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2 Abstract 

Insulin/IGF system is a complex network of three similar hormones (insulin, IGF-1 and 

IGF-2) and their three similar receptors (IR-A, IR-B and IGF-1R, Figure 5.1.), which play 

important roles in maintaining basal energy homeostasis of the organism, in growth, 

development, life-span but also in development of diseases such as diabetes mellitus, cancer, 

acromegaly or Laron dwarfism. Despite structural similarities between family members, 

each member has its unique role in the system. Identification of structural determinants in 

insulin and IGFs that trigger their specific signalling pathways is important for rational drug 

design for safer treatment of diabetes or for more efficient combating of cancer or growth-

related disorders. In this thesis, we focused on identification of such structural determinants 

in IGF-1. Comparison of our data with parallel studies with IGF-2 and insulin could give a 

more complex picture of the problem.  

First of all, we developed necessary methodologies for the preparation of IGF-1 

analogues. We developed a new methodology for the total chemical synthesis of IGF-1 

analogues based on the solid-phase synthesis of fragments and their ligation by a CuI-

catalyzed cycloaddition of azides and alkynes. In parallel, we developed a procedure for a 

recombinant production of IGF-1 and its analogues in E. coli. 

Next, to gain an insight into the structural basis of IGF-1 binding specificity for IGF-

1R, IR-A and IR-B, especially in comparison with insulin and IGF-2, we generated a series 

of mutants with specific amino acid substitutions at the positions 49, 45 and 46 of the B 

domain of IGF-1. In another study, we modified a pair of arginine residues at the positions 

36 and 37 of the C domain of IGF-1. For all analogues we tested binding affinities of 

analogues for the selected receptors and abilities of analogues to activate these receptors.  

Our data provided new insights into importance of the studied amino acids in IGF-1 for 

interaction with receptors for IGF-1 and insulin and may be useful for further rational 

engineering of new hormone analogues for potential medical applications.   
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3 Abstrakt 

Insulin a hormony IGF jsou součástí komplexního systému tří navzájem si podobných 

hormonů (insulinu, IGF-1 a IGF-2) a jejich tří příbuzných receptorů (IR-A, IR-B a IGF-1R, 

obr. 5.1), který hraje důležitou roli v regulaci basální energetické rovnováhy organismu, 

v jeho růstu, vývoji, délce života ale i ve vývoji onemocnění jako je diabetes mellitus, 

rakovina, akromegalie nebo Laronův nanismus. Navzdory strukturním podobnostem má 

každý hormon svou jedinečnou roli v organismu. Identifikace specifických strukturních 

motivů v insulinu, IGF-1 a IGF-2, které spouštějí specifické signalizační dráhy, by byla 

přínosem pro racionální návrh léčiv, pro bezpečnější léčbu diabetu, či účinnější léčbu 

rakoviny nebo růstových onemocnění. V této práci jsme se zaměřili na identifikaci takových 

strukturních motivů u hormonu IGF-1. Srovnání dat se studiemi prováděných paralelně s 

IGF-2 a insulinem by mohlo poskytnout komplexnější pohled na danou problematiku. 

Nejdříve jsme vyvinuly nezbytné metodologie pro přípravu analogů IGF-1. Vyvinuli 

jsme nový postup pro celkovou chemickou syntézu analogů IGF-1 založený na syntéze na 

pevné fázi fragmentů IGF-1 a jejich spojování pomocí cykloadice azidů a alkynů 

katalyzované ionty CuI. Paralelně jsme vyvinuli postup pro rekombinantní produkci IGF-1 

a jeho analogů v E. coli. 

Abychom získali informace o důležitosti specifických strukturních motivů IGF-1 pro 

vazbu na IGF-1R, IR-A a IR-B zvláště ve srovnání s insulinem a IGF-2, připravili jsme série 

mutantů se substitucemi ve vybraných pozicích 49, 45 a 46 v doméně B a v pozicích 36 a 37 

v doméně C IGF-1. U všech analogů jsme testovali jejich vazebné afinity vůči receptorů a 

rovněž jejich schopnosti tyto receptory aktivovat. 

Naše data poskytla nové informace o důležitosti studovaných pozic v IGF-1 pro 

interakci s receptory IGF-1 a insulinu a mohou být užitečné pro další racionální modifikace 

těchto hormonů pro potenciální lékařské aplikace.  
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4 List of Abbreviations 

ALS = acid labile subunit  

GSH = reduced gluthathione  

GSSG = oxidized gluthathione 

IGF = insulin-like growth factor 
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IGF-1R = The type 1 insulin-like growth factor receptor 

IGF-2R = The type 2 insulin-like growth factor receptor 

IR = insulin receptor 

IR-A = isoform A of the insulin receptor 

IR-B = isoform B of the insulin receptor 

IRSs = insulin receptor substrates 

Nle = Norleucine  

PI3K = phosphoinositol 3-kinase 

PPP = cyclolignan picropodophyllin 

RTK = receptor tyrosine kinase 

siRNA = short-interfering RNA 
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5 Introduction 

5.1 The insulin/insulin-like growth factor (IGF) system 

Insulin/IGF system plays key developmental and metabolic roles at every stage of life. 

It is a complex system that controls and coordinates a number of biological effects such as 

cellular growth, tissue formation and remodelling, bone growth, brain development and 

basal energy metabolism. The cross-talk between components of insulin/IGFs system has a 

crucial role in proper coordination of these biological outcomes [1]. 

Insulin/IGF system consists of three receptors of the Insulin/IGF receptor tyrosine 

kinase subfamily (i.e. two isoforms of the insulin receptors, IR-A and IR-B, and the type 1 

insulin-like growth factor receptor, IGF-1R), structurally different receptor for insulin-like 

growth factor 2 (IGF-2R), three hormones (IGF-1, IGF-2 and insulin), six circulating IGF 

binding proteins (IGFBP-1-6) and proteases that modulate IGF binding proteins availability 

[1, 2]. 

Although the insulin receptors (IR-A and IR-B) and IGF-1 receptor (IGF-1R) share 

similar structures and similar downstream cytoplasmic mediators it is known that IR-A and 

IR-B are involved mainly in a regulation of physiological processes such as glucose transport 

and metabolism, biosynthesis of glycogen and fat, whereas IGF-1R is mainly a regulator of 

cell growth, proliferation, and differentiation. Moreover, theses receptors can form 

heterodimers called hybrid receptors [3]. 

All these receptors can be activated by the three hormones, IGF-1, IGF-2 and insulin 

(see Figure 5.1.) and each hormone has a different role in the organism [4]. It is supposed 

that IR-B is activated mainly by insulin, whereas IR-A mainly by insulin or IGF-2. IGF-1R 

is activated primarily by IGF-1 or IGF-2. Moreover IGF-2 can also bind to the IGF-2R, 

which is also known as mannose-6-phosphate receptor, and which functions are not fully 

clear [1]. 
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Figure 5.1. Insulin/IGFs system. Schematic and simplified representation of the binding of 

insulin, IGF-2 and IGF-1 to individual receptors and their predominant impacts on the 

organism. Solid and bold arrows show strong binding, thin and dashed arrows denote weaker 

binding. Typical affinities determined in the laboratory of Dr. Jiráček are shown in Table 

5.1. (below). Figure was kindly prepared by Dr. Lenka Žáková. 

 

Moreover, bioactivity of IGF-1 and IGF-2 in tissues is further regulated by circulating 

and local expression of these hormones, respective IGF-BPs and degrading proteases. In 

contrast, bioactivity of insulin is regulated by its production in -cells of islets of Langerhans 

in pancreas in response to elevated glucose levels and other factors as well [5].  

 



10 

 

5.2 IGF-1 

The insulin-like growth factor 1 (IGF-1) was discovered in the late 1950s as skeletal 

growth factor under control of the pituitary hormones produced in the liver that has impact 

on whole-body somatic growth and it was also known as somatomedin [6]. 

IGF-1 is a hormone, a member of insulin protein family as well as IGF-2 or insulin but 

also other human peptides as relaxins or INSL peptides. All these three hormones share 

similar secondary and tertiary structures and have similarities in primary structures as well, 

although their biological roles are different [6]. 

 

5.2.1 Structure 

IGF-1 is 70 amino acid single chain polypeptide cross-linked by three disulphide 

bridges, that is divided into four domains: B, C, A and D (from N to C terminus, see Figure 

5.2.). All four domains have about 60 % sequence identity with  IGF-2, mostly in the B and A 

domains, which have also about 50 % sequence similarity with the B and A chains of insulin 

[6]. 

 

Figure 5.2. Primary sequences of human IGF-1, IGF-2 and insulin. Grey background 

highlights identical amino acids in all three hormones. Amino acids of B domains (B chain 

in insulin) is in a red box, C domain residues are in a green box, A domain (A chain in 

insulin) residues are in a blue box and D domain amino acids are in a purple box. [6]  

 

The three dimensional structures of IGF-1 have been already solved by both NMR 

[7-10] and X-ray crystallography [11-14] methods (Figure 5.3.). The 3D-structure of IGF-1 

consists of three highly conserved α-helices. Helix 1 (Gly8-Cys18) is in the B domain 

whereas helix 2 (Ile43-Cys47) and helix 3 (Leu54-Glu58) are both located in the A domain. 

The structure is further stabilized by three characteristic disulphide bonds (Cys6-Cys48, 

Cys18-Cys61 and Cys47-Cys52). The C and D domains appear highly flexible in the 
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solution structures determined by NMR [7-10]. Overall, the 3D structure is very similar to 

3D structures of IGF-2 and insulin especially in the hydrophobic cores of hormones formed 

by helical parts (Figure 5.4.). 

 

 

Figure 5.3. 3D-structure of IGF-1. Structure showing helix 1 (blue) in the B domain, helix 

2 (pink) and helix 3 (red) in the A domain [9].  

 

 
Figure 5.4 Comparison of 3D-structures of IGF-1, IGF-2 and insulin [9, 15, 16]. 

 

 

5.2.2 Binding to the receptors 

IGF-1 binds to the insulin/IGF subfamily of cell surface tyrosine kinase receptors. 

IGF-1 binds IR-A (without 12 amino acids at the C-terminus of the -domain) and especially 

IR-B (with 12 amino acids at the C-terminus of the -domain) with a low affinity. Typical 
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binding affinities of IGF-1 but also of IGF-2 and human insulin determined in the laboratory 

of Dr. Jiráček are shown in Table 5.1.  

 

Table 5.1. Binding affinities of insulin, IGF-1 and IGF-2. Typical values of binding 

affinities (Kd values) of insulin, IGF-1 and IGF-2 for human IR-A (in membranes of human 

IM-9 lymphocytes), human IR-B or human IGF-1R (in membranes of mouse fibroblasts) 

measured in Dr. Jiráček’s laboratory using 125I-labeled insulin or 125I-labeled IGF-1 as 

tracers. Adapted from [17].  

Hormone/Receptor IR-A (nM) IR-B (nM) IGF-1R (nM) 

Human IGF-1 24 225 0.2-0.3 

Human IGF-2 2.9-3.0 35 2.3 

Human insulin 0.2-0.5 0.3-0.7 290 

 

IGF-1 binds also with relatively high affinities both hybrid receptors, IGF-1R/IR-A 

(EC50 about 0.3 nM) or IGF-1R/IR-B (EC50 about 2.5 nM) [18]. 

 Different binding affinities of IGF-1 for IR and IGF-1R receptors indicate different 

binding interactions with each receptor, however details of these interactions are still only 

partly understood. Interaction of IGF-1 especially with IGF-1R and IR-A receptors is 

extensively investigated through the preparation and functional analysis of IGF-1 analogues. 

Table 5.2. shows a list of IGF-1 analogues and their binding properties, which have been 

already prepared. There is a variability of the absolute values of binding affinities of 

analogues from different studies due to different techniques used by different groups to 

determine binding affinities. However, the relative binding affinities (related to wild type 

IGF-1), are relatively consistent between individual studies. Moreover, some early studies 

with IR were performed with different tissues often expressing a mixture of both IR 

isoforms.  

Chimeras combining domains of insulin and IGF-1 or domains of IGF-1 and IGF-2 

were frequently used to identify regions important for differential binding to the receptors. 

Likewise, point mutations, deletions or multiple mutations were frequently used for mapping 

binding epitopes in insulin, IGF-1 and IGF-2. At least 24 of the 70 IGF-1 amino acids have 

been individually mutated and tested for their receptors binding properties.  

Experiments involving chimeras showed, that the C domain plays a role in 

determining the IGF-1R binding preference for IGF-1. Substitution of the IGF-1 C domain 

for the IGF-2 C domain lead to the IGF-1R binding affinity similar to that of native IGF-2 
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and reverse effect was observed for IGF-2 containing the IGF-1 C domain [19]. Likewise, it 

was found that binding of IGF-1 analogue is disrupted when using IGF-1R chimera with IR 

CR domain suggesting that the IGF-1 C domain interacts predominantly with IGF-1R CR 

domain [20]. Mutations of Tyr31, Arg36 and Arg37 revealed their importance for IGF-1R 

binding. Substitution of Arg36 and Arg37 with Ala leads to a decrease of binding to IGF-1R 

[20, 21] 5- to 15- fold, depending on the assay methodology. Mutation of Tyr31 to Ala 

caused a 6-fold decrease of binding to IGF-1R [22].   

Ala mutations of IGF-1 residues Tyr31, Arg36 and Arg37 cause increase in IR 

binding [20-22], which can support the assumption that the C domain of IGF-1 plays a rather 

minor role in IR binding. Another experiments leading to this conclusion involved 

replacement of the IGF-1 C domain with a 4-glycine bridge and caused an increase binding 

to IR [23], a single chain insulin with the IGF-1 C domain had IR affinity similar to native 

human insulin [24], and double chain insulin with the IGF-1 C domain on the C-terminus of 

the B chain had a lower IR affinity than native insulin [25]. In contrast, it seems that IGF-2 

C domain has more important role in IR binding [19].  

Although the IGF-1 D domain is less significant in IGF-1R binding, a study mutating 

the positively charged Lys65 and Lys68 residues in the IGF-1 D domain for Ala showed 

their importance in IR binding properties of IGF-1. Their mutation to Ala caused an increase 

in IR binding potency relative to IGF-1 indicating that they can represent an obstacle in 

binding to the IR [20].   

Both A and B domains, in general, have crucial roles in binding properties of IGF-1 

to both IR isoforms and to IGF-1R receptor. However, it was shown that the N-terminal tail 

of IGF-1 B domain is not crucial for IGF-1R binding. Sequential deletions of the N-terminus 

of IGF-1 revealed that removal of first 4 residues do not significantly disrupt IGF-1R binding 

[26]. Mutagenesis of Glu3 and Thr4 supported this conclusion [27-30]. However, Thr4 has 

influence on IR binding since a mutation of this residue to His, which is the corresponding 

residue in insulin, led to an increase in affinity for the IR-A and IR-B [28]. 

Nevertheless a few residues, namely Ala8, Val11, Phe23 and Tyr24, of the B domain 

were shown as crucial for binding of IGF-1 to both IR and IGF-1R receptors as well [31].  

An additional interesting position in IGF-1 is Glu9. Analogue of IGF-1 with the 

substitution of negatively charged Glu9 to positively charged Lys9 binds IGF-1R with 25 % 

of native IGF-1 affinity and Glu9Gln IGF-1 binds IGF-1R 75 % of native IGF-1 [32]. 

Interestingly, the mutation of corresponding HisB10 residue in insulin to Lys also reduces 
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IR binding of the analogue [1]. However, mutation HisB10Asp of insulin results in insulin 

analogue with very high potency for both receptors [33]. This suggests the preference of 

both receptors, IGF-1R and IR-A, for a negative residue or for the lack of a positive charge 

at this position at the beginning of the B chain helix.   

Moreover, it was determined that the substitution of the first 16 N-terminal IGF-1 

amino acids with the first 17 N-terminal amino acids of insulin B-chain, which includes 10 

sequence changes, has almost no effect on IGF-1R binding [27]. These data indicate that the 

IGF-1R binding surface is similar within the B domains of insulin and IGF-1.  

IGF-1 A domain interactions were not investigated as intensively as the B domain 

interactions. Nevertheless, residues Val44 [34], Glu58 [35], Met59 [28] and Tyr60 [22] were 

identified as crucial for IGF-1R binding. Val44Met IGF-1 has been found in a patient with 

severe mental and growth retardation, which was explained by the impaired IGF-1R binding 

[36]. On the other hand, A domain residues that were not shown to be important for IGF-1R 

binding include Phe49 [29], Asp53 [35], Arg50, Arg55 and Arg56 [21]. Residues Ala54 and 

Leu55 in IGF-2 that are equivalent to Arg55 and Arg56 in IGF-1 also do not seem to be 

crucial for IGF-1R binding [37]. 

Exchanging residues 42–56 in IGF-1 for the first 15 N-terminal residues of the insulin 

A chain, together with a substitution of Thr41 for Ile in the C domain, led to a 7-fold increase 

in IR binding thus indicating an important role of these residues in IR binding. On the other 

hand, this IGF-1 chimera maintained IGF-1R binding affinity similar to native IGF-1, 

suggesting different binding epitopes in IGF-1R and IR responsible for binding of these parts 

of the hormones. Interestingly, the replacement of Phe49, Arg50 and Ser51 or the 

replacement of Arg55 and Arg56 in IGF-1 with the equivalent residues in insulin do not 

change the binding affinity to IR. However, it was found the simultaneous replacement of 

all these residues led to an increase of IR binding [38].  
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Table 5.2. IGF-1R, IR-A, IR-B and IGF-2R binding affinities of IGF-1 analogues. Binding affinities are relative to IGF-1. B domain is 

in blue, C domain is in green, A domain is in black and D domain is in red. 

N.B.= no binding detected, *13 amino acid N-terminal extension (M F P A M P L S S L F V N)  

 

 1         10         20         30         40         50         60        70 

 GPETLCGAE LVDALQFVCG DRGFYFNKPT GYGSSSRRAP QTGIVDECCF RSCDLRRLEM YCAPLKPAKSA  IR-A IR-B IGF-1R IGF-2R Reference 

 ––––––––– –––––––––– –––––––––– ––––––AA–– –––––––––– –––––––––– –––––––––––  28.9       0.07          [20] 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––A––A––  5.77       0.10          [20] 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––––––– S––––YE––– –––––––––––  0.79       0.83          [20] 

 ––––––––– –––––––––– –A–––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.32          [21] 

 ––––––––– –––––––––– –––––––––– ––––––AA–– –––––––––– –––––––––– –––––––––––             0.18          [21] 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––––––– A––––––––– –––––––––––             0.64          [21] 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––A–––– –––––––––––             0.91          [21] 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––––––– ––––––A––– –––––––––––             0.51          [21] 

 ––––––––– –––––––––– –––––––––              –––––––– –––––––––– –––––––––––              NB            [39] 

 ––––––––– –––––––––– ––––––––    GGGG   –– –––––––––– –––––––––– –––––––––––             0.01          [39] 

 ––––––––– –––––––––– –––––––––– SR  VSRRS   R–––––––– –––––––––– –––––––––––  1.88 2.04  0.25          [19] 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––T––PAKSE  1.44 1.24  1.14          [19] 

 ––––––––– –––––––––– –––––––––– SR  VSRRS   R–––––––– –––––––––– –––T––PAKSE  6.15 8.32  1.11          [19] 

 ––––––––– –––––––––– ––––––––––    GGGG    –––––––––– –––––––––– –––––––––––  1.75       0.03  0.44    [23] 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––          2          0.77  1       [23] 

 ––––––––– –––––––––– ––––––––––    GGGG    –––––––––– –––––––––– –––          4.67       0.02  0.40    [23] 

FVNQHLCGSH LVEALYLVCG ER–––––––– –––––––––– ––GIVEQCCT SICSLYQLEN YCN––––––––  46         0.17          [25] 

 ––––––––– –––––––––– –––––––––– –––––––––– ––––M––––– –––––––––– –––––––––––             0.0001        [34] 

 –––H––––– –––––Y–––– –––––––––– –––––––––– –––––––––T –I–––––––– –––––––––––  41.4                     [40] 

 –––H––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––  4.07                     [40] 

 ––––––––– –––––Y–––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––  3.82                     [40] 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––––––T –––––––––– –––––––––––  1.04                     [40] 
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 1         10         20         30         40         50         60        70 

 GPETLCGAE LVDALQFVCG DRGFYFNKPT GYGSSSRRAP QTGIVDECCF RSCDLRRLEM YCAPLKPAKSA  IR-A IR-B IGF-1R IGF-2R Reference 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –I–––––––– –––––––––––  0.61                     [40] 

FVNQHLCGSH LVEALYL––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––  4          0.47  <0.06   [27] 

 ––QA––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––  2          1.05  0.3     [27] 

 ––  ––––– –––––YL––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––  9.33       1.24  3.75    [27] 

 ––QA––––– –––––YL––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––  14         1.11  2.72    [27] 

 –––H––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             1.88          [32] 

 ––––––––Q –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.72          [32] 

 ––––––––K –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.21          [32] 

 ––––––––  ––––––S––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             1.29          [32] 

 ––––––––Q ––––––S––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.59          [32] 

 ––––––––K ––––––S––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.32          [32] 

  –––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             1             [26] 

   ––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             1             [26] 

    –––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             1.5           [26] 

     ––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.5           [26] 

      –––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             <0.01         [26] 

    –––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––  1.4        2.5   <0.001  [41] 

 ––R–––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––  0.65       0.8   <0.001  [41] 

 ––G–––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             1.28          [42] 

 ––R–––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             1.25          [42] 

 ––––––––K –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.17          [42] 

 ––––––––A –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.34          [35] 

 ––––––––– ––A––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.29          [35] 

 ––––––––– ––––––A––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.50          [35] 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––A–––––– –––––––––––             0.73          [35] 

 ––––––––  –– ––––––– –––––––––– –––––––––– –––––––––– ––– A––––– –––––––––––             0.24          [35] 
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 1         10         20         30         40         50         60        70 
 GPETLCGAE LVDALQFVCG DRGFYFNKPT GYGSSSRRAP QTGIVDECCF RSCDLRRLEM YCAPLKPAKSA  IR-A IR-B IGF-1R IGF-2R Reference 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––––––– ––––––––A– –––––––––––             0.15          [35] 
 ––––––––A ––A––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             <0.03         [35] 

 ––––––––A ––A––––––– –––––––––– –––––––––– –––––––––– ––––––––A– –––––––––––             <0.01         [35] 

 ––R–––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             1.76          [43] 

 ––G–––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.83          [43] 

    –––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             1.32          [43] 

 ––––––––– –––––––––– ––––L––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.05          [43] 

 –  –––––– –––––––––– ––––L––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.03          [43] 

 ––––––––– –––––––––– –––––––––– –A–––––––– –––––––––– –––––––––– –––––––––––             0.08          [43] 

 –  –––––– –––––––––– –––––––––– –A–––––––– –––––––––– –––––––––– –––––––––––             0.09          [43] 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– L––––––––––             0.005         [43] 

 ––––––––– –––––––––– –––––––––– –A–––––––– –––––––––– –––––––––– L––––––––––             NB            [43] 

 ––––––––– –––––––––– –––G–––––– –––––––––– –––––––––– –––––––––– –––––––––––  <0.085     0.02          [44] 

 –––––––L– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––  0.04 <0.11 0.17          [28] 

 ––––––––– –––––S–––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––  0.71 0.79  0.79          [28] 

 ––––––––– –––––S–––– –––––––––– –––––––––– –––––––––– –––––––––– ––L––––––––  0.12 0.20  0.17          [28] 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– ––L––––––––  0.50 0.48  0.13          [28] 

 –––H –––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––  6.7  3.5   1.2           [28] 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––F –––––––––––  0.06 <0.11 0.19          [28] 

 ––––––––– –––––––––– ––––L––––– –––––––––– –––––––––– –––––––––– –––––––––––  0.20       0.05  0.78    [22] 

 ––––––––– –––––––––– –––––––––– –A–––––––– –––––––––– –––––––––– –––––––––––  1.58       0.17  0.88    [22] 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– L––––––––––  <0.57      0.05  <0.7    [22] 

 ––––––––– –––––––––– –––––––––– –A–––––––– –––––––––– –––––––––– L––––––––––  <0.57      0.002 <0.7    [22] 

 ––––––––– –––––––––– ––––L––––– –A–––––––– –––––––––– –––––––––– –––––––––––  <0.57      0.004 2.33    [22] 

 ––––––––– –––––––––– ––––L––––– –––––––––– –––––––––– –––––––––– L––––––––––  <0.57      0.001 <0.7    [22] 

 ––––––––– –––––––––– ––––L––––– –A–––––––– –––––––––– –––––––––– L––––––––––  <0.57      0.001 <0.7    [22] 
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 1         10         20         30         40         50         60        70 

 GPETLCGAE LVDALQFVCG DRGFYFNKPT GYGSSSRRAP QTGIVDECCF RSCDLRRLEM YCAPLKPAKSA  IR-A IR-B IGF-1R IGF-2R Reference 

 ––––––––– –T–––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––  0.11       0.30          [45] 

 ––––––––– –I–––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––  0.26       1.57          [45] 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– F––––––––––  0.38       0.92          [45] 

 ––––––––– –A–––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.40          [46] 

 ––––––––– ––A––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.27          [46] 

 ––––––––– –––––A–––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.51          [46] 

 ––––––––– –––––E–––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.69          [46] 

 ––––––––– ––––––A––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.03          [46] 

 ––––––––– –––––––––– ––––S––––– –––––––––– –––––––––– –––––––––– –––––––––––  0.45       0.06  0.50    [47] 

 ––––––––– –––––––––– ––––L––––– –––––––––– –––––––––– –––––––––– –––––––––––  0.10       0.03  0.33    [47] 

 ––––––––– –––––––––– –––FFY–––– –––––––––– –––––––––– –––––––––– –––––––––––  1.87       0.73  3       [47] 

 ––––––––– –––––––––– ––––L––––– –––––––––– –––––––––– –––––––––– –––          0.22       0.01  1       [47] 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––––––A –––––––––– –––––––––––             1             [29] 

 ––A–––––– –––––––––– –––––––––– –––––––––– –––––––––A –––––––––– –––––––––––             1             [29] 

 ––––––––– –––––––––– –––––––––– –––––––––– –IGIVEQCCT SICSLYQ––– –––––––––––  7          1.53  <0.08   [38] 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––YQ––– –––––––––––  0.82       1.04  6.67    [38] 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––––––T SI–––––––– –––––––––––  1.27       0.70  <0.04   [38] 

 ––R–––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.63          [30] 

 ––G–––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.52          [30] 

*–– –––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             1             [48] 

*––G–––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.49          [48] 

*––R–––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.23          [48] 

*–– –––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.70          [42] 

*––G–––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.68          [42] 

*––R–––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.40          [42] 

*––K–––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––– –––––––––––             0.22          [42] 
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 1         10         20         30         40         50         60        70 

 GPETLCGAE LVDALQFVCG DRGFYFNKPT GYGSSSRRAP QTGIVDECCF RSCDLRRLEM YCAPLKPAKSA  IR-A IR-B IGF-1R IGF-2R Reference 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––H–––– –––––––––– –––––––––––  1.2        0.31          [49] 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––N–––– –––––––––– –––––––––––  1.2        0.60          [49] 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––A–––– –––––––––– –––––––––––  1.3        0.23          [49] 

 ––––––––– –––––––––– –––––––––– –––––––––– ––––––H––– –––––––––– –––––––––––  3.5        1.33          [49] 

 ––––––––– –––––––––– –––––––––– –––––––––– ––––––Q––– –––––––––– –––––––––––  1.3        1.33          [49] 

 ––––––––– –––––––––– –––––––––– –––––––––– ––––––A––– –––––––––– –––––––––––  1.7        0.92          [49] 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––NQ––– –––––––––– –––––––––––  1.4        0.49          [49] 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––––––H –––––––––– –––––––––––  3.5        0.65          [49] 

 ––––––––– –––––––––– –––––––––– –––––––––– ––––––H––H –––––––––– –––––––––––  7          0.55          [49] 

 ––––––––– –––––––––– –––––––––– –––––––––– ––––––Q––H –––––––––– –––––––––––  3.2        0.53          [49] 

 ––––––––– –––––––––– –––––––––– –––––––––– –––––NQ––H –––––––––– –––––––––––  4.3        0.37          [49] 
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5.2.3 Binding to IGF binding proteins 

IGF-1 binds to insulin-like growth factor binding proteins with high affinities (see 

table 5.3.), which are different for each of proteins [32]. 

 

Table 5.3. Binding affinities of IGF-1 for insulin-like growth factor binding proteins. 

From Ref. [32].  

Protein ED50 of IGF-1  (nM) 

Human IGFBP-1 8.1 ± 0.7 

Rat IGFBP-2 0.18 ± 0.02 

Human IGFBP-3 0.08 ± 0.02 

Human IGFBP-4 0.92 ± 0.02 

Human IGFBP-5 0.65 ± 0.03 

Human IGFBP-6 2.1 ± 0.1 

 

In general, specific IGF-1 mutants have different decreases in IGFBP binding 

affinities compared to nature IGF-1, depending on the IGFBP investigated, which suggests 

that the IGFBP-binding epitopes in IGF-1 can differ for each IGFBP [50-52]. Since the most 

frequent serum IGFBP is IGFBP-3, it is also the most studied for IGF-1 binding. Truncated 

des-(1-3)-IGF-1 binds to IGFBP-3 with several times lower affinity than natural IGF-1 and 

has also reduced binding affinity to other IGFBPs [53]. Other data measured on IGF-1 Glu3 

mutants showed that the Glu3 is an important determinant of the des-(1-3)-IGF-1 binding 

properties [29, 41]. 

Alanine scanning mutagenesis of the entire IGF-1 molecule identified Val11, Arg36, 

Pro39 and Pro63 like other determinants important for IGFBP-3 binding. The same residues 

were identified to be important also for IGFBP-1 binding [51]. 

Other IGF-1 residues found to be important for IGFBP binding are Glu15, Phe16, 

Phe48, Arg49, and Ser50 [27, 32, 52, 54]. 

 

5.2.4 Biology of IGF-1 

IGF-1 is a hormone, with biological effects typical for a growth factor, which acts 

either in autocrine or paracrine fashion. It is synthesized in multiple tissues including liver, 

skeletal muscle, bone and cartilage. Since the majority of IGF-1 is synthetized by the liver, 

this organ is the most important regulator of blood concentration of IGF-1 and about 80 % 

of the total serum IGF-1 comes from the liver. Circulating IGF-1 acts by a paracrine 
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mechanism. The remaining IGF-1 is synthesized in the periphery, usually by connective 

tissue cell types. IGF-1 that is synthesized in the periphery locally regulates cell growth by 

an autocrine mechanism (it can bind to receptors that are present on the connective tissue 

cells themselves) and by paracrine mechanism as well (can bind to receptors on adjacent cell 

types, often epithelial cell types, that do not actually synthesize IGF-1) [55]. Moreover, the 

mesenchymal cells surrounding the tumours are also an important paracrine source of IGF-

1 [56]. 

The synthesis of IGF-1 by cells in the connective tissue is under control of GH (the 

human pituitary growth hormone, also known as somatotropin). Secretion of growth 

hormone (GH) in the pituitary is regulated by the neurosecretory nuclei of the hypothalamus 

[57]. 

Serum IGF-1 circulates in relatively high concentrations (150–400 ng per ml) in 

plasma, mostly as the IGFBP-bound form. The free active form represents only a small part 

(less than 1 %) [58]. Serum levels of IGF-1 increase slowly from birth to a pubertal peak 

and then decrease with age. IGF-1, in contrast to IGF-2, is expressed at a low level 

embryonically and thus seems to be more important for postnatal growth and development, 

however it is still needed for correct embryonic development [59]. For example, foetal brain 

expression of IGF-1 is suggested to be crucial for determining brain growth and head size 

[60]. 

In mice, germline deletion of Igf1 gene results in a 50 % reduction in birth weight 

and a 70 % reduction in final adult size [61], whereas selective deletion of IGF-1 synthesis 

in the liver (without effect on peripheral synthesis), results in less than a 10 % reduction in 

adult size [55]. These data support the theory that the peripheral synthesis of IGF-1, 

stimulated by GH, is an important determinant of somatic growth.  

Hepatic synthesis of IGF-1 is regulated by several factors, including the GH 

hormone, but the ability of GH to stimulate synthesis of IGF-1 is strongly influenced by 

nutritional status [62]. In addition, increasing blood IGF-1 concentrations suppress GH 

synthesis in the pituitary gland (a process termed negative-feedback regulation) [63]. 

Other hormones, such as thyroxine, cortisol, estradiol and testosterone participate 

with GH in regulation of hepatic IGF-1 synthesis. Thyroxine increases sensitivity to GH, 

and thus IGF-1 synthesis. Whereas estradiol, as well as cortisol, inhibit IGF-1 synthesis in 

the liver. High cortisol concentrations can lead to growth attenuation by this mechanism. 

Testosterone enhances hepatic IGF-1 synthesis, moreover alters the sensitivity of the 
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pituitary gland to negative-feedback regulation of GH secretion, and thus causes an increase 

in both GH and IGF-1[64].  

Increasing of IGF-1 synthesis is also connected with injury. A wave of IGF-1 

synthesis that stimulates reparative cell types to replicate was observed following tissue or 

cellular injury of blood vessels [65], skeletal muscle [66], cartilage [67] and of the brain 

[68]. Additionally, local synthesis of IGF-1 can be elicited by other growth factors involving 

in the repair process, such as platelet derived growth factor (PDGF), fibroblast growth factor 

(FGF) and epidermal growth factor (EGF) [69].  

IGF-1 as a growth hormone plays a significant role also in protein metabolism. It was 

demonstrated that IGF-1 enhances protein synthesis and slows down protein degradation not 

only in muscle and skeletal tissues. In general, it mediates the anabolic effects [70-72]. 

Although IGF-1 is a growth hormone, it plays also another roles in organism than 

only growth and development [2]. Structural similarities between IGF-1, IGF-2 and insulin 

suggest that both peptides may arise from a common evolutionary precursor, which was used 

by organisms to link nutrient intake and growth. The IGF-1/IGF-2/insulin precursor could 

be synthesised after the food intake to stimulate cells to use the ingested nutrient for protein 

synthesis and tissue growth. IGF-1 has retained some insulin-like properties such as 

stimulation of glucose transport into skeletal muscle cells and its synthesis is linked to 

nutrient intake [73].   

Several studies suggested that IGF-1 can enhance insulin action. For example glucose 

disposal is partially dependent on circulating IGF-1 concentrations [74] and deletion of the 

IGF-1R in skeletal muscle of mice results in glucose intolerance connected with impaired 

insulin action [75]. The mechanisms of these IGF-1 actions is proposed to be connected with 

either cross-talking between the insulin and the IGF-1 signal transduction pathways or with 

inhibiting the secretion of GH, which can act as an insulin antagonist [76]. 

IGF-1/IGF-1R has also unknown role in the brain connected not only with controlling 

synthesis of GH by the neuroendocrine brain. IGF-1 is also synthetized in the brain, within 

neurons and glia. Partial inactivation of IGF-1R in the embryonic brain selectively inhibited 

GH and IGF-1 pathways after birth, caused growth retardation, smaller adult size, and 

metabolic alterations, and led to delayed mortality and longer mean lifespan. It suggests that 

the development of this hormone axis is under control of the central nervous system (CNS) 

[77]. The brain IGF-1 action is mostly connected with lifespan [78]. Neurons in the central 

nervous system, by sensing the circulating levels of ligand, may have a central function in 
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regulating the ageing of all tissues. This possibility was investigated using the Cre-lox 

approach to produce brain-specific IGF-1R knockout mice. Homozygous mice for this 

mutation are microcephalic, sterile, and have a complex neuroendocrine dysfunction, but 

heterozygous mice are healthy and have an increase lifespan [77]. 

 

5.2.5 Diseases connected with IGF-1 

Defects of the IGF-1 gene are rather rare in humans. Only a few cases (three 

homozygous and two families with heterozygous mutations) have been described. Patients 

have a variable degree of intrauterine and postnatal growth retardation, microcephaly, 

deafness and developmental delay [79]. However a relatively high concentration of serum 

IGF-1 is connected with an increased risk of developing cancer [80]. 

On the other hand, defects in GH action are not as rare as IGF-1 and lead to diseases 

such as dwarfism or acromegaly. Children with attenuation of GH action often also have 

IGF-1 deficiency that could be remedied by IGF-1 replacement. These treatments should be 

beneficial especially in cases of GH receptor defects that resulted in the resistance to GH.  

Several clinical studies used recombinant human IGF-1 (sold as Mecasermin) for treatment 

children with IGF-1 deficiency [81-83]. Although the long term effect of this therapy did not 

allowed children to achieve a normal range of adult heights, their adult heights is 

significantly greater than in the absence of the therapy. Conceivably, further improvements 

such as initiating treatment earlier, or using different dosing regimens, could lead to better 

results [83]. IGF-1 has also been co-administered with IGFBP-3. Treatment of children with 

this complex results in more stable serum IGF-1 levels with growth rates in the first year of 

therapy equivalent to those obtained using IGF-1 alone [81]. 

Several catabolic states were described to lead to a relative resistance to GH as a 

result of increased concentrations of cytokines, which thus inhibit IGF-1 synthesis and block 

its actions in tissues [84]. These patients as well as patients with burns treated by IGF-1 

respond to IGF-1 with increases in protein synthesis and an enhancement of the whole body 

protein anabolism [85, 86]. Likewise, experiments performed on rats showed that treatment 

by injection of biotinylated nanofibers delivering IGF-1, which provided sustained IGF-1 

delivery for 28 days into rat myocardium, could be beneficial after myocardial infarction 

[87].  
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Two studies demonstrated that the reduction in bone mineral density can be improved 

by administered IGF-1, as a potent growth factor for osteoblasts [88, 89]. In addition, studies 

on animal models show that IGF-1 could be involved in stimulating atherogenesis [90, 91]. 

Administering IGF-1 to patients with severe insulin resistance, diabetes mellitus type 

1 or type 2 lead to enhanced insulin sensitivity and improvement of post-prandial glucose 

usage [74, 92-94]. 

In addition, IGF-1 has a role in longevity connected with its action in brain. It was 

reported that heterozygous knockout mice (Igf1r+/-) (heterozygous because null mutants are 

not viable) live on average 26 % longer than their wild-type littermates. For females, the 

effect was even more significant than for males. Long-lived Igf1r+/- mice do not develop 

dwarfism, and their nutrient uptake, energy metabolism, physical activity, fertility and 

reproduction are unaffected. Moreover they display greater resistance to oxidative stress, a 

known determinant of ageing [95]. The same was observed in nematodes [96] 

(Caenorhabditis elegans [97]) and in the insect Drosophila melanogaster [98]. The presence 

of low levels of GH/IGF-1 in most of the long-lived rodent models delays puberty and 

reproduction. This observation led to an idea of shifting a ‘biological timer’ that will also 

delay aging. Thus, the longer lifespan of these models may be due to the late arrival of age-

related diseases, despite many other problems that they face early in life [99]. 

Finally, IGF-1 was demonstrated to play a role in Alzheimer’s disease [100] and in 

Huntington's disease [101]. 

 

5.3 Insulin-like growth factor binding proteins  

Insulin-like growth factor binding proteins family consists of six protein members 

(IGFBP-1 to -6), which bind IGF-1 and IGF-2 with high affinity. They are well known for 

modulating bioavailability of IGF-1 and IGF-2, whereas their bioavailability is known to be 

modulated by proteolysis [102]. 

In serum, IGF-1 and IGF-2 are predominantly (about 90 %) found in a ternary complex 

consisting of IGF-1 or IGF-2, IGFBP-3 and acid labile subunit (ALS). Another ternary 

complex of IGF:IGFBP-5:ALS is also formed in a lower amount (about 10 %). ALS is 85 

kDa glycosylated protein and belongs to the leucine-rich repeats (LRR) family of proteins, 

which main role is to increase the half-life of IGFs in the circulation. The downregulation of 

ALS leads to low serum IGFBP-3 and IGF-1, which causes growth retardation [103]. 

Surprisingly, ALS binds IGFBPs only if they are in complex with IGF [104, 105]. 
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Both of these ALS-containing complexes work as a reservoir of IGFs trapped in 

circulation because they are not able to cross the vascular epithelial layer. Moreover these 

complexes have half-life about 16 hours, in contrast to less than 15 minutes of free IGF-1 

[106]. 

The rest of IGFBPs (IGFBP-1, -2, -4, -6) are also present in serum, however in small 

amounts (the most frequent is IGFBP-2) and form smaller binary IGF:IGFBPs complexes, 

which can cross the vascular epithelial layer, and thus deliver IGF-1 to target tissues. Binding 

of these IGFBPs to IGFs also considerably slows down serum IGFs clearance [107, 108]. 

Likewise, locally expressed IGFBPs also modulate IGFs actions by blocking their binding 

to the IGF-1R [102]. 

In addition, almost all IGFBPs have been shown to have also IGF-independent role 

in organism, however their IGF-independent actions are much less investigated than the IGF-

dependent actions [109, 110]. 

The mature IGFBPs contain 216–289 amino acids that are organized into three 

domains of approximately equal size. There are more conserved cysteine-rich N- and C- 

domains, which are linked together via L-domain, which is unique to each IGFBP. IGFBPs 

1–5 have 18 conserved cysteines, whereas IGFBP-6 has 16 cysteines resulting in its different 

fold from other IGFBPs. All six IGFBPs have the same three conserved disulphide bonds 

within the C-domains [102, 111, 112]. 

Both conserved regions, the N- and C-domains, are binding IGFs and the IGF binding 

determinants are similar in all six IGFBPs [111, 113-116]. The binding site for ALS is 

located in the C-domain [117]. 

The L-domains of IGFBPs are not conserved and are not directly involved in binding 

of IGFs. They contain mainly sites of post-translational modifications such as glycosylation, 

phosphorylation and proteolysis. Glycosylation of IGFBPs does not change IGF binding 

affinities, but influences other IGFBPs properties such as stability, circulating half-life, and 

susceptibility to proteolysis and cell association [118-120]. Phosphorylation has been also 

shown to influence IGFBPs properties such as susceptibility to proteolysis [121, 122] or cell 

surface binding [123]. Moreover, in contrast to glycosylation, phosphorylation was 

demonstrated to influence IGF binding properties [124]. 

Proteolysis of IGFBPs predominantly occurs in the L-domain and provides a 

mechanism for regulation of circulating IGFBPs amounts. Moreover, some of the resulting 

fragments of the proteolysis have been reported to retain biological activity [125, 126]. A 
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number of proteases cleaving IGFBPs was identified, such as plasmin, pregnancy-associated 

plasma protein A (PAPP-A), pepsin, cathepsins or matrix metalloproteinases [102, 112, 127-

130]. 

 

5.4 The type 1 insulin-like growth factor receptor  

The type 1 insulin-like growth factor receptor (IGF-1R) is a transmembrane tyrosine 

kinase that belongs to insulin/IGF-1 receptor subfamily of receptor tyrosine kinases (RTK) 

[131, 132]. All RTKs share a similar molecular architecture, with large extracellular 

glycosylated ligand-binding domain, a  single  transmembrane  helix,  and  intracellular  

region  that  contains a juxtamembrane  regulatory  region, protein tyrosine kinase domain 

with an additional C-terminal region. They are one of a major cell surface receptor family, 

containing about 60 members, subdivided into at least 13 receptor subfamilies. The major 

common structural feature of these receptors is their dimeric character or dimerization upon 

activation by a ligand [131, 133]. 

IGF-1R is similar to IR-A (insulin receptor isoform A, lacking 12 amino acids at the 

C-terminus of the -subunit coded by exon 11) and to IR-B (insulin receptor isoform B, 

having 12 amino acids at the C-terminus of the -subunit coded by exon 11). The IGF-1R 

and the IRs have high sequence homology (84 % in the tyrosine kinase domain, about 55 % 

in the ligand binding part, and above 50 % in overall amino acid sequence) [134]. 

IGF-1R binds IGF-1 with high affinity and IGF-2 with lower affinity as well but 

insulin with a low affinity (Table 5.1.) [17]. 

 

5.4.1 Structure 

The human IGF-1R gene, located on chromosome 15, is greater than 100 kb in size 

and the coding sequence contains 21 exons [135]. The product of this gene is a 180 kDa 

(1367 amino acids) precursor, which is proteolytically processed to yield α-chain (residues 

1–707) and β-chain (residues 712–1337) [134, 136]. The mature IGF-1R is subsequently 

composed of two α- and two β-chains linked together via disulphide bonds to form (αβ)2 

homodimer (Figure 5.3.) which is heavily glycosylated [137-139]. Since glycosylation is 

critical for IR biosynthesis it is suggested the same is valid for IGF-1R, which has 16 

potential N-linked glycosylation sites, 11 on the α-chain and 5 on the β-chain [134, 140]. 

α-Chain of IGF-1R consists of, from the N-terminus to the C-terminus, a leucine-rich 

repeat domain (L1 domain), a cysteine-rich region (CR domain) containing 22 cysteine 
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residues, a second leucine-rich domain (L2 domain), fibronectin type III domains (FnIII-1, 

and FnIII-2a) and an insert domain α (ID-α), which contains so-called α-CT peptide at the 

end [31, 141-144]. 

β-Chain is formed by, again from the N-terminus to the C-terminus, insert domain β 

(ID-β), fibronectin type III domains (FnIII-2b and FnIII-3), transmembrane sequence, tyrosine 

kinase domain and C-tail (Figure 5.3.) [31, 142-144]. 

Extracellular ectodomain of IGF-1R consists of two complete α-chains and 195 

residues of each of β-chain (ID-β, FnIII-2b and FnIII-3 domains) and is responsible for 

binding of hormones. The transmembrane sequence (TM domain) is formed by the residues 

906–929 of each β-chain, which continue by another 408 residues into the cytoplasm where 

form a juxtamembrane region (JM domain, residues 930–972), contains the phosphotyrosine 

binding sites for signaling molecule, tyrosine kinase domain (TK domain, residues 973-

1229) followed by C-tail (residues 1230–1337) [3, 134, 139] (Figure 5.3.). 

The 3D structure of the first three domains (L1-CR-L2) of the IGF-1R has been 

solved by X-ray crystallography [145]. In addition, several structures of the kinase domain 

have been also determined [146-149].  
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Figure 5.3. IGF-1R structure. The domain organisation of IGF-1R and the approximate 

location of the disulphide bonds are shown. Reproduced from Ref. [3]. 

 

5.4.2 Binding of hormones 

Structural understanding of binding of IGF-1 and other hormones to the extracellular 

ectodomains of the IGF-1R is not completely understood. Until spring 2018 (see below), 

there was no complete crystal or any other structure of any of receptors of the tyrosine kinase 

superfamily [132]. However, the interaction of IGF-1 with its receptor is similar to the 

insulin/IR interaction where some structural advances were done. 

It is widely acknowledged that insulin binding to the IR is mediated by two binding 

epitopes, so-called Site 1 and Site 2, which together form the complete binding pocket for 

the hormone. Site 1 (also known as ‘‘classical binding site’’) consists of L1 domain and α-

CT peptide and binds insulin with a dissociation constant (Kd) of approximately 6.4 nM 

[150-154]. The first crystal structure of the complex of insulin sitting on L1 domain and -

CT peptide of IR representing Site 1 was published in 2013 [150] and further refined in 2014 
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[155]. This structure (Figure 5.4.) confirmed the results of previous studies suggesting the 

detachment of the C-terminus of the B-chain of insulin from the central core of the insulin 

molecule [156, 157]. 

The first crystal structure of IGF-1 in a complex with the receptor (hybrid construct 

consisting of L1-CR domains of IR and α-CT peptide of IGF-1R) showed that the binding 

IGF-1 to the IR receptor binding Site 1 is very similar to the binding mode of insulin. 

However, this structure (Figure 5.5.) did not provide details about the arrangement of the C-

domain of IGF-1 on the receptor [158]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Crystal structure of the complex of insulin sitting on L1 domain and -CT 

peptide of IR. An overlay of receptor bound insulin (in green) sitting on the L1 domain of 

the insulin receptor (in grey) and -CT peptide (in yellow, 4OGA from Ref. [155]) with a 

crystal structure of AsnB26-insulin (in violet, 4UNG from Ref. [156]) mimicking the 

receptor-bound conformation of insulin. This complex represents so-called Site 1 of the 

interaction. 
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Figure 5.5. Crystal structure of the complex of human IGF-1 and receptor. IGF-1 bound 

to L1 and CR domains of IR (in light blue) and -CT peptide of IGF-1R (in violet). A-

domain of IGF-1 is in yellow, B-domain in black and E-domain in green. Orange and blue 

parts of the IGF-1 C-domains are shown in orange and were modelled in the complex 

because they were not visible in a crystal structure. Reproduced from the Ref. [158]. 

 

If the Site 1 of the IR receptor is relatively well defined from the available crystal 

structures (see above), the identity of Site 2 still remains unclear. It was proposed that it 

should be formed by FnIII-1 and FnIII-2 domains and its dissociation constant (Kd) value for 

insulin is about 400 nM [151, 153, 154, 159]. Therefore, only the simultaneous interaction 

of both Sites creates a high affinity complex with affinity about 0.2 nM [17]. 

The first structural insight into the second binding surface of insulin and IR was 

published early this year by Scapin et al. [160]. The Cryo-EM structure of the extracellular 

ectodomain of IR confirmed crystallographic data about Site 1-Site 1’ interaction and 

proposed that Site 2 in insulin is formed only by residues CysA7, ThrA8 and B-chain 

residues B4-B10 (Figure 5.6.) and by Site 2’ residues 495-498, 539-541 and 575 in IR FnIII-

1 domain. This result is surprising especially because the extent of Site 2 in insulin is much 

more limited than predicted (see above). It is not excluded that some new discoveries will 

correct these findings.   
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Figure 5.6. The CryoEM structure of the complex of insulin and insulin receptor. 
Bound insulin is in blue and is overlaid with free insulin in red (PDB1ZNI). Site 1’ of the 

receptor is represented by L1 in green and -CT peptide in orange. Site 2’ of the receptor is 

in yellow and belongs to FnIII-1 domain. Reproduced from Ref. [160].  

 

Interestingly, the first crystal structure of IGF-1 in a complex with IGF-1R was 

published almost simultaneously with Scapins’s et al. Nature paper. Xu et al. [161] showed 

(Figure 5.7.) that IGF-1 binds to IGF-1R L1, CR and-CT in an almost identical fashion as 

to IR/IGF-1R hybrid receptor (as shown above) [158]. They also identified contacts of IGF-

1 with FnIII-2 IGF-1R domain, which were attributed to the supposed Site 2. However, the 

mutagenesis of FnIII-2 residues involved in this interaction did not confirm their importance 

for IGF-1 binding [161]. Hence, the authors conclude that FnIII-2 interaction with IGF1-R 

is likely non-physiological and probably caused by crystal soaking with the hormone. 
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Figure 5.7. Crystal structure of a complex of IGF-1 and IGF-1R extracellular 

ectodomain. Reproduced from Xu et al. Ref. [161]. 

 

5.4.3 Signalling cascade 

According to the classical model, hormone binding induces a conformational change 

of the receptor, leading to the activation of the TK domain via sequential 

autophosphorylation of three conserved tyrosine residues 1131, 1135, and 1136. In the un-

phosphorylated state, the receptor catalytic activity is at a low basal level [162-165]. 

Activation loop (A-loop), located at TK domain and containing the critical tyrosines 

1131, 1135, and 1136, behaves as a pseudosubstrate that blocks the active site (closed 

configuration). After ligand binding, phosphorylation of Tyr 1135 and Tyr 1131 destabilizes 

the auto-inhibitory conformation of the A-loop and phosphorylation of Tyr 1136 and Tyr 

1135 stabilizes the catalytically active conformation of TK domain [146]. 
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The two most studied intracellular substrates of the IGF‑1R tyrosine kinase are 

adaptor proteins Shc and the insulin receptor substrates (IRSs). They are well known to play 

important roles in subsequent signalling cascades [166]. 

Shc protein family contain four unique proteins (ShcA, B, C, and D) and their 

multiple splicing isoforms [167]. Their PTB (phosphotyrosine-binding) domain at the N-

terminal region interacts with the phosphotyrosine P-Tyr950 (NPXY950 motif), located at the 

juxtamembrane region of the IGF-1R [168, 169]. Maximal phosphorylation of Shc is reached 

5–10 min after IGF-1R stimulation [170]. 

The IRS protein family consists of four proteins (IRS1-IRS4) encoded by four genes 

(Irs-1-4), from which IRS-1 and IRS-2 are the best characterized. They bind to the IGF-1R 

in the same manner as Shc [169, 171] and their maximal phosphorylation is occurs 1–2 min 

after phosphorylation of the receptor [170]. In addition, IRSs can form high-molecular-mass 

complexes with a variety of proteins that modulate their availability to the IGF-1R [172, 

173]. 

The two best-characterized pathways associated with IGF-1R activation are the 

MAPK (MEK) and PI3K pathways (see Figure 5.8.).  

MAPK pathway is initiated by phosphorylation of Shc or IRSs adaptors through Grb2 

molecule [174]. Grb2 is an adapter protein, which interacts with Shc or IRSs via its SH2 

domain and with son of sevenless (Sos) protein, a guanine nucleotide exchange protein, via 

its two SH3 domains. Sos mediates the release of GDP and subsequent binding of GTP to 

the membrane-bound protein Ras [175, 176]. The activated Ras initiates a classical 

phosphorylation cascade, where Ras interacts with and translocates the serine/threonine 

protein kinase Raf to the plasma membrane, where Raf becomes activated. Activated Raf 

subsequently phosphorylates and thus activates one of the serine-threonine mitogen-

activated protein kinases (MAPKs) known as MEK [177]. MEK in turn stimulates by 

phosphorylation the extracellular-related kinases (ERKs) ERK1 and ERK2, members of 

MAPKs group too, which are afterwards translocated to the nucleus [178]. ERK1/2 regulate 

cellular processes such as proliferation, differentiation and protein synthesis [179]. 

PI3K pathway begins by phosphorylation of the insulin receptor substrates (IRSs) 

and this interaction with a p85 regulatory subunit of PI 3-kinase (phosphoinositol 3-kinase) 

class I leads to activation of the catalytic subunit p110 of PI 3-kinase [180]. It has also been 

shown that PI 3-kinase can directly bind to the Y1316XXM motif of IGF-1R if this tyrosine 

is phosphorylated [181]. PI 3-kinase synthesizes the second messenger phosphatidyl inositol 
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(3, 4, 5)-triphosphate (PIP3) from membrane-bound phosphatidylinositol (4,5)-bisphosphate 

(PIP2). These phospholipids trigger phosphorylation of the Thr308 and Ser473 residues on Akt, 

a serine/threonine-specific protein kinase also known as protein kinase B, and activates this 

kinase [182, 183]. Activated Akt subsequently phosphorylates and thus inhibits several pro-

apoptotic proteins [184-186], which leads to a suppression of apoptosis and causes survival 

effects. Other effects of Akt activation are metabolic and can result by the uptake of glucose 

to cells [166].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8. IGF-1R signalling pathways. Reproduced from Ref. [166]. 

 

5.4.4 IGF‑1R internalization, recycling, and degradation 

Ligand-activated receptors are normally downregulated by internalization allowing 

the cells to return to an unstimulated, basal state. This is also the case with IGF-1R. Only 

phosphorylated IGF-1R is internalized and, hence, the internalization is ligand-dependent 

process. IGF-1R is incorporated into specific clathrin- or calveolin-coated vesicles that 

transfer the receptor to the lysosome system for degradation [187]. 
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After internalization, IGF-1R degradation is mediated by both the proteasome and 

lysosomal pathways [188]. Likewise, IGF-1R can be recycled to the plasma membrane 

[189]. However the details of these processes are still unknown [166].  

Recent data demonstrated that IGF-1R is a substrate for ubiquitination and three E3 

ligases, Mdm2 [190], Nedd 4 [191] and c-Cbl [187], have been shown to be involved in 

mediating ubiquitination of lysine residues of the IGF-1R. In Mdm2-mediated 

ubiquitination, β-arrestin functions as a molecular scaffold in bridging the ligase to the 

receptor [192]. Similarly Grb10 functions as an adapter protein in case of Nedd4-mediated 

IGF-1R ubiquitination [191].  

 

5.4.5 Nuclear IGF‑1R 

Accumulating evidences indicate that intact, or proteolytically cleaved, fragments of 

IGF-1R (but also IR) translocate to the nucleus [193, 194]. It is suggested that IGF-1R 

nuclear import has a biological significance. Even though the mechanism is still unknown, 

it was shown to be mediated by SUMOylation [195, 196]. Interestingly, SUMOylation sites 

on lysine residues, located on the tyrosine kinase domain, are conserved among a variety of 

species and their mutagenesis arrested nuclear translocation and gene activation [196]. 

Further, one study showed that nuclear trafficking is mediated at least in part by clathrin and 

confirmed that both the α- and β-chains of IGF-1R translocate to the nucleus [194]. 

Moreover, other studies also demonstrate that ligand-mediated receptor phosphorylation is 

crucial for nuclear trafficking [197]. 

It was established that IGF-1R interacts, either directly or indirectly, with double-

stranded DNA [195]. Notion that IGF-1R is actively translocated to the nucleus, where it 

can bind to enhancer regions of genomic DNA, prompted speculations about function of 

nuclear IGF-1R as a non-classical transcription factor [197]. A recent study has shown that 

nuclear IGF-1R binds and activates transcription factor LEF-1, a key regulator of the Wnt 

signaling cascade [198]. Several other receptor tyrosine kinase family members, including 

EGFR, ErbB, FGFR, MET, VEGF, were reported to travel to the nucleus and function as 

transcription factors as well [199]. 

 

5.4.6  Hybrid receptors of IGF-1R 

Since the insulin receptors and the insulin-like growth factor 1 receptor have highly 

homologous structures, the one-half of IR and one-half of IGF-1R can heterodimerize, which 
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leads to the formation of IR/IGF-1R hybrid receptors. In addition, each of the IR isoforms is 

equally able to form hybrids with the IGF-1R [18, 200, 201]. The heterodimerization is 

believed to occur with a similar efficiency as homodimerization in close agreement with the 

random assembly model. Hybrid receptors are widely distributed in all mammalian tissues 

co-expressing both IR and IGF-1R receptors [202]. 

Several functional studies have demonstrated that both hybrid receptors, IR-A/IGF-

1R and IR-B/IGF-1R, have basically the same binding properties. They bind IGF-1 with 

relatively high affinity, whereas insulin with much lower affinity. In other words, their 

binding characteristics are very similar to those of native IGF-1R [202-205]. Moreover, a 

recent study [206] clearly showed that both hybrid receptors are effectively activated only 

by IGF-1 and not by insulin, which can have important implications for development of 

insulin resistance or other health complications.  

 

5.4.7 IGF-1R downregulation and diseases 

Patients with mutations in IGF-1R, which would lead to a massive downregulation 

of the receptor, are rare, only a few patients with heterozygous mutations in the IGF-1R have 

been reported. The phenotypes of these patients appear to be variable. However, intrauterine 

and postnatal growth retardation, microcephaly and increased IGF-1 level, which can be low 

initially because of feeding problems, are consistent findings in these patients [79]. 

IGF-1R is more frequently connected with malignancy. Since IGF-1R plays a 

nontrivial role in the control of cell growth and works as antiapoptotic factor, his significant 

role in cancer diseases is not surprising. There are studies that have shown increased 

expression of IGF-1R or IGF-1 in cancer of breast, lung, thyroid, gastrointestinal tract, 

prostate and other tissues [207, 208]. Likewise, epidemiological studies connected higher 

serum IGF-1 levels with increased risk of pre-menopausal breast cancer and prostate, lung 

or colorectal cancers [80, 209-211] thus indicating that the hormone and its receptor could 

be promising anticancer therapeutic targets.   

Treatment with agents that block IGF-1R function could enhance the efficacy of 

treatment by chemotherapeutic in case of resistance [2]. Several experimental strategies have 

been tried to block IGF-1R function, or expression. First of all, reduction in the number of 

IGF-1R receptors was used, by antisense oligonucleotides and short-interfering RNA 

(siRNA) [2, 212], or by directly increasing receptor degradation [213, 214]. The majority of 

these systems were unsuitable for transfer to the clinical trials because of problems with 
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application to human treatment or with specificity, so new studies were focused on clinically 

more suitable methods for blocking the IGF-1R function. 

An option is blocking of IGF-1R function by inhibiting IGF-1 binding using 

monoclonal antibodies, which have a high affinity for the hormone binding domain of the 

receptor. Interestingly, in some cases the antibody also reduces a population of IGF-1R by 

enhancing the rate of receptor internalization. The antibodies were tested especially on 

model systems of human tumour cells [2]. The initial studies used mouse monoclonal 

antibodies [215-217], and later, humanized [218] or fully human [219]  antibodies have been 

also prepared and tested. Some of these antibodies had significant activity and thus were 

tested in clinical trials. Despite the promising results of the preclinical studies, the clinical 

results have been disappointing. Responses were observed only in cases of relatively rare 

tumours, Ewing’s sarcoma [220-222], non-small cell lung carcinoma [223], adrenal cortical 

sarcoma and carcinoma [224] and even in these cases not all patients benefited from IGF-

1R inhibition [166, 225]. 

Another option is the inhibition of IGF-1R function by using tyrosine kinase 

inhibitors that inhibit the enzymatic activity of the receptor. The development of specific 

inhibitors of the IGF-1R tyrosine kinase is a challenge owing to structural similarities with 

the insulin receptors. Tyrosine kinase domain is the most homologous part (84 %) of the 

IGF-1R and insulin receptors [134]. First large group of these compounds have been 

designed to compete for the ATP binding site on the tyrosine kinase.  However, some of 

these inhibitors bind to the insulin receptor too. In addition, they also prevent IGF-1R 

downregulation [166]. 

A distinct category of IGF-1R kinase inhibitors is the cyclolignan picropodophyllin 

(PPP) and its analogues. PPP blocks phosphorylation of Tyr1136 residue, within the kinase 

domain A-loop, while sparing the two others (Tyr 1131 and Tyr 1135) [226]. Its great 

advantage, in contrast to ATP binding site inhibitors, is that PPP also triggers IGF-1R 

downregulation [227].   

Inhibitors binding to ATP site of IGF-1R kinase [228-234] and PPP analogues [235-

242] were used in a model of immunocompromised mice and human tumour xenografts. 

Several of these inhibitors have been tested in clinical trials too [243, 244]. 

Finally, overexpression of inhibitory forms of IGFBPs or antibodies against both IGF-

1 and IGF-2, which mimic natural IGFBPs action, have also been suggested as potential 

therapeutic strategies. A great advantage of these strategies should be the lack of interference 
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with insulin signalling [245, 246]. Also some peptide analogues of IGF-1 have been shown 

to be able to inhibit the growth of cell lines [212].  

However, the results of clinical trials were not satisfactory, because of either the 

toxicity of the TK-targeting drugs or because of an increasing overlap and takeover of IGF-

1R signalling pathways by the IR [247]. The lack of progress in addressing one of the key 

hallmarks of cancer underlines the need for new anticancer therapies that would exploit 

alternative, and specific, targets of the insulin/IGF system. Here, a high-affinity/no-efficacy 

IGF-based IGF-1 analogue, i.e., selective antagonist of the IGF-1R, should represent a 

promising new strategy for combating IGF-1R-related malignancies. 

 

5.5 Click chemistry 

Term “click reaction” was first used by K. B. Sharpless in 2001 for conjugation 

reactions, which are stereospecific, high yielding, wide in scope and simple to perform under 

biologically benign conditions (aqueous solution, ambient temperature, and near physiologic 

pH) [248]. Several reaction types have been identified that meet these criteria and thus these 

organic reactions are used as ligation tools for the synthesis of bio-conjugates, such as strain-

promoted azide–alkyne cycloaddition (SPAAC), thiol–ene reaction, Diels–Alder reaction, 

oxime ligation, native chemical ligation and many others (see table 5.4.). However the most 

powerful and favourite one to date is the CuI-catalysed variant of the Huisgen 1,3-dipolar 

cycloaddition of azides and alkynes (CuAAC) [249]. 

 

Table 5.4. Summary of click reactions that are used to synthesize bioconjugates [249]. 

Reaction Reaction scheme 

CuAAC 
 

SPAAC 

 

Non-traceless 

Staudinger 

Ligation 
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Traceless 

Staudinger 

Ligation 

 

Tandem 

crD-A 

 

Thiol-ene 
 

Thiol-yne 

 

Thiol-Pyridyl 

Disulphide 

 

Thiol-halogen 

Ligation 
 

Native 

Chemical 

Ligation  

Thiazolidine 

Ligation 

 

Oxime 

Ligation 
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Diels-Alder 

Reaction 

 

Hetero Diels-

Alder Reaction 

 

 

Inverse 

Electron 

Demand 

Diels-Alder 

Reaction 

 

 

5.5.1 CuI catalysed 1,3-dipolar cycloaddition of azides and alkynes  

The CuI catalysed 1,3-dipolar cycloaddition of azides and alkynes, also called the copper-

catalyzed azide-alkyne cycloaddition (CuAAC), is reaction of azides and alkynes to form 

1,2,3-triazoles (Figure 5.9.) was first published by Meldal et al [250] and further developed 

by the same lab and by Sharpless’ lab [251, 252]. 

 

 
 

Figure 5.9. Reactants and product of the CuI catalysed 1,3-dipolar cycloaddition [253]. 

 

These 1,2,3-triazole heterocycles have characters of stable and rigid linking units that 

can mimic some properties of the peptide bond, but are resistant to hydrolytic cleavage (see 
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Figure 5.10.). Few structural differences between triazoles and amide bonds of course exist.  

First of all, the extension of one extra atom in the triazole backbone leads to a 1.1 Å longer 

distance R1–R2 in comparison to the typical amide bond. Moreover, triazoles also possess a 

much stronger dipole moment than an amide bond [254]. 

 

 

 

Figure 5.10. Structure of electronic and topological similarities of amides and 1,2,3-

triazoles [254]. 

 

A long list of applications suggests that CuI-catalysed alkyne–azide coupling affords 

triazoles mostly in good yields under varying conditions and thus it is accepted as a robust 

reaction [255]. Although CuAAC is described as almost quantitative conversion in organic 

synthesis, however, in the case of peptide conjugations (as well as polysaccharide 

conjugation), the secondary structures of peptide chains may hinder the efficiency of the 

reaction. Increased temperature and microwave irradiation have been demonstrated to 

increase the reaction rates and the yields [249, 256, 257]. 

Another common problem of this reaction is the oxidation of CuI to CuII, which can 

be caused by air oxygen. Degassing and protection by an inert gas, as well as the addition of 

reducing agent like sodium ascorbate are routine strategies to avoid the CuI oxidation. In 

addition, the use of rate-accelerating ligands is a common procedure to limit copper 

oxidation. These ligands are capable of binding to CuI by forming a stable chelate and thus 

prevent it from oxidation [258]. 
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6 Research Aims 

 

Project 1. Fully synthetic IGF-1 analogues 

● Development of a new methodology for the total chemical synthesis of IGF-1 analogues.  

● Preparation of a series of fully synthetic IGF-1 analogues with modifications at the 

positions Arg36 and Arg37 in the IGF-1 C domain and at the position Met59 of the A 

domain.  

● Biochemical characterization of new analogues for binding to cognate receptors (IR-A 

and IGF-1R) and for inducing autophosphorylation of these receptors.  

 

Project 2. Recombinant IGF-1 analogues 

● Development of a new methodology for a recombinant production of IGF-1 and its 

analogues in E. coli.  

● Preparation of recombinant IGF-1 analogues with modifications at the positions Asp45, 

Glu46 and His49 in the IGF-1 A domain. 

● Biochemical characterization of new analogues for binding to cognate receptors (IR-A 

and IGF-1R) and for inducing autophosphorylation of these receptors.  
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7.1 Insulin-like Growth Factor 1 Analogues Clicked in the C Domain: Chemical 

Synthesis and Biological Activities 

 

Background:  

The central biological importance of IGF-1 and its involvement in many relevant 

human pathologies led to the use of IGF-1 analogues as molecular tools for the studies of 

interactions with IGF-1 receptor (IGF-1R) and as potential new therapeutics. The 

recombinant production of insulin and IGFs in E. coli, or in yeast, is an obvious choice [259, 

260], but it does not allow a facile incorporation of non-coded amino acids and unusual 

structural motifs. Such unusual structural motifs can offer new possibilities to 

structure−activity studies of the hormones and their rational modifications. Here, the organic 

synthesis offers more possibilities and variability than recombinant production.  

The biological aspect of this work was focused on the role of a pair of arginines at 

the positions 36 and 37 located within IGF-1 C domain. This motif was previously identified 

by the others as important for binding to the IGF-1 receptor (IGF-1R) [20] and to IGF 

binding protein 1 (IGFBP-1) [21] and their mutations to Glu36 and Glu37 resulted in a partial 

antagonism towards IGF-1R [261]. Moreover, it was suggested [13] that the peptide bond 

between Arg36 and Arg37 can be cleaved in vivo being a mechanism of hormone’s 

deactivation but hypothetically also a maturation of the prohormone to its active form.  

 

Summary of the results:  

Using the solid-phase peptide synthesis and biomimetic formation of a native pattern 

of disulphides we prepared a two-chain IGF-1 analogue (disconnected between Arg36 and 

Arg37) and three single-chain IGF-1 analogues with a connecting 1,2,3-triazole moiety 

between, or in, sites 36 and 37 to probe the feasibility of the chemical synthesis of IGF-1 

analogues and to test the impact of these modifications on the biological activities of these 

analogues. We found that the solid phase synthesis of two shorter IGF-1 fragments and their 

subsequent connection by the triazole moiety is a convenient method to overcome 

difficulties with the synthesis of too long peptide chains. For this, we also prepared a series 

of N-Fmoc-protected azido amino acids and we optimized their incorporation to peptide 

chains. Biomimetic formation of a native pattern of disulphides enabled to avoid laborious 

preparation of peptide chains with orthogonally protected cysteine. These new synthetic 
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IGF-1 analogues are unique examples of disulphide bonds rich proteins with intra main-

chain triazole links. 

The binding affinity of two-chain IGF-1 was severely reduced indicating that the 

cleavage of the 36-37 peptide bond is more likely a degradation than an activation step. The 

intra-chain triazole moiety was relatively well tolerated in IGF-1R binding and its activation 

and the resulting analogues did not show any signs of antagonism. The methodology 

reported here presents a convenient synthetic platform for the design and production of new 

analogues of this important human hormone with non-standard protein modifications.  

 

My contribution:  

I developed a new methodology for the total chemical synthesis of IGF-1 analogues 

and prepared all analogues with the triazole link in the main chain. I participated in the 

measurement of their binding affinities and in the preparation of the manuscript. 
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7.2 Optimized syntheses of Fmoc azido amino acids for the preparation of 

azidopeptides 

 

Background: 

The rise of CuI-catalyzed click chemistry lead to an increased demand for azido derivatives 

of amino acid as precursors for this synthesis. Some azido amino acids are commercially 

available, however their costs are high. Thus, we investigated the possibility of the in-house 

synthesis of five Fmoc azido amino acids: β-azido L-alanine and D-alanine, γ-azido L-

homoalanine, δ-azido L-ornithine and ω-azido L-lysine. 

 

Summary: 

We investigated several reaction pathways for the synthesis of several N-Fmoc-protected 

azido amino acids described in the literature and we suggested several improvements. 

Moreover, we proposed several alternative routes for the synthesis of these compounds in a 

high purity. In conclusion, we provided detailed synthetic protocols for multigram 

preparation of these Fmoc azido amino acids, which can be prepared in a week or two and 

with user-friendly costs. 

 

My contribution:  

Under the guidance of Dr. Jan Pícha, I prepared a Fmoc-β-azido-L-alanine which I used for 

synthesis of IGF-1 analogues and I participated on synthesis of model peptides with azido 

amino acids in the sequence.  
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7.3 Probing Receptor Specificity by Sampling the Conformational Space of the 

Insulin-like Growth Factor II C-domain 

 

Background: 

Insulin, IGF-1 and IGF-2 are structurally and functionally similar protein hormones. 

Their evolution originated from a common ancestor and has resulted in different yet 

overlapping biological functions. Insulin is a key regulator of basal metabolism, while IGF-

1/2 are major growth factors. Insulin and IGFs cross-bind with different affinities to insulin 

receptor isoforms A and B (IR-A and IR-B) and IGF-1 receptor (IGF-1R), which mediate 

their specific biological functions. Identification of structural determinants in IGFs and 

insulin that trigger their specific signalling pathways is crucial for rational design of receptor 

specific analogues with potential therapeutic applications. The C domains of IGF-2 and IGF-

1 are important structural determinants in which IGFs differ from insulin and each other.  

 

Summary: 

In this project, we developed a straightforward protocol for recombinant production 

of IGF-2 analogues and we used this new methodology for preparation of six IGF-2 

analogues with IGF-1-like mutations in C domain. The analogues were tested for their 

binding features towards IR-A and IGF-1R. All of them exhibited significantly reduced 

affinity towards IR-A. Moreover, one of the analogues had also higher binding affinity for 

IGF-1R due to a synergistic effect of the Pro39-Gln40 insertion and Ser29Asn point 

mutation. Consequently this analogue had almost a 10-fold higher IGF-1R/IR-A binding 

specificity in comparison with native IGF-2. Moreover, we provided NMR structural 

characterization of selected IGF-2 analogues that helped to explain the binding behaviour of 

analogues by important conformational rearrangement of their C-domains. The development 

of the methodology for recombinant production of IGF-2 analogues made in this work was 

very important because later on we used the same methodology for the production of our 

first recombinant IGF-1 analogues. 

 

My contribution:  

I participated in the development of the methodology for the recombinant production of IGF-

2 and analogues and I personally prepared two IGF-2 analogues (six in total) by this 
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methodology. I also contributed to the performing of the binding tests with the IGF-2 

analogues. 
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7.4 Converting Insulin-like Growth Factors 1 and 2 into High-Affinity Ligands for 

Insulin Receptor Isoform A by the Introduction of an Evolutionarily Divergent 

Mutation 

 

Background: 

IGF-1 and IGF-2 are protein hormones involved in normal growth and development, 

but also in abnormal growth like cancer. They exert their activities by binding to different, 

but highly homologous (ca. 75 %) receptors: IGF-1R, IR-A and IR-B. A high degree of 

homology of these receptors results in a significant cross-binding of both IGFs, and also 

insulin, to IR-A and IGF-1R. IGFs mainly bind to the IGF-1R receptor. However, their 

binding to the isoform A of insulin receptor (IR-A) probably have an important role in the 

organism too, especially in the case of IGF-2. Both IGF-1 and IGF-2 were shown to be 

involved in tumorigenesis by binding to IGF-1R and IGF-2 by binding to IR-A as well. The 

clinical trials with IGF-1R tyrosine kinase inhibitors or specific anti IGF-1R of anti IGF-1 

antibodies have not fulfilled expectations (see above). Hence, development of IGF-1R or IR-

A antagonists would be of great clinical interest with important clinical applications. 

Whittaker et al showed that mutations of A4 and A8 sites in human insulin caused a 

disproportionate effect on hormone IR binding and activation, i.e. partial antagonism [262]. 

In this study, we were interested if the mutation of respective residues in IGF-1 and IGF-2 

can elicit similar effects as in the case of insulin.  

 

Summary:  

Here, we prepared recombinant IGF-1 analogues specifically mutated at sites 45, 46 

and 49 and IGF-2 analogues at sites 45 and 48, which correspond, or are close, to insulin A4 

and A8 sites. Afterwards, we tested the analogues and for their binding and activation of 

IGF-1R and IR-A binding and their receptor autophosphorylation potencies.  

All new analogues retained the main IGF-1R-related properties of native IGF-1 or 

IGF-2, but the molecules with His49 in IGF-1, and His48 in IGF-2, showed significantly 

higher affinities for the insulin receptor (for both IR-A and IR-B isoforms) and they are the 

strongest IGFs-like binders of these receptors ever reported. All hormones activated 

receptors without major discrepancies with their binding affinities. This study revealed that 

IR-A and IGF-1R contain specific sites, likely parts of their so-called sites 2′, which can 

interact differently with specifically modified IGF analogues. These findings may facilitate 
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novel and rational engineering of new hormone analogues for IR-A and IGF-1R studies and 

for potential medical applications. 

 

My contribution: 

I customized the recombinant production protocol of IGF-2 for the production of IGF-1 

analogues and I prepared all the IGF-1 analogues in the paper and participated in the 

measurement of their bindings and signalling properties. I also contributed to the preparation 

of the manuscript. 
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8 Discussion 

8.1 Fully synthetic IGF-1 analogues with modifications at the positions 36 and 37.  

8.1.1 Development of the new methodology for the total chemical synthesis of IGF-1 

analogues and preparation of the analogues. 

Total chemical synthesis of proteins, in contrast to the recombinant production of 

proteins, allows incorporation of non-coded amino acid and unusual structural motifs. On 

the other hand, the chemical synthesis of long (> 40-50 residues) peptides is a challenging 

task.  

The chemical synthesis or semisynthesis is quite frequently used for the production 

of insulin analogues. Insulin consists of two peptide chains (A with 21 and B with 30 amino 

acids) and contains three disulphide bridges, two inter-chain between the A and B chains 

and one intra-chain in the A chain. A correct arrangement of disulphide bridges is the most 

difficult part of the synthesis [263]. A frequently used option is the use of orthogonal 

protection of cysteines (e.g. Acm-Acm, Trt-Trt and Npys-Npys) and the step-wise formation 

of respective disulphide pairs [264-269]. This is a robust but laborious protocol demanding 

purification of intermediates, which can result in relatively low yields.  

An alternative simple and straightforward strategy benefits from the natural ability 

of insulin chains to adopt a native conformation and native combination of disulphide 

bridges. Similar process occurs in vivo in proinsulin. In our first variant of the chemical 

synthesis of insulin, the insulin chains A and B were protected with S-sulfonate groups [270-

272]. This protection is stable at both basic and acidic conditions and therefore allows 

purification of the chains by HPLC. However, and remarkably, S-sulfonate group can be 

cleaved by a nearly stoichiometric amount of reducing agents (e.g. DTT). Next, a correct 

arrangement of disulphide bridges is done by slow oxidation of cysteines and a biomimetic 

folding. This method was used by Eli Lilly and Company in 80ies and 90ies for a production 

of tones of insulin. Another improvement of this oxidation can be achieved by folding of a 

prohormone form of insulin (i.e. with the A-chain N terminus and the B-chain C terminus 

connected by a peptide sequence or another A and B chain connective tag), followed by 

enzymatic removal of the connecting peptide, to give mature insulin [273]. Unfortunately, 

some specific mutations can damage the natural ability for correct biomimetic folding when 

using this method [271]. 
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IGF-1, IGF-2 and proinsulin are single chain proteins, which are similar to insulin in 

primary and secondary structure, but they are significantly longer (70, 67 and 86 residues, 

respectively) than both insulin chains (21 and 30 residues). This number of residues leads to 

markedly lower efficiency of the solid-phase synthesis, as it was shown in reports on the 

synthesis of IGF-1 analogues [274-276]. Consequently, the total chemical synthesis is 

performed more frequently with insulin or other smaller hormones from the insulin protein 

family than on IGF-1, IGF-2 or proinsulin.  

There are two elegant studies, which utilized a native chemical ligation of shorter 

protein fragments to overcome the solid-phase synthesis of the whole chains for preparation 

of proinsulin [277] or IGF-1 and its analogues [278].  

In this thesis, we aimed to develop a new methodology for the total chemical 

synthesis of IGF-1 analogues based on the solid-phase synthesis of two shorter fragments 

with -azido-alanine or propargyl glycine at the C- or N-terminus, respectively, their 

subsequent ligation by a CuI-catalyzed cycloaddition and a biomimetic recombination of 

disulphide bridges. As a result, IGF-1 analogues were connected by 1,2,3-triazole in the  

main chain, which is considered to have structural and electronic properties similar to those 

of the peptide bond [254]. To the best of our knowledge, our clicked IGF-1 analogues 

(relative molecular weights about 8,000 Da) are the longest disulphide-rich peptides with a 

triazole-link in the main chain prepared in a preparative scale. 

The analogues prepared in this study are shown in Table 8.1.  The 3D-fold of human 

IGF-1 (a crystal structure) is shown in Figure 8.1.  

For the synthesis of fragments with -azido-alanine we needed high amount of -

azido-alanine (a few grams). Fmoc β-azido L-alanine is commercially available, however its 

cost is high. Thus, we investigated the possibility of the in-house synthesis of Fmoc β-azido 

L-alanine and we succeeded to prepare grams of this compound in a reasonable time delay 

(the synthesis takes a week or two) and at user-friendly costs. Our Fmoc β-azido L-alanine 

was subsequently used for the synthesis of -azido-alanine fragments. 
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Table 8.1. List of synthetic IGF-1 analogues prepared in this study. 

Schematic structures Analogue 

 1 

 2 

 3 

 4 

 

 

 

 

 
 

 

Figure 8.1. The 3D fold of human IGF-1. The interrupted chain (invisible residues 36-38), 

marked by a gray arrow, is the part of IGF-1 of our interest and was studied in this work. 

Electron density of this part of IGF-1 was missing in 1GZR.PDB crystal structure [13]. Side 
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chain of Met59 is shown in green, IGF-1 residues 39-66 are in light blue and residues 3-35 

are in pink [279]. 

 

Solid-phase synthesis (performed by a Fmoc strategy) of one of the peptide chains 

for analogue 2, was complicated by appearance of an uneasily separable unwanted-product, 

which was identified as methionine sulfoxide at the position 59. Therefore, we decided to 

prepare analogue 3, where we substituted Met for Norleucine (Nle). Despite better purity of 

the crude product of the solid-phase synthesis, the synthetic yield was not improved, which 

led us back to native Met at position 59 in analogue 4. Synthesis of the respective fragment 

for analogue 4 was accompanied by only a minor appearance of the oxidized product and it 

is not excluded, that the observed oxidation in the case of analogue 2 was just accidental due 

to minor errors during the manipulation with the crude peptide.  

However, we observed rather important formation of an apartimide derivative (8.6 

%) during the synthesis of another IGF-1 peptide fragment having in the sequence the motif 

C18GDRG22. Appearance of this type of aspartimide is rather rare but not unusual [280]. This 

issue was overcome by the use of Fmoc-Asp(OEpe)-OH instead of Fmoc-Asp(OtBu)-OH, 

which suppressed the formation of the apartimide. 

Preparation of two chain IGF-1 (analogue 1) was done by the synthesis of two 

peptides protected as S-sulphonates followed by their biomimetic combination by air 

oxidation (after the reduction to SH form). In Jiraček´s laboratory this procedure is used 

routinely as a straightforward methodology for the synthesis of insulin analogues [271, 272]. 

The yields of this synthetic step for human insulin are typically about 10 % [271]. However, 

in the case of two chain IGF-1 the yield was only about 0.6 %. This indicates the importance 

of the single chain structure of IGF-1 for a proper folding of the hormone. 

Using the same S-sulphonate protecting strategy for cysteines, we attempted to obtain 

one chain IGF-1 analogue 2 by CuI-catalyzed cycloaddition ligation of two shorter fragments 

with C-terminal -azido alanine (chain 1-36) and N-terminal propargyl glycine (fragment 

37-70). However, all our attempts for “clicking” these fragments by CuI-catalyzed click 

reaction failed and we have never isolated any products. First of all we used as a catalyst 

CuSO4 reduced by ascorbic acid in numerous solvents, since we had a positive experience 

with these conditions [281]. Further, was used as catalyst CuBr with TBTA or THPTA, as 

accelerating ligands [258], in various solvents, including 5 M urea or 6 M guanidine 

hydrochloride (as a chaotropic agent in water) or 0.5 M tetrabutylamonium bromide (as a 

chaotropic agent in organic solvents). However, all these reactions failed. We concluded that 
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S-sulphonate groups are incompatible with copper-catalyzed azide-alkyne cycloaddition, 

probably because of the ability of S-sulphonate to chelate copper, which could lead to 

undesirable Cu-mediated folding of IGF-1 chains and thus to steric blocking of azido and 

alkyne groups. 

Hence, in further experiments we chosed an alternative acetamidomethyl protection 

of cysteines since Acm-protection should not interfere with the clicking step and offers 

several different chemical ways for the deprotection [282]. The cycloaddition of the Acm-

protected chains was effective only with a high excess of CuSO4/ascorbate as a catalyst in 

water-tBuOH. Addition of click accelerators [258], which should work as CuI stabilizing 

chelating agents, or reactions in organic solvents did not lead to desired products. 

Interestingly, reactions were not effective if scaled up above 2-4 mg per chain. It seems that 

formation of complexes with CuI causes steric problems during cycloaddition reactions with 

large peptide precursors. The failure of the reaction in organic solvents could be due to a 

necessity of an effective protein hydration, which is better in a mixture of water and tBuOH 

than in organic solvents only. The reactions performed with precursors without arginines 

gave better yields than with precursors containing arginines. This could be due to some steric 

shielding of azido and alkyne moieties by bulky arginine side chains.  

The moderate yields of the ligation reactions (7-18 %) document the difficulty of the 

click reactions in case of large peptides or proteins as precursors compared to click reactions 

with small peptides or small molecules, which are usually quick and almost quantitative 

[254].  

The deprotection of acetamidomethyl groups from cysteines and the folding of 

analogues (forming of S-S bridges), were crucial for the success of the synthesis. 

Deprotection by an access of iodine in acetic acid, frequently reported in the literature [269], 

was not successful. In our case, the majority of Acm groups remained uncleaved even after 

longer reaction time (more than 4 hours). Therefore, we used a procedure of Acm group 

deprotection with silver trifluoromethanesulphonate in TFA [283] followed by application 

of gaseous hydrogen sulfide to remove Ag+ from cysteine salts. Finally, the precursors were 

allowed to slowly air-oxidize and fold spontaneously. This three-step methodology provided 

yields about 6-8 % for analogues 2 and 3, which is comparable to our approximately 10 % 

yield of a single step folding of human insulin from its A and B chains [271] and much better 

than for two chain IGF-1 analogue 1 (0.6 %). These results document more effective folding 

of single chain IGF-1 precursors, than two chain IGF-1 analogues. The folding of analogue 
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4 was markedly less effective (1.7 %) than folding of analogues 2 and 3. The reason could 

be the presence of arginines at the positions 36 and 39 of the analogue causes extension a C-

domain, we actually insert of an extra triazole-containg connecting moiety, which has a 

negative effect on the folding of the IGF-1. 

 

8.1.2 Receptor binding and activation properties of fully synthetic IGF-1 analogues. 

Mutation of the pair of arginines Arg36-Arg37 for Ala36-Ala37 severely impaired 

binding of the mutant IGF-1 to IGF-1R [19, 20, 23, 39] and to IGFBP-1 [21]. Furthermore, 

two studies indicated that the analogue with two glutamates instead of Arg36-Arg37 can 

have features like a partial antagonist, i.e. still effective binding to IGF-1R but impaired 

receptor signaling [261] and tumorigenesis [284].  

Moreover, a missing electron density of residues 36-38 (Arg-Arg-Ala) in the crystal 

structure of human IGF-1 [13] led to the theory if the pair of basic arginines 36 and 37 could 

be a cleavage site for proteolytic enzymes in vivo, and whether the cleavage of Arg36-Arg37 

peptide bond can disrupt binding to IGF-1R or whether the resulting “two chain” IGF-1 is 

still able to effectively bind and activate IGF-1R.  

The binding affinity of the two chain IGF-1 analogue 1 for IGF-1R was severely 

impaired (3.5 %) compared to native IGF-1. This result does not support the theory that the 

cleavage of Arg36-Arg37 peptide bond (if it happens in vivo) is another step of IGF-1 

prohormone processing. However, most likely, it is a degradation step leading to a much less 

active protein. 

The binding affinity of analogue 2 for IGF-1R is 21 % of native IGF-1, which is less 

pronounced drop than the effect of the Arg36Ala/Arg37Ala mutation (about 5 %) [20]. 

Interestingly, it seems that the triazole ring, which is three atoms longer that the peptide bond 

in native IGF-1 (see Figure 8.2.), and neighboring ethyl carboxyamido (at 36) and ethyl 

amino (at 37) moieties, are somehow compensated the absence of arginine residues.  

The analogue 3 differs from analogue 2 only in Nle residue at the position 59 instead 

of Met, and had affinity reduced to 5 % of the affinity of native IGF-1. This observation 

indicates the importance of sulfur atom in Met59 for IGF-1R binding affinity of IGF-1. In 

agreement with that is the 17-fold decrease in binding of Phe59 IGF-1 [28].  

The highest IGF-1R binding affinity in this series has analogue 4, about 25 % of 

native IGF-1. This analogue contains C-loop arginines at positions 36 and 39 instead at 
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positions 36 and 37. Their C atoms are separated by eight extra backbone atoms plus 

triazole ring (see Figure 8.2.). The moderate increase of binding affinity of this analogue 

(compared to analogue 2) indicates a relative tolerance of the receptor for prolongation of 

this part of the C-domain. In addition, it is possible that minimum one of the arginine residues 

(36 or 39) occupies similar position on the receptor as in the case of native hormone.  

These results could open new possibilities for the use of different side chains and 

motifs at positions adjacent to the triazole ring, i.e. 36 and 37 in 2 and 37 and 38 in 4. 

However, such advancement depends on the development of available functionalized azides 

and alkynes suitable also for the solid-phase peptide synthesis.  

All analogues 1-4 have reduced binding affinities for IR-A compared to native IGF-

1. However, the decrease is less pronounced than for IGF-1R (21-43 % of native IGF-1). 

This could indicate that the C-domain of IGF-1 is more important for binding to IGF-1R 

than for IR-A.  

All analogues activated autophosphorylation of IGF-1R and IR-A proportionally to 

their binding affinities for these receptors without any signs of potential antagonism. 

Therefore, previously observed [261] partial antagonism of Glu36-Glu37 IGF-1 can be 

probably dependent on negative charges of glutamic acid side chains.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.2. The comparison of the “connecting” motifs at positions 36-37 or 37-38 of 

analogues 2-4 with native IGF-1. C atoms are marked by residue numbers [279]. 
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8.2 Development of a new methodology for the recombinant production of IGF-1, 

IGF-2 and their analogues in E. coli. 

Our aim was to develop a new efficient, straightforward and cost-effective protocol 

for the recombinant production recombinant production of IGF-1, IGF-2 and their analogues 

in E. coli [49, 259]. 

Novo Nordisk A/S routinely uses recombinant production of proinsulin in 

Saccharomyces cerevisiae, which is followed by enzymatic processing to form mature 

insulin [285]. However, because respective expression vectors are not easily available, we 

decided to use E. coli for the production and folding of single chain IGFs employing a 

methodology routinely used in IOCB for the production of other proteins [286]. We started 

with IGF-2 because it is much less studied hormone than IGF-1 and because we supposed 

that the methodology developed for IGF-2 will work also for IGF-1. 

IGF-2 was expressed as a fusion with an N-terminal, and cleavable by TEV protease, 

His6-tagged GB1 protein (immunoglobulin binding domain B1 of Streptococcal Protein-G) 

[286], which increases solubility and allows as fast and easy purification on Ni-column. 

The crucial point of the purification protocol was the cleavage of the fusion partner 

from IGF-2 precursor and subsequent formation of mature IGF-2 while avoiding misfolded 

variant of the hormone. We used TEV protease, which needs reducing conditions to be 

properly active. However, reductive conditions strongly damage proper folding of IGF-2. 

After optimizations steps, we found convenient conditions for both proper cleavage by TEV 

protease and proper IGF-2 formation in a mixture of oxidized and reduced glutathione 

(specifically 1.5 mM GSH, 0.15 mM GSSG). Interestingly, moderately reducing 

environment triggered a correct forming of disulphide bonds of the peptide.  

Since this technique provided relatively high yields (0.5-1.8 mg L-1 of culture) of IGF-

2 we decided to customize this methodology for the production of IGF-1. IGF-2 can be 

produced without any additional amino acids at the N-terminus using Glu-Asn-Leu-Tyr-Phe-

Gln↓Ala TEV protease cleavage sequence. The cleavage at (↓) results in the native IGF-2 

hormone with N-terminal alanine. Unfortunately, this strategy is not successful for the IGF-

1 due to the Pro residue at the position 2 in IGF-1 (Figure 5.2.), which does not allow TEV 

protease to cut the cleavage sequence. Therefore, for the production of IGF-1 we inserted an 

extra Gly residue at the -1 position of the hormone, which enabled the cleavage of the 

precursor. Consequently, all our IGF-1 analogues had an additional Gly at -1 position. 
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Further biological characterization of Gly-1-IGF-1 showed that this extra N-terminal glycine 

has no effect on the binding affinity to IGF-1R and IR receptors. 

 

8.3 Synthesis and characterization of IGF-1 analogues with mutations at the 

positions 45, 46 and 49. 

Since upregulation of IGF-1 action plays a role in development of cancer, a lot of 

efforts have been focused on the development of effective anti-IGF-1R-directed therapies. 

The majority of these compounds were tyrosine-kinase (TK) inhibitors and anti-receptor 

antibodies [287]. Unfortunately, the results of clinical trials were not satisfactory [247], 

because of the toxicity and an increasing overlap and takeover of IGF-1R signalling 

pathways by the IR. The new anticancer therapies specially target only IGF-1R receptor, i.e. 

IGF-based selective antagonist of the IGF-1R, should represent a promising alternative 

strategy to combat IGF-1R-related malignancies. To date, no IGF-like peptide antagonists 

of the IGF-1R have been identified. However peptides with antagonistic properties were 

discovered by a phage-display technique [288]. 

Whittaker et al. demonstrated that a combination of GluA4His and ThrA8His 

mutations of insulin results in insulin analogues with native IR binding affinity, but with a 

poor signalling transduction. They also proposed, based on mutational and IR photo 

crosslinking experiments, that surfaces involving insulin GluA4 and IR Asp707 could play 

a crucial role in the mechanism of receptor activation [262]. Insulin acidic GluA4 is 

preserved by its equivalent Asp45 in the IGF-1 and insulin-neutral GlnA5 is replaced by 

Glu46 in corresponding sites of IGF-1 (see Figure 8.3.). Furthermore, Asp 707 of IR α-CT 

is replaced by a neutral Asn694 in the IGF-1R α -CT segment. These correlations and trends 

between positions A4/A5 in insulin and IGF-1 equivalent 45/46 sites led us to study impact 

of the mutations of these residues on receptor affinities and autophosphorylation in order to 

develop IGF-1R-specific antagonists with potential anti-cancer clinical applications. We 

systematically modified IGF-1 Asp45 site with Asn or Ala and Glu46 site with Gln or Ala. 

Phe49 was modified with His because equivalent mutation in insulin dramatically increased 

its binding affinity for IR-A (see Figure 8.3.). Afterwards we characterized IGF-1R and IR-

A binding and autophosphorylation properties of theses analogues. 
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Figure 8.3. Comparison of the primary sequences of human IGF-1, IGF-2 and insulin 

with highlighted mutated sites. The homologous regions are shown with a gray background 

and the mutated residues are highlighted with a yellow background. Reproduced from Ref.  

[49]. 

 

We did not discover any clear and major antagonism or receptor overstimulation. All 

analogues activated IR-A and IGF-1R without major disproportions to their binding 

affinities. Therefore, the previously described significant disproportionate binding and 

activation of insulin analogues mutated at A4/A8 by Whittaker et al. [262] is probably 

specific and limited only for insulin-IR interactions. 

Mutations at the position 45 led to reduce binding affinities (29-68 %) to IGF-1R, 

while mutations at the position 46 led to the same, or slightly higher, binding affinities (92-

133 %) to IGF-1R. These analogues have binding potencies for IR-A similar to the native 

IGF-1.  

Much more surprising was the effect of mutation of Phe49 in IGF-1 for His. This 

mutation enhanced binding to IR-A about 5-fold, which makes the respective analogues the 

strongest IGF-1 binders of the IR-A receptor isoform thus far reported. Similar, about 3-fold 

enhanced binding affinity was determined for IR-B as well. Thus, the mutation is specific 

for IR receptors only and not for IGF-1R, which may indicate that the respective binding 

sites (probably parts of receptors’ binding sites 2) are not equivalent. Similar effects were 

observed for equivalent HisA8 in insulin [262, 289-291] and His48 in IGF-2 (this study). In 

addition, the same mutation in IGF-2 (Phe48His) slightly enhances binding affinity of the 

analogue for IGF-1R, which is not the case for the mutation Phe49His in IGF-1. This may 

indicate that the interactions of IGF-1 and IGF-2 with IGF-1R are different. The residues at 
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position 49 of IGF-1 and 48 of IGF-2 have an important role in IGF-1R interaction and do 

not interact with the receptor in the same fashion.  

Some trends observed in the analogues described here can be corroborated by the 

phylogeny of insulin-related hormones. Although there is no mammalian insulin with His at 

site A8, this amino acid is frequently present there in fish, frog and bird insulins [292].  Also, 

HisA8 was proposed as being responsible for about a 5-fold higher binding affinity of 

chicken insulin for IR in human lymphocytes [293]. Herring at al. [294] proposed that it is 

possible that a “lower affinity” ThrA8 site in mammals emerged from the evolutionary 

optimization of the insulin-receptor kinetics, which requires a reduction of insulin binding 

affinity in mammals that is dictated by a different route of insulin delivery. In more ancient 

vertebrates like birds, insulin is secreted differently, by kidney, which leads to rapid 

metabolic changes [294].  However, in mammals, the pancreas-to-liver portal vein-mediated 

pathway is a primary direction of insulin. In humans, the liver is the main glycemic-response 

organ with >90 % “metabolic” IR-B isoform, and where insulin inhibits gluconeogenesis 

and glycogenolysis, before reaching the peripheral tissues. It may be postulated that to assure 

an optimum liver:body distribution of insulin its IR-binding affinity needs to be reduced in 

mammals, in order to achieve a more systemic glycemic response [294].  
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9 Conclusions 

 

We developed a new methodology for the total chemical synthesis of IGF-1 analogues. 

The methodology is based on ligation of two precursor chains prepared by solid-phase 

peptide synthesis, by subsequent CuI-catalyzed cycloaddition and finally by a biomimetic 

formation of three disulphide bridges. It is an alternative synthetic strategy to previously 

established methods using native ligation and orthogonal protection of cysteine residues. 

The “clicked” IGF-1 analogues reported here are unique examples of the use of triazole-

forming click chemistry for the preparative production of large peptides/small proteins 

(8,000 Da) with a complicated disulphide pattern. Connection of two IGF-1 fragments by a 

triazole-containing moieties was relatively well tolerated in binding to IGF-1R and IR-A, 

and can thus represent a suitable synthetic platform for the design of new analogues. In 

addition, we found that the disconnection of IGF-1 main chain at 36-37 peptide bond leads 

to a deactivation of the hormone, which indicates that the respective cleavage is not a part 

of the maturation of the prohormone in vivo. 

We developed a straightforward protocol for the production of the recombinant IGF-1 

with one extra N-terminal Gly(-1) and prepared eleven IGF-1 analogues with mutations at 

positions 45, 46 and 49, which were subsequently tested for receptor binding affinities and 

abilities activation to activate their cognate receptors. We did not detect any clear and major 

antagonism or receptor overstimulation. However, we found that mutation Phe49His in IGF-

1 dramatically enhances binding affinities for IR-A and IR-B, which makes these mutant the 

strongest IR-A/IR-B binders reported so far. Moreover, this mutation does not change 

binding affinity of analogues for IGF-1R indicating that respective sites (probably sites 2) in 

IRs and IGF-1R receptors are not equivalent. 

This work brought new valuable information about structure-activity studies of IGF-1 

and IGF-1R and opened new directions for the further rational engineering of the hormones 

of the insulin-IGF system. 
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