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PREFACE 

 
The present dissertation summarizes the work of three major projects in which I have been 

involved and that have been already published (Aouar et al., 2016; Font-Haro et al., 2018; 

Janovec et al., 2018). The work published in 2016 was rather introductory, allowing me to master 

some of the experiments that I would end performing in the other two works, where I share first 

authorship.  

The body of the work is comprised of a necessary introduction, where I build the background 

over which I expose the experimental work that follows. The core of the introduction is 

dedicated to the two major actors of the project, namely plasmacytoid dendritic cells and human 

immunodeficiency virus, but I have also dedicated a chapter to the relationship of hepatitis C 

virus and plasmacytoid dendritic cells, given that part of my project concerns it also. I tried to 

make it as concise and essential as possible without forgetting the bunch of discoveries that 

have made my whole work possible.  

After the presentation, interpretation and discussion of the results, I expose the conclusions 

to which we arrived. I believe that this work sheds light to the complex and still unknown world 

of plasmacytoid dendritic cell regulation. 
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ABSTRACT 

 

Plasmacytoid dendritic cells (pDCs) are key players in the antiviral response as well as in 

linking innate and adaptive immune response. They express endosomal toll-like receptors 7 and 

9, which can detect ssRNA and unmethylated CpG DNA, respectively. Due to the constitutive 

expression of the transcription factor IRF7, pDCs are able to rapidly produce massive quantities 

of type I (α, β, ω) and type III (1, 2, 3, 4) interferons (IFN-I and IFN-III) as well as 

proinflammatory cytokines such as IL-1, IL-6 and TNF-α. After maturation, they also function as 

antigen-presenting cells. Despite intense research, the mechanisms of IFN and proinflammatory 

cytokines production and regulation are still poorly understood. Using the pDC cell line GEN2.2 

and also primary human pDCs, we shed light on the role of kinases MEK and SYK in IFN-I 

production and regulation. We found that SYK is not only involved in the regulatory receptor 

(RR)-mediated BCR-like pathway that represents the negative regulation of IFN-I and IFN-III 

secretion but also in the positive TLR7/9-mediated signal transduction pathway that leads to 

IFN-I production, representing the immunogenic function. We also found that MEK plays a 

crucial role in RRs inhibitory pathway. Further research on pharmacological targeting of SYK and 

MEK could serve to alleviate the symptoms of diseases caused by the dysregulation of IFN-I 

production, such as systemic lupus erythematosus (SLE), or conversely, to intensify suppression 

of viral infections, namely during an acute state of infection when the immune system is not 

activated enough, a typical situation in HCV, HBV or HIV infections.  

In parallel, we studied dynamics of the immunomodulatory phenotypic markers (CD4, BDCA-

2, HLA-DR, CD32 and TIM-3) in pDCs of a cohort of 21 treatment-naïve HIV-infected patients and 

during the first 9 months of the antiretroviral treatment (ART). We found that the expression of 

these markers was significantly disrupted in treatment-naïve HIV-infected patients in 

comparison to the controls (healthy donors, HDs). After the 9-month follow-up under ART, the 

immunogenic phenotype of HIV-infected patients was only partially restored. Importantly, we 

found a correlation between the levels of expression of TIM-3 in pDCs and the level of decrease 

of HIV-1 RNA in plasma during the first months on ART. This discovery opens the door to consider 

TIM-3 as a putative biomarker for antiretroviral treatment efficiency in HIV-infected patients. 
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ABSTRAKT 
 

Plasmacytoidní dendritické buňky (pDC) hrají klíčovou roli v antivirovou odpověd a propojení 

vrozené a adaptivní imunity. Tyto buňky exprimují endozomální toll-like receptory 7 a 9 

detekující ssRNA a DNA postrádající methylaci CpG dinukleotidů. Díky stálé expresi 

transkripčního faktoru IRF7 jsou pDC schopny rychlé produkce velkého množství interferonů 

typu I (IFN-I; α, β, ω), typu III (IFN-III; 1, 2, 3, 4) a prozánětlivých cytokinů jako jsou IL-1, IL-

6 a TNF-α. Po dozrání pDC také fungují jako buňky prezentující antigeny. I přes intenzivní výzkum 

je mechanizmus produkce a regulace IFN a prozánětlivých cytokinů málo prozkoumaný. S 

použitím buněčné linie GEN2.2 a primárních lidských pDC jsme popsali roli kináz MEK a SYK v 

produkci a regulaci produkce IFN-I. Zjistili jsme, že SYK se účastní nejen regulace regulačním 

receptorem (RR) řízené BCR-like dráhy působící negativně na sekreci IFN-I a IFN-III, ale také v 

pozitivní signalizaci pomocí TLR7/9 signální dráhy vedoucí k produkci IFN-I. Dále jsme zjistili že 

také MEK hraje důležitou roli v inhibiční RR dráze. Další výzkum pomocí farmakologického cílení 

kináz SYK a MEK může posloužit ke zmírnění symptomů nemocí jako je systémový lupus 

erythematous (SLE), kde je narušena regulace produkce IFN-I, nebo může vést k účinnější 

potlačení virové infekce během akutní fáze, kdy není dostatečně aktivován imunitní systém, což 

je situace, ke které dochází při infekci HCV, HBV nebo HIV. 

Dále jsme studovali dynamiku markerů imunomodulátorového fenotypu (CD4, BDCA-2, HLA-

DR, CD32 and TIM-3) u pDC u kohorty 21 pacientů infikovaných HIV před a prvních 9 měsíců 

během antiretrovirové terapie (ART). Zjistili jsme, že ve srovnání s kohortou zdravých jedinců 

dochází u neléčených pacientů k významnému narušení exprese těchto markerů. Po 9 měsíců 

trvající léčbě pomocí ART docházelo u pacientů jen k částečnému obnovení imunogenního 

fenotypu. Pozorovali jsme korelaci exprese TIM-3 u pDC a úrovní poklesu RNA HIV-1 v plazmě 

pacientů během prvních měsícu ART. Tento náš objev otevírá možnost využití TIM-3 jako 

možného biomarkeru pro hodnocení efektivity ART u pacientů infikovaných HIV-1. 
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1. HYPOTHESES AND AIMS 
 

a) Evaluate, characterize and compare the immunological profile focusing on plasmacytoid 

dendritic cells of the 21 HIV-infected patients and their matched controls before and 

after the onset of antiretroviral therapy at different time points (0, 3, 6 and 9 month 

after the onset of antiretroviral therapy). The characterization of the immunological 

profile is done by flow cytometric analysis. Then, focus in the search of HIV infection-

derived exhaustion surface markers in plasmacytoid dendritic cell. Specially, TIM-3, 

since it has been described as an exhaustion marker of plasmacytoid dendritic cells 

during HIV-1 infection, but only at a given time point. We hypothesise that TIM-3 may 

be a predictor and an indicator of infection progression and immunological state during 

HIV-1 infection. 

  

b) To evaluate the role of the tyrosine kinase SIK in the regulation of toll-like receptor 

signalling and interferon production as well as proinflammatory cytokine production in 

plasmacytoid dendritic cells. We hypothesize that SIK may be a keystone in the 

regulation of interferon and cytokine production in plasmacytoid dendritic cells and 

therefore an attractive target for immunomodulatory drugs. 

 

c) To evaluate the role of the MAP kinases MEK and ERK in the regulation of toll-like 

receptor signalling and interferon and proinflammatory cytokines production in 

plasmacytoid dendritic cells. We hypothesize that MEK and ERK may play important 

roles in the regulation of interferon and cytokine production in plasmacytoid dendritic 

cells and therefore an attractive target for immunomodulatory drugs. 
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2. INTRODUCTION 
 

2.1. Plasmacytoid dendritic cells   
 

Plasmacytoid dendritic cells (pDCs) are a highly specific dendritic cell subset that have an 

important role in linking innate and adaptive immunity. They have a potent antiviral and 

antitumor activity and can also be involved in autoimmune diseases (Ah Kioon et al., 2018; 

Alculumbre et al., 2019, 2018; Brewitz et al., 2017; Reizis, 2019; Swiecki & Colonna, 2015). PDCs 

express endosomal Toll-like receptors 7 and 9 (TLR7/9) with which they can detect single-

stranded RNA (ssRNA) and unmethylated CpG DNA respectively. After TLR7/9 challenge with its 

ligands, pDCs trigger a signalling pathway that ends with the massive production of type I (α, β, 

ω) and type III (1, 2, 3, 4) interferons (IFN-I and IFN III), as well as other proinflammatory 

cytokines such as interleukin (IL)-1, IL-6 and tumor necrosis factor alpha (TNF-α), finally maturing 

into a fully functional antigen-presenting cell (APC) with the ability of priming CD4+ T cells and 

cross-present antigen to  CD8+ T cells. The rapid production of IFN I/III by pDCs induces the 

expression of interferon-stimulated genes (ISGs) at a paracrine and autocrine level and allows 

the establishment of an antiviral state in the neighbouring cells. (Bao & Liu, 2013; Gilliet, Cao, & 

Liu, 2008; Hirsch, Caux, Hasan, Bendriss-Vermare, & Olive, 2010; Hirsch, Janovec, Stranska, & 

Bendriss-Vermare, 2017; Leifer & Medvedev, 2016; Swiecki & Colonna, 2015) (Figure 1).  
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Figure 1: Main functions of plasmacytoid dendritic cells. Plasmacytoid dendritic cells are able 

to sense viral nucleic acids or synthetic CpG-ODNs by means of the endosomal receptors TLR7 

and TLR9. TLR7 binds ssRNA or synthetic imidazoquinoline compounds (e.g. R848) and TLR9 

binds viral and bacterial DNA as well as synthetic CpG oligodeoxynucleotides (e.g. CpG-A; CpG-

B).  Depending on the stimulus either an IRF7-dependent or an NF-κB-dependent genic induction 

takes place, leading the cell either to become a professional IFN-I/III producer or to secrete 

proinflammatory cytokines (e.g. IL-6, TNF-α) and develop antigen-presenting features with the 

upregulation of costimulatory molecules (e.g. CD80, CD86) and MHCII. PDCs participate on 

antiviral as well as antitumoral immunity. They have been proven to have a role in some 

autoimmune diseases such as SLE or Psoriasis.  

CpG-ODN, CpG-oligodeoxynucleotides; TLR7/9, toll-like receptor; IRF7, interferon regulatory factor 7 ; NF-κB, nuclear 

factor-κB; IFN, interferon; IL, interleukin; APC, antigen-presenting cell; MHCII, major histocompatibility complex II; 

TNF-α, tumor nuclear factor α;  SLE, systemic lupus erythematosus. 

 

 

2.1.1. Ontogeny and phenotype  
 

pDCs can develop from either lymphoid or myeloid precursors, however, experiments in mice 

showed that favoring the depletion of lymphoid progenitors via estrogen treatment does not 

affect pDC numbers, indicating that non-lymphoid precursors play the major role in pDC 

production  (Alculumbre et al., 2018; Harman, Miller, Nikbakht, Gerstein, & Allman, 2006; 
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Swiecki & Colonna, 2015).  A common dendritic cell (DC) progenitor (CDC) is the precursor of 

both myeloid dendritic cells (mDCs) and pDCs and is characterized by the expression of Fms-like 

tyrosine kinase 3 (Flt3; CD135), macrophage colony-stimulating factor receptor (M-CSFR; CD115) 

and a mild expression of the receptor tyrosine kinase KIT (CD117) (Naik et al., 2007; Onai et al., 

2007; Satpathy, Wu, Albring, & Murphy, 2012). Flt3 engagement with its ligand Flt3L is essential 

for the development and expansion of the DC progenitors. Flt3 signalling leads to the activation 

of the signal transducer and activator of transcription 3 (STAT3) and phosphoinositide 3-kinase 

(PI3K)-dependent activation of mammalian target of rapamycin (m-TOR) (Laouar, Welte, Fu, & 

Flavell, 2003; Sathaliyawala et al., 2010). Importantly, experiments in mice showed that pDCs 

are more dependent on Flt3 stimulation for its development than mDCs given that if Flt3 is 

absent pDCs are selectively depleted from bone marrow and lymphoid organs (Eidenschenk et 

al., 2010; Waskow et al., 2008). The transcription factor E2-2 (also known as TCF4), a basic 

hemophagocytic lymphohistiocytosis protein, drives the commitment of the CDP to become pDC 

and is antagonized by the transcription factor ID2, an inhibitor of DNA binding, which if active, 

leads to the development of mDCs from CDP in detriment of pDCs. Thus, the balance between 

E2-2 and ID2 is an important factor in determining the fate of the CDPs. ID2 is almost absent in 

CDP and pDCs but abundantly expressed in mDCs. To sum up, a continuous expression of E2-2 

and low levels of ID2 are required to maintain pDCs identity and avoid the spontaneous 

differentiation into mDC-like cells (Murphy et al., 2016; Spits, Couwenberg, Bakker, Weijer, & 

Uittenbogaart, 2000; Tussiwand & Gautier, 2015). 

The phenotypic markers present on pDCs are CD123, CD45RA, CD4 and the regulatory 

receptors (RRs) blood dendritic cell antigen 2 (BDCA-2; CD303; CLEC4C), BDCA-4 (CD304; 

neurophilin-1), immunoglobulin-like transcript 3 (ILT-3; CD85k), ILT-7 (CD85g), high-affinity IgE 

receptor 1 (FcεR1), B- and T-lymphocyte attenuator (BTLA), death receptor 6 (DR6; TNFRSF21; 

CD358) and CD300A. Unlike mDCs, pDCs do not express the myeloid antigens CD11c, CD33, 

CD11b or CD13 (Bao & Liu, 2013; Dzionek et al., 2000, 2001; Ju, Zenke, Hart, & Clark, 2008; 

MacDonald et al., 2002). CD4 is expressed in both lineages but at a higher level in pDCs (L. Jardine 

et al., 2013).  

Since the characterization of pDC as a new cell population, experiments with human pDCs 

have been difficult to carry on because of the low numbers of these cells in circulation. Cutting 

edge technologies have allowed the definition of pDCs subsets characterized by different marker 

expression and function. The big question in the field is whether the functionally distinct pDC 

subsets are settled early during the developmental stage, or if the pDC pool has the capacity to 

diversify in situ in either direction depending on the environmental signals (Figure 2).  
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Figure 2: Models of pDC functional diversity. (A) In the model 1 the functions acquired after 

pDC activation are pre-established during development. The division of labour among the pDC 

pool will depend on it. (B) In the model 2 pDC will respond individually to the environmental 

stimulus and acquire its function depending on the intensity and nature of the stimuli. 

Neighbouring cells integrate the signals that ultimately will lead to functional heterogeneity 

among the pDC pool. Adapted from Leylek & Idoyaga, 2019. 

PRR, pattern-recognition receptor; Treg, T regulatory cell. 

 

Following the hypothesis that presumes that pDC functional heterogeneity is 

developmentally encoded, studies have shown small alternative pDCs subpopulations defined 

by the expression of CD2 (Bryant et al., 2016; Matsui et al., 2009), CD56 (Osaki et al., 2013; H. 

Yu et al., 2015) or CD5  (H. Zhang et al., 2017) in which, interestingly, distinctive gene expression 

patterns overlap with conventional mDCs. Similarly, single-cell RNA sequencing (RNA-Seq) and 

mass cytometry (CyTOF) revealed a rare circulating DC population which presents a pDC-like 

phenotype (Alcántara-Hernández et al., 2017; See et al., 2017; Villani et al., 2017). This group 
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displays common pDC markers such as CD123, BDCA2 or BDCA4, but, unlike canonical pDCs, also 

express the mDC markers CD33 and CD11c, resulting in an intermediate phenotype between 

pDCs and mDCs. This subpopulation express also AXL receptor tyrosine kinase and sialic acid-

binding Ig-like lectin 1 (SIGLEC1/6) and have been defined as AXL+SIGLEC6+ DC (AS DC) or DC5 

(Villani et al., 2017). Far from being a discrete population, high dimensional analysis at the 

protein level of samples from several tissues, revealed that these cells show a continuum of 

heterogeneous phenotypes ranging from pDC-like to mDC-like (Alcántara-Hernández et al., 

2017). These features were also reported by single-cell RNA-Seq analysis (Villani et al., 2017). 

Interestingly, the pDC-defining transcription factor E2-2 was found to be expressed at varying 

levels across the population correlating with how pDC-like or mDC-like the phenotype showed 

(Alcántara-Hernández et al., 2017). AS DCs don´t have the capacity of producing great quantities 

of IFN-I after TLR stimulation but they were shown to have a more potent capacity of inducing T 

cell activation similar to that of mDCs. However, it is still unclear if these cells have a unique 

function that distinguishes from pDCs and mDCs (See et al., 2017; Villani et al., 2017). 

Regarding the second hypothesis, which states that functional diversity of pDCs is not 

predisposed during the development but emerges after stimulation, one of the most striking 

characteristics of pDCs is the ability to undergo a cell state conversion or transdifferenciation 

and become an mDC-like antigen-presenting cell in vitro. This evidence of functional plasticity, 

in which, a differentiated cell is able to alter its phenotype and function in response to 

environmental stimuli has also been shown in macrophages, mast cells, and neutrophils (Galli, 

Borregaard, & Wynn, 2011). A study in which pDCs where purified by excluding the newly 

described DC AS subset showed that pDCs maintain the ability to become mDC-like antigen-

presenting cells and induce T cell proliferation after the exposure to IL-3 + CD40L or virus 

(Alcántara-Hernández et al., 2017; Alculumbre et al., 2019, 2018). It is important to note that in 

this way, the antigen-presentation capacity of pDCs cannot be attributed to DC AS 

contamination, suggesting that pDCs are in fact exceptionally plastic. Alculumbre et al., Defined 

three different pDC subpopulations depending on the levels of expression of the surface markers 

programed death-ligand 1 (PD-L1) and CD80 after stimulation. These subpopulations perform 

different specialized functions in the range of innate immunity (Alculumbre et al., 2018). Thus, 

P1-pDCs (PD-L1+ CD80-̶) present a plasmacytoid morphology, which is defined by abundant 

endoplasmic reticulum and a plasmatic cell look, and are specialized in the production of IFN-I. 

On the other hand, P3-pDCs (PD-L1̶ CD80+) present dendritic morphology and are specialized in 

antigen presentation and proinflammatory cytokines production. A third subset, P2-pDCs (PD-

L1+ CD80+) performs both adaptive and innate functions. Each one of the subsets show a stable 
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and specific transcriptomic signature (Alculumbre et al., 2018). Importantly, the mechanisms 

that promote this functional diversity are not known. The evidence exposed strengthen the idea 

that slight variations in the signals received and integrated by single cells are responsible for 

functional diversification of pDCs (Leylek & Idoyaga, 2019). The process of diversification in situ 

could be advantageous in disease, giving to the cell the possibility to adapt to concrete 

circumstances or infectious agents, in order to respond accordingly to the specific threat. In 

addition to the aforementioned distinct immunogenic phenotypes of pDCs in response to 

concrete stimuli, it would be advantageous to study if and to which degree are the different pDC 

subsets capable to adapt to situations in which immunotolerance is necessary (e.g. autoimmune 

diseases in which pDCs have been proven to be involved, such as systemic lupus erythematosus 

(SLE) or systemic sclerosis (Eloranta et al., 2010; D. Kim et al., 2008; Panda, Kolbeck, & Sanjuan, 

2017), given the ability of pDCs to induce the generation of T regulatory (Treg) cells (Hanabuchi 

et al., 2010; Ito et al., 2007; Moseman et al., 2004). 

 

 

2.1.2. PDC activation and its mechanisms  
 

The activation of pDCs is essential in the context of a viral infection because of the 

importance of a rapid and strong IFN-I response early during the onset of infection and also 

because of the role they play in linking innate and adaptive immunity (Lande & Gilliet, 2010). 

The canonical model describes two main ways in which a pDC can evolve depending on the 

specific signal that triggers its activation. On one hand, it can become a professional interferon-

producing cell, a potent producer of type-I-interferon. On the other hand it can become a 

producer of proinflammatory cytokines and mature into an APC with the ability of priming T cell-

mediated adaptive immune responses (Grouard et al., 1997; Swiecki & Colonna, 2015). 

The current view on pDC activation is based in the spatiotemporal hypothesis (Honda et al., 

2005). The results published by Honda et al., suggested that TLR9-dependent pDC activation in 

either IRF7-directed professional IFN-1 producer or nuclear factor-κB (NF-κB)-directed producer 

of proinflammatory cytokines and later fully mature APC depends in part on the subcellular 

localization of TLR9 engagement with the corresponding pathogen-associated molecular pattern 

(PAMP). Later publications by others detailed the molecular and cellular mechanisms of these 

events. First of all, the membrane protein UNC93B interacts with TLR9 and transports it from 

the endoplasmic reticulum to the endosomal compartment (Brinkmann et al., 2007; Y.-M. Kim, 

Brinkmann, Paquet, & Ploegh, 2008) (Figure 3). It is important to remark that either for the IRF7 
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pathway as well as for the NF-κB pathway, the previous trafficking of TLR9 is mandatory and is 

ruled by UNC93B. Another requirement for TLR9 to signal is the cleavage of its ectodomain, 

carried out by cathepsins in the endolysosomes (Ewald et al., 2008; Park et al., 2008). It has been 

shown that the retention of synthetic CpG-A oligodeoxynucleotides (ODNs) in early endosomes 

is associated with the massive production of IFN-I whereas the rapid mobilization of CpG-B ODNs 

to late endosomes is associated with NF-κB activation (Guiducci et al., 2006; Honda et al., 2005). 

From this point on, several studies regarding the sorting step identified essential actors. Sasai et 

al., demonstrated that pDCs isolated from mice that are deficient in adaptor protein-3 (AP-3), a 

protein complex that has been shown to recruit cargo in endosomes and deliver it to lysosome-

related organelles, are deficient in late endosomal transport and IFN-I production but not 

deficient in NF-κB-dependent proinflammatory cytokines production (Sasai, Linehan, & Iwasaki, 

2010), therefore, identifying AP-3 as an essential molecule for IFN-I production. However, a 

more recent in vivo study in mice with natural TLR viral ligands questioned this model. Tomasello 

et al., showed that during mouse cytomegalovirus infection, neither the participation of AP-3, 

nor high basal levels of IRF7, nor IFN-I feedback were necessary for a robust IFN-I response 

(Tomasello et al., 2018).  

 

The brain and DC-associated lysosome-associated membrane glycoprotein (BAD-

LAMP/LAMP5) molecule, which is expressed in the nervous tissue of most metazoan species, is 

also expressed in non-activated human pDCs as well as in blastic pDC neoplasms (BPDCN) from 

leukemic patients. BAD-LAMP has been shown to control the sorting of TLR9 in different 

endosome subsets and to favor NF-κB-dependant proinflammatory cytokine production in the 

BPDCN-derived pDC cell line CAL-1 as well as in primary pDCs (Combes et al., 2017). Upon CpG 

activation BAD-LAMP is transported along with TLR9 to IRF7-promoting early endosomes, and 

subsequently to LAMP1+ NF-κB-promoting late endosomes. Interestingly, inhibition of BAD-

LAMP leads to the retention of TLR9 in early endosomes and increased IFN-I expression. Using 

confocal microscopy, early endosomes have been shown to contain the SNARE protein vesicle-

associated membrane protein3 (VAMP3) and LAMP2, but not LAMP1. In the same study they 

also have shown that exposure to immunosuppressive cytokines or tumor supernatants prevent 

down-modulation of BAD-LAMP, which occurs rapidly after CpG activation in normal conditions, 

leading to the polarization towards an NF-κB-directed pro-inflammatory cytokine producer 

phenotype, and as a consequence IFN-I production is limited (Combes et al., 2017). 

In recent years, several investigations refined the model of the molecular mechanisms that 

lead to pDC activation. As mentioned above, the major function of pDCs is the sensing of viral 



 

12 
 

nucleic acids via endosomal TLRs: TLR7 recognizes ssRNA and also recognizes synthetic 

imidazoquinoline species, such as resiquimod (R848), whereas TLR9 recognizes viral DNA as well 

as synthetic CpG oligonucleotides. Engagement of aggregating CpG-A ODN in the early 

endosome unchains an AP3-dependent myeloid differentiation primary response 88 (MyD88)-

IRF7 pathway that involves the adaptor protein MyD88, interleukin-1 receptor-associated kinase 

1/4 (IRAK 1/4), TNF receptor-associated factors 3 and 6 (TRAF3/6), and ultimately IRF7. IRF7 

translocates to the nucleus and together with NF-κB subunits p50 and RelA, and the 

transcription factors ATF-2 and c-Jun, which conform AP-1, initiates the production of IFN-I and 

III (Bao & Liu, 2013; Gough, Messina, Clarke, Johnstone, & Levy, 2012; Leifer & Medvedev, 2016; 

Sasai et al., 2010; Swiecki & Colonna, 2015). On the other hand, ligation of TLR9 with monomeric 

CpG-B oligonucleotides develops in the transfer to an endolysosomal compartment where the 

pathway MyD88-NF-κB is activated, inducing the formation of a signalosome composed by 

IRAK2/4 and TRAF6 which activates transforming growth factor β-activated kinase 1 (TAK1) and 

subsequently the mitogen-activated protein kinases (MAPKs) and the transcription factor IRF5 

(Purtha, Swiecki, Colonna, Diamond, & Bhattacharya, 2012; Takaoka et al., 2005) which along 

with NF-κB and AP-1 unchain the production of the proinflammatory cytokines IL-6 and TNF-α, 

several chemokines and the expression of the co-stimulatory molecules CD80 and CD86. 

Importantly, IRAK2 suppresses the production of IFN I/III but induces the production of 

proinflammatory cytokines (Bao & Liu, 2013; Röck et al., 2007; Swiecki & Colonna, 2015)  (Figure 

3). 
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Figure 3: TLR7/9 signalling after ligation in pDCs. TLR7/9 is transported from the endoplasmic 

reticulum to the endosomes complexed with the transmembrane protein UNC93B. Ligation of 

the endosomal TLR7/9 with the synthetic agonists CpG-A or CpG-B induces different signalling 

pathways in pDCs. CpG-A-AP3-dependent signalling from early/IRF7 endosomes through the 

adaptor protein MyD88 triggers the formation of a signalosome composed of TRAF6, TRAF3, 

IRAK1 and IRAK2. This signalosome activates IRF7 along with NF-κB and AP-1 which promotes 

the production of IFNs I (IFN-α/β) and III (IFN-λ). On the other hand, ligation with CpG-B triggers 

an also MyD88-dependant signalling pathway in late/ NF-κB endosomes. After MyD88 is 

activated a signalosome composed of IRAK2, IRAK4 and TRAF6 is engaged. The signalosome 

activates TAK1, which in its turn activates MAPKs leading to the translocation to the nucleus of 

the transcription factors NF-κB, AP-1 and IRF5. Ultimately these events lead to the induction of 

proinflammatory cytokines (TNF-α, IL-6), chemokines (CCL3/4/5/19, CXC10/11) and 
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costimulatory molecules (CD80, CD86). IRAK2 downmodulates IFN-I/III production but promotes 

proinflammatory cytokines secretion. Adapted from Hirsch et al., 2017. 

TLR, toll-like receptor; ER, endoplasmic reticulum; UNC93B, Unc-93 homolog B; AP-3, adaptor protein-3; MyD88, 

myeloid differentiation primary response 88; TRAF, TNF receptor-associated factor; IRAK, interleukin-1 receptor-

associated kinase; TAK1, transforming growth factor β-activated kinase 1; MAPK, mitogen-activated protein kinase; 

IRF, interferon regulatory factor; NF-κB, nuclear factor- κB; AP-1, activator protein 1; IFN, interferon; TNF-α, tumor 

necrosis factor-α; IL, interleukin; CCL, chemokine (C-C motif) ligand; chemokine (C-X-C motif) ligand, CXCL. 

 

2.1.3. Production of Interferons and proinflammatory cytokines by pDCs  
 

Interestingly, within 6h of viral-induced activation, 60% of pDC transcriptome is due to IFN-I 

genes (Ito, Kanzler, Duramad, Cao, & Liu, 2006). The ability to produce massive amounts of IFN-

I relatively fast can be explained because in contrast to most cell types, pDCs express 

constitutively high levels of the transcription factor IRF7, which is the main factor involved in the 

transcription of IFN I genes. On the other hand, IRF7 levels are low in any other cell type and the 

production of IFN-I depends exclusively on a positive feedback that depends on the previous 

secretion IFN-β (a subtype of IFN-I that acts at an autocrine level) and the IFN-I receptor IFNAR. 

Then, engagement of IFNAR with IFN-β leads to the upregulation of ISGs, among which we find 

IRF7, and the subsequent production of IFN-α in significant quantities. Significantly, while pDCs 

can produce IFN-I directly after TLR sensing and independently of IFNAR-based feedback 

signalling, most cell types require this feedback loop that delays considerably the IFN-I 

production (Barchet et al., 2002; Dalod et al., 2002). 

A non-endosomal signalling pathway working also through the adaptor MyD88 may be 

triggered after the sensing of certain stimuli by TLR2 (Dasgupta, Erturk-Hasdemir, Ochoa-

Reparaz, Reinecker, & Kasper, 2014). Regarding intracellular sensors which lead to the 

production of IFN-I, cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) and 

retinoic acid-inducible gene I (RIG-I) may be functional in pDCs in response to DNA (X.-D. Li et 

al., 2013) and RNA (Bruni et al., 2015; Kumagai et al., 2009) of viral origin, respectively, but the 

role of the aforementioned intracellular receptors is thought to be residual when compared to 

endosomal TLR7/9.  

Apart from type-I-IFNs and other proinflammatory cytokines, pDCs are able to produce also 

significant quantities of type-III (especially IFN-λ3) in response to certain stimuli. Importantly, 

peripheral blood pDCs have been found to be the main IFN-λ3 producer  (O’Connor et al., 2014; 

Stone et al., 2013). IFN-III production by pDCs is JAK/STAT and IRF7-dependent in a similar way 

that IFN. Recent investigations found the production of IFN-III by pDCs seems to play a role in 
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the onset of systemic lupus erythematosus (Gilliet et al., 2008; Hjorton, Hagberg, Pucholt, 

Eloranta, & Rönnblom, 2020; V. C. Lombardi & Khaiboullina, 2014). Further studies in this sense 

are necessary. Importantly, pDC-derived IFN-λ3 has been shown to be a key factor for hepatitis 

C virus (HCV) clearance (Ge et al., 2009; Thomas et al., 2009). 

 

2.1.4. PDCs as antigen presenting cells 
 

The major function of pDCs is the quick production of type-I-IFN, however, given that they 

express MHC class II and the costimulatory molecules CD40, CD80 and CD86, they can also 

efficiently prime and cross-prime T cells (reviewed in Reizis, Bunin, Ghosh, Lewis, & Sisirak, 2011; 

Swiecki & Colonna, 2015; Villadangos & Young, 2008). pDCs have been often attributed a weak 

antigen-presenting capacity but recent studies showed that their abilities in priming T cells may 

overlap with the ones of mDCs. Thus, the difference on the function of these two subsets DCs 

may be qualitative rather than quantitative.  pDCs require TLR-mediated activation to be able to 

prime T cells (Mouries et al., 2008; Young et al., 2008). A specific antigen-presentation pathway 

that operates in pDCs but not mDCs is the proteasome-independent endosomal pathway of viral 

antigen cross-presentation to cytotoxic CD8+ T cells. This particular mechanism of pDCs is 

possible thanks to the recycling endosomes in which peptides are continuously loaded to MHC 

class I molecules (Di Pucchio et al., 2008). Another difference of pDCs compared to mDCs antigen 

presentation is that pDCs continuously synthesize MHC class II after activation, also to facilitate 

the presentation of viral peptides (Sadaka, Marloie-Provost, Soumelis, & Benaroch, 2009; Young 

et al., 2008). Depending on the context, antigen presentation by pDCs can lead to CD4+ T cell 

activation or to tolerance induction. If pDCs receive stimulus through TLRs, the output will be 

immunogenic. On the other hand, if they either remain unstimulated or are alternatively 

activated leading to the expression of indoleamine 2,3-dyoxigenase (IDO) (Boasso et al., 2007; 

Fallarino et al., 2004; Munn et al., 2004; Pallotta et al., 2011), inducible T cell costimulator ligand 

(ICOS-L; CD275) (Ito et al., 2007), tumor necrosis factor ligand superfamily member 4 

(TNFSF4;OX40L) (Diana et al., 2009), PD-L1 (Diana et al., 2011), or granzyme B (Jahrsdorfer et al., 

2010), the result will be tolerance induction. Tolerance induction can be directed towards 

harmless antigens, tumor cells, or alloantigens. Studies reported that CCR9+ pDCs, which acquire 

antigenic cargo in peripheral tissues, use CCR9 to migrate to the thymus, where they can induce 

the depletion of antigen-specific thymocytes and contribute in this way to central immune 

tolerance (Hadeiba et al., 2012). In a similar way, pDCs can migrate to lymph nodes to promote 

tolerance (Kohli, Janssen, & Forster, 2016). As pDCs are potent inducers of Treg, studies have 
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implicated them in being responsible of the inhibition of acute graft-versus-host disease 

provoked by allogeneic CD4+ donor T cells in irradiated recipients (Hadeiba et al., 2012). 

Contrarily, they have been  recently proved as important players in human kidney allograft 

rejection (Reich, Viehmann, & Kurts, 2018). To get deeper knowledge about the antigen 

presentation capacity of pDCs, antigens have been targeted to pDCs surface molecules 

(especially to regulatory receptors (RRs)) by conjugating them to specific antibodies. Thus, a 

study showed that antigens targeted to  the C-type lectin receptor BDCA2 promotes tolerance 

by suppressing antigen-specific CD4+ T cell and antibody responses upon secondary exposure to 

antigen in the presence of adjuvant (Chappell et al., 2014). Similarly, antigens directed to the RR 

DC immunoreceptor (DCIR) not only inhibit TLR9-mediated IFN-α production but also the 

antigen is efficiently presented to T cells. Antigen presentation to T cells by DCIR promote T cell 

proliferation. The report does not specify if the T cell proliferation leads to an immunogenic or 

an immunosuppressive output (Meyer-Wentrup et al., 2008). Another study showed that 

antigen delivery to bone marrow stromal cell antigen 2 (BST2; CD317; tetherin) combined with 

TLR9-mediated activation induce strong humoral and cellular responses in mice against 

subsequent viral infections and tumor growth (Loschko et al., 2011). The cross-linking of the Ig-

like RR ILT-7, which is a receptor to BST2, promotes the differentiation of pDCs into antigen 

presenting cells. The result induce T cell proliferation and activation in response to 

staphylococcal enterotoxin B indicating an immunogenic response (Tavano & Boasso, 2014). In 

conclusion, targeting antigen to pDC surface molecules can lead to either immunogenic or 

immunotolerant adaptive responses. 

 

2.1.5. Regulatory receptors (RRs) and mechanisms of their function 
 

PDCs express a series of Regulatory Receptors (RR) that serve to prevent aberrant immune 

responses and to regulate its major IFN-I-producing function apart from facilitating antigen 

capture (for review (Hirsch et al., 2017)). These include immunoreceptor tyrosine-based 

activation motif (ITAM)-associated receptors such as the C-type lectin blood dendritic cell 

antigen 2 (BDCA-2; CD303; CLEC4C) (Dzionek et al., 2001), ILT-7 (CD85g) (Cao & Bover, 2010; Cao 

et al., 2006), or FcεRI (Schroeder et al., 2005), as well as natural cytotoxicity triggering receptor 

2 (NCR-2; NKp44; CD336) (Fuchs, Cella, Kondo, & Colonna, 2005). Importantly, immunoreceptor 

tyrosine-based activation motif (ITAM)-associated receptors need the association with adaptor 

molecules, such as DNAX activation protein of 12kDa (DAP-12), or the γ chain of Fc receptor ε 

(FcεRIγ), to initiate signal transduction. We also find immunoreceptor tyrosine-based inhibitory 
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motif (ITIM)-associated receptors such as the C-type lectin receptor DCIR (dendritic cell 

immunoreceptor) (Meyer-Wentrup et al., 2008) or CD300 (Ju et al., 2008). Other regulatory 

receptors are BDCA-4 (CD304; neurophilin-1), ILT-3 (CD85k), BTLA or DR6. After engagement, 

they signal through a B cell receptor (BCR)-like pathway that involves spleen tyrosine kinase 

(SYK), B cell linker protein (BLNK) and MEK-ERK/2 among others (Bao & Liu, 2013; Cao et al., 

2007; Gilliet et al., 2008; Röck et al., 2007; Swiecki & Colonna, 2015) (Figure 4). Signalling 

through this pathway diminishes the production of IFN-I and proinflammatory cytokines by an 

unknown mechanism (Aouar et al., 2016; Bao & Liu, 2013; Cao et al., 2006, 2007; Dzionek et al., 

2001; Gilliet et al., 2008; Hirsch et al., 2010, 2017; Röck et al., 2007; Swiecki & Colonna, 2015). 

This regulatory mechanism can be used by viruses and some cancers to induce immune 

tolerance (Florentin et al., 2012; Hirsch et al., 2010; Martinelli et al., 2007; Woltman, Op den 

Brouw, Biesta, Shi, & Janssen, 2011; Y. Xu et al., 2009). 
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Figure 4: Regulatory signalling pathway. Crosslinking of regulatory receptors such as BDCA-2, 

ILT-7, FcεRI or Nkp44 triggers the activation of a signalling cascade that leads firstly to the 

phosphorylation of tyrosine residues within FcεRIγ ITAM region and recruitment of SYK. From 

this point, a BCR-like pathway involving BLNK, BTK and PLCγ results in the hydrolysis of PIP2 into 

DAG and InsP3. DAG activates PKC and the MAPKs, which ultimately activate the transcription 

factors AP-1 and NF-κB. In parallel, InsP3 promotes transient internal release of Ca2+ followed by 

the activation of CAMK and the transcription factor CREB. Calcineurin leads to the activation of 

NFAT. Adapted from Hirsch et al., 2017. 

BDCA-2, blood dendritic cell antigen 2; ILT-7, immunoglobulin-like transcript 7; FcεRI Fc epsilon RI/ high affinity IgE 

receptor; Nkp44: NCR-2, natural cytotoxicity triggering receptor 2; FcεRIγ, γ chain of Fc receptor ε; ITAM, 

immunoreceptor tyrosine-based activation motif; SYK, spleen tyrosine kinase; BLNK, B cell linker protein; BTK bruton´s 

tyrosine kinase; PLCγ, phospholipase C gamma; DAG, diacylglycerol; InsP3, inositol 1,4,5-trisphosphate; PIP2, 

phosphatidylinositol 4,5-bisphosphate; PKC, protein kinase C; MAPK, mitogen-activated protein kinase; CAMK, 

calmodulin-dependent protein kinase; AP-1, activator protein 1; NF-κB, nuclear factor- κB; CREB, cyclic-AMP-

responsive-element-binding protein; NFAT, nuclear factor of activated T cells. 
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2.1.6. Negative regulation of IFN-I production  

 
Because of the destructive capacity of IFN-I on tissues, pDCs have evolved several 

mechanisms to negatively regulate its production. As mentioned above, RRs signalling is able to 

inhibit the pDC immunogenic response when bound to agonist antibodies (Aouar et al., 2016; 

Bao & Liu, 2013; Cao et al., 2006, 2007; Dzionek et al., 2001; Gilliet et al., 2008; Hirsch et al., 

2010, 2017; Swiecki & Colonna, 2015). Importantly, being BDCA-2 exclusively expressed in pDCs 

makes of it an attractive target for immunomodulatory drugs (Figure 5).  

 

 

Figure 5: Effect of crosslinking of RRs on the production of type-I-IFN and proinflammatory 

cytokines. After TLR7/9 binding with its agonist a signalling pathway is triggered culminating in 

the translocation of IRF7, NF-κB and other transcriptions factors which induce the production of 

IFN-I/III as well as proinflammatory cytokines. If regulatory receptors are cross-linked with 

specific mAbs previously to TLR7/9 activation, TLR7/9 signalling and subsequently the 

production of IFN-I/III are inhibited.  

RRs, regulatory receptors; CpG-A, class A CpG oligodeoxynucleotides; BDCA-2, blood dendritic cell antigen 2; DCIR, 

dendritic cell immunoreceptor; ILT-7, immunoglobulin-like transcript 7; TLR7/9, toll-like receptor 7/9; IRF7, interferon 

regulatory factor 7; NF-κB, nuclear factor κB; IFN-α, interferon α; TNF-α, tumor necrosis factor α; ITAM, 

immunoreceptor tyrosine-based activation motif; FcεRIγ, γ chain of Fc receptor ε; SYK, spleen tyrosin kinase. 

 

A recently described mechanism of downregulation of IFN-I production involves the 

abundant surface receptors CXCR4 and CD44, which inhibit pDC activation when engaged with 

natural monoamines (N. Smith et al., 2017) and galectin-9 (Panda et al., 2018), respectively. 

Another pDC-mediated immunosuppressive mechanism involves IDO. This enzyme catabolizes 
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L-tryptophan to N-formyl kynurenine and has immunosuppressive effects because it depletes 

the tryptophan pool required by T cells to carry on effective responses. Also, receptor-type 

protein tyrosine phosphatase PTPRS, which is highly specific of pDCs within the immune system 

also participates as a negative regulator of pDC function. Studies showed that when PTPRS is 

deleted there is enhanced pDC activation, and when it is engaged with its ligand, pDC activation 

is inhibited (Bunin et al., 2015). 

A recent study showed that the pleiotropic transcription factor Myc play an 

immunomodulatory role in pDC function. Myc was found to act as a repressor by binding the 

IRF7 promotor region and block its transcription. In experiments with GEN2.2 pDC cell line and 

Myc knock outs, production of Interferon stimulated genes was increased and further enhanced 

when CpG-B was added, triggering TLR9 signalling. Pharmacological targeting of Myc also 

recovered IRF7 expression, confirming the negative role of Myc in the regulation of pDC 

responses (T. W. Kim et al., 2016). 

MicroRNAs are also involved in the regulation of pDC functions. Engagement of TLR7/9 

induces the expression of miR-146a, which suppresses TLR-mediated signalling and NF-κB 

activation in pDCs (Karrich et al., 2013). MiR-155* (the complementary ssRNA to miR-155) is 

induced after TLR7 engagement and promotes type-I-IFN secretion by the inhibition of IL-1 

receptor-associated kinase M (IRAKM). Its partner miR-155 is induced later and abolishes IFN-I 

production via the inhibition of TGF-beta-activated kinase 1 and MAP3K7-binding protein 2 

(TAB2), a MAPKKK-interacting protein also called MAP3K7IP2 (Zhou et al., 2010). MiR-126 has 

also a role in the regulation of pDC . MiR126 targets mammalian target of rapamycin (mTOR) 

signalling pathway and regulates the expression of several important genes for pDC function, 

including kdr which encodes the growth factor VEGFR2. PDCs from Kdr—/— mice are not able to 

respond to TLR ligands, suggesting a role of VEGFR2 in IFN-I production regulation (Agudo et al., 

2014).  

Not less important is the capacity of hormones to regulate IFN-I production and pDCs 

function. It was shown that estrogen enhances TLR7-mediated signalling in pDCs (Seillet et al., 

2012). That could provide an explanation for the higher capacity of IFN-I production by women 

pDCs in response to HIV compared to men pDCs (Meier et al., 2009). 
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2.1.7. Tolerogenic properties of pDCs 
 

There is evidence that when unstimulated, pDCs promote immunosuppression when 

interacting with T lymphocytes by favoring the generation of Treg cells, potent suppressors of T 

cell and DC activity (Matta, Castellaneta, & Thomson, 2010). The poor stimulatory capacity of 

naïve pDCs may be related to the rapid turnover of MHC class II due to the persistently expressed 

MHC class II ubiquitin E3 ligase RING-CH1 (MARCH1) (Ishido, Matsuki, Goto, Kajikawa, & 

Ohmura-Hoshino, 2010), which ubiquitinates MHC class II molecules labelling them for 

internalization and degradation. Since the lack of antigen on the cell surface promotes the 

generation of Tregs, it is possible that the fast internalization of antigen-MHC class II complexes 

implies low antigen presentation and so the promotion of Tregs maturation and function when 

interacting with T cells (Molinero, Miller, Evaristo, & Alegre, 2011; Turner, Kane, & Morel, 2009; 

Young et al., 2008). 

In pDCs, IDO facilitates the maturation of naïve CD4+ T cells into Tregs through CD40/CD40L-

mediated signalling (Fallarino et al., 2005). Thus, IDO expressed by pDCs has a tolerogenic 

function under physiological conditions, essential to prevent aberrant immune reactions such 

as autoimmune reactions or to facilitate maternal-fetal recognition during pregnancy (Fallarino, 

Gizzi, Mosci, Grohmann, & Puccetti, 2007; Mellor & Munn, 2004). In addition to the 

aforementioned mechanisms, the expression of ICOS-L on pDCs can promote the maturation of 

T cells into IL-10 producing Tregs, highlighting the tolerogenic ability of these cells (Ito et al., 2007). 

Importantly, direct engagement of IL-10 as well as transforming growth factor beta (TGF-β) by 

pDCs have been shown to decrease IFN-I secretion in response to TLR ligands (Duramad et al., 

2003; L. Li et al., 2008). Another mechanism by which pDCs can mediate immunotolerance is 

through the upregulated expression of the immunosuppressive molecule PD-L1, which interacts 

with the receptor PD-1. After interaction, these molecules induce the blockade of the t cell 

receptor (TCR)-induced stop signal in the target T cell (Fife et al., 2009), thus, promoting 

peripheral tolerance. PDCs can also supress the proliferation of effector T cells by the expression 

and release of granzyme B in response to IL-3 (Jahrsdorfer et al., 2010). 
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2.1.8. Virus recognition by pDCs 
 

During the last two decades, several studies shed light into the way viral components reach 

the TLRs and trigger IFN-I response. So far, investigations showed that there is not only one way 

in which viral recognition takes place but multiple options. Direct recognition through TLRs of 

internalized virus that do not infect pDCs was supported by the capacity of pDCs of responding 

to inactivated virus or to replication-deficient virus (Figure 6A) (Asselin-Paturel et al., 2001; Deal, 

Jaimes, Crawford, Estes, & Greenberg, 2010; Kumagai et al., 2009; Lund et al., 2003). The fact 

that pDCs are highly resistant to  productive viral infection by some virus, such as Newcastle 

disease virus (NDV) (Kumagai et al., 2009), to which they can respond to with IFN-I production 

also supports this thesis. Other viruses, such as vesicular stomatitis virus (VSV) can induce type-

I-IFN production only if they are replication-competent (Figure 6B) (Hornung et al., 2004; Lee, 

Lund, Ramanathan, Mizushima, & Iwasaki, 2007). Productive infections of pDCs by several virus, 

such as Coronavirus, Myxoma virus, Paramyxovirus or Arenavirus have been reported in vitro 

(Cervantes-Barragan et al., 2007; Dai et al., 2011; Manuse, Briggs, & Parks, 2010) and in vivo 

(Macal et al., 2012). Notably, VSV elicits a more robust IFN-I response when pDCs recognize VSV-

infected cells rather than by direct interaction with free virions (Frenz et al., 2014). This is also 

the case of other viruses, such as HCV, in which only the recognition of HCV-infected hepatocytes 

elicit a significant IFN-I response  (Dreux et al., 2012; Florentin et al., 2012; Takahashi et al., 2010) 

This mechanism of virus recognition is TLR-7-dependent and lymphocyte function-associated 

antigen 1 (LFA-1)-mediated adhesion or exosomal transfer of viral components is necessary 

(Figure 6C) (Assil et al., 2019; García-Nicolás et al., 2016; Saitoh et al., 2017; Tomasello et al., 

2018). Subsequent studies demonstrated that several RNA viruses are mainly recognized in the 

same manner, including retroviruses (Lepelley et al., 2011; Rua, Lepelley, Gessain, & Schwartz, 

2012), lymphocytic choriomeningitis virus (LCMV) (Wieland et al., 2014), hepatitis A virus (HAV) 

(Z. Feng et al., 2015), dengue virus (DENV), west Nile virus (WNV) (Decembre et al., 2014) and 

yellow fever virus (YFV) (Bruni et al., 2015). In Epstein-Barr virus (EBV)-latently infected cells, 

this mechanism can be observed when EBV-derived RNA is transferred to pDCs through 

exosomes and triggers the induction IFN-I and subsequently ISGs (Figure 6C) (Baglio et al., 2016). 

It has been suggested this mechanism of recognition of an infected cell may occur also in non-

viral pathogens like malaria. In this regard, close interactions between infected macrophages 

and pDCs have been observed during TLR7-mediated activation of pDCs in malaria-infected mice 

(Spaulding et al., 2016).  
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Figure 6: Scheme of the different models of virus recognition by pDCs. Infected cells are 

characterized in grey. (A) Direct recognition of viruses that do not infect pDCs. Depicted in the 

traditional cell-intrinsic model and in the cooperative model, which requires cell to cell contact. 

In the cooperative model, LFA-1-mediated adhesion is necessary for pDCs to elicit an interferon 

response. (B) Recognition of viruses that can infect and replicate within pDCs. The cell-intrinsic 

model is based in autophagy-mediated TLR signalling (see below) and in cooperative model, the 

cell that starts the IFN-I response is not the one that is infected, but the adjacent one. Virus-

derived TLR ligands can reach other cells via exosomes. (C) pDCs sense virus from infected cells 

of different types (e.g. hepatocytes) via exosomes or by cell-cell contact through viral synapses. 

Adapted from Reizis, 2019. 

TlR7/9, toll-like receptor 7/9; IFN-I, type I interferon; IFNAR, interferon-α receptor; LFA-1, lymphocyte function-

associated antigen 1. 

 

Viruses and nucleic acids can also be internalized in the cell via Fc receptors, which work as 

RRs, if they are bound to antibodies during an immune response. Sendai virus immune 
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complexes interact with the inhibitory Fc receptor FcγRIIB, which promotes the uptake of the 

complexes, thus, preventing an IFN-I response against the virus, (Flores et al., 2015; Hirsch et 

al., 2017). On the contrary, a complex of antinuclear antibodies with endogenous nucleic acids 

can interact with the activating Fc receptor FcγRIIA and promote IFN-I production after 

internalization (Barrat et al., 2005; Bave et al., 2003; Means et al., 2005).  

Autophagy also plays a role in viral recognition and may be a mechanism by which a virus 

replicating inside can gain access to endosomal compartments (Figure 6B). For example, ssRNA 

recognition by TLR7 requires transport of cytosolic viral intermediates into the lysosome by 

autophagy (Lee et al., 2007).  

 

2.1.9. TIM-3 as a marker of pDC dysfunction  
 

T cell Ig and mucin-domain containing molecule-3 (TIM-3) is expressed in several cell types, 

including cells of the lymphoid and myeloid lineages, and it is involved in the regulation of 

several cellular functions (Han, Chen, Shen, & Li, 2013). TIM-3 has been shown to be an 

activation and exhaustion marker of CD4+ and CD8+ T cells (Anderson, Joller, & Kuchroo, 2016; 

R Brad Jones et al., 2008). Importantly, TIM-3 function seems to be cell type specific and in 2015 

it was identified by Gurka et al., as a surface molecule on pDCs (Gurka, Dirks, Photiadis, & 

Kroczek, 2015). In a recent study, J. A. Schwartz et al., howed that in vitro-activated pDCs 

expressing TIM-3 were defective in type-I-IFN and TNF-α production and found a direct 

correlation between the strength of the pDC stimulus and TIM-3 expression and the subsequent 

dysfunction. The dysfunction is associated with the recruitment of IRF7 and p85 into lysosomes 

and with the submembrane displacement of TLR9 (J. A. Schwartz et al., 2017). Therefore, the 

study sets TIM-3 as a marker of pDC dysfunction. 

 

2.1.10. PDC role in cancer 
 

IFNs-I/III have not only antiviral properties but also antitumoral activity and are used as a 

treatment in different types of cancer including both hematological and solid tumors. It has been 

shown that IFN-I affects tumor cell proliferation, metastasis, and tumor lymph/angiogenesis 

(reviewed in Demoulin, Herfs, Delvenne, & Hubert, 2013). Being the major type-I-interferon 

producers, pDCs are thought to have an important role in the cancer context and it is expected 

that a dysregulation of pDC function can lead to immunodeficient states or inefficient immune 
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responses to tumors. Against the expectations, recruitment of pDCs to tumor localization is 

associated with bad prognostic and immunosuppression (Treilleux et al., 2004). PDCs recruited 

to tumors receive the name of tumor-associated pDCs (TApDCs) and upon challenge with TLR9 

agonists, produced low amounts of IFN-α. Notably, a positive correlation between tumor 

aggressivity and the frequency of TApDCs has been reported. Subsequent studies also have 

shown a correlation between the frequency of TApDCs and the frequency of Tregs (X.-M. Huang 

et al., 2014; Pedroza-Gonzalez et al., 2015; Sisirak et al., 2012). Thus, pDCs, which infiltrated 

breast and ovarian tumors have been shown to produce low quantities of IFN-I but have an 

increased capacity to induce the development of Tregs (Conrad et al., 2012; Hartmann et al., 2003; 

Labidi-Galy et al., 2011; Pedroza-Gonzalez et al., 2015; Sisirak et al., 2012). TApDCs are able to 

induce the production of IL-10 via Tregs and naïve CD4+ T cells via expression of ICOS-L and 

contribute in this way to immunosuppression (Faget et al., 2012; Ito et al., 2007; Pedroza-

Gonzalez et al., 2015). Aberrant function in pDCs may be caused by tumor-associated soluble 

factors, such as TGF-β and TNF-α and probably also by IL-10 produced by Tregs. Recent studies 

with genetically depleted pDCs in mice supported this idea (Terra et al., 2018). Alternatively, 

BST-2 expressed by tumor stroma inhibits pDCs via ILT-7 engagement. (Cao et al., 2009; Hirsch 

et al., 2010; Swiecki & Colonna, 2015). An indirect effect of the low type-I-IFN production by 

TApDCs is the loss of activity of natural killer (NK) cells, which normally are important antitumor 

agents (Rautela et al., 2015). In an orthotopic mouse mammary tumor model, the functionality 

of TApDCs was found to be altered in response to TLR9 agonists and in vivo depletion of TApDCs 

delayed tumor growth. Contrarily, when TApDCs were activated via in vivo administration of 

TLR7 ligand, tumor regression through an IFN-I mediated mechanism was observed (Le Mercier 

et al., 2013). Interestingly, breast and ovary cancer patients showed a decrease in the number 

of circulating pDCs  which correlated with an increase of tumor-infiltrating pDCs, indicating the 

migration of pDCs from blood to the tumor location (Labidi-Galy et al., 2011; Sisirak et al., 2012). 

 

2.1.11. PDC role in autoimmune diseases 
 

Since it was known that pDCs were able to initiate such a strong inflammatory state, about 

twenty years ago, the suggestion of a potential role in autoimmune diseases soon was made 

(Ronnblom & Alm, 2001). Indeed, by 2020 several studies demonstrated the importance of pDC 

function in almost all autoinflammatory diseases. The most well-known case of the involvement 

of pDCs in the pathogenesis and mechanism of an autoimmune disease is in SLE. In SLE, a self-

directed immune response is caused by the generation of immune complexes of autoantibodies 
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and nucleic acid-containing nuclear antigens (for review Panda, Kolbeck, & Sanjuan, 2017). An 

interferon signature is found in more than half of SLE patients, and the deletion of IFNAR has 

been shown to reduce SLE in experimental models. Also, the clinical manifestation of SLE 

correlates with the redistribution of pDCs from blood to lymphoid tissue. Importantly, IFN-I 

professional producer pDC subset (P1-pDCs, according to Alculumbre et al.), was detected in 

samples of psoriasis and SLE patients (Alculumbre et al., 2018). Molecular features associated 

with SLE induced IFN-I production by pDCs, and the depletion of pDCs reduced significantly SLE 

symptoms in different experimental models (Caielli et al., 2016; Davison & Jorgensen, 2015; 

Lood et al., 2016; Rowland et al., 2014; Sisirak et al., 2014). In diabetes, it has been reported an 

expansion (Allen et al., 2009) and infiltration of pDC into pancreatic islets in a model of 

autoimmune-prone non-obese diabetic (NOD) mice (Diana et al., 2013). Also, a selective 

depletion of pDC correlated with an improvement of the clinical status of the NOD mice (Hansen 

et al., 2015). In scleroderma (SSc), which targets connective tissue, patients showed an IFN 

signature and pDCs produced type-I-IFN in response to pathogenic immune complexes (Eloranta 

et al., 2010; D. Kim et al., 2008). High levels of the proinflammatory chemokine CXCL4 produced 

by pDCs are also involved in SSc pathogenesis and correlate with disease progression (van Bon 

et al., 2014). A recent study reported that pDCs from SSc patients express TLR8, contrarily to 

pDCs from healthy donors. This study linked TLR8 signalling in pDCs with the induction of CXCL4, 

showing also that CXCL4 exacerbates TLR-mediated IFN-α production (Ah Kioon et al., 2018). 

More ambiguous roles of pDC have been reported in other autoimmune diseases like psoriasis, 

arthritis or atherosclerosis. Regarding psoriasis, experiments with genetic models have shown a 

mild stage-specific role of pDCs (Glitzner et al., 2014). In an antibody-mediated model or 

arthritis, depletion of pDCs favored the progress of the disease (Nehmar et al., 2017). In a model 

of atherosclerosis, conflicting results from two different teams concluded that pDC ablation 

promote (Yun et al., 2016) or impair (Sage et al., 2014) the disease. On the other hand, in 

inflammatory bowel disease, which is caused by an aberrant immune response to microbial 

components of the gastrointestinal tract, pDC ablation had no effect in the output compared to 

controls (Sawai et al., 2018). 

The localization of TLRs in endosomes probably aims to prevent unwanted activation by self-

nucleic acids. It is important to note that the increased expression of either TLR7 or huTLR8 in 

transgenic mice is sufficient to induce autoimmunity. Thus, TLR7/9 in pDCs, as well as TLR8 

expression is not only restricted in endosomes as a mean of protection but it is also tightly 

regulated (Deane et al., 2007; Guiducci et al., 2013; Walsh et al., 2012).  
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Besides autoimmune diseases, pDCs have been shown to play an important role in allergic 

processes such as allergic dermatitis, allergic rhinitis and asthma. pDCs have been shown to be 

recruited in the nasal mucosa of allergic patients, and to be involved in allergic inflammation 

(Dua, Watson, Gauvreau, & O’Byrne, 2010; Jahnsen et al., 2000). Evidence points to a favoring 

of a Th2 response by pDC as a mechanism for allergy. A study showed that in healthy individuals, 

IFN-I secreted by pDCs after exposure to rhinovirus limit the Th2-driving response (Pritchard et 

al., 2012). It has been suggested that in allergic patients this mechanism may be defective, as an 

explanation for exacerbated asthma triggered by viral infections (Froidure, Vandenplas, 

D’Alpaos, Evrard, & Pilette, 2015).  

 

2.1.12. PDCs in bacterial, fungal and parasitic infections 
 

The role of pDCs in the context of infections by other pathogens than virus has been much 

less studied, and so the mechanism of activation of pDCs by these pathogens as well as their 

fate are still unclear. It is known that pDCs can respond to gram-positive and gram-negative 

bacteria by upregulating co-stimulatory molecules and producing IFN-I (Michea et al., 2013). 

They have been demonstrated to play a role also in fungal infections. In the presence of 

Aspergillus fumigatus hyphae, pDCs function as immunogenic agents by secreting IFN-I and TNF-

α (Ramirez-Ortiz et al., 2008). Very interestingly, they contribute to the killing of the fungi by 

directly secreting molecules that chelate divalent cations, such as calprotectin and lactoferrin, 

which are necessary for fungus to grow (Ramirez-Ortiz et al., 2011). In the presence of A. 

fumigatus, pDCs are also capable to secrete pDC extracellular traps (pETs) in a similar manner 

that neutrophils secrete neutrophil extracellular traps (NETs) (Goldmann & Medina, 2012). 

These traps, which are formed by DNA and citrullinated histone H3, assemble with antimicrobial 

peptides and serve to kill microbes that cannot be phagocytised (Loures et al., 2015). Regarding 

parasitic infections, malaria parasite (Plasmodium falciparum) does not activate pDCs in its 

blood-stage (Loughland et al., 2017). However, experiments with mice showed that TLR7-

mediated pDC activation can have a protective role in the initial phases of infection (X. Yu et al., 

2016).  
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2.1.13. GEN2.2 pDC cell line 
 

Due to the low numbers of pDCs in peripheral blood, the studies involving primary pDCs are 

not exempt of difficulties. To date, few pDC cell lines have been developed. Among them we 

find the leukemia-derived PMDC05 (Narita et al., Blood 2005), the cell line CAL-1 from a blastic 

NK cell lymphoma origin (Maeda et al., Int J Hematol 2005) and GEN2.2 (Chaperot et al., J 

Immunol 2006), generated from a BPDCN (L Chaperot et al., 2001). In our study we used GEN2.2 

as a pDC model. GEN2.2, like pDCs, present on their surface the phenotypic markers CD4, HLA-

DR, HLA ABC, CD45RA and CD123. They are negative for the myeloid markers CD13, CD11b, 

CD11c, CD14 and CD64. Importantly, they express also BDCA-4 and the specific pDC marker 

BDCA-2. They also express high levels of CD86 and moderate levels of CD40, whereas there is no 

sign of CD80 on its surface. Regarding homing and chemokine receptors, they are positive for 

CXCR3, CXCR4 and CD62L and express weakly CCR5, CCR6, CCR7 and CXCR2 whereas they show 

no expression of CCR1, CCR2, CCR4 and CXCR1 (Chaperot et al., 2006). Very importantly, they 

are expressing the endosomal receptors TLR7 and TLR9. GEN2.2 cells are growing in suspension 

and they are slightly adherent. They need a feeder layer of MS-5 cells (a murine stromal cell line) 

to grow. GEN2.2 cells produce massive quantities of IFN-α after engagement of TLR7 with 

influenza virus, but not the TLR7 synthetic agonist R878 (Resiquimod), and TLR9 with HSV-1 or 2 

or the TLR9 synthetic agonist CpG-A. On the other hand, when they are activated with CpG-B, 

IL-3+CD40L or other viruses, GEN2.2 maturate to an APC phenotype, secreting few amounts of 

IFN-α but considerable levels IL-1, IL-6 and TNF-α to the media. (Chaperot et al., J Immunol 

2006). 

 

2.2. Human immunodeficiency virus type I 
 

Human immunodeficiency virus type I (HIV-1) is a lentivirus under the category of 

retroviruses that is well-known to establish a chronic infection in humans. If untreated, HIV-1 

leads to a severe immunodeficiency, the acquired immunodeficiency syndrome (AIDS), that may 

ultimately lead to the dead of the infected patient due to opportunistic infections or cancer 

(Barré-Sinoussi, Ross, & Delfraissy, 2013). 
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2.2.1. HIV transmission 
 

HIV-1 has been isolated from many human liquids and secretions, including blood, saliva, 

urine, pre-ejaculate, semen, tears, vaginal fluids, breast milk, amniotic fluid, and cerebrospinal 

fluid, among others. Even though the virus is present in almost any human tissue or secretion, 

there are only three reported mechanisms of transmission, namely, sexual transmission, blood-

blood contact or vertical transmission (mother to child) pre-birth, during birth or breast-feeding. 

Sexual transmission occurs when sexual contact exists without protection between a 

seronegative individual and a seropositive individual who does not receive ART. Transmission is 

produced by contact of infected blood or secretions of genital mucosa, rectal mucosa or oral 

mucosa. Transmission via blood occurs through contaminated needles (drug users sharing 

infected needles, corporal modifications like piercings, tattoos or scarification or laboratory 

accidents with infected material) or during a defective blood transfusion (Table 1). It is 

important to note that the aforementioned modes of transmission happen only when the 

infected individual is not under antiretroviral treatment. Of these, transmission during birth 

used to be the most problematic. Nowadays, it is totally under control in developed countries 

due to the administration of highly active antiretroviral treatment (HAART), specially indicated 

for these cases, since before or at the beginning of pregnancy. Delivery is performed by 

Caesarean, maternal breast-feeding is substituted, and the baby starts antiretroviral treatment 

from the moment of birth.  

 

Estimated risk of VIH acquisition depending on the type of exposition (D. K. Smith et al., 
2005) 

  

Type of exposition 
Estimated number of infections per each 10000 expositions 

to an infected source 

Blood transfusion 9000 (Donegan et al., 1990) 

Birth 2500 (Coovadia, 2004) 

Drug injection 67 (Kaplan & Heimer, 1995) 

Receptive anal 
intercourse* 

50 (“Comparison of female to male and male to female 
transmission of HIV in 563 stable couples. European Study Group 
on Heterosexual Transmission of HIV.,” 1992) (Varghese, Maher, 
Peterman, Branson, & Steketee, 2002) 

Laboratory needle 30 (Bell, 1997) 

Receptive vaginal 
intercourse* 

10 (“Comparison of female to male and male to female 
transmission of HIV in 563 stable couples. European Study Group 
on Heterosexual Transmission of HIV.,” 1992; Leynaert, Downs, & 
de Vincenzi, 1998; Varghese et al., 2002) 
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Insertive anal 
intercourse* 

6,5 (“Comparison of female to male and male to female 
transmission of HIV in 563 stable couples. European Study Group 
on Heterosexual Transmission of HIV.,” 1992; Varghese et al., 
2002) 

Insertive vaginal 
intercourse* 

5 (“Comparison of female to male and male to female 
transmission of HIV in 563 stable couples. European Study Group 
on Heterosexual Transmission of HIV.,” 1992; Varghese et al., 
2002) 

Receptive fellation* 1 (Varghese et al., 2002) 

Insertive fellation* 0,5 (Varghese et al., 2002) 

 

Table 1: Data from several studies showing the number of infections per each 10000 

expositions to an infected source. * without the use of condom. 

 

Importantly, a series of recent studies have confirmed that HIV is not transmitted when the 

infected individual is under ART and the viral load is under the limit of detection of commercial 

assays (< 50 copies of viral RNA/ml). This is known as “U=U” or “Undetectable=Untransmissible” 

or “can´t pass it on” (Eisinger, Dieffenbach, & Fauci, 2019; Hiv, 2017). The studies demonstrating 

this hypothesis are: Opposites attract (Bavinton et al., 2018), PARTNER 1 (Rodger et al., 2016), 

PARTNER 2 (Rodger et al., 2019), and HPTN052 (M. S. Cohen et al., 2016). Taking the results of 

these studies together, from 4097 couples from 4 continents and 151880 sexual acts without 

condom, there were zero HIV transmissions where the viral load was under the level of 

detection. The affirmation that “undetectable viral load makes HIV untransmissible” gives new 

hopes to the eradication of HIV pandemic by preventing HIV transmission. 

 

2.2.2. HIV-1 particle structure 
 

HIV-1 virion is round, measuring around 100 nm in diameter and it is composed of a lipidic 

envelope, a structural matrix and a conical-shaped capsid that contains a pair of identical 

positive-sense single-stranded RNA molecules as well as essential enzymes for replication 

(Reverse Transcriptase (RT)/RNase H and integrase (IN)) (Figure 7). These essential enzymes are 

bound to the nucleic acid chains, which are associated with the nucleocapsid protein (NU). The 

conical capsid is formed by the assembly of the inner capsid protein p24 (CA), and a symmetrical 

outer capsid is formed by the matrix protein p17 (MA) (Niedrig et al., 1994). The host-derived 

envelope is a lipid bilayer containing 72 trimers of the viral envelope surface protein, each one 

of them composed by the surface protein gp120 (SU) and the transmembrane protein gp41 (TM) 
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(Gelderblom, 1991), as well as host membrane proteins derived from the budding. Several units 

of viral protease (PT) are found in the region between the matrix and the capsid. The maturation 

of the virion occurs at the end of the budding process when the precursor proteins Gag and 

Gag/Pol (p55, p160) are cleaved into individual units (For review: Sundquist & Kräusslich, 2012). 

 

 

Figure 7: Scheme of HIV-1 virion structure. HIV-1 virion envelope is composed of a lipidic bilayer 

acquired during the budding process from the host cell along with host membrane proteins and 

the surface viral protein Env. Env protein is composed of gp120 and gp41 arranged in trimers. 

The matrix, adjacent to the internal lipidic layer, provides a scaffold to the whole structure. The 

characteristic cone-shaped capsid of HIV-1 contains 2 copies of a 9.8 kb (+) ssRNA within the 

nucleocapsid as well as the essential viral enzymes RT and IN and also accessory viral proteins. 

In the space left between the matrix and the capsid there are viral proteases.  

Env, envelope; RT, reverse transcriptase; IN integrase; Vpr, viral protein r. 

 

2.2.3. Genome organization 
 

HIV-1 genome is formed by two identical molecules of positive sense ssRNA of 9.8 kb in 

length. Once integrated into the host genome, the pro-viral dsDNA become flanked by long 

terminal repeats (LTRs). HIV-1 genome comprises 9 genes, 3 of which are the common retroviral 

gag-pol-env and 6 other accessory genes that are unique to HIV-1 (Figure 8). These genes are 

vif, vpr, tat, rev, vpu, and nef. The genome is organized in 3 open reading frames (ORFs). Gag 
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leads the synthesis of the precursor protein gag, which is processed by PT to form the inner 

structural proteins of the nucleocapsid, capsid, and matrix of the virion.  

 

 

Figure 8: HIV-1 genome organization. HIV-1 genome is 9.8 kb long and is encoded in all three 

reading frames, indicated by the overlaps. The viral genome contains nine genes that codify for 

fifteen different proteins. Gag, pol and env are common to all retroviruses and the accessory 

genes vif, vpr, vpu, tat, rev and nef are unique to HIV. HIV-1 mRNA undergoes differential splicing 

to obtain nine different gene products. The 9.1 kb unspliced genomic transcript encodes for Gag 

and Pol precursor polyproteins. Five singly spliced transcripts with an average length of 4.3 kb 

encode for Env and the accessory proteins Vif, Vpr and Vpu. Three multiply spliced mRNAs 

encode for Nef and the regulatory proteins Tat and Rev. Adapted from the original by Thomas 

Splettstoesser (https://commons.wikimedia.org/w/index.php?curid=33943759).  

LTR, long terminal repeat; Gag; structural protein-encoding transcript; Pol, enzymatic protein-encoding transcript; 

Env, envelope protein-encoding transcript; Vif, viral infectivity factor; Vpr, viral protein r; Vpu, viral protein u; Tat, 

trans-activator of transcription; Rev, regulator of expression of viral proteins; Nef, negative regulatory factor. 

 

The gene pol encodes the viral enzymes that are essential to complete the viral cycle. These 

proteins are formed by posttranslational cleavage of Pol polyprotein into the RT, which reverse 

transcribes the genomic RNA into cDNA, IN, which integrates the viral reverse-transcribed DNA 

within the host DNA, and the PT, which, as mentioned above, is implied in the cleavage of the 

precursor polyprotein of the structural peptides that will form the mature virion. The env gene 

codes for the precursor glycoprotein gp160, which is cleaved by cellular proteases to give gp120 

(SU) and gp 41 (TM). The accessory genes vif, vpr, tat, rev, vpu, and nef code for multifunctional 

proteins aimed to target a large variety of cellular antiviral factors involved in innate and 

adaptive immune response, including the restriction factors SAMHD1, APOBEC3B and BST-2. 

These accessory proteins not only act at a protein level but also suppress the expression of 

antiviral factors by modulating the activity of immune-regulatory transcription factors such as 

NF-κB. They exert also a regulatory function on viral genes (Buffalo, Iwamoto, Hurley, & Ren, 

https://commons.wikimedia.org/w/index.php?curid=33943759
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2019; Malim & Emerman, 2008; Ramirez et al., 2019; Sauter & Kirchhoff, 2018; Sauter et al., 

2009). 

 

2.2.4. HIV-1 replicative cycle 
 

HIV-1 is either sexually transmitted or transmitted by blood contact between two individuals, 

but non-sexual transmission can happen by an infected mother to her infant during pregnancy, 

birth or after birth through the breast milk. After entering the human body the virion attaches 

to CD4 molecules present on the surface of CD4+ leukocytes (Dalgleish et al., 1984; Klatzmann 

et al., 1984; Maddon et al., 1986). Recent investigations suggested that the primary target in 

men may be not CD4+ T cells or dendritic cells but urethral macrophages (Ganor et al., 2019). 

The co-receptors CXCR4 and CCR5 are also essential for the attachment and fusion with the cell 

membrane (Y. Feng, Broder, Kennedy, & Berger, 1996; Weiss, 2013). After the fusion of the viral 

envelope and the plasma membrane of the target cell, the nucleocapsid with the genetic 

material as well as the proteins accompanying the virion (RT, IN, and PT) are released into the 

cytosol and transported via microtubules to the nucleus, in the form of the pre-integration 

complex (PIC) (Figure 9). During the microtubule-based transport of PIC the viral RNA is reverse 

transcribed to cDNA and once within the nucleus it is integrated into the host genome with the 

aid of the viral integrase (Chan & Kim, 1998; Wilen, Tilton, & Doms, 2012).  
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Figure 9: HIV replicative cycle. HIV gp120 attaches CD4 surface protein and with the aid of the 

chemokine receptor CCR5 or CXCR4 the membrane of the virion fuses with the membrane of 

the target cell. The PIC, which includes HIV RNA, integrase, reverse transcriptase and other viral 

proteins enters the cell. RNA is reverse transcribed to DNA by the viral reverse transcriptase and 

it is transported to the nucleus where the viral integrase catalyzes the integration into the host 

DNA. Viral RNA is generated by the host´s RNA pol II, spliced to produce early proteins Nef, Tat, 

Rev. Later, by means of the regulatory protein Rev the spliced and unspliced transcripts are 

exported from the nucleus and used either to be translated into viral proteins or as genomic 

RNA. Recently made viral polyproteins Gag-Pol and viral genomic RNA concentrates in hotspots 

by the cell membrane where glycosylated Env protein is present and an immature particle buds 

from the host cell. The new virion is released, and the viral protease cleaves the polyprotein in 

order to get the mature viral particle.  

PIC, pre-integration complex; CCR5, CC-chemokine receptor 5; CXCR4, CXC-chemokine receptor 4; Gag; structural 

protein-encoding transcript; Pol, enzymatic protein-encoding transcript; Env, envelope protein-encoding transcript; 

Tat, trans-activator of transcription; Rev, regulator of expression of viral proteins; Nef, negative regulatory factor. 

 

 

2.2.5. HIV Pathogenesis 
 

Transmission of HIV-1 is usually established through epithelial surfaces covering genital 

mucosa by a transmitted/founder (T/F) virus with unique features. As an example in a model of 
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human foreskin epithelium, highly HIV-1-infected mononuclear cells in polarized exposure to 

the inner but not outer foreskin are able to carry on an efficient HIV-1 transmission event. These 

HIV-1-infected mononuclear cells form viral synapses with foreskin keratinocytes, promoting 

polarized budding of HIV-1 which is rapidly internalized by Langerhans cells. Finally, Langerhans 

cells form conjugates with T cells, thus, transferring HIV-1.  For a detailed review (Bruxelle, 

Trattnig, Mureithi, Landais, & Pantophlet, 2021; Joseph, Swanstrom, Kashuba, & Cohen, 2015). 

The defining characteristics of the transmitter/founder virus are driven by selective pressure. 

Studies showed that T/F viruses present enhanced binding to target cells due to a more 

accessible CD4-binding site within env. Regarding the possibility of a higher env density on the 

membrane of T/F viruses that would increase the chance of binding to a target cell studies 

showed discordant results. Since initial studies showed that T/F viruses might have a higher 

number of env a later report concluded the contrary. HIV-1 T/F viruses predominantly use CCR5 

as correceptor along with CD4 (Bruxelle et al., 2021; Grivel, Shattock, & Margolis, 2011). 

However, CXCR4- tropic HIV-1 T/F viruses have been observed, as well as CXCR6-tropism in the 

case of mother-to-child transmission. Other characteristics of T/F HIV-1 viruses are enhanced 

replicative capacity and the ability to evade primary innate immune response, specially through 

resistance to IFN-I antiviral response.   T/F viruses have been found enhanced interaction with 

DCs (Parrish et al., 2013). 

The primary target of HIV are CD4+ T lymphocytes but other cells displaying CD4 and the 

chemokine receptors can also be infected, including dendritic cells, macrophages, monocytes 

and resting T lymphocytes. Importantly, a recent investigation involving penile tissue from HIV-

1-infected individuals under antiretroviral therapy (ART) showed that urethral macrophages 

contain integrated HIV-1 DNA, RNA, and intact virions. Moreover, HIV-1-infected urethral 

macrophages are able to produce replication-competent HIV-1 virions after activation. 

Therefore, skin-resident macrophages are not only important for transmission to T-cells in the 

form of conjugates, but  this study sets them as a new recipient for the HIV-1 reservoir (Ganor 

& Bomsel, 2011; Ganor et al., 2019).  

CD4-independent infections have been also reported, such as infection of astrocytes (Y. Liu 

et al., 2004), enterocytes or infection of renal epithelial cells (Chen et al., 2011), which can later 

give rise to HIV-associated cognitive disorder and nephropathy, respectively. After primary 

infection takes place, a rapid burst in HIV replication and viral load happen, followed by a 

pronounced decrease of CD4+ T cells (Figure 10). CD4+ T cells depletion is especially noticeable 

in the intestine, where HIV-1 pathogenesis begins. A potent induction of proinflammatory 
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cytokines and chemokines occurs in response to the presence of viral antigens (Stacey et al., 

2009). The decrease of CD4+ T cells is due not only to the cytolytic effects of HIV-1 replication 

but also to the action of HIV-specific CD8+ T cells. A few weeks later, viral load diminishes to a 

set-point, which is maintained by both innate and adaptive immunity, and CD4+ T cell numbers 

are partially restored. Because of the high mutation rate of HIV-1 genome, the strong adaptive 

response to the virus selects mutations in the key epitopes, thus leading to immune escape 

(Goonetilleke et al., 2009). 

 

 

 

Figure 10: HIV-1 load and CD4+ T cells dynamics during HIV-1 infection. In untreated HIV-

infected patients CD4+ T cells are depleted progressively from blood and reduced almost 

completely from gastrointestinal tract (GIT) few weeks after infection. HIV RNA in plasma 

increases dramatically during the first weeks of infection and later decreases up to a set point 

after HIV-specific adaptive immunity takes place. Adapted from Maartens, Celum, & Lewin, 

2014. 

 

In 20% of the HIV-1-infected patients, broadly neutralising antibodies (bNAbs) appear around 

3 months after infection (Walker et al., 2011). bNAbs are characterized by its exceptional 

potency and are directed to epitopes from many HIV-1 subtypes. However, bNAbs do not 

contribute to the clearance of the virus because of the arise of newly produced escape mutants 

(Liao et al., 2013). Recently, bNAbs are acquiring importance in the development of an effective 

HIV-1 preventive vaccine and for their putative usage as an alternative therapy to ART (J. Jardine 
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et al., 2013; For review Cohen & Caskey, 2018).  A very important role plays in this context the 

intense effects on T cell homeostasis in the mucosa of the gastrointestinal tract due to early 

effects of viral replication. In this case, a massive decrease of activated CD4+ T lymphocytes 

occurs, and it is not restored even after antiretroviral therapy (Mehandru et al., 2007). 

Furthermore, there is an important loss of Th17 lymphocytes as well as other T cell subsets, such 

as mucosal-associated invariant T cells, which are important in the defence against bacteria 

(Cosgrove et al., 2013; Prendergast et al., 2010). Together with the depletion of T cell subsets in 

the gastrointestinal tract, the prolonged production of type-I-IFN and the proinflammatory 

cytokines IL-6 and TNF-α secreted by activated pDCs with the subsequent recruitment of 

neutrophils drive the establishment of a chronic immune activation that leads to the induction 

of apoptosis of the enterocytes. As a consequence,  translocation of microbial products into 

plasma takes place, with lipopolysaccharide as a potent activator of TLR4-bearing cells 

(Brenchley et al., 2006). Thus, the over-stimulation of the innate and adaptive immune systems 

ends up with the production of more proinflammatory cytokines, promoting also a chronic 

immune activation.  At this point, it is important to note that together with CD4+ T cell depletion, 

chronic immune activation, which starts into the gastrointestinal tract (GIT), is also a hallmark 

of HIV-1 infection. The residual chronic inflammation persists even after the initiation of ART 

and the restoration of CD4+ T cell numbers and is associated with several diseases, such as liver 

disease (Andrade et al., 2013), cardiovascular disease (Hsue et al., 2012), cancer (Marks et al., 

2013), neurological disease (Ancuta et al., 2008), and also with mortality (Kuller et al., 2008).  

Immune reconstitution disease, also known as immune reconstitution inflammatory 

syndrome (IRIS) can appear in HIV patients shortly after the beginning of ART. It consists in an 

atypical immunopathological response as a result of the rapid reestablishment of pathogen-

specific immune responses to pre-existing antigens in combination with a dysregulation of the 

immune system (reviewed in Lawn & Meintjes, 2011; Nelson, Manabe, & Lucas, 2017; Sharma 

& Soneja, 2011). Often, the antigens that trigger IRIS belong to pathogens that cause 

opportunistic infections, such as tuberculosis, cryptococcal meningitis and cytomegalovirus 

retinitis. An incidence of 16.1% has been reported (Muller et al., 2010). The disease causes high 

morbidity but low mortality (4.5%). 
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2.2.6. HIV-1 latency and the establishment of reservoirs 
 

HIV-1 can infect not only activated but also resting CD4+ T cells. This fact allows the virus to 

establish latent reservoirs which cannot be detected nor destroyed by the current available 

drugs since there is no expression of viral antigens. Moreover, memory CD4+ T cells have a long 

lifespan up to several years. Studies showed that there is a proportion of one latently infected 

cell per every million of resting CD4+ T cells (Chun et al., 1997; Finzi et al., 1997; Wong et al., 

1997) and that a reservoir of 105-107 latently HIV-1-infected cells is established during the first 

weeks of infection in most of the individuals (Chun et al., 1997). HIV-1-Infected activated CD4+ T 

cells can also give rise to a latent reservoir if revert back to a latent state (Pan, Baldauf, Keppler, 

& Fackler, 2013; Siliciano & Greene, 2011). In fact, infection of activated CD4+ T cells that are 

reverting into a resting state provides the best conditions for the establishment of latency 

because of the higher expression of CCR5 in activated CD4+ T lymphocytes, the proper 

availability of dNTP pools for reverse transcription and the immediate reduction of viral gene 

expression because of the inactivation of activation-dependent host transcription factors, such 

as the nuclear factor of activated T cells (NFAT) and NF-κB, features that are absent in resting 

CD4+ T cells (Shan et al., 2017). 

A study showed that in a non-human primate model of HIV-1 infection, the primary sites of 

persistence of the HIV closely related simian immunodeficiency virus (SIV) RNA and DNA are the 

gastrointestinal tract and lymphoid tissue (Brenchley & Douek, 2008; Estes et al., 2017; Veazey, 

2019). Monocyte-derived HIV-1 infected cells are key players in the establishment of viral 

reservoirs. These cells can provide a reservoir to the virus in a minor proportion. As mentioned 

in the previous section, recent studies with penile tissue from HIV-1-infected patients showed 

that urethral macrophages contain integrated HIV-1 DNA, RNA, proteins and virions and that 

they can be considered dormant reservoirs since after reactivation they are able to produce 

replication-competent infectious HIV-1 particles (Ganor & Bomsel, 2011; Ganor et al., 2019). 

Also, the role of monocyte-derived cells in the persistence of HIV-1 infection acquires 

importance because they can cross the blood-brain barrier and facilitate the infection of cells 

from the central nervous system (CNS), where new reservoirs of the virus can be established 

(Alexaki, Liu, & Wigdahl, 2008). Importantly, unlike CD4+ T lymphocytes, monocyte-derived cells 

are resistant to the cytolytic effects of HIV-1 and can release viral particles for a prolonged period 

of time (Alexaki et al., 2008; Aquaro et al., 2002; Meltzer et al., 1990). In this sense, macroglial 

cells, which are major HIV-1 target in the brain, could work as HIV-1 reservoirs in the CNS 

(Schneider et al., 2015). Hematopoietic stem cells have also been suggested as a putative 
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reservoir of HIV-1 but several reports showed conflicting results regarding the resistance of 

these cells to HIV-1 infection (Alexaki et al., 2008; Josefsson et al., 2012; Nixon et al., 2013; 

Stanley et al., 1992; Weichold et al., 1998; J. Zhang, Scadden, & Crumpacker, 2007). Regarding 

the mechanisms of latency establishment, several studies showed that repressive chromatin 

states play an important role (Blazkova et al., 2009; Kauder, Bosque, Lindqvist, Planelles, & 

Verdin, 2009; Pion et al., 2003; Trejbalová et al., 2016). Among them we find obstructive 

nucleosome positioning, DNA methylation, and posttranscriptional modifications of histones 

and other proteins. Other studies showed alternative mechanisms contributing to the 

establishment of a latent reservoir, such as low levels of viral Tat protein and host transcription 

factors, defects in RNA splicing and export or transcriptional interference.  

 
 

2.2.7. Acquired Immunodeficiency Syndrome 
 

During the course of chronic HIV-1 infection the exhausted immune system is outpaced by a 

series of pathogens of different etiology, which are the cause of well-defined HIV-related 

opportunistic infections (Deeks, Overbaugh, Phillips, & Buchbinder, 2015; Moir, Chun, & Fauci, 

2011; Yasuoka, 2010). Ultimately, HIV infection-derived opportunistic infections are the cause 

of the dead of the patient. It is considered that a patient gets into AIDS either when the number 

of CD4+ T cells in blood is lower than 200/ml (Doitsh & Greene, 2016), or when the patient 

presents one of some clinical manifestations included in AIDS definition by World Health 

Organization (WHO) in 1987. There are three categories related to the symptoms that a patient 

experience within HIV infection (Categories A, B and C), independently of the number of CD4+ T 

lymphocytes in blood (Table 2). Category A includes the patients that present primary infection 

or that are asymptomatic. Category B includes the patients that present symptoms that are not 

within C category but that are related to HIV infection. Examples of B class clinical manifestations 

are pelvic inflammatory disease (PID) (Korn, 1998), immune thrombocytopenic purpura (Yospur, 

Sun, Figueroa, & Niihara, 1996), or mild fever during more than one month. Examples of C class 

clinical manifestations can be caused by bacteria: tuberculosis, septicaemia caused by 

Salmonella; of viral origin: cytomegalovirus infection or Herpes simplex virus (HSV) 1 or 2 

outbreak; of fungal origin: Aspergillosis, candidiasis, histoplasmosis; caused by protozoa: 

pneumonia, neurological toxoplasmosis, isosporiasis (Yasuoka, 2010); processes directly related 

to HIV: wasting syndrome (Emerole, Рokrovskaya, & Pilipenko, 2016), progressive multifocal 

leukoencephalopathy (Cinque, Koralnik, Gerevini, Miro, & Price, 2009), HIV-related dementia 
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(Eggers et al., 2017; Smail & Brew, 2018), or tumoral processes: Kaposi´s sarcoma, Burkitt 

lymphoma or cervical cancer (Ji & Lu, 2017).  

 

 

 

 

 

 

 

Table 2: Categories of HIV-1-infected patients. Category of HIV-1-infected patients (A, B and C) 

in relation to the number of CD CD4 T lymphocytes in blood+. In orange AIDS. Category A includes 

patients during the early onset of the infection and also patients that are asymptomatic at any 

time during the infection. Category B includes patients that are not in category C but present 

other clinical manifestations related to HIV-1 infection. Examples of category B patients are the 

ones who suffer PID or immune thrombocytopenic purpura. Category C patients include the 

ones who suffer typical late AIDS clinical manifestations such as opportunistic infections or HIV-

1 related tumors. 

 

2.2.8. Antiretroviral therapy against HIV-1 infection 
 

Since the appearance of the first HIV-1 specific antiviral drug, Zidovudine (ZDV); also known 

as Azidothymidine (AZT)), a nucleoside-analog reverse transcriptase inhibitor (NRTI) in 1987, 

which was given as a monotherapy or in combination of other early reverse transcriptase 

inhibitors (zidovudine, didanosine, zalcitabine, stavudine, and lamivudine), leading the selection 

of clones that were multi-drug resistant (Iversen et al., 1996; Schmit et al., 1996), a considerable 

evolution in the standard HIV-1 infection care has happened. Nowadays, the most effective HIV-

1 treatment includes a combination of up to three drugs in a cocktail, known as highly active 

antiretroviral therapy (HAART) (Henkel, 1999), that targets not only reverse transcriptase action 

but different essential steps on HIV-1 replication cycle (for a complete review (Arts & Hazuda, 

2012) (Figure 11). Antiretroviral drugs are distributed into six distinct classes: (1) nucleoside-

analog reverse transcriptase inhibitors (NRTIs), (2) non-nucleoside reverse transcriptase 

inhibitors (NNRTIs), (3) integrase inhibitors (INIs or INSTIs), (4) protease inhibitors (PIs), (5) fusion 

inhibitors, and (6) coreceptor antagonists (CCR5 antagonists). Before 1996, the treatment 

strategy consisted in prophylaxis against common opportunistic pathogens and the control of 

CD4+ T 

LYMPHOCYTES 

A B C 

> 500 CELL/ML A1 B1 C1 

200-500 CELL/ML A2 B2 C2 

< 200 CELL/ML A3 B3 C3 
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HIV-1 related illnesses that could appear, besides the administration of an antiretroviral drug. 

As mentioned in the preceding lines, the first antiretroviral drugs were administrated as a 

monotherapy, but the advent of drug resistance due to the selection of clones obligated scientist 

to find new solutions. The combination of drugs attacking different steps of the replication cycle 

given as a cocktail eliminated, or at least delayed considerably the resistance issue (Henkel, 

1999).  

 

 

 

Figure 11: Different steps in HIV-1 replication that are potential targets for antiretroviral 

drugs. Scheme of HIV-1 replication cycle indicating with numbers (1-5) the steps to target with 

antiretroviral drugs. Namely, attachment and fusion (entry), reverse transcription, DNA 

integration, transcription, virus assembly and budding. In the box is showed a time frame for 

antiviral drug action during a single-cycle HIV-1 replication assay. If a step-specific drug is added 

after the step has took place, it will result in a lack of inhibition.  

PIC, pre-integration complex; CCR5, CC-chemokine receptor 5; CXCR4, CXC-chemokine receptor 4 

 



 

42 
 

HAART was crucial in the reduction of morbidity and mortality associated to HIV-1 infection 

and AIDS (Collier et al., 1996; D’Aquila et al., 1996; Staszewski et al., 1996). Combinational 

therapy against at least two different targets reduces efficiently plasma viral load under the limit 

of detection of commercial assays (<50 copies/ml) allowing the reconstitution of the immune 

system taking CD4+ T lymphocytes as a measure (Autran et al., 1997; Komanduri et al., 1998; 

Lederman et al., 1998) (Figure 12). However, the effect of therapy can be reduced or impaired 

if the patient shows no adherence to the treatment, for poor drug tolerability or interaction with 

other antiretroviral or non-antiretroviral drugs that can cause a reduction of the optimal drug 

levels.  

 

 

Figure 12: HIV-1 load and CD4+ T cells dynamics in ART-treated infected patients. In ART-

treated HIV-infected patients, HIV load decreases rapidly under the limit of detection of 

commercial assays during the first weeks after the treatment starts. CD4 T cell numbers recover 

progressively during the following months and years of infection without reaching normal pre-

infection levels. Recovery of CD4 T cells in the gastrointestinal tract is reduced compared to 

recovery of CD4 T cells in blood. Adapted from Maartens et al., 2014.  

ART, antiretroviral therapy; GIT, gastrointestinal tract. 

 

Nowadays, patients can take the combination of antiretroviral drugs in commercial fixed-

dose combinations, which consist of a combination of two, three or four drugs into one single 

pill that is taken daily, thus, facilitating the adherence of the patient to the medication and 

improving effectiveness over the long-term. Examples of fixed-dose combinations are Dutrebis, 
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which combines lamivudine and rageltavir, or Triumeq, which combines abacavir, dolutegravir 

and lamivudine  (Bangalore, Kamalakkannan, Parkar, & Messerli, 2007; Bangsberg, Kroetz, & 

Deeks, 2007) (Table 3). 

The first step on HIV-1 replication cycle that is targeted by antiretroviral drugs is viral entry. 

Here, fusion inhibitors, such as enfuvirtide (T-20) have been developed in order to block virion 

penetration within the target cell (Lalezari et al., 2003). Targeting the coreceptor CCR5 with 

CCR5 antagonists, such as maraviroc (MVC) is another way to stop the replication cycle at this 

point (“Maraviroc reduces viral load in naive patients at 48 weeks.,” 2007). Recently, a new drug 

that blocks the entrance of the virus has been approved by the U.S. food and drug administration 

(FDA). Ibalizumab is a “post-attachment inhibitor”, constituted by a non-immunosuppressive 

humanized monoclonal antibody that binds CD4 and blocks HIV attachment to the coreceptors 

CCR5 or CXCR4 (Jacobson et al., 2009). The following event that is targeted is reverse 

transcription. NRTIs and NNRTIs block the function of reverse transcriptase. NRTIs block the 

enzyme by joining the catalytic domain and NNRTIs bind to a non-catalytic allosteric pocket on 

reverse transcriptase. When the enzyme is blocked there is no generation of DNA and HIV-1 

replication cycle cannot be completed. There are plenty of reverse transcriptase inhibitors 

available nowadays, being abacavir (ABC) and tenofovir (TDF), which was were by the Czech 

chemist Antonín Holý in the Institute of Organic Chemistry and Biochemistry (IOCB) in Prague, 

examples of NRTIs (Ustianowski & Arends, 2015), and efavirenz (EFV) and nevirapine (NVP) 

examples of NNRTIs (De Clercq, 1998). The third step of the replication cycle that can be blocked 

is the integration of the viral DNA into the host DNA. INIs block the viral integrase which oversees 

DNA integration. Specifically, dolutegravir (DTG) and raltegravir (RAL) block the strand transfer 

step within integration (Markowitz et al., 2007). PIs are a series of drugs that target the viral 

protease that is in charge of the cleavage of newly synthetized viral proteins, a process that takes 

place inside the immature virion, after the budding. By targeting the viral protease immature 

virions cannot mature and become functional. Examples of PIs are atazanavir (ATV) and 

tipranavir (TPV). Cobicistat (COBI) and ritonavir (RTV) (Lv, Chu, & Wang, 2015). are 

pharmacokinetic enhancers which inhibit liver enzymes that metabolizes the other antiretroviral 

drugs, allowing a prolonged action span of these (Lianhong Xu et al., 2010; Zeldin & Petruschke, 

2004). 
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Generic name Brand name 
FDA aproval 

date 

Nucleoside reverse transcriptase inhibitors (NRTIs)  
abacavir (ABC) Ziagen 1998 

emtricitabine (FTC) Emtriva 2003 

lamivudine (3TC) Epivir 1995 

tenofovir (TDF) Viread 2001 

zidovudine (AZT) Retrovir 1987 

   

Non-nucleoside reverse transcriptase inhibitors      
(NNRTIs)  

doravirine (DOR) Pifeltro 2018 

efavirenz (EFV) Sustiva 1998 

etravirine (ETR) Intelence 2008 

nevirapine (NVP) Viramune 1996/2011 

rilpivirine (RPV) Edurant 2011 

   

Protease Inhibitors (PIs)  
atazanavir (ATV) Reyataz 2003 

darunavir (DRV) Prezista 2006 

fosamprenavir (FPV) Lexiva 2003 

ritonavir (RTV)* Norvir 1996 

saquinavir (SQV) Invirase 1995 

tipranavir (TPV) Aptivus 2005 

   

Fusion inhibitors (FIs)  
enfuvirtide (T-20) Fuzeon 2003 

   

CCR5 antagonists  
maraviroc (MVC) Selzentry 2007 

   

Integrase inhibitors (INIs)  
dolutegravir (DTG) Tivicay 2013 

raltegravir (RAL) Isentress 2007/2017 

   

Post-Attachment inhibitors  
ivalizumab-uiyk (IBA) Trogarzo 2018 

   

Pharmacokinetic Enhancers  
cobicistat (COBI) Tybost 2014 

 

Table 3: List of HIV drugs recommended for the treatment of HIV infection in the United 

States by April, 2019. All the drugs on the list have been approved by the U.S. Food and Drug 

Administration (FDA). Even though it was developed as a protease inhibitor, ritonavir is widely 
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used as a pharmacokinetic enhancer in combination with other antiretroviral drugs. Source 

“aidsinfo.nih.gov”. 

 

2.2.9. Perspectives for a cure 
 

HIV-1 is considered nowadays a life-long chronic infection due to the effectivity of the 

combined antiretroviral therapy. The major problem that scientists face is the consecution of a 

sterilizing cure by means of the selective elimination of the latently infected cells that allow the 

virus to re-emerge in the case of interruption of ART. Until recently, only two individuals, known 

as the “berlin and London patients”, had been officially cured from HIV-1 infection, by exhibiting 

a prolonged post-treatment control of HIV viral load after ART was interrupted. Notably, the 

case of Timothy Ray Brown, the Berlin patient, is an especial issue because of the nature of the 

diagnostic and the treatment followed to get to the cure. Apart from HIV-1 infection, he was 

diagnosed with acute myeloid leukemia. Two hematopoietic stem cell transplant (HSCT) from a 

homozygous CCR5 delta32 donor were done in 2007 and 2008 after eradication of his own 

immune system by chemotherapy and irradiation. The same day of the first HSCT the patient 

stopped taking ART and three months later HIV viral load decreased dramatically below 

undetectable levels at the same time that CD4+ T cell number increased significantly (Hutter et 

al., 2009). The Berlin patient was still free of HIV RNA up to his death in 2021 due to myeloid 

leukemia. On March 2019, a second HIV-I-infected individual, known as the London patient ,who 

got HSCT in the same terms of the berlin patient three years ago after being diagnosed with 

Hodgkin´s lymphoma has been reported as the second person to be cured of HIV-1 infection 

(Gupta et al., 2019). Moreover, a third case of a putative cured individual known as the 

Düsseldorf patient may be confirmed soon. Even the good news that suppose being able to 

reach a sterilizing cure, the case of these patients cannot be compared to the majority of the 

HIV-1-infected population, which is living under “normal” conditions with the aid of ART. The 

severity and risk of taking a HSCT, which has a mortality rate of 50%, pushes scientists to find 

alternative solutions to find either a sterilizing cure, in which patients are cleared completely 

from the virus, or a functional cure, in which patients are able to control the viral load and 

function. 

 The major problem when facing the eradication of the virus from the organism is to kill the 

reservoirs of latently infected cells, which repopulate the virus after the patient interrupts ART. 

Most efforts are focused in the so called “shock and kill” strategy (reviewed in Pitman, Lau, 

McMahon, & Lewin, 2018; Schwartz et al., 2017), which consists in the usage of latency-
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reversing agents (LRAs) in order to make the latently infected cell to produce viral proteins, thus, 

being able to be detected and eliminated by the immune system or to lead directly to virus-

mediated cell death (Figure 13). Numerous LRAs, such as, histone deacetylase inhibitors 

(HDACis) (Blazkova et al., 2009; Elliott et al., 2014; Richard Brad Jones et al., 2014; Pace et al., 

2016; Rasmussen et al., 2014; Sogaard et al., 2015), Disulfiram (Elliott et al., 2015), or TLR 

agonists (Tsai et al., 2017; Vibholm et al., 2017) have been tested, but so far, although they 

transitionally reduced the number of infected cells, they failed in eradicating the HIV-1 reservoir. 

 

Figure 13: Latency and reactivation through “shock and kill”. (A) Latency can be established 

when HIV infects a cell that is undergoing the process to a resting state or when HIV infects a 

resting CD4 T cell directly. (B) The “shock” consists in the exposition to LRAs and the killing is 

mediated by direct immune action over the infected cell in combination with the ART. Adapted 

from Maartens et al., 2014. 

LRA, latency-reversing agents; ART, antiretroviral therapy; HIV US RNA, HIV unspliced RNA. 
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Only a study with macaques led to sustained remission of SIV when treated with the TLR7 

agonists vesatolimod and GS986 (Lim et al., 2018). These results open the door to clinical trials 

of these new TLR7 agonists on HIV-I-infected humans. However, there is still the need for a 

search of less toxic, more potent and more specific LRAs. Another strategy to find the cure of 

HIV may be the usage of gene editing. The aim would be to modify the sequences of CCR5 

coreceptor on T cells and stem cells or even of viral proteins. Clinical trials with zinc finger 

nucleases (Tebas et al., 2014) and CRISPR/Cas-9 (Z. Liu et al., 2017) have been performed and 

others are being held already in phase 1 and 2. The main issue with the edition of HIV genome 

is the requirement of multiple targets in order to avoid resistance. Moreover, an enhanced 

delivery method to target only the infected cells will be necessary. 

 

  

Table 4: Summary of the recent/current on-going strategies for an HIV cure that are on clinical 

trials. Adapted from Pitman et al., 2018 
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Another idea that scientists are exploring is to inhibit the antiapoptotic protein B cell 

lymphoma 2 (BCL2) which is found in high concentrations in resting CD4+ T cells compared to 

activated CD4+ T cells. The proapoptotic inhibitor of BCL2 Venetoclax, used in combination with 

LRAs showed a decrease on HIV DNA suggesting the selective depletion of infected cells 

(Cummins et al., 2016). This strategy received the name of “prime, shock and kill” for obvious 

reasons. Finally, silencing has also been proposed as a “block and lock” strategy. The addition of 

an HIV Tat inhibitors (Kessing et al., 2017; Mousseau et al., 2012) or RNAi (Ahlenstiel et al., 2015; 

Centlivre et al., 2013) in order to silence the provirus transcription have been studied with a 

priori positive results, but the selective delivery of the silencing agents into infected cells must 

be improved. Another area of on-going investigation is the study of the administration of an HIV 

therapeutic vaccine combined with LRAs and other adjuvants in order to direct the CD8+ T cell-

mediated elimination of infected cells. Clinical trials showed relative success (Sneller et al., 2017) 

but the problem of this method is the appearance of escape mutants. In this sense, broader 

cytotoxic CD8+ T cell-mediated responses are needed in order to embrace the range of HLA 

alleles (Deng et al., 2015; Hancock et al., 2015). Broadly neutralizing antibodies are able to 

neutralize a wide range of HIV-1 strains not only at a free virion level but also can mediate the 

depletion of infected cells expressing viral antigen on its surface by the action of phagocytes, NK 

cells and CD8+ T cells (Bruel et al., 2016; Lu et al., 2016; Nishimura et al., 2017; Schoofs et al., 

2016). Clinical trials showed that the administration of the bNAbs 3BNC117 and VRC01 to HIV-1 

infected patients taking ART delayed viral rebound after ART interruption. Even though, with 

enough time, these antibodies can generate escape mutants (Bar et al., 2016; Scheid et al., 

2016). Importantly, studies with non-human primates revealed that bNAbs are capable of 

clearing SIV containing HIV env (SHIV) from infected neonates (Hessell et al., 2016). Similar 

studies in humans are being assessed. bNAbs have been used in combination with bispecific and 

trispecific antibody-based molecules and showed a big potency in neutralizing HIV in vitro (Y. 

Huang et al., 2016; Ling Xu et al., 2017). Other studies in vitro using engineered proteins called 

dual-affinity retargeting molecules (DART), which are formed by heterodimers comprising the 

variable regions of two monoclonal antibodies with specificity against HIV and CD3 are able to 

direct cytolytic lymphocytes to infected cells and facilitate its clearance (Sloan et al., 2015). 

Clinical trials are being done with chimeric antigen receptor (CAR) expressed on T cells. CARs 

consist on an extracellular domain derived from a monoclonal antibody or a cell surface receptor 

or ligand, attached through a transmembrane domain to a CD3 signalling ζ chain. CAR-expressing 

T cells are able to lyse HIV-infected cells in vitro and in vivo (Hale et al., 2017; B. Liu et al., 2016). 

The last group of studies are based on immune modulation in order to achieve a functional cure. 

Checkpoint markers are surface molecules which trigger regulatory pathways to reduce T-cell 
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activity. Examples of these molecules are PD-1 or cytotoxic T-lymphocyte antigen 4 (CTLA-4). 

The expression checkpoint markers are upregulated in HIV infection (Chomont et al., 2009; 

Fromentin et al., 2016; McGary et al., 2017). The usage of mAbs against these molecules has 

been shown to intensify HIV-specific T cell response ex vivo and they could act also as LRAs 

(Chew et al., 2016; Wykes & Lewin, 2018). The first observational trials in humans resulted in 

immune-related toxicity (Gay et al., 2017) and currently several independent studies (Guihot et 

al., 2018; Wightman et al., 2015) and clinical trials are taking place in order to find safer immune-

checkpoint blockers with higher HIV-specific enhancement of the immune function. Modifying 

T cell trafficking to tissues is another potential cure strategy. The administration of a mAb against 

α4β7, an integrin that favors gut-homing, to SIV-infected, ART-suppressed macaques resulted in 

the maintenance of aviremia for 2 years after treatment interruption due to enhanced 

trafficking to gut and immune complexes formation (Byrareddy et al., 2016). Alternatively, 

increasing the expression of the chemokine receptor CCR5 on cytotoxic T cells enhanced the 

trafficking to the lymph nodes, where latent reservoirs can persist (Fukazawa et al., 2015). 

Clinical trials of both trafficking-modifying strategies are currently being held. The level of 

inflammation during the chronic phase of HIV infection has been for long correlated with 

progression to immune exhaustion and finally progression to AIDS (Khoury et al., 2017). 

Researchers are exploring the usage of anti-inflammatory drugs in order to reduce HIV 

persistence. By targeting the serine/threonine kinase mTOR with an inhibitor, a reduction in HIV 

DNA has been accomplished after a kidney transplantation (Stock et al., 2014). Another obvious 

way to reduce the inflammation is by blocking the effects of IFN I. In studies with humanized 

mice, the administration of an antibody against IFN receptor reduced immune activation, 

enhanced T cell HIV-specific responses an caused a significant delay in viral rebound by reducing 

viral reservoirs in lymphoid tissue (Cheng et al., 2017).  

Last years have seen the arousal of studies involving the so called post-treatment controllers 

(PTCs) as a model of a functional cure, in which HIV-1-infected patients are able achieve viral 

control after ART interruption in a similar way as HIV-1 infected elite controllers (ECs) do 

(Cockerham, Hatano, & Deeks, 2016; Davenport et al., 2019; de Bree & Sanders, 2019; Etemad, 

Esmaeilzadeh, & Li, 2019; Goulder & Deeks, 2018; Maenza et al., 2015; Martin & Frater, 2018; 

Sáez-Cirión et al., 2013). The difference between ECs and PTCs is that the former group can 

spontaneously maintain a low viral load without the use of ART, whereas PTCs maintain low 

levels of virus after treatment interruption. There have been several PTCs cohort studies in last 

years (Etemad et al., 2019).  Interestingly, evidence has been found of several phenotypic 

differences between PTCs and ECs. For instance, certain human leukocyte antigen (HLA) alleles 
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have been associated with protective effects in ECs whereas PTC do not appear to possess these 

alleles. In fact, the VISCONTI study reported a correlation between the presences of the 

aforementioned protective alleles in PTCs with a less favorable clinical outcome (Sáez-Cirión et 

al., 2013). Also, cytotoxic lymphocyte (CTL) responses have been found to be stronger in ECs 

compared to PTCs among other differences. Altogether, the analysis of these studies have 

leaded to the conclusion that an early ART initiation during HIV-1 acute phase of infection 

significantly increases the chances of achieving post-treatment control allowing the adaptive 

immune response to prevent viral rebound and control infection (Etemad et al., 2019). 

Upcoming investigations with PTC cohorts are necessary to uncover the mechanism of post-

treatment control and facilitate the path towards a functional cure of HIV-1 infection.  

 

2.3. PDC activation in HIV-1 infection 
 

Even though pDCs are not considered a reservoir of HIV-1, they can interact and be infected 

by HIV-1 since they express HIV-1 receptor CD4 and the co-receptors CCR5 and CXCR4 (O’Brien, 

Manches, & Bhardwaj, 2013). After the virion is internalized via dynamin-dependent 

endocytosis, HIV-1 sensing induces the production of large amount of IFN-I but low amounts of 

proinflammatory cytokines (TNF-α and IL-6), thus, leading the cell to become an interferon-

producing cell rather than an APC (Beignon et al., 2005; Haupt et al., 2008; McKenna, Beignon, 

& Bhardwaj, 2005; O’Brien et al., 2011; Pritschet et al., 2012). The sensing of HIV and subsequent 

IFN-I production is mediated via TLR7 and IRF7 activation rather than TLR9, given that TLR7 

inhibitors are much more potent than TLR9 in abolishing IFN-I production by HIV-exposed pDCs 

(Aiello, Giannessi, Percario, & Affabris, 2018; Pritschet et al., 2012). The intensity of IFN-I 

response is determined by the affinity of gp120 to CD4 and not by CXCR4 or CCR5 (Haupt et al., 

2008). Even though upstream events that lead to IFN-I production are still not clear, it is known 

that HIV endocytosis and endosomal acidification but not fusion or viral replication are 

necessary (Beignon et al., 2005). Importantly, cell-free HIV-1 virions are weak inducers of IFN-I 

compared to other viruses (Beignon et al., 2005; Lo et al., 2012). In this regard, it was reported 

that pDCs are markedly resistant to HIV-1 infection because of the high expression of the 

restriction factor SAMHD1, an enzyme with phosphohydrolase activity which depletes the dNTP 

pool necessary for reverse transcription and replication of the virus (Bloch et al., 2014). On the 

other hand, it was shown that HIV-1-infected CD4+ T lymphocytes are good inducers of type-I-

interferon secretion by pDCs (Schmidt, Ashlock, Foster, Fujimura, & Levy, 2005). The 

mechanisms of these events are still poorly understood. Contrarily to mDCs, pDCs have the 
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notorious ability of not becoming refractory after a subsequent activation. This may be due to 

the requirement of the positive autocrine feedback through IFNAR receptor to acquire full 

functionality and because of the prolonged localization of the virus in early endosomes (O’Brien 

et al., 2016). 

 Notably, studies on the context of HIV infection have shown that IFN-α triggers the 

expression of the pro-apoptotic molecule TNF-related apoptosis-inducing ligand (TRAIL), turning 

pDCs into IFN-producer Killer pDCs (IKpDCs). IKpDCs are able to induce apoptosis of HIV-infected 

and non-infected CD4+ T cells indistinctly through the activation of DR-5 signalling pathway. 

These reports suggest a direct mechanism of pDCs-mediated of CD4+ T cells of HIV-infected 

patients, which is a hallmark of HIV infection (Gougeon & Herbeuval, 2012; Hardy, Graham, 

Shearer, & Herbeuval, 2007). Remarkably, studies in humanized mice showed that when pDCs 

were depleted before or during the acute phase of HIV-1 infection, HIV-1 replicated to high 

levels in all tissues and there was no signature of IFN-I or ISGs induction. At the same time, CD4+ 

T cell depletion was significantly reduced compared mice with normal pDC numbers. Therefore, 

at least on these mice model of humanized mice, pDCs were the major source of IFN-1 during 

acute HIV-1 infection. IFN-1 levels directly correlated with viral load and inversely correlated 

with CD4+ T cell depletion (Cheng, Ma, Li, & Su, 2018; Cheng et al., 2017; G. Li et al., 2014; Su, 

2019). 

 

2.4. The role of pDC in the chronic phase of HIV-1 infection 
 

The chronic phase of HIV-1 infection is characterized by an aberrant immune response in 

which CD4+ and CD8+ T lymphocytes overexpress HLA-DR, CD38, ki67 and inhibitory molecules 

such as CTLA-4 and PD-1 (Day et al., 2006; Kaufmann et al., 2007; Trautmann et al., 2006). This 

aberrant response is defined as well by T cell exhaustion and increased apoptosis levels and is 

persistent even under ART. There is a better correlation between disease progression to AIDS 

(with the subsequent apparition of co-morbidities) with the abnormal response of the immune 

system than with viremia (Baker & Duprez, 2010; El-Sadr et al., 2006; Ho et al., 2010; Lekakis & 

Ikonomidis, 2010; Lichtenstein et al., 2010). Importantly, disease progression to AIDS and the 

appearance of associated co-morbidities correlate with IFN-1 levels in plasma. Studies with non-

human primates showed that non-pathogenic SIV-infected natural hosts, such as sooty 

mangabey (SM) and african green monkey (AGM), exhibit high viral load, low immune activation 

and poor type-I-IFN levels compared to pathogenic SIV-infected non-human primates, such as 
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rhesus macaque (RM), which display high immune activation and high IFN-I levels in plasma 

(Bosinger et al., 2009; Jacquelin et al., 2009). In HIV-infected patients has been observed a 

chronic production of the IFN-α subtype IFN-α2b (C Lehmann et al., 2009). Circulating pDC 

numbers decline is a feature of HIV-I infection and correlates T CD4+ depletion and high viral load 

(Donaghy et al., 2001). It has been found that during HIV-I infection circulating pDCs in blood 

express higher levels of the lymph-node homing markers CCR7 and CD62L and in fact, a higher 

migration of pDCs to lymphoid tissue compared to non-infected controls has been observed 

(Clara Lehmann et al., 2010). Therefore, the decrease of circulating pDC levels may be due to a 

redistribution to the lymphoid compartment rather than a depletion due to apoptosis and the 

cytopathic effect of HIV, at least partly. Contrarily to circulating pDCs, which show exhaustion 

and hypoactivation, therefore, producing low levels of IFN-I during chronic infection, pDCs 

allocated in the lymph nodes remain activated and produce high quantities of IFN-1 compared 

to non-infected healthy controls (Clara Lehmann et al., 2008). A study with HIV-1-infected 

patients and a humanized mice model has shown that the loss of CD34+CD38- early 

Hematopoietic stem cells (HSC) during chronic HIV-1 infection is dependent on pDCs presence. 

In the same work, depletion of pDCs prevented CD34+CD38- early HSC loss (G. Li et al., 2017). In 

the case of GALT (gut-associated lymphoid tissue), it is thought that the persistence in time of 

pDC activation may be caused by the loss of integrity of the tissue after HIV-1 infection and the 

subsequent translocation of bacterial particles, which would maintain the proinflammatory 

state (V. C. Lombardi & Khaiboullina, 2014). Moreover, during the course of infection blood 

circulating pDCs have a different behaviour following the stimulus with TLR7 and TLR9 agonists. 

During acute infection pDC are extremely sensitive and hyperreactive to ex vivo stimuli (Sabado 

et al., 2010). On the other hand, during chronic infection pDCs secrete a reduced amount of IFN-

1 after stimulation with several TLR7 and TLR9 agonists (Kaushik et al., 2013; Tilton et al., 2008). 

In the chronic phase of HIV-infection, pDC exhaustion correlates with the level of expression of 

TIM-3 on its membrane, which parallelly correlates negatively with its IFN-producing capacity (J. 

A. Schwartz et al., 2017). Because like HIV, HCV is transmitted through direct contact with the 

blood of an infected person many HIV-infected patients are also infected with HCV. According 

to WHO, it is estimated that HIV-HCV coinfected patients comprise 2-15% of the total HIV-

infected population. As for 2017, 2.75 million people were estimated to be HIV-HCV conifected 

globally, 1.3 million of which were people who inject drugs . In my two secondary publications, 

the interaction between pDCs and HCV is explored (Aouar et al., 2016; Janovec et al., 2018). 
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2.5. PDCs in the context of HCV infection 
 

HCV is an enveloped positive-sense single-stranded RNA virus that belongs to the Flaviviridae 

family and it is the causing agent of a chronic infection affecting over 70 million people as of 

2020, with approximately 2 million new infections occurring annually (“Global prevalence and 

genotype distribution of hepatitis C virus infection in 2015:  a modelling study.,” 2017). Chronic 

Hepatitis C infection is associated with advanced liver disease and is a main cause of 

hepatocellular carcinoma (Goto, Roca Suarez, Wrensch, Baumert, & Lupberger, 2020; A. 

Lombardi & Mondelli, 2019; Rabaan et al., 2020). The development of interferon-free direct-

acting antivirals (DAAs) has supposed a revolution in the management of HCV infection 

(Martinello, Hajarizadeh, Grebely, Dore, & Matthews, 2018). DAAs are divided in three classes, 

each one targeting a different HCV non-structural protein: NS3/4A protease inhibitors 

(Telaprevir, Boceprevir), NS5A polymerase inhibitors (e.g. Elbasvir, Ledipasvir) and NS5B 

polymerase inhibitors (e.g. Sofosbuvir, Dasabuvir). Treatment with a combination of two or 

more HCV DAAs from different classes for a relative short time (8-12 weeks) achieves very high 

sustained virological response (SVR) (>95%), an indicator based on the undetectability of HCV 

RNA levels after treatment (Götte & Feld, 2016; Michael P Manns et al., 2017).  

Only a minority of patients can spontaneously clear the virus during acute infection (15-25%) 

(Grebely et al., 2014; Micallef, Kaldor, & Dore, 2006). The elimination of the virus during acute 

infection correlates with an early strong innate immune response characterized by a strong 

induction of ISGs and also correlates with a delayed adaptive immune response (Chigbu, 

Loonawat, Sehgal, Patel, & Jain, 2019; Heim, 2013; Heim & Thimme, 2014). Interestingly, 

treatment with IFN-α leaded to the elimination of HCV in more than 50% of cases of chronic 

infection (Fried et al., 2002; M P Manns et al., 2001). Being pDCs the major IFN-I producers they 

are thought to play an important role in the clearance of HCV in the early phase of infection. 

Following this concept (hypotheses), several investigations aimed to shed light on this issue. 

Unlike pDCs exposed to cell-free virions, pDCs exposed through cell-to-cell contact to HCV-

infected hepatocytes have been shown to produce large amounts of IFN-I via TLR-7 signalling 

(Coléon, Assil, & Dreux, 2019). This behaviour suggested that HCV free-virions are able to evade 

pDC-mediated immune response after direct contact. Further investigations showed that, in 

fact, HCV is a weak inducer of pDC-mediated IFN-α production when compared to Influenza or 

Human Herpes virus type-I and that at least one of the mechanisms by which HCV is able to 

avoid ISGs induction is mediated by the aforementioned RRs (Gondois-Rey et al., 2009). In this 

sense, Florentin et al., showed that HCV glycoprotein E2 acts as an inhibitor of the IFN response 
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when ligated to BDCA-2 surface RR on pDCs (Florentin et al., 2012). Another investigation with 

the pDC cell line GEN2.2 showed that the extracellular HCV core protein, which is found in 

circulation during chronic infection, supressed IFN-I and IFN-III production in response to TLR 

and the HCV PAMP agonist of RIG-I. The suppression of IFN response by the core protein 

correlated with downmodulation of the normally abundant in pDCs IRF-7 transcription factor, 

which drives the IFN response and is itself an ISG (Stone et al., 2014). Therefore, an alternative 

mechanism by which HCV controls the antiviral innate response was elucidated. Interestingly, 

two genome-wide association studies (GWAS) linked the type III IFNλ3 with spontaneous 

clearance of HCV (Ge et al., 2009; Thomas et al., 2009). Later, another study proved peripheral 

blood pDCs to be the main IFNλ3 producer, thus, connecting indirectly pDCs with HCV clearance 

(O’Connor et al., 2014; Stone et al., 2013), and suggesting an important role of pDCs in HCV 

clearance by another mean than IFN-I production. However, pDCs and its ability to produce large 

amounts of IFN and other proinflammatory cytokines may be detrimental during chronic 

infection because of the induction of a permanent inflammation that can ultimately lead to liver 

cirrhosis (Doyle et al., 2019). In conclusion, pDCs have been demonstrated to be a key player 

during the different phases of HCV infection, firstly involved in the clearance of HCV and 

secondly involved in the promotion of a proinflammatory state of the liver. Further studies are 

needed in order to shed light into the regulatory mechanisms of pDCs activation in HCV 

infection. 
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3. MATERIALS AND METHODS 
 
 

 

3.1. Ethics statement 
 

This study was conducted according to the principles expressed in the declaration of Helsinki. 

Each patient enrolled in TIM-3 project provided informed written consent to participation in this 

study in accordance with institutional and regulatory guidelines. The study was approved by the 

Institutional Ethics Committee (Review Board) Na Bulovce Hospital in Prague, Czech Republic, 

registration number 22.3.2013/6637/EK-Z (22 March 2013). Peripheral blood mononuclear cells 

(PBMCs) from healthy anonymous donors were obtained from the Etablissement Français du 

Sang (EFS). Blood samples were obtained after written consent following the approval of the 

EFS, Marseille, France and the Centre de Recherche en Cancérologie de Marseille (CRCM) in 

accordance to the convention signed the 20th May 2014. 

 

3.2. Inhibitors, antibodies and reagents 
 

MEK-1/2 inhibitor PD0325901 was obtained from InvivoGen (Toulouse, France) and U0126 

was obtained from Sigma (Sigma-Aldrich, Lyon, France) Both were used as recommended by 

supplier. PD0325901 is a selective non-ATP-competitive allosteric MEK1/2 inhibitor with in vitro 

IC50 = 0.33 nM, which was shown to be specific against a panel of 70 different kinases at 10 μM 

range (54). U0126 inhibits MEK 1/2 with an in vitro IC50 of 0.5 μM. JNK inhibitor SP600125, TBK1 

inhibitor BX795, NF-ĸB inhibitor Bay11-7082, p38 MAPK inhibitor SB253080, and calcineurin 

inhibitor FK506 were all purchased from InvivoGen (San Diego, USA). For in vitro pDC stimulation 

assays, CpG-A (ODN 2216), CpG-B (ODN 2006), and PMA were purchased to InvivoGen (San 

Diego, USA), BDCA-2 antibody was purchased to Miltenyi Biotech (Paris, France) and ILT-7 

antibody was adquired from eBioscience. Syk kinase inhibitor AB8779 was from AB Science 

(Paris, France). In vitro, AB8779 was shown to be as potent as Fostamatinib (R406) with IC50 = 

0.04 μM. For in vitro pDC stimulation assays CpG-A (ODN 2216), CpG-B (ODN 2006), resiquimod 

(R848), PMA (all InvivoGen, San Diego, USA), BDCA-2 mAb (Miltenyi Biotech, Paris, France), ILT-

7 (CD85g) mAb and IgG1 isotype control antibody (eBioscience) were used. 
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3.3. Patients and healthy donors 
 

Twenty-one viremic individuals with plasma viremia ≥ 104 RNA copies per milliliter of plasma 

were enrolled for a period of 9 months at the HIV Clinic of Hospital Na Bulovce (Table 5) 

together with 16 sex-matched controls. The difference in age distribution of HIV-1-infected 

individuals (median (interquartile range (IQR))) 28, IQR (25–37) years and healthy controls 34, 

IQR (31–37) years was not statistically significant (t-test, p = 0.26). The first day of therapy and 

at the same time the first day of the blood sampling was determined individually for each patient 

according to recommended therapeutic criteria. Blood samples (10 mL) were collected before 

and after suppression of viral load by antiretroviral therapy, as shown in Table 5. We had access 

to the clinical data of these patients including analyses of their lymphocyte populations for 

another 14 months. Enrolment criteria: HIV-1 infection, ≥ 104 HIV-1 viral copies/mL of plasma, 

treatment-naive state. Exclusion criteria: < 18 years, HCV coinfection (patients must be HCV PCR 

negative). The efficiency of ART was determined using a COBAS AmpliPrep/COBAS TaqMan HIV-

1 Test, version 2.0 (Roche, Basel, Switzerland). 

 

 

Table 5: Clinical characteristics of the HIV patients cohort 
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3.4. PBMC isolation 
 

Patients’ PBMCs were separated using a BD Vacutainer CPT™ Cell Preparation Tube (BD 

Medical, Franklin Lakes, NJ, USA) according to the manufacturer’s instructions. Briefly, PBMCs 

were separated by density gradient centrifugation, then washed twice with PBS and used in the 

ensuing experiments. 

 

 

3.5. Isolation and culture of primary pDCs 
 

pDCs purified from PBMCs as described previously were 75–95% pure, with a contamination 

of less than 5% mDCs (Decalf et al., 2007; Dental et al., 2012; Gondois-Rey et al., 2009; Shiina & 

Rehermann, 2008). Isolated pDCs were cultured in Roswell Park Memorial Institute (RPMI) 1640 

medium supplemented with 10% fetal calf serum (FCS). To optimize viability in overnight 

experiments, recombinant IL-3 (R&D Systems Europe, Ltd., Abingdon, UK) was added to a final 

concentration of 10 ng/mL.  

 

 

3.6. pDC line GEN2.2 
 

Human pDC line GEN2.2 (Laurence Chaperot et al., 2006) was grown in a RMPI 1640 medium 

supplemented with L-glutamine, 10% FCS, 1% sodium pyruvate, and 1% MEM nonessential 

amino acids, on a monolayer of the murine stromal feeder cell line MS-5 grown in RPMI 1640 

supplemented with L-glutamine, 10% FCS, and 1% sodium pyruvate. For the measurement of 

cytokine production, and other non-shown experiments, GEN2.2 cells were separated from the 

MS-5 feeder cells. 

 

 

3.7. In vitro pDC stimulation 
 

The pDC subset within PBMCs aliquoted in 100 µL quantities (107 cells/mL) was cultured in 

96-well round-bottom culture plates and when necessary, exposed to BDCA-2 mAb before TLR 

stimulation. To determine cytokine production, purified primary human pDCs (in the presence 

of IL-3) or GEN2.2 cells were kept at a concentration of 106 cells/ml aliquoted in 100 μl quantities 



 

58 
 

in 96-well round-bottom culture plates and exposed to/stimulated with 4 μg/ml CpG-A or CpG-

B, 25 ng/ml PMA, 20 μg/ml of BDCA-2 or ILT-7 antibody, or 10 HCV geq/cell for 16 h.  

 

 

3.8. Flow cytometry analysis 
 

To carry out the flow cytometric analysis of pDC phenotype, we designed a multicolor 

panel composed of PerCP/Cy5.5-CD11c, BV421-BDCA2, APC-TRAIL, PE-CD4, APC-Fire750-

TIM3, 

FITC-Lin1 (all from Biolegend, San Diego, CA, USA), and V500-HLADR, BV605-CD32 (from BD 

Biosciences, San Jose, CA, USA). The staining was performed in Brilliant Stain Buffer (BD 

Biosciences) as recommended by the manufacturer. Cells were fixed in 4% paraformaldehyde 

and data was acquired within 48 h. We included Lin1-FITC-labeled antibody along with Zombie 

Green fixable viability dye (Biolegend, San Diego, CA, USA) in a dump channel. We used an LSR 

Fortessa SORP (Becton Dickinson, San Jose, CA, USA) cytometer equipped with 5 non-colinear 

lasers and 20 detectors. A final analysis of flow cytometry data was carried out using FlowJo 

software (Tree Star, Inc., Ashland, OR, USA). Routine analyses of the major lymphocyte 

populations (FITC-A-CD3, PerCP-Cy5.5-CD45, PE-Cy7-CD4, APC-Cy7-CD8, APC-CD19, PE-

CD16+56) in peripheral blood of ART-treated HIV-1-infected individuals were performed using a 

BD FACSCanto II flow cytometer (Becton Dickinson). 

 

 

3.9. Production and purification of cell culture-derived HCVcc (JFH-1 3M) and 

HBV 
 

JFH-1 3M HCVcc particles were prepared and purified as described previously (Florentin et 

al., 2012; Gondois-Rey et al., 2009). HBV particles were concentrated from HBV stably 

transfected HepG2 cell line, clone 2.2.15 (HepG2.2.15) as described previously (Luangsay et al., 

2015). The 8% PEG8000 precipitated HBV supernatant purified by ultracentrifugation through 

20, 30, 40, 50% sucrose was resuspended in RPMI 1640 medium to obtain a virus suspension 

containing 1012 HBV RNA copies/mL. 
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3.10. Determination of secreted IFN-α, TNF-α and IL-6 
 

The quantities of total IFN-α, TNF-α, and IL-6 produced by pDCs or GEN2.2 were measured in 

cell-free supernatants using human ELISA kits (IFN-α and IL-6 from Mabtech, and TNF-α from BD 

Biosciences). The index of synergism was determined from the following formula: the level of 

cytokine production after stimulation with the combination of CpG and PD0325901 divided by 

the sum of cytokine production level after stimulation with CpG and PD0325901 separately. 

PD0325901 alone did not induce a detectable quantity of respective cytokines. Combinations 

resulting in an index of synergism > 1.5 were considered to be synergistic. The combinations 

resulting in an index of synergism ≤ 1.5 and in a 30% increase in stimulation compared to the 

stimulation observed with either of the two stimulators were considered to be additive. 

 

 

3.11. Statistical analysis 
 

Quantitative variables are expressed as the means ± SEM (standard error of the mean). To 

compare the levels of cytokine production by pDCs, Mann-Whitney two-tailed non-parametric 

test was used. Data were analyzed with GraphPad Prism 4 software (GraphPad Software, La 

Jolla, CA). p-value of 0.05 was considered to be significant. 
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4. RESULTS AND DISCUSSION 
 

4.1 Expression of TIM-3 on plasmacytoid dendritic cells as a predictive 

biomarker of decline in HIV-1 RNA level during ART 
 

4.1.1. Persistent dysfunction of pDCs from ART-treated HIV-1-infected individuals after 

sustained suppression of HIV-1 RNA 
 

First, we analysed the main immune populations from peripheral blood of a cohort of 21 HIV-

1-infected individuals (Table 5) and 15 healthy controls (healthy donors). To explore the 

dynamics of the lymphocyte populations the samples were taken and analysed every 3 months 

during a period of 23 months (Figure 14), being the month 0 treatment naïve HIV-1-infected 

individuals and the starting point of the anti-retroviral therapy (ART). After 3 months of therapy 

the levels or HIV-1 RNA in plasma decreased dramatically from (median (interquartile range 

(IQR))) 4.70, (4.57-5.02) log10 copies/mL to 1.64, IQR (0.7-1.96) log10 copies/mL, and it continued 

decreasing during the remaining 6 months (Figure 14). 

 

 

 

 

Figure 14. HIV RNA copies/mL of plasma before and after anti-retroviral therapy (ART) 

 

 Then, the main immune cell populations (CD4+T lymphocytes, CD8+T lymphocytes, B 

lymphocytes and NK cells) in treatment naïve HIV-1 infected patients, ART-treated HIV-1 

infected patients, and healthy donors were quantified by flow cytometry (Figure 15A-C). CD4+ T 

cell numbers increased substantially from 469, IQR(375–531) CD4+ T cells/mm3 of blood to 748, 

IQR (609–945) CD4+ T cells/mm3 of blood (Figure 15D) at the end of the follow up (9 months 
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under ART). Similarly, B cell count on blood boosted from 159, IQR (137–224) B cells/mm3 of 

blood to 214, IQR (136–367) B cells/mm3 of blood (Figure 15E) as well as NK cell number that 

went from 230, IQR (169–459) NK cells/mm3 of blood to 412, IQR (308–541) NK cells/mm3 of 

blood (Figure 15F). On the contrary we found that CD8+T cell count diminished as the treatment 

went on from 1551, IQR (1070–1737) CD8 T cells/mm3 of blood to 1005, IQR (713–1555) CD8 T 

cells/mm3 of blood (Figure 15G). 9 months after the initiation of ART the numbers of B cells in 

patients were still significantly higher than healthy donors’. 
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Figure 15. Adaptive immunity is only partially restored over the course of ART despite the 

sustained suppression of HIV-1 RNA level. Characteristics of the cohort of 21 HIV-infected 

subjects. (A-C) Dot plots for the quantification of the major lymphocyte populations in peripheral 

blood of a healthy donor (HD) (A), treatment-naïve patient no.12 (12) (B), the same patient after 

23 months of ART (C). (D) CD3+CD4+ T cell counts during ART. (E) CD19+ B cell counts during ART. 

(F) CD3-CD16+CD56+ NK cell counts during ART. (G) CD3+CD8+ T cell counts during ART.  The data 

show medians and interquartile range, N=21. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 

0.0001; two-tailed paired Wilcoxon test. 
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Contrarily to the abundance of studies referring to the impairment of the main immune 

populations within a HIV-1 infection, little is known about the dysfunction of pDCs. According to 

the design of this study, we quantified them and followed the development of the phenotype 

during 9 months of ART by flow cytometry. Preceding reports showed that the number of cells 

is markedly decreased in HIV-1 infected individuals (Kaushik et al., 2013; Soumelis et al., 2001). 

To assess that, we first gated the PBMC population according to their size and then excluded the 

doublets. After the exclusion of dead cells, pDC were defined as live Lin-CD4+BDCA-2+ cells 

(Figure 16A). As expected, we found that the number of pDCs in treatment naïve HIV-1-infected 

individuals (4.08, IQR (2.59–4.90) pDC/mm3) was significantly lower (54% less) than the number 

of pDCs in 13 healthy donors (Figure 16B). Nine months after the beginning of ART the 

concentration of pDCs in blood was increased but its median value (5.35, IQR (3.45–7.99) 

pDC/mm3) remained significantly lower than that detected in healthy donors (71%, p = 0.04). 

There was a similar proportional increase of numbers in pDCs (1.31 times, p = 0.04, Figure 16B) 

as well as in CD4+ T lymphocytes (1.28 times, p = 0.008, Figure 15D). 
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Figure 16. Impaired pDC phenotype persists after sustained suppression of HIV RNA in plasma 

of ART-treated patients. (A) Gating strategy for identification of pDC phenotype: PBMCs were 

gated according to their size and then into singlets, and after exclusion of dead cells (Zombie 

green) and Lin1+ cells into a CD4+BDCA-2+ pDC population. (B) pDC number and proportion of 

PBMCs in healthy donors (HD) and in the course of ART. (C,D) Dot plots and histograms for the 

quantification of TIM3 (C) and TRAIL (D) in Lin-CD4+BDCA-2+ live pDCs are shown. FMO was used 
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for gating TIM3+ (C) and TRAIL+ (D) pDCs in mock-stimulated or CpG-A-stimulated PBMCs from a 

healthy donor and from HIV-1-infected patients (E,F). (E) The frequency of pDCs expressing TIM3 

in the cohort of 21 patients. (F) The frequency of pDCs expressing TRAIL. (G) Examples of 

histograms for the quantification of BDCA-2 in three healthy donors (HD) and ART-treated 

patient no.4 (P4) determined 0, 3, and 9 months after therapy initiation. (H) The MFI of BDCA-2 

expressed on pDCs.  (I) The MFI of HLA-DR expressed on pDCs. (J) The MFI of CD32 expressed on 

pDCs. (K) The MFI of CD4 expressed on pDCs. The data show medians and interquartile range, 

N=21. * p < 0.05; ** p < 0.01; **** p < 0.0001; ns, non-significant; two-tailed Mann-Whitney 

test. 

 

Then we looked at the expression of phenotypic markers TIM-3, TRAIL, BDCA-2, HLA-DR, 

CD32, and CD4 in Lin-CD4+BDCA-2+ pDCs   (Figure 16C–K) in order to check the functionality of 

the cells. To select for positivity in TIM-3 and TRAIL we used a fluorescence minus one control 

(FMO) strategy. To define the positivity of the constitutive pDC markers (BDCA-2, HLA-DR, CD4) 

as well as CD32 we looked at the median fluorescence intensity (MFI). We found that the 

presence of TIM-3+ pDCs in treatment-naïve individuals was 1.42 times higher than the 

frequency of TIM-3+ pDCs in healthy donors (p = 0.0026, Figure 16E). After 9 months of 

treatment the frequency of TIM-3+ pDCs decreased to 1.2 times the healthy donors’ value (p = 

0.0155), with a clear tendency to the restoration of the healthy values. Similarly, the frequency 

of TRAIL+ pDCs in treatment naïve HIV-1-infected individuals was 3.32 times higher than in 

healthy donors (p < 0.0001), which showed as well a decreasing tendency over the 9 month 

follow up (Figure 16F). Even though, the median values of the frequency of TIM-3+ pDCs (and of 

the frequency of TRAIL+ pDCs of the HIV-1 infected patients after 9 months of ART remained 

higher than the healthy donors’ values. Regarding the constitutively expressed markers in pDCs 

as well as CD32, we compared the MFI (median fluorescence intensity) values between healthy 

donors, treatment naïve HIV-1 infected individuals and ART-treated HIV-1-infected individuals 

(Figure 16G). As for the MFI of BDCA2 (1.8 times, p = 0.015) (Figure 16H), CD4 (1.6 times, p = 

0.0013) (Figure 16K), and CD32 (1.5 times, p = 0.046) (Figure 16J) we found that treatment naïve 

HIV-1 infected individuals present a higher value than healthy donors. For HLA-DR though, MFI 

values were not significantly different neither between healthy donors and treatment naïve HIV-

1 infected individuals nor between the late ones and ART-treated HIV-1 individuals at any time 

point (Figure 16I). During the first 9 months of treatment BDCA2, CD4 and CD32 show a 

tendency to restoration to normal values of expression represented by the healthy donors’ MFI 

values. Even though, CD4 and BDCA2 MFI remained significantly elevated in comparison to 

healthy donors. Contrarily, CD32 expression (1.38 times, p = 0.044) was restored after 9 months 

of treatment. 
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4.1.2. Decline in HIV-1 RNA level after initiation of ART correlates with expression of TIM-

3 on pDCs 
 

First, we defined the rate of decline of HIV-1 RNA over the first 3 months of ART as a new 

parameter to explore the success of ART in HIV-1-infected individuals. To this aim, we calculated 

the ratio of HIV-1 RNA copies/mL (virus load, VL) of plasma in treatment-naive individuals (VL0-

mo) to the level of HIV-1 RNA copies/mL of plasma in 3 months ART-treated individuals (VL3-mo) 

(Figure 17A). 

 

Figure 17. Rate of decline in HIV-1 virus load (VL) expressed as [VL0-mo/VL3-mo] log10. VL0-mo is 

HIV-1 RNA copy number/mL in treatment-naïve individuals (zero time of ART) and VL3-mo is HIV-

1 RNA copy number/mL after 3 months of ART in the cohort of 21 HIV-1-infected individuals. 

 

We observed a marked decrease of the RNA molecules in blood 2.2-4.6 log10 (Figure 17A) 

while CD4+ T cell number increased from 1.1 to 2.8 times (Figure 17B). Importantly, the rate of 

decline of HIV-1 RNA copies/mL of plasma over the first 3 months of ART did not correlate with 

the initial viral load (Figure 18) nor the rate of CD4+ T lymphocyte number restoration in the 

same individuals. 
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Figure 18. The rate of decline in HIV-1 RNA copies/mL does not correlate with HIV-1 VL in 

treatment-naïve individuals (zero time of ART). 

 

We used the rate of decline of HIV-1 RNA copies/mL over 3 months [VL0-mo/VL3-mo] log10 to 

characterize slow and fast responding individuals to ART. After that, we assessed the expression 

levels of phenotypic markers in the two groups in order to explore whether a correlation can be 

made between these marker expression levels and the success of the ART over the first three 

months. Then, using the 3rd quartile (Q3) of the HIV-1 copy number decline rate as a parameter 

we found a significantly higher frequency of TIM-3+ pDCs in the slow responders ([VL0-mo/VL3-mo] 

log10 < Q3) compared to the rapid responders ([VL0-mo/VL3-mo] log10 > Q3) (p = 0.015 before ART; 

p = 0.012 after 3-month ART) (Figure 19 A,C). Then we checked the correlation between the 

frequency of TIM-3+ pDCs with the rate of decline of HIV-1 RNA levels in plasma (Figure 19 B,D). 

There was a significant correlation of the frequency of TIM-3+ pDCs with the rate of decline of 

HIV-1 RNA levels in both treatment-naïve HIV-1-infected individuals (Figure 19B) and in HIV-1-

infected individuals treated for 3 months (Figure 19D). Contrarily, the correlation between the 

frequency of TIM-3+ pDCs and the total HIV-1 RNA copy number (VL0-mo log10 copies/mL) before 

ART was not significant (p = 0.44).  
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Figure 19. Expression of TIM3 on pDCs of HIV-1 infected individuals negatively correlates with 

the rate of decline in HIV-1 RNA copies/mL of plasma over the 3-month ART. (A,C) Comparison 

of the frequency of TIM3+ pDCs in treatment-naïve HIV-1-infected patients (A) or patients after 

the 3-month ART (C), in which [VL0-mo/VL3-mo] log10 was <Q3 or >Q3. (B,D) Correlation of 

frequency of TIM3 expressed on pDCs in treatment-naïve HIV-1-infected patients (B), or patients 

after the 3-month ART (D) with [VL0-mo/VL3-mo] log10 (the same samples as in panels (A,C) were 

analysed). The data show medians and interquartile ranges. Q1, the first quartile; Q3, the third 

quartile; p < 0.05 was considered to be significant; two-tailed Mann-Whitney test. 

 

Even though ART persistently suppressed HIV-1 RNA plasma levels and diminished immune 

activation in HIV-infected patients during the 9-month follow-up since the start of the therapy, 

expression levels of some of the phenotypic markers indicating immune function was not 

restored to the steady level observed in healthy donors (French, King, Tschampa, da Silva, & 

Landay, 2009; Hatano et al., 2013; Hunt et al., 2003; Ostrowski, Katzenstein, Pedersen, Gerstoft, 

& Ullum, 2008; Rajasuriar, Wright, & Lewin, 2015). We demonstrated the partial recovery of the 

adaptive immune function, as shown by the reestablishment of CD4+ T cell and B cell numbers 

to the levels of uninfected controls. However, it didn’t happen the same with the numbers of 

CD8+ T cells and NK cells, which remained significantly over the steady level indicated by the 

controls (Bisset, Lung, Kaelin, Ludwig, & Dubs, 2004; Melzer et al., 2015; Shahal-Zimra et al., 

2016). As reported previously, pDC numbers were significantly lower in HIV-infected patients 

A 
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before the start of ART compared to healthy controls (Soumelis et al., 2001). pDC number 

followed a tendency of restoration to normal levels after the onset of ART and during the 9-

month follow up, but the immunogenic phenotype of these cells was not restored significantly. 

Previous studies explored the impairment of single pDC functions (O’Brien et al., 2016; Saidi et 

al., 2016; J. A. Schwartz et al., 2017; Soumelis et al., 2001). In this study we performed a more 

complex approach by following at the same time the evolution of several markers related to the 

immune function on pDCs: the MHC class II ligand HLA-DR, the high affinity receptor for HIV-1 

CD4, the regulatory receptor and pDC marker BDCA-2, the Fcγ receptor CD32, the marker of 

killer pDC function TRAIL and the pDC dysfunction marker TIM-3. Of these markers, we found 

that only TIM-3 correlated significatively with the rate of decline of HIV-1 RNA level after the 

onset of ART. We suggest that TIM-3 could be a predictive marker of the efficiency of ART given 

that high expression of TIM-3 on these cells indicates a relatively poor response to the treatment 

compared to the response when pDCs show normal levels of TIM-3 (Figure 25). 

 

 

Figure 25: TIM-3 as a predictive biomarker of the efficiency of ART in HIV-1-infected patients. 

TIM-3 correlated significatively with the rate of decline of HIV-1 RNA level after the onset of ART. 

  

 Our study was limited by the amount of data that a small cohort of 21 HIV-infected patients 

could provide and the subsequent difficulty in the data analysis. Further studies with a larger 

cohort of patients are a must in order to explore the possibility of the usage of TIM-3 as a 

predictive biomarker for ART efficiency in HIV-1 infected individuals.  

The mechanism by which TIM-3 is involved in the dysfunction of pDCs is still not known. Given 

that TIM-3 is a regulator of pDCs and its expression leads to impaired production of IFN and TNF 

suggests that this molecule can play an important role in the immunopathogenesis of HIV-1 

infection (J. A. Schwartz et al., 2017). During HIV infection, activation of pDCs by TLR7/9 agonists 
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induce the expression of TIM-3 and the subsequent impairment of pDCs function. Experiments 

showed that TIM-3 drives the displacement of TLR9 from the submembrane region, thus, 

bypassing TLR activation. Interestingly, Chiba et al. suggested a mechanism in which the alarmin 

alarmin HMGB1, which is indispensable for TLR function, is sequestered away from the TLR 

preventing it from activation (Chiba et al., 2012). Moreover, TIM-3 has been shown to colocalize 

in LAMP1+ acidic lysosomes with IRF7, which is an essential transcription factor involved in the 

production of IFN, (J. A. Schwartz et al., 2017). Apart from TIM-3, HIV-1-exposed pDCs express 

several dysfunction markers. Of special interest is the increased MFI of BDCA2 in pDCs from HIV-

1 infected patients compared to healthy donors when it is known that BDCA2 expression is 

downregulated when activated in vitro by TLR7/9 agonists (Kaushik et al., 2013). From this, we 

can infer that non the canonical TLR activation but some other mechanism may be responsible 

of the increased expression of BDCA2 in HIV-1 exposed pDCs. Contrarily to the MFI, HIV-1 

exposure does not influence the number of BDCA2+ pDCs. Engagement of BDCA2 and the other 

pDC regulatory receptors leads to IFN-I and proinflammatory cytokines TNF and IL-6 suppression 

(Aouar et al., 2016; Bao & Liu, 2013; Cao et al., 2006, 2007; Dzionek et al., 2001; Hirsch et al., 

2010, 2017; Swiecki & Colonna, 2015). TIM-3 may be involved also, although by different 

mechanisms, in the negative regulation of IFN response in order to protect the organism against 

the detrimental effects of it.  
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4.2. The MEK 1/2-ERK pathway inhibits type 1 interferon production in 

plasmacytoid dendritic cells 
 

4.2.1. Mek 1/2 inhibitor potentiates CpG-A-induced production of IFN-α in pDC cell line 

GEN2.2 
 

In order to restore TLR7/9-mediated-IFN-α production blocked by the engagement of RRs, 

we searched for inhibitors of the kinases involved in the BCR signalling that would not inhibit 

TLR7/9 signalling. We selected a panel of inhibitors of BCR-like, MAPK, NF-κB, and calcium 

signalling pathways and tested their ability to modify the production of IFN-α after exposure to 

the TLR9 agonist CpG-A in the pDC cell line GEN2.2 (Figures 20 A,B; Figure S1 in Supplementary 

Material). Because of the difficulty of obtaining and maintain in culture the short-living human 

primary pDCs, we decided to use the human pDC cell line GEN2.2, which has a shared key 

phenotype with the primary cells. 

The inhibitors of JNK(SP600125), TBK1(BX795), NF-κB(Bay11-7082), p38 MAPK(SB253080) 

and calcineurin (FK506) inhibited strongly the production of IFN-α. Contrarily, the inhibitor of 

MEK1/2 (PD032590) potentiated the production of IFN-α in comparison with the control sample 

(p = 0.0022, Figure 20B). Several independent experiments (N = 34) were performed showing 

that the production of IFN-α in CpG-A-stimulated GEN2.2 cells was increased 2.55 ± 0.63 times 

(mean ± SEM, p < 0.0001), from 18.4 ± 1.4 ng/mL in the absence of the inhibitor to 44.2 ± 2.7 

ng/mL  when the inhibitor PD032590 was present at 1 µM (Figure S2 in supplementary material). 

In spite of the high variability of IFN-α production by GEN2.2 when challenged only with CpG-A, 

our tests were highly reproducible respect to the proportional increase of the production of IFN-

α when PD032590 was also present. Apart from IFN-α, IL-6 production was increased as well 

when MEK1/2 was present (Figures 20 C,D) but this was not the case of TNF-α production, which 

was totally inhibited at a concentration of 0.1 µM of PD032590 (Figure 20 E). This result suggests 

a direct involvement of MEK1/2-ERK in the TNF-α pathway. At a MEK1/2 concentration ≥ 0.01 

µM and a CpG-A concentration of 4 µg/ml we observed the strongest synergistic effects 

(synergistic index >3) on the production of IFN-α. Regarding IL-6 production, the synergistic 

index obtained was >2. In contrast to what we observed when using a concentration of MEK1/2 

inhibitor ≥ 0.01, the combination of 0.001 µM MEK1/2 inhibitor and 4 µg/ml CpG-A had only an 

additive effect on the production of IL-6 (Figure 20 D). In the control experiment using PMA, 

TNF-α was produced but not IFN-α nor IL-6. TNF-α secretion was strongly supressed by MEK1/2 
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inhibitor (Figures 1F–H). This results indicate that the CpG-A-induced TLR-9-mediated 

production of IFN-α and IL-6 are potentiated by MEK1/2 inhibitor PD0325901. 

 

Figure 20. Effect of MEK1/2 inhibitor PD0325901 on cytokine production in CpG-A and phorbol 

myristate acetate (PMA)-stimulated GEN2.2 cells. (A) Experimental outline. GEN2.2 cells 

separated from MS-5 feeder cells were exposed or not to inhibitors of Jun N-terminal kinase 

(JNK), TANK binding kinase 1 (TBK1), NF-κB, p38 MAPK, calcineurin or MEK1/2 for 1h and then 

stimulated with CpG-A at 4 ug/ml. The concentrations of IFN-α, IL-6 and tumor necrosis factor α 

(TNF- α) in the cell-free supernatant was determined by ELISA after a 16h treatment. (B) The 

production of IFN- α by GEN2.2 cells stimulated with CpG-A in the presence of JNK (SP600125, 10 

µM), TBK1 (BX795, 1 µM), NF-κB (Bay11-7082, 1 µM), p38 MAPK (SB253080, 1 µM), calcineurin 

(FK506, 0.1 µM) or MEK1/2 (PD0325901, 1 µM) inhibitors. The PD0325901 concentration-

dependent production of IFN-α (C,F), IL-6 (D,G), and TNF-α (E,H) in CpG-A-induced (C-E) or PMA-

induced (F-H) GEN2.2 cells. The data show mean and SEM of two independent experiments in 

biological triplicates (B-H). ** p < 0.01; two-tailed Mann-Whitney test. 
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4.2.2. Mek 1/2 inhibitors partially restore TLR9-mediated IFN-α production blocked by 

ligation of RRs with BDCA2 and ILT-7 mAbs 
 

Here, we investigated the capacity of PD0325901 to reverse the inhibitory effect produced 

by the ligation of RR in the production of TLR9-mediated IFN-α in GEN2.2 and primary pDCs.  We 

first treated GEN2.2 and primary pDCs with MEK1/2 inhibitor and subsequently exposed them 

to 5 µg/ml of BDCA-2 mAb before challenging the cells with TLR9 agonist CpG-A (Figure 21A). In 

GEN2.2, the production of IFN-α was supressed to 13% (p = 0.0006, Figure 21B) by BDCA-2 mAb 

in the cells that were exposed to CpG-A but not treated with PD0325901. As previously shown 

(Figure 20C), production of IFN-α was significantly increased (3.8-fold, N = 6, p = 0.0022, Figures 

21B,C)  by PD0325901 in GEN2.2 after activation by CpG-A. Moreover, PD0325901 released the 

inhibitory effect provoked by BDCA-2 mAb in the production of IFN-α in GEN2.2, rising the IFN-

α level up to the one found in control treatment without the MEK1/2 inhibitor (7.3-fold, p = 

0.0022, Figure 21C). As observed in GEN2.2 cells, the exposure of primary pDCs from healthy 

donors to BDCA-2 mAb suppressed the production of IFN-α induced by CpG-A to 11.5% (N = 9, p 

= 0.0039, Figure 21D). Contrarily to GEN2.2, no potentiation was observed in TLR9-mediated 

production of IFN-α by primary pDCs when they were previously treated with PD0325901 in the 

absence of BDCA-2 mAb (Figures 21B-E). Even though, IFN-α production was increased in a 

similar way to GEN2.2 when primary cells were pre-treated with BDCA-2 mAb apart from the 

MEK1/2 inhibitor (Figures 21D,E). PD0325901 significantly restored the production of IFN-α 

inhibited by BDCA-2 mAb (2.4-fold, p = 0.0039, Figure 21E). We found a similar restoration effect 

when PD0325901 was added to a final 10 nM concentration (Figure S3 in supplementary 

material). Moreover, the results obtained when using the MEK1/2 inhibitor U0126 and ILT-7 as 

a RRs pathway inhibitor are analogue to the previously commented results (Figure S4 in 

Supplementary Material). In conclusion, our results show that MEK1/2 inhibitor PD0325901 

significantly increase the TLR9-mediated IFN-α production after the blockade made by RRs 

agonists. 
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Figure 21. Effect of MEK1/2 inhibitor PD0325901 on the blockade of IFN-α production by 

ligation of regulatory receptors of GEN2.2 cells or primary pDCs with BDCA-2 mAb. (A) 

Experimental outline. GEN2.2 cells separated from MS-5 feeder cells or primary pDCs were 

incutabed with the MEK1/2 inhibitor for 1h before stimulation with BDCA-2 mAb and CpG-A. 

After a 16h culture, the IFN-α production was determined in the cell-free supernatants by ELISA. 

(B,D) The IFN-α production was normalized to the level induced by CpG-A in the presence of 

IgG1 and in the absence of the MEK1/2 inhibitor. (C,E) The same data showing the IFN-α 

production in panels (B-D) were normalized to the level induced by CpG-A in the absence of the 

MEK1/2 inhibitor. The data show mean and SEM of (B,C) six independent experiments with 

GEN2.2, ** p < 0.01; *** p < 0.001; two-tailed Mann-Whitney test, and (D,E) nine independent 

experiments with primary pDCs from different healthy donors, ** p < 0.01; two-tailed paired 

Wilcoxon test. 
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4.2.3. Mek 1/2 inhibitors restores TLR7/9-mediated IFN-α production blocked by HCV 

virions 
 

Our group and others previously reported that some viruses, such as HCV, HBV and HIV 

interact with the RR BDCA-2 expressed in pDCs via the envelope glycoprotein and activates the 

BCR-like pathway that leads to the inhibition of the production of IFN-α. Here, we tested 

whether after addition of CpG-A,, the blockade of TLR9-mediated IFN-α production exerted by 

HCV (10 HCV geq/cell) could be released by the previous exposition to PD0325901 in the pDC 

cell line GEN2.2 (Figures 22A,B) and in primary pDCs (Figures 22A,C). As expected, in the 

absence of PD0325901 HCV virions interfered the production of IFN-α in both GEN2.2 (35%, 

Figure 22B) and primary pDCs (34%, Figure 22C). We found that after exposure to PD0325901, 

the inhibition of TLR9-mediated IFN-α production exerted by the ligation of HCV was released 

and the production of IFN-α significantly increased in both GEN2.2 cells (4.2-fold, p = 0.025, 

Figure 22B) and in primary pDCs (3.2-fold, p = 0.0059, Figure 22C)  compared to the samples 

where MEK1/2 inhibitor was absent. In conclusion, pharmacological targeting of MEK1/2-ERK 

abrogates the HCV suppression of IFN-α production.  

 

 

 

 

 

 

 

 

 

Figure 22. Effect of MEK1/2 inhibition on the hepatitis C virus (HCV) blockade of IFN-α 

production in GEN2.2 cells or primary pDCs. (A) Experiment outline. GEN2.2 cells separated 

from MS-5 feeder cells (B), or primary pDCs (C), were incubated with 1 µM MEK1/2 inhibitor 

PD0325901 for 1h and then treated with HCV virions at MOI = 10 geq/cell for 1h before CpG-A 

stimulation. After a 16h culture, the IFN-α production was determined in the cell-free 

supernatants by ELISA. (B,C) The IFN-α production was normalized to the level induced by CpG-

A in the presence of a mock-infected control and in the absence of PK0325901. The data show 

mean and SEM of (B) two independent experiments with GEN2.2 cells, * p < 0.05; unpaired, two-
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tailed t-test and (C) ten independent experiments with primary pDCs from different healthy 

donors, ** p < 0.01; two-tailed paired Wilcoxon test. 

Despite intense research by several laboratories, the molecular mechanisms of the regulation 

of TLR7/9-mediated IFN-I and proinflammatory cytokines production in pDCs are still elusive 

(Bao & Liu, 2013; Cao et al., 2009, 2007; Dzionek et al., 2001; Hirsch et al., 2010, 2017; Pellerin 

et al., 2015; Swiecki & Colonna, 2015). We tested the effect of a panel of kinase inhibitors 

involved in BCR-like, MAPK, NF-κB, and calcium signalling in the production of TLR9-mediated 

type I IFN and proinflammatory cytokines production. While inhibitors of JNK, TBK1, NF-κB, p38 

MAPK, and calcineurin abrogated drastically IFN-α production, MEK inhibitor PD032590 

significantly potentiated it in GEN2.2 cells but not in primary pDCs. These results indicate that 

there is an intrinsic blockade of TLR9-mediated type I IFN production and that MEK is a crucial 

player in this interfering pathway in GEN2.2. TLR9-mediated IL-6 secretion was also potentiated 

by PD032590 in GEN2.2, contrarily to TNF-α, which was inhibited. These results suggest that the 

production of IFN-α and IL-6 is mediated by a different but related signalling pathway than the 

production of TNF-α. The production of TNF-α involved the participation of PKC, contrarily to 

the production of IFN-α and IL-6. Studies shown that ligation of RRs by different means abolished 

TLR9-mediated type I IFN production by means of an interfering BCR-like pathway (Aouar et al., 

2016; Bao & Liu, 2013; Cao et al., 2006, 2007; Dzionek et al., 2001; Florentin et al., 2012; Gilliet 

et al., 2008; Hirsch et al., 2010, 2017; Martinelli et al., 2007; Swiecki & Colonna, 2015; Woltman 

et al., 2011; Y. Xu et al., 2009). BDCA2 mAb was the most potent inhibitor of type I IFN of a series 

of inhibitors (data not shown). We demonstrated that the blockade of TLR9-mediated IFN-I 

production by the RR BDCA2 ligation in GEN2.2 and primary pDCs is partially released when cells 

are pre-exposed to the MEK inhibitor PD0325901. We obtained the same results when RR are 

ligated by HCV virions. These results imply that MEK is a central player in the RRs pathway that 

regulate IFN-1 production in pDCs and that pharmacological targeting of MEK is a way to restore 

and potentiate IFN-I production abolished by HCV engagement. It is important to note that 

targeting MEK with inhibitors could be a mechanism of restoring IFN-I production blocked not 

only by HCV, but also by other viruses which hijack this mechanism in order to induce tolerance 

(Florentin et al., 2012; Hirsch et al., 2010; Martinelli et al., 2007; Woltman et al., 2011; Y. Xu et 

al., 2009). Further experiments are necessary to explore this hypothesis. Our results 

demonstrate the importance of MEK1/2-ERK signalling in the RR-mediated inhibition of IFN-α 

and IL-6. 
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4.3. Dual role of the tyrosine kinase syk in regulation of toll-like receptor 

signalling in plasmacytoid dendritic cells 

 

4.3.1. Syk inhibitor blocks TLR7/9-mediated production of IFN-α and proinflammatory 

cytokines 
 

We examined the effect of the Syk inhibitor AB8779 on the production of cytokines triggered 

by TLR9 agonsists CpG-A and CpG-B and the PKC agonist phorbol 12-myristate 13-acetate (PMA) 

in GEN2.2 cells (Figure 23A). We found that the production of IFN-α is inhibited by AB8779 with 

an IC50,CpG-A = 0.117 µM and an IC50,CpG-B = 0.215 µM, TNF-α with an IC50,CpG-A = 0.006 µM and an 

IC50,CpG-B = 0.058 µM and IL-6 with IC50,CpG-A = 0.023 µM IC50,CpG-B = 0.021 µM (Figure 23B). PMA-

activated GEN2.2 cells did not produce neither IFN-α nor IL-6 but only TNF-α, which was weakly 

inhibited by AB8779. Moreover, we investigated the effect of AB8779 in the production of 

cytokines on primary pDCs from healthy donors. GEN2.2 cells do not produce IFN-α in response 

to synthetic agonists of TLR7, so we used primary pDCs to assess the production of cytokines 

triggered by both TLR9 and TLR7 agonists. AB8779 inhibited the production of IFN-α, TNF-α and 

IL-6 in primary pDCs when stimulated with CpG-A, as it did in GEN2.2. The abrogation of  the 

production of these three cytokines was also observed when primary pDCs were stimulated with 

the synthetic agonist of TLR7 Resiquimod (R848) (Data not shown). We concluded that the Syk 

inhibitor AB8779 specifically blocked the TLR7/9-mediated production of IFN-α and of 

proinflammatory cytokines TNF-α and IL-6. 
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Figure 23. Effect of Syk inhibitor AB8779 on production of IFN-α and IL-6 in pDCs. (A) 

Experimental outline. GEN2.2 cells (B), or primary pDCs (C) were incubated with different 

concentrations of Syk inhibitor AB8778 for 1 hr before stimulation with CpG-A, CpG-B and PMA 

(N=3) (B), or CpG-A and R848 (N=2) (C). After 16 hr culture, IFN-α, TNF-α and IL-6 production in 

GEN2.2 cells  (B) or primary pDCs (C) was determined in cell-free supernatants by ELISA and the 

results are expressed as a multiple of control with the matching concentration of DMSO. 

 

4.3.2. Subliminal concentrations of Syk inhibitor enhance IFN-α production abrogated by 

crosslinking of RRs mAbs or virus particles 
 

As there is an stronger inhibitory effect of AB8779 on Syk phosphorylation when induced by 

BDCA-2 compared to when induced by CpG-A (data not shown) , it is reasonable to think that 

minor concentrations of the Syk inhibitor that would block only the BCR-like pathway triggered 

by RR could diminish the blockade that RRs pathway induces over IFN-α production. To test 

whether this is true, we exposed GEN2.2 cells that were pre-treated with a relatively low 

concentration of AB8779 (0.01 µM) to BDCA-2 and ILT-7 agonists as well as to HCV and HBV 

particles before the inoculation of CpG-A to the media (Figure 24A). As expected, production of 

IFN-α by GEN2.2 when Syk inhibitor was absent was abrogated by the RRs agonists and the viral 

particles (Figure 24B), but when the cells were pre-treated with 0.01 µM of AB8779 the 
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production of IFN-α increased significantly (Figure 24C). IFN-α secretion to the media increased  

in cells treated with ILT-7 (1.8-fold, p = 0.03), and in cells treated with BDCA-2 (1.6-fold, p = 0.04), 

and showed a trend to enhanced production when the cells were exposed to HCV (1.8-fold at 

both MOI = 1 and MOI = 3) or with HBV (1.8-fold at MOI = 0.5 and 2.3-fold at MOI = 1.3). 

 

 

Figure 24. Subliminal concentrations of Syk inhibitor partially restore IFN-α production in 

GEN2.2 pDC cell line. (A) Experimental outline. After separation from MS-5 feeder cells, GEN2.2 

cells were incubated with 0.01 µM AB8779 or with a matching concentration of DMSO for 1 hr 

before exposure to ILT-7 or BDCA-2 mAb or HCV or HBV particles and stimulation with CpG-A. 

(B) After 16 hr culture, IFN-α production was determined in GEN2.2 cell-free supernatants by 

ELISA, and the results were standardized to the quantity of IFN-α produced by GEN2.2 exposed 

to isotype control Ab or mock-infected culture in the absence of AB8779 (N=3). (C) IFN-α 

production determined in GEN2.2 exposed to ILT-7 or BDCA-2 mAb or HCV or HBV particles 

(shown in B) was normalized to IFN-α production in the absence of AB8779. * p<0.05; ** p<0.01. 

 

Syk has been shown to play an important role in the IFN-I response in 

macrophages/monocytes since Syk function is decisive for CD14-dependent endocytosis of TLR4 

and subsequent IFN-I and proinflammatory cytokines production (Lin, Huang, Chu, Lin, & Lin, 
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2013; Sanjuan et al., 2006; Zanoni et al., 2011). Syk has also been shown to be essential in CpG-

mediated activation and differentiation of B cells (Kremlitzka, Macsik-Valent, & Erdei, 2015). In 

contrast, the role of Syk in pDC TLR7/9 signalling is still poorly understood. Whereas TLR9/7 

signalling represents pDC immunogenic function, RR BCR-like signalling is responsible for the 

immunotolerant activity of these cells.   We demonstrate that Syk is involved not only in the 

regulatory BDCA-2 signalling pathway but also in TLR 7/9-mediated signalling and in RRs 

pathway. Other results, show that both CpG-mediated activation of pDCs via TLR9 and anti-

BDCA2 mAb-mediated activation of the RR BDCA2 induce the phosphorylation of Syk, which 

implies its activation (supplementary figure S9). We found that while standard concentrations 

(1 µM) of the Syk inhibitor AB8779 inhibit TLR7/9-mediated IFN-I production, subliminal 

concentrations (≤ 0.01 µM) of AB8779 increase IFN-I secretion, previously blocked by 

crosslinking of RRs with specific mAbs or by viral particles. These results are in consonance with 

the differences in phosphorylation dynamics of Syk depending on which of the two signalling 

pathways, TLR9 or RRs, is activated (Aouar et al., 2016). We interpret that subliminal 

concentrations (≤ 0.01 µM)  of Syk inhibitor are able to block RRs signalling pathway in which 

Syk is phosphorylated before (peak at 2 min after activation), and with significantly more 

intensity, as shown in (Aouar et al., 2016), after RRs crosslinking compared to TLR9 pathway 

(peak at 30 min after activation). If Syk inhibitor concentrations increase to the standard range 

(1 µM)  both pathways are inhibited with the subsequent inhibition of IFN-I production. Our 

results suggest the presence of two differentiated pools of Syk within pDCs, one controlling 

TLR7/9 signalling and the other controlling RRs pathway. We suggest that pharmacological 

targeting of Syk with standard concentrations  could alleviate the symptoms caused by diseases 

in which there is an overproduction of IFN-I, such as systemic lupus erythematosus or psoriasis. 

On the other hand, subliminal concentrations of AB8779 would serve to stimulate IFN-I 

production in the context of a viral infection, such as HIV, HCV or HBV, preventing viral escape. 

We were limited by the availability of primary pDCs as well as the impossibility to work in vivo 

in our facilities. Further research on IFN-I regulatory pathways in pDCs in vitro and in vivo is a 

must. 
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5. CONCLUSIONS 
 

5.1. Expression of TIM-3 on plasmacytoid dendritic cells as a predictive biomarker 

of decline in HIV-1 RNA level during ART 
 

We performed a 9-month follow-up of 21 HIV-infected patients in order to explore the 

dynamics of the pDCs function by measuring expression of several phenotypic markers of 

immunogenic activity. We conclude that: 

• The immunogenic phenotype of pDCs is only partially restored after successful 

suppression of HIV RNA in plasma in ART-treated HIV-infected individuals during the first 

9 months of therapy. 

• The levels of TIM-3 expressed in pDCs correlate negatively with the rate of decline of 

HIV RNA level in plasma after the initiation of ART 

 

5.2. The MEK1/2-ERK pathway inhibits type I IFN production in plasmacytoid 

dendritic cells 
 

We did a series of biochemical assays focused on the pharmacological targeting of IFN 

regulatory pathways in primary pDCs and in the pDC cell line GEN2.2 in order to understand the 

mechanisms that mediate the control of IFN production on these cells. We conclude that: 

• MEK1/2 are key kinases in the regulation of IFN-α production in the pDC cell line GEN2.2  

because of its participation in a constitutive/intrinsic inhibitory BCR-like pathway over 

TLR9-mediated IFN-α production. 

• MEK1/2 inhibitor potentiates TLR9-mediated IFN-α production by abrogating the 

constitutive/intrinsic inhibitory BCR-like pathway over TLR9-mediated IFN-α production. 

• MEK 1/2 inhibitor releases the abrogation of TLR9-mediated IFN-α production caused 

by the crosslinking of RRs BDCA2 and ILT-7 with mAbs or with HCV virions. 
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5.3. Dual role of the tyrosine kinase Syk in the regulation of toll-like receptor 

signalling in plasmacytoid dendritic cells 
 

We did a series of biochemical assays focused on the pharmacological targeting of IFN 

regulatory pathways in the pDC cell line GEN2.2 in order to understand the mechanisms that 

mediate the control of IFN production on these cells. We conclude that: 

• There are two differentiated pools of Syk involved in the regulation of TLR9-mediated 

regulation of IFN-α production. On one hand a pool of Syk is directly involved in TLR9-

mediated IFN-α production. On the other hand, a pool of Syk participates in RRs 

signalling pathway which restricts the overproduction of IFN-α. 

• Due to the different phosphorylation dynamics of the Syk pools, subliminal 

concentrations of the Syk inhibitor AB8779 (≤ 0.01 µM) act only on RRs Syk pool, 

releasing the abrogation of IFN-α production promoted by the crosslinking of RRs. 

Standard concentrations of AB8779 (1 µM) inhibit both Syk pools, thus, blocking TLR9-

mediated IFN-α production. 
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6. SIGNIFICANCE OF THE RESULTS  
 

We studied the expression of TIM-3 in parallel with other molecules characteristic of an 

immunogenic phenotype in pDCs in the context of an ongoing HIV infection in treatment-naïve 

patients and during the first 9 months of antiretroviral treatment. We discovered that TIM-3 

levels on pDCs surface correlate with the efficiency of the treatment on clearing HIV-1 RNA from 

plasma on the first months of ART. Exploring the possibilities of TIM-3 as a putative biomarker 

for treatment efficiency would be interesting in order to take this information into account 

during the preparation of patient-specific HAART cocktails. There is still little information about 

the molecular mechanisms that drive the expression of TIM-3 in pDCs and further experiments 

would add complementary information to the issue. 

We also investigated the role of the kinases Mek and Syk on the signalling pathways that lead 

to the production of IFN-I and its regulation. We found that independent pools of Syk are 

involved in the positive and negative regulation of TLR9-mediated production of IFN-I. 

Subliminal concentrations of Syk inhibitor targeted the RRs-mediated negative signalling 

pathway with the result of an augmentation of IFN-I production. On the contrary, standard 

concentrations of Syk inhibitors blocked both pools of Syk and the subsequent production of 

IFN-I. In the case of Mek, we found that it is a central kinase involved in the RRs pathway, 

inhibitory of IFN-I production. Blocking Mek function with inhibitors liberated the blockade over 

IFN-I secretion. The development of commercial pharmacological inhibitors of Syk and Mek 

would serve to alleviate the symptoms of autoimmune diseases such as systemic lupus 

erythematosus or psoriasis, as well as to modulate positively the production of IFN-I in the 

context of stealth chronic viral infections such as HCV, HBV or HIV. 
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7. INVOLVEMENT OF THE STUDENT IN THE PUBLICATIONS 
 

The articles are shown in order of importance regarding the amount and quality of my 

involvement on the works. 

 

Publication 1: Expression of TIM-3 on plasmacytoid dendritic cells as a predictive biomarker of 
decline in HIV-1 RNA level during ART. 
Shared first authorship. 
 

• I carried out all the experimental work concerning this article, including HIV-infected 
and non-infected control blood collection, PBMC preparation, cell manipulation in BSL3 
laboratory, antibody panel design for Flow cytometry experiments, Flow cytometry 
experiments, and data analysis. All my work regarding this publication is exposed in this 
dissertation. 

 
 
Publication 2: The MEK1/2-ERK pathway inhibits type I IFN production in plasmacytoid 
dendritic cells. 
Shared first authorship. 
 

• The experimental work in this article was performed by me and others. I performed 
replicates of all the variants of the in vitro cell stimulation and subsequent measurement 
of cytokine production and data analysis exposed in this dissertation. The article 
contains other sections in which I did not participate and are not exposed in this 
dissertation. 

 
 
Publication 3: Dual role of the tyrosine kinase SYK in regulation of toll-like receptor signalling 
in plasmacytoid dendritic cells. 
Coauthor. 
 

• The experimental work in this article was performed by me and others. I performed 
replicates of all the variants of the in vitro cell stimulation and subsequent measurement 
of cytokine production and data analysis exposed in this dissertation. The article 
contains other sections in which I did not participate and are not exposed in this 
dissertation. 
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9. SUPPLEMENTARY MATERIALS 

 

 

FIGURE S1 | TLR7/9 and BCR-like (RR-triggered) signaling pathways in pDCs. Protein kinases 

JNK, p38 MAPK, TBK1, MEK1/2 (in green), phosphatase calcineurin (in ochre), and transcription 

factor NF-ĸB (in blue) studied in this work are depicted. Transcription factors involved in 

regulation of expression of IFN-α are shown in blue. Positive signaling pathways are shown by 

green arrows, negative signaling is in red. IFN-α stimulating TLR7/9 agonists Human 

herpesviruses (HHV), influenza virus (Flu), CpG-A/B/C, R848 are grouped in a green circle. 

Agonists of RR (BDCA-2 mAb, gp120 HIV, E2 HCV, BST-2) are grouped in a red circle.  

  

 

  
FIGURE S2 | Effect of MEK1/2 inhibitor PD0325901 on the production of IFN-α in CpG-A 

stimulated GEN2.2 cells. (A) Experimental outline. GEN2.2 cells separated from MS-5 feeder 

cells were incubated or not with 1 µM PD0325901 for 1 h before stimulation with CpG-A. After 

a 16 h culture, the IFN-α production was determined in the cell-free supernatants by ELISA. (B) 

The data are shown as an aligned dot plot or (C) a box-and-whiskers plot (median [interquartile 

range (IQR)] 17.9 IQR [12.0-21.9] IFN-α (ng/ml), ctrl without PD0325901, 47.2 IQR [27.7-59,8] 

IFN-α (ng/ml) with PD0325901. N=34, ****, p <0.0001, two-tailed paired Wilcoxon test.  
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FIGURE S3 | Effect of MEK1/2 inhibitor PD0325901 on the blockade of IFN-α production by 

ligation of RRs of GEN2.2 cells with BDCA-2 mAb. (A) Experimental outline. GEN2.2 cells 

separated from MS-5 feeder cells were incubated with 10nM or 1 µM PD0325901 for 1 h before 

stimulation with BDCA-2 mAb and CpG-A. After a 16 h culture, the IFN-α production was 

determined in the cell-free supernatants by ELISA. (B) The IFN-α production was normalized to 

the level induced in pDCs by CpG-A in the presence of IgG1 and in the absence of the MEK1/2 

inhibitor. The data show mean ±SEM of six independent experiments with GEN2.2 cells, **, p 

<0.01 two-tailed Mann-Whitney test.  

  

FIGURE S4 | Effect of MEK1/2 inhibitors PD0325901 and U0126 on the blockade of IFN-α 

production in primary pDCs by ligation of RR ILT-7. (A) Experimental outline. Primary pDCs 

isolated from PBMCs of healthy donors were incubated with 1 µM U0126 (N=5) or 1 µM 

PD0325901 (N=6) for 1 h before stimulation with ILT-7 antibodies and CpG-A. After a 16 h 

culture, the IFN-α production was determined in the cell-free supernatants by ELISA. (B) The 

data show mean ±SEM of IFN-α production in five independent experiments with U0126 and six 

independent experiments with PD0325901 normalized to the level of IFN-α induced in pDCs by 

CpG-A in the presence of IgG1 and in the absence of the MEK1/2 inhibitor. *, p <0.05; *** p 

<0.001; two-tailed paired Wilcoxon test.  
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FIGURE S5 | Characteristics of BST2 expressing HEK293T cells. HEK293T cells transduced by 

lentivirus vector pRRL-BST2-GFP and sorted by GFP marker were analyzed for the expression of 

GFP and BST2 just after cell sorting (A) or after a 2-week culture (B). Both the BST2-transduced 

(GFP+) cells and mock-transduced HEK293T cells are shown.   

  

      

  

  

 

FIGURE S6 | c-FOS and ERK1/2 in PMA-stimulated GEN2.2 cells. GEN2.2 cells separated from 

MS-5 feeder cells and starved in a serum-free medium for 16 h were pretreated or not with 

MEK1/2 inhibitor PD0325901 for 1 h and then stimulated with PMA for 0, 15 and 60 min. c-FOS 

and ERK1/2 were analyzed using Western blotting with rabbit polyclonal c-FOS (sc-52) and 

ERK1/2 (sc-154) Abs.   
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FIGURE S7 | Activation of c-FOS (A) and ERK (B) in GEN2.2 cells stimulated with BDCA-2 mAb – 

full scans of original gels. GEN2.2 cells separated from MS-5 feeder cells and starved in a serum-

free medium for 16 h were pretreated or not with MEK1/2 inhibitor PD0325901 for 1 h and then 

stimulated with BDCA-2 mAb. (A) The activation of c-FOS was evaluated by analysis of c-FOS 

phosphorylation using Western blotting with the P(T325)-c-FOS antibody. (B) The 

phosphorylation of ERK-1/2 was determined by P(T202/Y204) ERK-1/2. Framed sections of the 

Western blot are shown in Figure 10C (in the article).   
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R406 @ 1000nM  AB8779 @ 1000nM  

  

  

 

S8 Fig. TreespotTM interaction maps of AB8779 compared to R406 (Fostamatinib). In vitro 

kinase profiling by DiscoverX. The result of a high-throughput system (KINOMEscanTM) for 

screening of both compounds against large numbers of human kinases (442 kinases) 

developed by Ambit Biosciences are visualised using a TREEspotTM interaction Maps. Kinases 

found to bind the compounds are marked with red circles, where larger circles indicate 

higheraffinity binding. The compounds were screened at the concentration of 1 µM, and 

results for primary screen binding interactions are reported as percent control (% Ctrl), where 

lower numbers indicate stronger hits. DMSO is used as a negative control (100% Ctrl) while a 

high affinity compound is used as a positive control (0% Ctrl). % Ctrl is calculated as follow:   

  
The S-score of AB8779 tested in this assay is shown in S1 Table. These results clearly show 

that AB8779 is more specific than fostamatinib (R406).   
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Fig S9. Phosphorylation of Syk in pDCs stimulated by CpG-A or crosslinked with BDCA-2 mAb. 
(A) Kinetics of phosphorylation of Syk (Y525/526) in the populations of magnetic bead-sorted 
pDCs exposed to CpG-A or crosslinked with BDCA-2 mAb was followed by flow cytometry 
(Phosphoflow). The data show means and SEM of three independent experiments with pDCs 
from different healthy donors. (B) Kinetics of the total Syk phosphorylation in GEN2.2 cells 
determined by immunoprecipitation of pTyr followed by Western blotting with Syk Ab. Relative 
quantity of pSyk was determined by densitometry. Total Syk was used as a loading control. (C) 
Experimental outline. GEN2.2 cells separated from MS-5 feeder cells and serum-starved 
overnight in RPMI were exposed or not to Syk inhibitor AB8779 for 1.5 h, and then to CpG-A at 
4 μg/ml or to BDCA-2 mAb at 10 μg/ml for 20 min at 4°C. BDCA-2-treated cells were crosslinked 
with F(ab´)2 for 20 min at 4°C, and followed by analysis of phosphorylation of Syk by Western 
blotting. (D) Kinetics of phosphorylation of Syk Y352 (pSykY352) and Syk Y525/526 
(pSykY525/526) in AB8779-treated or non-treated cells stimulated with CpG-A, BDCA-2 mAb or 
isotype control (IgG1) was followed by western blot. Total Syk was used as a loading control. 
Representative result of 3 independent experiments. (E) Quantitative densitometric analysis of 
phosphorylation of Syk Y525/526 (panel D) in the absence (full columns, [pSyk]) and presence 
(empty columns, [pSykAB8779]) of AB8779 normalized to the total Syk and expressed as fold 
increase compared to the control (CpG-A 0 min). ^, inhibitory index defined by the ratio of 
pSyk/pSykAB8779 densities. The data show means and SEM, N = 3. *, p _0.05; **, p <0.01; two-
tailed unpaired Student's ttest. 
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 S-score Type  Number of 

hits/number of 
non-mutated 
kinases  

S-score  

S1  0/395  0  
S10  3/395  0.008  
S35  11/395  0.028  

 
 

S1 Table. S-score table for AB8779 tested at 1μM. Selectivity (S)-Score is a quantitative 

measure of compound selectivity. It is calculated by dividing the number of kinases that 

compounds bind to by the total number of distinct kinases tested, excluding mutant variants. 

S(35) = (number of non-mutant kinases with % Ctrl <35)/(number of non-mutant kinases 

tested), S(10) = (number of non-mutant kinases with % Ctrl <10)/(number of non-mutant 

kinases tested), S(1) = (number of non-mutant kinases with %Ctrl <1)/(number of non-mutant 

kinases tested). 
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