. 

In both cases a significant reduction of the footprints is predicted by the Melnikov integral 

when four screening currents are considered. To confirm this we plotted the stable manifold 

and a laminar plot around the inner strike point for COMPASS for the screened field and the 

stable manifold for the vacuum field for comparison (Figure 1, right plot). The stable 

manifold forms the boundary of the footprints as expected and indeed shows a clear reduction 

in comparison to the vacuum stable manifold. The difference of ψ (normalized to the poloidal 
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flux at the separatrix) between the footprint tip and the base is 6.8 10-3, while the Melnikov 

integral method predicts 5.3 10-3. The inaccuracy of the Melnikov method is significantly 

lower (relative error below 1/10) for the other cases in the table which do not include the 

outermost (m=7) screening surface. Similar result was found for the JET case (laminar plots 

are shown in [7]): the actual difference is 3.4 10-3, while the Melnikov integral method 

predicts 3.6 10-3. The outermost (m=8) surface can also lead to a large error in the Melnikov 

integral estimation, especially with the m=8 surface alone, where the Melnikov integral 

predicts reduction of footprints by a factor of 0.89, while the actual reduction is 0.56. 

Discussion and conclusions 

We developed a model of the plasma response currents on resonant surfaces and the resulting 

field, based on the realistic geometry of poloidally diverted tokamak plasmas and thus 

appropriate for the region near the separatrix, which is crucial for the ELM mitigation by 

external perturbations and also for the impact of perturbations on the divertor strike points 

(strike point splitting). To compute the screening currents we used the assumption of 

complete screening of resonant modes in the edge region, because we do not simulate the 

plasma response self-consistently. This is justified by earlier results indicating that the 

resonant modes of the perturbation will be suppressed by strong gradients in the pedestal 

region [13,14]. As we do not directly couple our model with these results yet, we performed a 

scan of different possible combinations of screening currents. In future work we plan to use 

the results of self-consistent MHD models to determine the set of screening surfaces and the 

screening factors, which will also allow for incomplete screening. The reason for this 

approach is that those MHD models use a cylindrical geometry in which the effect on the 

divertor strike points can’t be represented, and our model fills this gap. While there are MHD 

codes (e.g. NIMROD [16], M3D [28] and JOREK [29]) using a realistic geometry which thus 

can model the strike points themselves (as shown for JOREK in [29]) without needing our 

model, they have limitations in the physics included (lack of realistic resistivity) which 

justifies the interest of our approach. 

The resulting screened field was used to model magnetic footprints on the divertor by tracing 

the field lines. For two example cases (single-null equilibria of COMPASS and JET with 

2=n  perturbations) we have shown notable differences in comparison with the vacuum field. 

The screening significantly reduces the spiralling patterns of field lines coming from inside 

the plasma. The spirals are shortened along their axis, the position of the axis is not affected. 

Reducing the coil current in a vacuum model has a similar impact. Comparison with 

experimental observation of strike point splitting could be thus used for validating the starting 
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assumption about the screening. Coupling with MHD models will also enable us to do scans 

of the dependence of strike point splitting on the collisionality (and thus resistivity) and 

rotation, which are both important parameters for the screening effect, and compare the results 

with experiments. It can be expected that higher collisionality and slower rotation will reduce 

the screening and enhance the footprints. The discussion of experimental results is however 

more complicated than a simple comparison with the predicted magnetic footprints because of 

the deformation of flux surfaces beyond the separatrix. The field of the screening currents 

decays quickly outside of the separatrix and at the same time the field of the coils increases as 

they are approached. Even if the screening reduces significantly the splitting of the perturbed 

separatrix, for the flux surfaces in the scrape-off layer the screening can be then expected to 

be less efficient and their distortion to remain. The particles in the scrape-off layer would 

follow those distorted surfaces. This shows that it is necessary to distinguish between particle 

and heat flux and that the presence of splitting of the particle flux does not necessarily imply 

the absence of screening. Indeed, as mentioned in the Introduction, in the DIII-D low 

collisionality experiments the splitting of particle flux and heat flux are different. Transport 

modelling using the vacuum perturbation failed to explain this observation [30] and it will be 

thus interesting to repeat it for the screened field as calculated by our model to see if the 

screening can provide an explanation. 

The reduction of footprints can be efficiently estimated by the Melnikov integral method, but 

it is sometimes inaccurate when a screening current very close to the separatrix is included, 

probably because of the strong variation of the screening field while the Melnikov method (a 

first-order perturbation method) needs the perturbation field to be slowly varying in the 

vicinity of the separatrix. 

The reduction of footprints can be qualitatively understood from the fact that the screening 

field is mostly localized at the LFS, just as the field of the coils. It can be shown that for a 

LFS-localized perturbation field the Melnikov integral which estimates the splitting is linked 

to the values of the Melnikov-like function on the resonant surfaces which is proportional to 

the resonant modes of the perturbation [20]. Thus eliminating the resonant modes shall also 

mostly eliminate the Melnikov integral and splitting. It shall be noted that for a single 

screening surface the field is not at all localized so this reasoning does not apply. Indeed, we 

have seen that a single screening surface reduces the Melnikov integral only weakly. 

Our model is designed to represent one significant feature of the plasma response to the 

perturbations – the surface screening currents localized at resonant surfaces. The ideal MHD 

models assume them so the opening of magnetic islands is prevented [15], while the resistive 
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MHD models predict them self-consistently. There are however other ways of plasma reaction 

to the perturbation, namely coupling to MHD modes which can provide amplification of the 

applied perturbation [15,16,31], especially important at high β [32], and those are not 

represented in our approach. 
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Tables 

COMPASS m=4 m=4,5 m=4,5,6 m=4,5,6,7 

vacMM ,22
~/~  0.73 0.54 0.45 0.27 

JET m=5 m=5,6 m=5,6,7 m=5,6,7,8 

vacMM ,22
~/~  0.69 0.50 0.30 0.26 

Table 1 One mode Melnikov integral of the screened perturbation normalized to the 
Melnikov integral of the vacuum perturbation, for different choices of the screening 
currents. vacM ,2

~  is 2.00 10-2 for COMPASS, 1.38 10-2 for JET, relative to the poloidal 

flux at the separatrix.
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Figure captions 

Figure 1 Laminar plot of the connection length (as a number of toroidal turns) on the divertor 

of COMPASS near the HFS strike point with a vacuum (left) and screened (right) perturbation 

field. White line: The stable manifold of the vacuum perturbation field. Black line: the stable 

manifold of the screened perturbation field. 
Figure 2 Poloidal dependence of the real part of the n=2 component of the relative 

perturbation field b1 at the q=5/2 resonant surface for JET, shot #79729 and q=4/2 for 

COMPASS. Fields of one screening current (full lines) and four screening currents (dashed 

lines) are shown. 

Figure 3 The relative Melnikov integral vacMM ,22
~/~

 from Table 1 as a function of the 

number of screening surfaces: from one at the q=5/2 resonant surface for JET, shot #79729 

and q=4/2 for COMPASS, up to four of them. 
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8.1 Conclusions of chapter 8

We have seen that the length of footprints is correlated with the resonant
perturbation modes from external coils in the vacuum approximation. The
question now is how the overall shape of footprints is affected by the pertur-
bation strength (i.e. the current in the perturbation coils). It turns out that
only the length of the footprints varies while their shape is unchanged. We
plan to enhance the first paper with an analytical derivation of this result
and then publish it in a journal.

This result extends even to the case with screening of RMPs by the
plasma. If the RMPs are screened, the footprints are substantially reduced.
There however must be several resonant surfaces with the screening currents
which make the screening field look more like the vacuum field, i.e. localized
on the LFS. Investigation of why this is the case is postponed to a future
work. This results presents an interesting possibility of diagnosing the screen-
ing of RMPs. The interpretation of experimental results is of course more
complicated, as discussed in the conclusion of the second paper, and we plan
to extend our field line tracing with true plasma transport simulations which
shall be able to predict better the experimental results.



Chapter 9

Disruptions and runaway
electrons

9.1 Disruptions

A major disruption is an abrupt plasma termination event causing the re-
lease of all the plasma stored energy. Major disruptions are triggered by
MHD instabilities, which are in turn caused by crossing the MHD stabil-
ity limits (such as the Troyon beta limit), growth of MHD modes (such as
mode locking) and radiative instability, caused by crossing the density limit
and/or impurity accumulation. The MHD instabilities cause a rapid loss of
the plasma thermal energy to the wall in a phase called the thermal quench.
The associated redistribution (flattening) of the current profile causes the
plasma current to momentarily rise because of the decrease of the induc-
tance. The decreased temperature however increases the resistivity and the
current decays, accompanied by a rise of the loop voltage. This phase is
called current quench. During the current quench the magnetic energy of the
plasma poloidal field is released.

Elongated plasmas are intrinsically vertically unstable. When the verti-
cal control fails (e.g. reaching current limit following a challenge) the plasma
moves vertically leading to a Vertical Displacement Event (VDE). In addi-
tion, loss of vertical control also occurs during quench as the consequence
of the rapid change of plasma parameters with which the feedback control
cannot cope.

The increased loop voltage during the current quench leads to a formation
of a beam of relativistic electrons, called runaway electrons (REs) with very
little interactions with the rest of the plasma (see the next section 9.2).
The current carried by runaway electrons does not encounter resistance, in
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contrast to the thermal plasma current, so it is not affected by the increase of
resistivity after the thermal quench. A large fraction of the plasma current
can be eventually converted to the current of the RE beam. When the
thermal plasma current have decayed, the RE current remains, forming a
plateau of the total plasma current.

Disruptions pose a threat to a tokamak for multiple reasons:

• The thermal energy released during the thermal quench may cause
damage to the plasma facing components, in a manner similar to large
ELMs.

• The magnetic energy is released during the current quench part as eddy
currents in the conductive tokamak structures and part in radiation.
During a VDE the plasma also touches the wall and part of the plasma
poloidal current now must pass through the wall, known as halo current.
The eddy currents and halo currents cause mechanical stresses in in-
vessel components the support structure.

• When the runaway electron beam eventually hits the wall due to the
loss of plasma equilibrium, its energy is deposited in a localized manner,
which may cause damage to the plasma facing components of the wall.

The energies associated with disruptions are summarized in Table 9.1.
For ITER they are much larger than for the present tokamaks, making ITER
disruptions a serious concern.

JET ITER
thermal energy < 12 MJ < 350 MJ
poloidal magnetic energy < 60 MJ < 1300 MJ
RE current 1 MA 10 MA
energy of the RE beam 0.5 MJ 20 MJ

Table 9.1: Disruption parameters for JET and ITER. From [76]

9.2 Runaway electrons

The electron collision frequency decreases with their velocity ve as ν ∝
v−3
e [77]. The drag on the moving electron caused by the collisions also

decreases with ve. When the electron is being accelerated by the electric
field, above a certain critical velocity the drag drops below the accelerating
electric force and the electron velocity increases more and more, eventually
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to relativistic energies. Such electrons are called runaways. As the velocity
can’t overcome the speed of light, there is a critical electric field, below which
runaway formation is prevented, as the critical velocity is above the speed of
light.

The electrons can become runaways by several means which lead to ob-
taining a velocity above the critical value [78]: Dreicer, hot tail and avalanche
mechanisms. The last one requires an existing runaway population which gets
multiplied as the RE collide with thermal electrons and give them energies
above the critical value. The initial RE population can be created by the first
two mechanisms, in ITER Compton scattering by γ rays and decay of tritium
will also contribute. The dominant mechanism of RE production in ITER
disruptions will be the avalanche mechanism, leading to a multiplication of
the original RE population by a factor of 2× 1016 [79].

Runaways can be suppressed by increasing the density which increases
the collision rate and thus the critical electric field. If the critical electric
field is greater than the actual electric field, the REs are not produced. For
the electric field of the ITER current quench the required electron density is
above 1022 m−3 [79], which requires injecting massive amounts of gas at the
moment of disruption. This methods has technological problems, both with
achieving such densities and with the impact on wall conditioning and the
vacuum systems. An alternative mechanism of runaway suppression is thus
desirable.

9.3 Runaway electron mitigation by magnetic

perturbations

The runaway avalanche could be suppressed if the REs were lost from the
plasma at a sufficient rate. One mechanism causing such a diffusion of run-
aways are magnetic perturbations [80]. If the trajectories of REs become
chaotic as a result of the perturbations, the REs eventually hit the wall and
can’t induce further secondary REs, so the avalanche is supressed. This
mechanism was first confirmed experimentally on JT-60U [81] and proposed
as a solution for ITER in [82]. On TEXTOR the DED (dynamic ergodic
divertor) was used to generate the magnetic perturbations and it was shown
that the DED was able to suppress RE generation [83]. It was also shown
by numerical simulations that the RE trajectories indeed become chaotic in
the DED field.
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9.4 Runaway electron mitigation experiments

on JET

The magnetic perturbation technique was tested on JET using the pertur-
bation field of the EFCCs. While initial results were uncertain [84], it was
then found that this had been caused only by the scatter in the data [85] and
further experiments have not shown any impact of the EFCCs on REs [76].

Another type of magnetic perturbation is the toroidal field variation (rip-
ple), caused by the discrete nature of the toroidal field coils. Theoretical
arguments show that RE trajectories can be influenced by the ripple [86].
JET has an unique ability of controlling the ripple, as its 32 toroidal field
coils are divided in two independently powered sets of 16 coils alternating in
the toroidal direction. The smallest ripple is produced if the same current is
used in both sets and it increases with the difference between currents. RE
control was attempted using the ripple introduced by this means. However
the ripple is too weak for the theoretically envisaged mechanism to cause a
diffusion of REs [76]. The experimental results are in agreement: no effect
on REs was observed [76].

9.5 Simulations of runaway electron trajecto-

ries

9.5.1 Simulation setup

In order to explain the JET experimental results we performed simulations
of the RE trajectories in the field of the JET EFCCs and the TF ripple.
The REs were modelled as single test particles (without interactions with
other particles) moving in the field of the EFCCs and the plasma. The total
field was obtained as a superposition of those two. While this approach is
questionable for the perturbations used to control ELMs due to the possi-
ble important influence of plasma response, here it is not supposed to be a
problem, as the plasma resistivity after the thermal quench is high and its
rotation and gradients are low.

The drift approximation was used and the relativistic drift equations of
motion were obtained from the relativistic drift hamiltonian given in [87].
The same hamiltonian had been used by the TEXTOR team in [83]. We
hovewer did not use the mapping approach used in [83] to avoid its complexity
and we instead integrated the equations of motion of the gyrocenter using the
standard Runge-Kutta scheme. The equations of motion and the integrator
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were derived by R. Papřok [13]. The accuracy was checked by a comparison
with trajectories obtained from a full hamiltonian (including the Larmor
motion) and by checking the conservation of energy.

The simulations for the ripple field were done using only the full hamil-
tonian, as the drift hamiltonian [87] relies on a toroidally symmetric toroidal
field, so it can’t be applied in this situation. The time step had to be chosen
significantly smaller than the Larmor period in order to represent accurately
the Larmor motion.

The field of the EFCCs was calculated by the ERGOS code using the
Biot-Savart’s law. The toroidal field was assumed to have a perfect 1/R de-
pendency in order to simplify the calculations. In the case of the toroidal
field ripple the toroidal field was instead calculated by the Biot-Savart’s law
from the model of the toroidal coils kindly provided by D. Howell. The
poloidal field was reconstructed by the EFIT code from a typical JET shot
at a moment of a disruption. The poloidal field is the main source of un-
certainity. The EFIT code, being intended for reconstructiong the plasma
equilibrium, is not suited to the reconstruction of field during a disruption.
Moreover it needs an assumption on the plasma current profile, which is not
well known during a disruption. For this reason two different current profiles
were chosen: one fairly flat, with a parabolic radial dependency of current
density, another with a centrally peaked current density. The latter corre-
sponds to the situation where most of the plasma current is already being
carried by the RE beam. The differences in current profiles manifest them-
selves in the profiles of the safety factor q. The simulations were also done
with an equilibrium corresponding to a moment before the thermal quench.

9.5.2 Results

The results are presented in the form of Poincaré plots, showing for each ini-
tial condition 2000 passages of the electron’s gyrocenter through the poloidal
plane. The initial positions are chosen on the oudboard midplane in a range
from the magnetic axis outwards. The energies are in the range of RE ener-
gies in JET disruptions: 5 MeV, 10 MeV and 20 MeV.

The first studied configuration is all four EFCCs in a n = 1 configuration,
that is, the current polarities and the radial perturbation field are arranged
as + + −− around the torus. The current of the EFCCs is 1.3 kA, or
20.8 kA turns. Results are shown in Figs 9.1–9.3.

The second configuration is n = 1, with only two opposite coils used, i.e.
polarities are +0−0. The current is 2 kA, or 32 kA turns. Results are shown
in Figs 9.4–9.6.

The third configuration is n = 2, with alternating currents of the coils in
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(a) 5 MeV (b) 10 MeV (c) 20 MeV

Figure 9.1: Poincaré plots of runaway trajectories (black) for the n = 1 con-
figuration of all the four EFCCs, 1.3 kA current, peaked current equilibrium,
JET shot #75352. Color lines are the flux surfaces of the equilibrium.

(a) 5 MeV (b) 10 MeV (c) 20 MeV

Figure 9.2: Poincaré plots for the parabolic current profile equilibrium of the
shot #75352, other parameters are same as in Fig. 9.1.

(a) 5 MeV (b) 10 MeV (c) 20 MeV

Figure 9.3: Poincaré plots for the pre-disruption equilibrium of the shot
#75352, other parameters are same as in Fig. 9.1.
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(a) 5 MeV (b) 10 MeV (c) 20 MeV

Figure 9.4: Poincaré plots of runaway trajectories for the n = 1 configuration
of two EFCCs, 2 kA current, peaked current equilibrium, JET shot #75352.

(a) 5 MeV (b) 10 MeV (c) 20 MeV

Figure 9.5: Poincaré plots for the parabolic current profile equilibrium of the
shot #75352, other parameters are same as in Fig. 9.4.

(a) 5 MeV (b) 10 MeV (c) 20 MeV

Figure 9.6: Poincaré plots for the pre-disruption equilibrium of the shot
#75352, other parameters are same as in Fig. 9.4.
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a + − +− scheme. The current is 3 kA, or 48 kA turns. Results are shown
in Figs 9.7–9.9.

Finally, we did a simulation with the ripple field, which was produced by
a current of 63.6 kA in one set of toroidal field and 31.8 kA in the other,
corresponding to a 1.2% outer midplane ripple. The results for the pre-
disruption equilibrium are shown in Fig 9.10. For the other equilibria the
results were very similar and are not shown.

9.5.3 Conclusions

All the Poincaré plots show regular KAM surfaces, sometimes alternating
with island areas that are too narrow to overlap. No stochastic transport
takes place. The equilibria are however very different. The peaked equilib-
rium has the most significant islands because its safety factor passes through
the low-order rational numbers. In contrast, for the flat profile equilibrium,
the q profile is high so high poloidal mode numbers m are needed for reso-
nance. Those modes are weak in the spectrum of the EFCCs, because the
EFCCs are large coils with a wide perturbation, dominated by low m modes
in the Fourier space. The n = 2 perturbation requires for resonances poloidal
modes with a twice as high m for the same q profile than the n = 1 pertur-
bation. It is not surprising that the n = 2 results show lesser islands than
the n = 1 results.

Those results explain the experimental observation that REs are not af-
fected by EFCCs nor TF ripple on JET. We tried apparently the most favor-
able configuration n = 1 with the peaked equilibrium and increased the coil
current in the simulation to a speculative1 value of 6 kA, or 96 kA turns to
see if this would be enough to produce the desired effect. Results are shown
in Fig. 9.11. We can see that stochastic regions start to appear, however
they don’t yet merge in a global stochastic “sea” and good KAM surfaces
persist especially in the center, where a realistic RE beam would be located.
This degree of perturbation would still not be enough to cause RE losses
by itself, but it may enhance runaway losses caused by other mechanism,
such as the magnetic turbulence [88]. This mechanism has however reduced
efficiency for the high RE energies considered, because the displacement of
drift orbits of the REs relative to the flux surfaces causes the turbulence, if
radially localized, to be averaged out on the RE orbit [88].

Installation of a new set of perturbation coils for ELM control on JET is
currently being considered. Those coils would be located much closer to the

1This value will however be soon achievable thanks to the foreseen changes in the EFCC
power supplies.
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(a) 5 MeV (b) 10 MeV (c) 20 MeV

Figure 9.7: Poincaré plots of runaway trajectories for the n = 2 configuration
of four EFCCs, 3 kA current, peaked current equilibrium, JET shot #75352.

(a) 5 MeV (b) 10 MeV (c) 20 MeV

Figure 9.8: Poincaré plots for the parabolic current profile equilibrium of the
shot #75352, other parameters are same as in Fig. 9.7.

(a) 5 MeV (b) 10 MeV (c) 20 MeV

Figure 9.9: Poincaré plots for the pre-disruption equilibrium of the shot
#75352, other parameters are same as in Fig. 9.7.
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(a) 5 MeV (b) 10 MeV (c) 20 MeV

Figure 9.10: Poincaré plots of runaway trajectories for the toroidal field
ripple, pre-disruption equilibrium, JET shot #75352.

(a) 5 MeV (b) 10 MeV (c) 20 MeV

Figure 9.11: Poincaré plots for the peaked current equilibrium of the shot
#75352, with a n = 1 configuration of all the four EFCCs and a speculative
current of 6 kA.
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plasma and be much smaller, thus being able to produce higher m modes.
A priori such coils may be better suited for RE mitigation than the existing
EFCCs. Our calculation shall be repeated for this coil design to check if it is
indeed the case. Eventually, such calculations need to be done also for ITER
with the planned ELM control coils which may find a second use as a tool
for RE control.
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Chapter 10

Conclusions

The study of resonant magnetic perturbations in tokamaks is an exceptional
topic. It combines the mathematics of the dynamical systems with diverse
physical phenomena ranging from single particle motion to magnetohydro-
dynamics, and at the same time presents important opportunities for ap-
plications. It is unique in the way how the abstract mathematical notions,
formulated in the geometry of the phase space, translate very directly to
observable physical quantities. Indeed, the phase space of the hamiltonian
formulation of field lines is here the physical space inside the tokamak and
many of the abstract structures that we know from figures in the mathemat-
ical textbooks can be directly observed with the tokamak diagnostics, even
seen on cameras.

The present thesis has touched many topics of this field. The most im-
portant achievements according to the author’s opinion are:

• The comparison of chaotic behavior of field lines and particle trajecto-
ries have yielded interesting results and the work has continued in the
calculations of trajectories of runaway electrons in the JET tokamak.
The chaotic behavior is actually absent in this case, the important
point is that this result is in agreement with experimental observa-
tions. Other groups predicted chaotic behavior for other cases (e.g.
TEXTOR) and this was also backed by experiments, so we may sup-
pose that this modelling is the right approach and we may use it for
evaluating future coil designs.

• Establishing of a solid basis for the COMPASS experiments with RMPs.
The availability of the RMP coils, the X-point geometry, ability to en-
ter H-mode, neutral beam injection, and diagnostics focused on the
edge (together with the rich magnetic diagnostics) make COMPASS a
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suitable machine for RMP studies. Conducting the COMPASS exper-
iments will be one of our next major tasks.

• The experience gained with optimizing the RMP spectra has lead to
formulation and publication of design guidelines for RMP coils which
find use in the design of other future experiments.

• We have rigorously formulated the correlation of magnetic islands at
different surfaces and magnetic footprints. A model for the screen-
ing currents in the plasma has been developed and it was found that
screening reduces the footprints substantially, presenting an interest-
ing research opportunity, among others for COMPASS. The model of
screening can be used to implement the screening predicted by cylin-
drical plasma response models in a realistic geometry. Example uses
that we foresee are:

– calculations of the neoclassical toroidal viscosity,

– transport simulations in the screened perturbation field.

The second topic will be another major area of future research, as it
can give more concrete results for comparison with experiments.

Last but not least, it is the author’s hope that the present thesis will serve
as an useful reference for future students of this topic.



Appendix A

Integrability of hamiltonian
dynamical systems

This appendix summarizes the needed results of classical mechanics and chaos
theory of hamiltonian dynamical systems. It follows mostly the monographs
[89, 38, 90].

A.1 Basic notions

A hamiltonian system with n degrees of freedom is described by n pairs of
variables (pi, qi) and hamiltonian function H. Its dynamics is given by the
canonical equations

dqi
dt

=
∂ H

∂ pi
(A.1)

dpi
dt

= −∂ H
∂ qi

(A.2)

If the hamiltonian is time-independent, it is a conserved quantity (an integral
of motion) and is called autonomous.

If the system has n integrals of motion F1, . . . , Fn (one of them is the
hamiltonian H) which satisfy the condition of having zero Poisson brackets

{Fi, Fj} = 0

(we say that the functions F1, . . . , Fn are in involution), one may perform a
canonical transformation into new momenta Ii and positions θi, where the
Ii are functions of F1, . . . , Fn only and so are also integrals of motion. The
hamiltonian depends only on Ii. The variables θi are called angles and Ii
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actions. Canonical equations for those variables have a simple form

dθi
dt

=
∂ H

∂ Ii
≡ ωi(I1, . . . , In) (A.3)

dIi
dt

= −∂ H
∂ qi

= 0. (A.4)

This is the Liouville-Arnold theorem whose proof can be found in [89]. Sys-
tems with this property are called integrable and their time evolution is sim-
ple: the values of actions Ii stay constant and define a n-dimensional hyper-
surface on which the trajectory of the system remains. The angles θi evolve
independently on each other with constant velocities ωi which depend on the
choice of the hypersurface. As we assume that the system is constrained to
remain in a bounded area of the phase space, the positions θi are angular
coordinates: θi + 2π describe the same point as θi. The hypersurfaces of
constant actions have thus the topology of a torus (a Cartesian product of
n circles, each of them parametrized by one of the coordinates θi) and they
are called invariant tori.

Autonomous systems with one degree of freedom are always integrable,
because one integral of motion is sufficient, and this is the hamiltonian. Sys-
tems with more degrees of freedom or a time-dependent hamiltonian are not
necessarily integrable. The case of a time-dependent hamiltonian can be
reduced to an autonomous one with one added degree of freedom by the fol-
lowing procedure. To the original variables (pi, qi) we add a pair of canonical
variables −E and t (t is the time in the original nonautonomous system)
and we introduce a new hamiltonian H̄(pi, qi,−E, t) ≡ H(pi, qi, t) − E and
a new time variable τ . The canonical equations on the extended phase space
(pi, qi,−E, t) are then

dqi
dτ

=
∂ H̄

∂ pi
=
∂ H

∂ pi
(A.5)

dpi
dτ

= −∂ H̄
∂ qi

= −∂ H
∂ qi

(A.6)

dt

dτ
= − ∂ H̄

∂ (−E)
= 1 (A.7)

d(−E)

dτ
= −∂ H̄

∂ t
= −∂ H

∂ t
(A.8)

According to the equation (A.7) the time τ of the new system is identical
to the time t of the old system up to an additive constant. The equations
(A.5) and (A.6) are then equivalent to the equations (A.1) and (A.2) of the
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old system and the equation (A.8) expresses that E is equal to the energy
H of the new system. (In the new system t and −E are however formally
independent variables.) The new system is thus completely equivalent to the
old one. The new hamiltonian H̄ is an integral of motion, as it does not
explicitly depend on the new time variable τ . We can thus without loss of
generality restrict ourselves to the study of autonomous systems.

A.2 Weakly nonintegrable systems

Weakly nonintegrable systems are those with a hamiltonian which differs
from an integrable one H0(~I) by a nonintegrable part, considered as a small
perturbation. In the action-angle variables the hamiltonian has the form

dθi
dt

=
∂ H0(~I)

∂ Ii
+ L

∂ H1(~I, ~θ)

∂ Ii
(A.9)

dIi
dt

= −L∂ H1(~I, ~θ)

∂ θi
(A.10)

L is a parameter determining the amplitude of the nonintegrable perturba-
tion. The reason for nonintegrability is the dependence of the perturbation
on angles ~θ.

We will now study the case of an autonomous system with two degrees
of freedom. This case may arise as an equivalent formulation of the case of
one degree of freedom and a time-dependent hamiltonian of the form

H(I, θ, t) = H0(I) + LH1(I, θ, t) (A.11)

where is again separated the integrable part H0 and the nonintegrable per-
turbation LH1. As this system is close to one with one degree of freedom, it
is sometimes called “system with 1 1

2
degrees of freedom”.

Let us return to the formalism where the system is considered as au-
tonomous with two degrees of freedom. We may write the perturbation H1

in the form of a Fourier series in angles ~θ = (θ1, θ2):

H1(~I, ~θ) =
∑
l1,l2

Ĥ1~le
2π~l·~θ (A.12)

~l = (l1, l2) is a pair of integers.
H is still an integral of motion, so the motion is restricted onto a surface

of constant H — energy surface. The question now is if the motion on this
surface is qualitatively different from the integrable case where the surface
is further divided by the invariant tori of a lower dimension onto which the
motion is restricted.
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A.2.1 One perturbation mode

We shall first investigate the case where the series (A.12) has only two com-

plex conjugate (in order to have a real sum) terms, soH1(~I, ~θ) = 2Ĥ1~l(
~I) cos(l1θ1+

l2θ2). We may perform a canonical transformation into new (primed) vari-
ables using a generating function

W (~θ,~I′) = (l1θ1 + l2θ2)I ′1 + θ2I
′
2

The new angles are given by the following relations:

θ′1 =
∂ W

∂ I ′1
= l1θ1 + l2θ2 (A.13)

θ′2 =
∂ W

∂ I ′2
= θ2 (A.14)

and the new actions are in a similar way linear combinations of the old
actions. The hamiltonian is then not a function of θ′2, only of θ′1:

H1(~I′, ~θ′) = 2Ĥ1~l(
~I′) cos θ′1 (A.15)

Thanks to θ′2 being a cyclical coordinate and I ′2 an integral of motion this
pair of variables can be eliminated. The system is thus effectively a system
with one degree of freedom, which is integrable.

The influence of the perturbation is most important when it is constant
on a trajectory — the frequencies are in a resonance with the perturbation.
This happens when the expression ~l · ~θ = l1θ1 + l2θ2 = θ′1 is constant. For
the unperturbed system this would occur when the condition l1ω1 + l2ω2 = 0
is satisfied (for a general number of degrees of freedom ~l · ~ω = 0). Let us

note the value of ~I′ in corresponding to the resonance as ~I′0 (with components
I ′10, I

′
20) and the difference from I ′10 as p, i.e. I ′1 = I ′10 + p. The hamiltonian

expanded to second order around ~I′0 has the form

H(~I′, ~θ′) = H0(~I′) +
∂ H

∂ I ′1

∣∣∣∣
~I′0

p+
1

2

∂2H0

∂I ′1
2

∣∣∣∣
~I′0

p2 + 2LĤ1~l(
~I′0) cos θ′1 (A.16)

The second partial derivative of H1 has been neglected in the second order

approximation, as it is multiplied by L, which is itself small. ∂ H
∂ I′1

∣∣∣
~I′0

is the time

derivative of θ′1 which is zero by assumption (this is the resonance condition).
The remaining terms are the one quadratic in p and the perturbation term,
which together form a hamiltonian analogous to the one of a pendulum:

H(~I′, ~θ′) = H0(~I′0) +
1

2

∂2H0

∂I ′1
2

∣∣∣∣
~I′0

p2 + 2LĤ1~l(
~I′0) cos θ′1 (A.17)
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The system thus can be, analogously to the pendulum, in three regimes:
rotation, libration and the limit case of separatrix motion. Of special signif-
icance are the fixed points, i.e. the constant values of variables I ′1 and θ′1.
They are the solutions of equations

0 =
dθ′1
dt

=
∂ H

∂ I ′1

=
∂ H0

∂ I ′1
+ 2L

∂ Ĥ1~l

∂ I ′1
cos θ′1 (A.18)

0 =
dI ′1
dt

= −∂ H
∂ θ′1

= 2LĤ1~l sin θ′1, (A.19)

the equation (A.19) has solutions θ′1 = 0, π (mod 2π). One solution is the
elliptic fixed point, or O-point, around which the phase trajectories have the
form of ellipses — it corresponds to the case of small amplitude of a pendu-
lum. The second solution is a hyperbolic fixed point, or X-point, where the
separatrices cross and around which the trajectories deviate hyperbolically
— it corresponds to the upper unstable equilibrium position of a pendulum.
We can distinguish them by linearizing the equations (A.18), (A.19) at the
vicinity of the fixed point. The linearized right hand sides can be considered
as one linear vector map. If its eigenvalues are two complex conjugate num-
bers, the fixed point is elliptic. If they are two real numbers, it is hyperbolic
and the eigenvectors are tangent to the incoming and outgoing separatrices.

For the values of action far from the resonance the rotation regime is
similar to the unperturbed trajectories — the invariant tori are only weakly
affected by the perturbation. Qualitatively, as the variable θ′1 is changing fast
(the system is far from the resonance where θ′1 changes slowly), it is possible
to average the perturbation (A.17) over this variable. The hamiltonian is
then equal to the unperturbed one — the average of the perturbation is zero.

A.2.2 General perturbation

A general perturbation (A.12) is a sum of terms, which must form complex
conjugate pairs in order to have a real result. It is thus a sum of the per-
turbations from the previous subsection for different values of ~l. To every ~l
corresponds a value of the resonant frequencies ~ω. If those resonances are
sufficiently far away from each other, we may apply the foregoing method
for every resonance separately, as we have seen that a perturbation mode
can be eliminated by averaging far away from its resonance. If we draw in a
cross-section through the phase space for constant θ2 and I2 the passages of
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the trajectory through this plane (parametrized by θ1 and I1) will show as
chains of “islands”. Every chain is formed by alternating elliptic and hyper-
bolic fixed points and the separatrix between them. The number of islands
in a chain is equal to the number l1 from the equation (A.13) because in the
coordinates (I ′1, θ′1) the island is only one. Such a section through the phase
space is an example of Poincaré section.

Every island chain is to some extent influenced by other modes of the
perturbation. The separatrix is the most sensitive. In the exact case of a
simple pendulum (corresponding to one perturbation mode), the separatrix
is formed by trajectories leaving the unstable fixed point (i.e. asymptotically
approaching it when followed backwards in time) and trajectories approach-
ing this fixed point. The first set of trajectories forms a surface called the
unstable manifold of the fixed point, while the latter forms the stable mani-
fold of the fixed point1. When the pendulum motion is perturbed (by adding
a second mode of the perturbation), those manifolds do not coincide anymore
to form a separatrix, but intersect each other in a complicated pattern, called
the homoclinic tangle. The homoclinic tangle guides the trajectories, because
they can not cross the invariant manifolds (as trajectories can not cross each
other). It can be proven [90] that the motion in the tangle is chaotic, meaning
that it is sensitive to initial conditions (a small difference in initial conditions
exponentially increases). In this way a chaotic layer around the original sep-
aratrix forms. (Sometimes it is interchangeably called stochastic or ergodic
although strictly speaking those words are not synonymous.)

A.2.3 The fate of invariant tori

If the values of actions are such that the system is far from resonances, then
averaging over the fast varying angles we reach the conclusion that the dy-
namics should not be much different from the integrable case. This statement
is rigorously formulated in the KAM theorem. This theorem states that the
invariant tori (which in the unperturbed system correspond to the conserved
actions) remain even in the weakly nonintegrable system (for sufficiently weak
perturbation) and are only deformed by the perturbation. Those tori present
impermeable barriers for the trajectories in the phase space2, so they sepa-

1Both are examples of invariant manifolds formed by trajectories. Invariant manifolds
are called so because, consisting of trajectories, they are invariant under the time evolution
of the system. A basic example are the invariant tori (section A.1).

2This is valid for two degrees of freedom, where the phase space has dimension four,
the hypersurface of constant energy has the dimension three and two-dimensional tori
partition it into disconnected regions. For more degrees of freedom even the presence
of invariant tori does not prevent large changes of the values of actions — this is called
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rate the regions where the condition of sufficient distance from resonances is
not satisfied and a stochastic layer is formed.

A simple criterion for the disappearance of the last KAM torus separating
two island chains was given by Chirikov. It says that the torus exists if the
width of those chains is such that they do not overlap. In the opposite case
the stochastic layers around the islands merge in a large stochastic region —
the transition to global stochasticity occurs. If the dynamics near resonances
is approximated by the one of a pendulum, the width of the island and thus
the transition to global stochasticity can be estimated analytically.

The Chirikov criterion can be precised by considering the finite width
of the stochastic layer, which is moreover enhanced by island chains around
secondary resonances.

When the perturbation is strong enough to have destroyed the last KAM
torus, this torus is replaced by a discrete set of invariant points. It has a
structure of the Cantor set and is called Cantorus. Cantorus is a partial
obstacle for trajectories — thanks to its discontinuity they can cross it, but
their diffusion is slowed.

A.2.4 Poincaré map

If we make a section through the phase space defined as a surface of constant
value of one of the angle variables (let it be θ2 = 0), the result will be a
hypersurface of dimension 2n − 1. By using one value of energy one may
eliminate another variable, e.g. I2, as its value is determined by the energy
and the values of other variables. The resulting hypersurface of dimension
2n − 2 is parametrized by variables I1, θ1, I3, θ3, . . . , In, θn and is called a
Poincaré section. Phase trajectories periodically pass through it and their
intersections with it are isolated points. The map which to any point in
this section with the value θ2 = 0 assigns the following intersection of the
trajectory with the section, i.e. with θ2 = 2π, is called the Poincaré map.
The evolution of the system is then described by iterations of this map, which
generate further and further points in the section for the chosen trajectory.

The advantage of the Poincaré map is an easy visualization. For a system
with two degrees of freedom the Poincaré section is two-dimensional and can
be easily plotted. If the system originated as a system with one degree of
freedom and a time-dependent hamiltonian, it is practical to choose as the
coordinate θ2 the one which corresponds to the time t of the original system.
Then the coordinates of the Poincaré section are the canonical coordinates
of the original system and the Poincaré section represents the state of the

Arnold diffusion.
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system at given time instants.
If the system is integrable, every trajectory remains on an invariant torus.

The intersection of this torus with the surface of section is a torus of lower
dimension, for a two-dimensional torus a circle. For a chosen initial point
its images under the Poincaré map after a sufficient number of iterations
draw this circle. In a similar way the KAM tori in the weakly nonintegrable
case will show as more or less deformed curves (topological circles). On the
other hand, if the initial point lies in a stochastic region, by iterations of
the Poincaré map we obtain points densely filling a certain area. This way
one can by plotting the Poincaré section for suitable initial conditions and a
sufficient number of iterations find the stochastic regions and KAM tori.

The decomposition of the perturbation in harmonic components deter-
mines for weakly nonintegrable systems the shape of a Poincaré plot. On
the section we will find island chains for every resonance, as described in the
section A.2.2. These are for a sufficiently weak perturbation separated by
curves corresponding to the KAM tori.
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